
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Defining operational logics

Permalink
https://escholarship.org/uc/item/3cv133pn

Authors
Mateas, M
Wardrip-Fruin, N

Publication Date
2009-12-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3cv133pn
https://escholarship.org
http://www.cdlib.org/

Breaking New Ground: Innovation in Games, Play, Practice and Theory. Proceedings of DiGRA 2009

© 2009 Authors & Digital Games Research Association (DiGRA). Personal and educational classroom use of this paper is allowed,

commercial use requires specific permission from the author.

Defining Operational Logics

Michael Mateas and Noah Wardrip-Fruin

michaelm, nwf @soe.ucsc.edu

ABSTRACT

Much analysis of games focuses, understandably, on their

mechanics and the resulting audience experiences.

Similarly, many genres of games are understood at the level

of mechanics. But there is also the persistent sense that a

deeper level of analysis would be useful, and a number of

proposals have been made that attempt to look toward a

level that undergirds mechanics. This paper focuses on a

particular approach of this sort—operational logics—first

proposed by Noah Wardrip-Fruin (2005) and since then

discussed by authors such as Michael Mateas (2006) and

Ian Bogost (2007). Operational logics connect fundamental

abstract operations, which determine the state evolution of a

system, with how they are understood at a human level. In

this paper we expand on the concept of operational logics,

offering a more detailed and rigorous discussion than

provided in earlier accounts, setting the stage for more

effective future use of logics as an analytical tool. In

particular, we clarify that an operational logic defines an

authoring (representational) strategy, supported by abstract

processes or lower-level logics, for specifying the behaviors

a system must exhibit in order to be understood as

representing a specified domain to a specified audience. We

provide detailed discussion of graphical and resource

management logics, as well as explaining problems with

certain earlier expansions of the term (e.g., to file handling

and interactive fiction’s riddles).

Author Keywords

operational logics, mechanics, code studies, unit operations,

software studies

INTRODUCTION

Games can be studied at many levels of abstraction, and in

relationship to many social, cultural, psychological, media-

theoretic, and formal phenomena. This multivalent nature of

games contributes to the methodological pluralism seen in

the game studies community. Montfort and Bogost

introduce a five level model for the analysis of digital

artifacts as a framework for organizing this plurality of

methods and viewpoints [10]. The levels range from

reception/operation through interface, form/function, code

and finally platform. In the context of games, the first three

levels are the traditional purview of game studies, with a

focus, respectively, on the reception of the artifact in the

social and cultural field; the game interface and the visual

and auditory representational strategies; and the mechanics,

rules, formal, and simulational elements of games. The last

two levels, code and platform, have been far less studied,

with the code level focusing on deep readings of software

structures, and platform studies focusing on deep readings

of the hardware and system abstractions that underlie

software. In this paper we present operational logics as a

unit of analysis centered at the code and platform levels, but

that connects technical implementation strategies with

authorial and audience meanings. Operational logics are the

fundamental abstract operations—with effective

interpretations available to both authors and players—that

determine the state evolution of the system and underwrite

the gameplay. As such they provide “deep cores” that bind

together issues ranging from the platform to reception level

for specific representational domains.

Wardrip-Fruin introduced the notion of operational logics

(though did not name them as such until his 2006

dissertation [14]) in a 2005 paper exploring the different

ways in which interactive texts can be made playable [13].

To briefly recapitulate the argument of that paper, Wardrip-

Fruin argues that, rather than focusing on the question of

which interactive experiences are or are not games, it is

more fruitful to focus on the analytic category of the

playable, and to ask of various interactive experiences “in

what way is this experience playable?” He then introduces

the notion of operational logics as a way of analyzing how a

given interactive experience structures the space of play,

particularly focusing on two families of operational logics:

graphical logics and textual logics. Wardrip-Fruin further

developed the idea of operational logics in his dissertation

[14] and in Expressive Processing [15], though not

providing a wholly consistent account across these three

treatments. Other authors, such as Mateas [7] and Bogost

[4], have further expanded on the notion of operational

logics, but generally as a niche discussion in the context of

a larger project; even Wardrip-Fruin, in his three different

Expressive Intelligence Studio

Department of Computer Science

University of California, Santa Cruz

1156 High St, MS:SOE3

Santa Cruz, CA 95064 USA

2

accounts, always introduces operational logics in the

context of making a larger argument. In this paper we seek

to define operational logics as a first-class unit of analysis,

offering a more detailed and rigorous discussion than

provided in earlier accounts. We discuss graphical and

resource management logics in some detail, outline a

number of limit cases for the concept of operational logics,

and then provide and expand a full definition of the

concept. Finally, we discuss how this work sets the stage

for the use of operational logics in connecting a number of

issues in game studies to the emerging area of software

studies, offering a powerful combination of technical

grounding with authorial and audience concerns.

OPERATIONAL LOGICS

In this section we introduce operational logics with an

informal discussion of graphical and resource management

logics. The next section provides a more formal definition

of operational logics.

Graphical Logics

To introduce graphical logics, consider two early

videogames, Spacewar! (1962) and Pong (1972). In

Spacewar!, two players control the flight of virtual

spacecraft. Player controls are clockwise and

counterclockwise rotation, thrust, fire and hyperspace

(which jumps the ship to a random location on screen).

Each player tries to shoot the other while avoiding being hit

by enemy fire or crashing into the enemy ship, while

navigating within the gravitational field of a star in the

center of the screen. A ship is destroyed when it collides

with a bullet, the other ship, or the star in the center.

In Pong, a simple table tennis simulator, two players control

paddles that are able to move vertically along the goal lines

at the left and right edges of the screen. A simple computer

controlled opponent can be substituted for one of the

players. The players volley a ball back and forth; when

either player misses (the ball fails to collide with the

paddle), the other player scores. The angle at which the ball

reflects from the paddle on collision depends on where the

ball hits the paddle, reflecting at sharper angles towards the

ends of the paddle.

Though the fictional worlds of space warfare and table

tennis are quite distinct from each other, and the two games

would typically be classified as belonging to distinct game

genres (the shoot-em-up and sports simulation

respectively), there are strong similarities between them.

Both games represent the movement of simulated objects

(space ships, projectiles, balls, paddles) by constantly

erasing and redrawing collections of pixels (or, in the

original Spacewar!, collections of vectors) on the screen.

Major gameplay events occur when two virtual objects

collide, naively, when pixels/vectors belonging to one

virtual object are drawn at the same screen location as

pixels/vectors belonging to another virtual object. The

simulated movement of objects is influenced by an

underlying physics simulation, giving spaceships inertia and

making them subject to gravity, or changing the angle of a

ball’s trajectory as a function of where it hits the paddle (the

physics simulation does not have to obey the physics of our

world). These similarities constitute operational logics,

which we, as discussed above, define as fundamental

abstract operations—with effective interpretations available

to both authors and players—that determine the state

evolution of the system and underwrite the gameplay. Both

Spacewar! and Pong exhibit canonical graphical logics,

specifically logics of movement, collision detection and

physics. There’s an additional logic operating in Spacewar!:

navigation. Navigation involves player-controlled

(simulated) movement of a (virtual) object in a represented

space, in this case the movement of space ships in a two-

dimensional field. Pong can be said to make use of

navigation logic, though it is the degenerate case of

navigation along a line segment.

Graphical logics, which underwrite the simulation of spaces

and objects within spaces, are the most common logics

employed in videogames, found at the heart of everything

from the playful Mario games to the gritty Grand Theft

Auto franchise. Consider the logic of collision detection.

Collision detection is operating when Pac-Man eats a dot or

power pill, or is touched by a ghost; it’s operating when the

player is unable to move through walls in Doom, picks up

health packs, hits demons with weapons, and is hit by

demon attacks; it’s operating when the player’s katamari

picks up or bounces off an object in Katamari Damacy.

Similar examples can be enumerated for movement,

navigation, and physics, across the vast majority of

contemporary and historical games.

Resource Management Logics

Before discussing some general properties of operational

logics, we will examine one more family of logics in this

section. Consider two other early computer-based games,

Hamurabi and Oregon Trail. Richard Merrill wrote a land

management game called The Sumer Game in 1969 in

FOCAL for the PDP-8. David Ahl ported it to BASIC for

the PDP-8, and later published an expanded version of the

program, renamed Hamurabi, in his best-selling book

BASIC Computer Games [2]. It is in this version that the

game became well-known among personal computer

hobbyists, who would type in the program to play the game

(and, because the game was distributed as source code,

often tinker with the program to explore variants). In

Hamurabi the player takes the role of “Hamurabi,” the

ancient king of “Sumeria.”
1

In this turn-based, text-based game, the player makes a

series of decisions about land management and the

1
Hamurabi is presumably a shortening of Hammurabi to fit

in an eight-character file name limit. The game invites

players to “Try your hand at governing ancient Sumeria”

(rather than Sumer).

3

allocation of grain. During each of 10 rounds, each

representing one year, the player decides how many acres

of land to buy or sell, how many bushels of grain to feed the

people (20 per person required to avoid starving anyone),

and how many acres of land to plant (one bushel of grain

plants 2 acres)
2
. At each step, the game state consists of the

population, the number of acres owned, the number of

bushels of grain owned, and the current price of land in

bushels per acre.

As one would expect, feedback loops and tradeoffs exist

between the various player choices. For example, you can

only plant as many acres as ten times your population (each

person can farm 10 acres), and your population grows as

function of the number of acres owned and the amount of

stored grain—though more acres and grain are required to

grow the population by the same absolute value as the

population gets bigger. Further, random events can strike,

such as plagues that eliminate half your population and rats

eating your stored grain. This introduces further tradeoffs

into the system. For example, the amount of stored grain

destroyed if a rat infestation strikes increases with the

amount of total grain stored. This encourages the player to

minimize the amount of stored grain in order to minimize

exposure to this risk, yet the player must also maximize the

amount of stored grain in order to grow their population.

Finally, there is random fluctuation in the yield per acre

(number of bushels produced per acre planted) as well as in

the price per acre, introducing an element of uncertainty

and encouraging the player to try strategies such as buying

land low and selling high, which can become necessary in

low-yield years in order to avoid mass starvation.

In Oregon Trail the player guides a wagon that is traversing

the Oregon Trail from Independence Missouri to Oregon’s

Willamette Valley in 1848. The player’s goal is to reach the

end of the trail while minimizing the number of party

members lost along the way. Oregon Trail was developed

by Don Rawitsch, Bill Heinemann and Paul Dillenberger to

teach school children about the realities of pioneer life

along the Oregon Trail in the mid 19
th

 century. The game

exists in several versions, with the original mainframe

versions developed in 1971 and released in 1974, and the

Apple II versions that most players are familiar with first

released in 1980 with an updated version in 1985.

At the beginning of the game, players are given a budget for

equipping their wagon. Purchase decisions include sets of

clothes (influences health as a function of weather), wagon

spare parts (wagons break down), food, bullets (can be used

to hunt as another way of getting food), and so on. Once the

trip is underway, the player is able to adjust the pace at

which the wagon moves, rate of consumption of food,

whether to trade (during trading, the player is offered swaps

for items in her inventory), the opportunity to hunt (use

2
 The simulation constants reported here are based on David

Ahl’s 1973 BASIC version for the PDP.

bullets to try to hit game to supplement food), the

opportunity to rest (costs days, and therefore food, but can

improve the health of party members and rest oxen) and, at

the occasional fort, opportunities to purchase items. The

player must manage tradeoffs between the health of the

party members, consumption of food, and number of miles

traversed per day. Additionally, the player must contend

with a variety of random events, such as party members

becoming sick, thieves stealing items, wagon parts breaking

down, and so forth.

Though the fictional worlds of land management in ancient

Sumer and 19
th

 century pioneer life along the Oregon Trail

are quite distinct, and the two games would typically be

classified as belonging to distinct game genres (the tycoon

game and the simulation game respectively), there are

strong similarities between them. Both games represent

acquiring, using, and transforming resources such as food

and money by representing the amount of each resource

currently possessed by the player as a number, and defining

sources that produce resources, sinks that consume

resources, and transformers that convert one resource into

another. Random events within the fictional world can

consume or produce resources, or change rate constants for

production, consumption, and transformation; the

probability of a random event occurring is modulated by the

amount of resources possessed and/or by the current rates of

production, consumption, and transformation. Resource

allocation involves the player selecting among different

sources, sinks, or transformations to apply to different

resources, selecting either absolute values or rates. These

similarities constitute resource management logics.

Collectively, these logics provide the fundamental abstract

operations and effective interpretations for computational

representations of resource acquisition and spending.

Resource management logics, while not as ubiquitous in

games as graphical logics, are still found at the heart of

many videogames, including turn-based and real-time

strategy games, tycoon games, city-management games and

god games.

Observations

Given these two different families of operational logics as

examples, we can now suggest some general properties that

characterize operational logics:

• Operational logics are more general, and more

fundamental, than game rules or mechanics. Doom and

Super Mario Brothers have very different rules, but

both make heavy use of graphical logics. The graphical

logics provide the more fundamental constraints and

affordances on top of which rules are defined.

• Operational logics provide strategies of computational

representation. Graphical logics are concerned with

representing movement, virtual touch, the effects of

physics, and so forth. Resource management logics are

concerned with representing finite resources, resource

4

production and consumption, resource tradeoffs, and so

forth. As representations, operational logics operate for

both authors and audiences, simultaneously providing

representational tropes for authors and actionable

representations for players. An algorithm or concrete

implementation of an algorithm is not enough to be an

operational logic, as the code on its own does not

specify a representational strategy.

• Operational logics are fundamentally computational.

They provide specific strategies for procedural

representation. Consider the example of representing

moral decision making, as is found in games such as

Star Wars: Knights of the Old Republic or Fable.

Simply identifying the game design trope of “moral

decision making”, or even, more specifically, “offer

players choices between good and evil options,” is

insufficient to have identified an operational logic. In

order to, in this case, develop logics of moral decision

making, the logics would have to provide strategies for

mapping representations of moral choices and their

effects into a computational representation; an example

of such a logic is the moral alignment logic of

representing moral status as a point in a one or more

dimensional space, with different player actions

moving the point around within the “morality space.”

In the next section, we provide a more formal definition of

operational logics that further unpacks these general

properties.

FORMALIZING OPERATIONAL LOGICS

Since Wardrip-Fruin’s original description of operational

logics [13], a number of authors have built on this concept,

including both Wardrip-Fruin [14, 15] and Bogost [4].

While these authors usefully deploy operational logics in

their analyses, they also provide examples of logics that

muddy the concept and risk diluting its analytic power. In

this section we examine a couple of problematic (and

useful) examples of operational logics to motivate the need

for a more formal treatment, then, extending the treatment

presented in Wardrip-Fruin [14], provide a definition that

sharpens its use as an analytic tool.

Overly Broad Uses

Bogost, after introducing the graphical and textual logic

examples provided in Wardrip-Fruin’s dissertation [14] in

the context of playable media, goes on to provide

additional, general computing examples [4]:

Outside of videogames, procedural tropes often

take the form of common models of user

interaction. Elements of a graphical user interface

could be understood as procedural tropes, for

example, the scrollbar or push-button. These

elements facilitate a wide range of user interactions

in a variety of content domains. Operational logics

for opening and saving files are also reasonable

candidates; these tropes encapsulate lower-level

logics for getting handles to filestreams and

reading or writing byte data. We might call the

former group of procedural tropes interface logics,

and the later input/output (I/O) logics.

Here we see a couple of interesting moves being made.

First, operational logic has slid into the more general term

procedural trope, any commonly employed computational

pattern. Second, the user interface examples provide a

useful reminder that games are not the only computational

media form in which an author expresses intent through

providing operational interpretive affordances to an

audience. Thus, we can expect operational logics to be

useful wherever we find computational media.

However, the file system examples become problematic.

Yes, file systems are an abstraction, one that is provided by

system programmers, for use by application programmers.

But every computational system is a dizzying tower of

abstractions, with processes defined at one level

underwriting the abstraction defined at the next level. Yet

abstraction is not a unitary phenomenon—it rather involves

distinct phenomena such as functional abstraction and

language abstraction. If operational logic is stretched to

account for the ubiquitous and multi-faceted phenomenon

of abstraction, it risks losing any analytic and explanatory

power.

Further, moving outside of computer science into the

interdiscipline of software studies, the shift from

operational logic to the more general category of

“procedural trope” loses analytic power to account for

specific processes of meaning making. One of the central

questions of software studies is “How does computation

mean?” There is no single answer to this question, but

rather many different answers to how software means in

different contexts, and thus many different types of

“procedural tropes.” In order for operational logic to be a

useful analytic category, it needs to describe a specific kind

of “procedural trope,” a specific mechanism of meaning.

Now consider the following passage from Wardrip-Fruin

[14]. In this passage, he has just introduced the text-based

interactive fiction (IF) of Infocom, and is describing the

logics operating in these works.

These textual games used a different operational

vocabulary from video games, supported by

different logics, including arguably-literary logics

that operate at relatively abstract levels (which

others have discussed in terms of the literary riddle

(Montfort, 2003) and the performative quest

(Aarseth, 2004)). These more abstract logics had to

be supported by lower-level ones, including those

for textual parsing and reply, world simulation, and

progress tracking.

Here a different problematic emerges in identifying

operational logics in the reference to the literary riddle.

Montfort argues that the pleasures of the puzzle-like

5

situations presented to players of IF can be understood in

reference to the figure of the literary riddle [8]. That is, the

same kinds of conceptual shifts required of readers to solve

a literary riddle (or understand a presented solution) are

required of players of IF. In this quote, the riddle-like

operation of IF is identified as an abstract operational logic.

But in what sense is there computational support for this

riddle-like nature?

Within interactive fiction there are operational logics

supporting navigation, object manipulation, and other

aspects of a simulated world. Whether a particular piece of

interactive fiction requires the player to make the

conceptual shifts associated with the riddle, however, is

“merely” an issue of authorial skill in deploying the

operational logics in combination with good writing. If all

developed authoring approaches for computational media

fall under the sign of operational logic, then the concept

devolves, losing explanatory power. Putting it crudely, if

the filesystem abstractions fail at being operational logics

because they are code without meaning (they are decoupled

from author and audience), the IF riddle fails at being an

operational logic because it is meaning without code.

An Expanded Definition

We are now ready to state a more formal definition of

operational logic that captures the intuitive properties of

logics described in the previous section, and can make

principled distinctions to avoid the problems described

above:

An operational logic defines an authoring

(representational) strategy, supported by abstract

processes or lower-level logics, for specifying the

behaviors a system must exhibit in order to be

understood as representing a specified domain to a

specified audience.

We unpack the elements of this definition below, starting

with abstract process. An abstract process is a specification

for how a process operates. An abstract process for

determining whether two visual representations (collections

of pixels) overlap is to declare an overlap has occurred if

any of the pixels of the two objects occupy the same

location. An abstract process for randomly adding or

subtracting an amount from a numeric value is to define a

set of positive and negative numbers and non-

deterministically select one of these numbers to add to the

value (we will make use of this abstract process in a

discussion of the random event resource management logic

below). Almost any abstract process could be carried out

through (“implemented in”) human effort as well as

automatic computation, but for many contemporary works

of digital media the calculations would be intractable to

manually carry out. Abstract processes describe sets of

algorithms whose behavior meets the abstract specification.

Implemented processes are concrete realizations of abstract

processes. Some implementations are through human effort,

others through automatic computation. implementations

make different tradeoffs in the amount of memory and

processing time they require, which can determine whether

work of a particular sort is possible with the available

resources (e.g., certain approaches for representing

statistical models balloon much more quickly than others)

and fast enough to be responsive (e.g., fast 3D rendering

enables fluid interactive navigation of virtual space).

Implementation specifics may also alter the results of

processes in ways that can appear profoundly different on

the surface (e.g., using a piece of data as a model of its own

statistics may meet the abstract definition of a statistical

technique while producing very different results from an

external model). An implemented process is a specific

algorithm that meets the specifications of an abstract

process.

An operational logic is not just a naked process, but

provides a strategy for mapping a desired representational

effect onto the process; that is, it defines a unit of authorial

and interpretive affordance [6]. Interpretive affordances

support the interpretations an audience makes about the

operations of a computational system, conditioning the

meanings negotiated between author and audience.

Interpretive affordances provide resources both for creating

a mental model of the operation of the system, and

additionally, in the case of an interactive systems, for

supporting intentions for action. The authorial affordances

of a computational system are the “hooks” that the system

architecture (processes and data) provides for an author to

inscribe their authorial intention in the machine. Different

architectures provide different relationships between

authorial control and the combinatorial possibilities of

computation. Operational logics are the units that provide

effective authorial affordances for specific representational

tasks. To define an effective authorial affordance, we first

need to understand the double meanings that all

computational systems participate in.

Every computational system can be read as a static text and

executed as a process. As a static text, a computational

system is a description of an implemented process. The

process may be described using code in a particular

programming language, a particular configuration of

hardware elements, or precise natural language description.

The execution of a process description is purely

mechanical, that is, it requires no processes of human

meaning making. As a pre-interpreted machine, an

executing process consists entirely of complex causal flows

mediating changes in abstract state.

The executing process gains a layer of human meaning

through interpretations of outputs and of the relationship

between inputs and outputs. The static, textual description

of the process simultaneously specifies an uninterpreted,

meaningless machine (the executing process), and

represents properties of the (desired) human interpretations

of potential executions. This raises a conundrum: how can

process descriptions be simultaneously amenable to the

6

uninterpreted manipulations of computational systems

(execution) and to serving as signs for human subjects? The

answer is that the literal process description (the “code

machine”) must be coupled with a collection of rhetorical

strategies for talking about the static process description

and its executions (the “rhetorical machine”). For example,

the rhetorical machine associated with the process

description of a planner supports the use of language such

as “goal,” “plan,” and “knowledge” to simultaneously refer

to specific formal entities within the process, and to make

use of the systems of meaning these words have when

applied to human beings. In fact, these rhetorical structures

are also important to the initial construction of the planner

itself, by its author(s).

Now we can define an effective authorial affordance: a

computational media system exhibits effective authorial

affordances for a specific representational task when the

internal structures and processes made available by the

system are coupled with rhetorical strategies such that the

author is able to represent desired interpretive affordances

in the static process description, and, when executed, the

process does indeed provide the desired interpretive

affordances for the audience. An operational logic is

precisely such a packaging of a rhetorical strategy—“an

authoring (representational) strategy”—with a process—

“supported by abstract processes or lower-level logics”—in

order to provide an effective authorial affordance—

supporting the specification of “the behaviors a system

must exhibit in order to be understood as representing a

specified domain to a specified audience.”

Examples Revisited

Now we will look again at a couple of our previous

examples of operational logics in light of this more formal

definition. Consider the movement graphical logic.

• The abstract process is “continuously redraw

collections of pixels, erasing the previous drawing

between each redraw, while applying a small,

identical offset to the screen location at which each

pixel is drawn.”

• The domain is the representation on the screen of

the movement of physical objects.

• The representational strategy is “in order to

represent on the screen a physical object moving

along a trajectory, make the collection of pixels be

an image of the object, specify a sequence of

offsets along the desired trajectory, using larger

offsets to represent faster movement.”

• The specified audience is an audience that is

primed to interpret the continuous redrawing of an

image as the movement of an object. While this

interpretation can be scaffolded, like any

representational system it is ultimately

conventional.

Fortunately for the designers of videogames, this

representation is a so broadly understood convention that

the specified audience is in some sense “everybody” (one

can make the argument that this representational convention

is supported by features of the human vision system). But

operational logics can partake of interpretive conventions

that are understood by narrow audiences. Consider the

random event resource management logic.

• The abstract process is “given a collection of one

or more labeled numeric values, define a set of

positive and negative numbers each associated

with a label and a sensory representation that will

make use of other operational logics, define a

probability distribution over these numbers, and

non-deterministically select a number according to

the distribution, displaying its associated

representation and adding it to the number

associated with its label.”

• The domain is the representation of random events

within a fictional world that impact the amount of

managed resources.

• The representational strategy says “in order to

represent randomly occurring fictional events

impacting managed resources, associate each

resource with a numeric value, associate ‘good’

fictional events with positive numbers, ‘bad’

fictional events with negative numbers, create a

sensory representation of the fictional event, and

define a probability of the event occurring,

generally associating smaller probabilities with

larger positive and negative resource changes.”

• On the audience interpretive side, this

representation is entirely conventional for players

of simulation games (and thus most videogame

players).

It is possible to now clearly see how both the file system

and riddle examples introduced at the beginning of this

section fail to qualify as operational logics. For the file

system operations, while they provide abstractions useable

by programmers, abstractions that in fact might be used as

part of a process description, they do not participate in the

computational media ecosystem of authorial intention

mediated through a computational representation to an

audience. While one can talk about meaning in the context

of file systems, it is not this kind of meaning making. On

the other hand, while the trope of the riddle is certainly a

representation an author can intend, there is no abstract

process nor representational strategy supporting the riddle.

When the trope of the riddle successfully operates in an IF,

it is because the author has made idiomatic use of many

logics that are conventional in IF, but these idioms are not

yet codified to the point of providing effective authorial

affordances.

7

In the two examples above, pulling apart the abstract

process from the representational strategy resulted in

awkward, and perhaps overly abstruse-sounding,

descriptions of the processes and strategies. This is

precisely because an operational logic actually binds

process and strategy into a unified whole; the strategy

provides the language for talking about the process. When

you pull the two halves apart, it reveals the hidden, inner

complexity of the union. Especially for logics that are as

deeply conventional in computational media production as

graphical and resource management logics, it can feel as if

the process is intrinsically about the representational

domain. Thus “move objects by continuously redrawing

them” and “random events add and subtract from managed

resources” can feel like unproblematic descriptions of

processes. But processes, on their own, have no intrinsic

representational power (and can thus be quite difficult to

talk about in the abstract). A representational strategy

functions precisely because it provides a way of talking and

thinking about a process. But the original establishment of

this mapping between process and rhetoric takes work.

Fundamental innovation in computational media involves

doing the work of establishing new strategies for mapping

representational effects onto (potentially new) processes.

DISCUSSION

In this paper we have gone to some length to give examples

of operational logics (and examples that aren’t logics),

define the term, and expand on the definition. We do this

not from a love of terminology, but because we believe that

a relatively precise notion of operational logics makes it

possible to discuss important issues with connections

“under the hood” of games. In particular, we believe

operational logics provide one of the most potentially

fruitful ways to bring game studies together with software

studies. We sketch a few directions for possible work of this

sort here.

Operational logics provide a useful analytical tool for

understanding constraints on game mechanics and game

rules, two of the central topics of game studies. (While

these topics are not always clearly distinguished, Sicart [12]

and others define mechanics in relation to player/agent

actions, while rules are more general.) Discussion in game

design and game scholarship often identifies mechanics and

rules as central sites for innovation. But the space of

possible innovation is not free—it is fundamentally

constrained by the operational logics available. This is

because operational logics deeply underwrite mechanics

and rules.

Given this, considering operational logics can clarify what

differentiates certain types of alternative game creation.

Wardrip-Fruin et al's Regime Change (2004) is driven by

the serial-ordering logic of Markov chains, which he argues

is an appropriate logic for textual play. Mateas and Andrew

Stern's Façade (2005) required the development of new

interpersonal logics that could support structures such as its

“affinity game.” Arguably, the definition and development

of new types of logics presents an important alternative to

creating games, commercially or otherwise, that primarily

depend on longstanding spatial and resource management

logics. In undertaking such expansions, some necessary

logics may already have formalized abstract and

implemented processes (further work in textual logics may

draw on computational linguistics) while others may require

novel computational models (e.g., to broaden interpersonal

logics to include friendship or humor).

This is not to say that interesting innovation can’t involve

working within established logics. It is certainly possible to

define interesting new kinds of mechanics and rules on top

of existing logics. In fact, such work can arguably lead to

the production of new logics. Consider Passage (2007) by

Jason Roherer. In this game graphical logics are used as the

basis of spatial mechanics associated with metaphors about

life. For example, collision detection is used to determine

whether the character’s journey will take place with a

partner or alone. This isn’t just part of the fictional world—

solo characters can explore parts of the world that couples

can’t. As time passes, the player character inevitably grows

old and dies. Nick Montfort argues that in Passage

choosing to do things like explore the world, perhaps

searching for hidden treasure, become as much about how

one lives one’s life as about spatial exploration and game

accomplishment [9]. One can imagine such currently-

unusual uses of graphical logics eventually becoming well-

understood, to the point that the underlying abstract

processes become recognized as participating in two kinds

of operational logics: both the current graphical/spatial

logics and another in which the shifting position of

elements on the screen is actually understood as the making

of non-spatial life decisions. This seems unlikely in the

specific case of Passage, but it explains part of what seems

unusual and full of potential about the work.

On a different note, there is a non-obvious issue with the

fact that operational logics are defined in terms of abstract

rather than implemented processes. It raises the specter that

bogus operational logics can be defined which are not

actually underwritten by implementable computational

processes. However, in order to qualify as an abstract

process, there must be an implemented process that meets

the specification of the abstract process. We are not allowed

to cheat by defining an operational logic around “magic”

abstract processes such as “generate the same kinds of

emotional responses to interpersonal interactions that

people do.” Unless an operational logic has actually been

demonstrated to operate by creating a computational media

artifact that achieves the claimed representational effect

using the claimed process and a strategy, then it doesn’t

exist. Once demonstrated, operational logics support a level

of analysis that is safely computational (no cheating),

without having to drop to the level of the code in which the

processes are implemented. This differentiates the approach

from one such as Mark Marino's “Critical Code Studies”

8

[5], eliminating the need to acquire (rarely available) source

code access. On the other hand, operational logics are more

specific to computational systems than concepts such as

Bogost’s of the “unit operation,” which creates a foundation

for “any medium—poetic, literary, cinematic,

computational” to be “read as a configurative system, an

arrangement of discrete, interlocking units of expressive

meaning” [3]. Instead, operational logics are an

implementation-independent way of talking about system

architectures and their fundamental actions.

Finally, operational logics are also a tool for comparing and

examining individual works. For example, while at the level

of interface actions the mechanics of Façade may seem

similar to those of Joseph Weizenbaum's (1966)

Eliza/Doctor—each supports conversational interaction,

with the player allowed arbitrary textual input—an

examination of the underlying logics reveals a stark

contrast. Eliza/Doctor's conversational logic is one of

transformation, turning each audience statement into its

own reply (though designed to avoid immediate detection).

Façade, on the other hand, interprets audience text as

discourse acts within the game's social space. Further,

looking at the relationships between operational logics

within a system can reveal where interpretive energy is best

spent (and help avoid error). For example, while Janet

Murray (1997) and Espen Aarseth (1997) both understand

the interaction mechanics of the Tale-Spin system, their

interpretations ignore the fact that planbox-based character

simulation is its central operational logic, leading both to

missed opportunities and inaccuracies.
3

In short, operational logics can help us see the structure of

games and the field more deeply and broadly, imagine the

future in constructive new ways, and interpret individual

works more accurately. By employing an analytic unit that

cuts across multiple levels of analysis to describe the

relationship between implementation and representation, we

can begin to map the space of possibility for procedural

representation that underlies games and all computational

media work.

3
 In particular, Murray critiques Tale-Spin for plot

structures that are too abstract (in fact, it contains no plot

structures) and devotes the next chapter to simulated

characters (but makes no mention of Tale-Spin’s interesting

planning logic for character behavior) [11]. Aarseth, on the

other hand, uses Tale-Spin as an example in an argument

that machines should not be forced to simulate human

narrators, when the absence of simulated narration is a

primary critique of Tale-Spin from those who engage its

operations. Aarseth’s missed opportunity is to consider

Tale-Spin as a step toward the new genres for which he is

calling [1].

REFERENCES

1. Aarseth, E. Cybertext: Perspectives on ergodic

literature. Johns Hopkins University Press, Baltimore,

1997.

2. Ahl, D. Basic Computer Games. Workman Publishing,

New York, 1978.

3. Bogost, I. Unit Operations: An approach to videogame

criticism. MIT Press, Cambridge MA, 2006.

4. Bogost, I. Persuasive Games: The expressive power of

videogames. MIT Press, Cambridge MA, 2007.

5. Marino, M. 2006a. “Critical code studies.” Electronic

Book Review 2006. Available at

www.electronicbookreview.com/thread/electropoetics/c

odology.

6. Mateas, M. “Expressive AI: A semiotic analysis of

machinic affordances.” 3rd Conference on

Computational Semiotics and New Media, University of

Teeside, UK. September 10-12, 2003.

7. Mateas, M. “Making games about people: AI and game

design.” Keynote Speaker, Medi@Terra: Gaming

Realities, Athens, Greece, October 4-8, 2006.

8. Montfort, N. Twisty Little Passages: An approach to

interactive fiction. MIT Press, Cambridge MA, 2003.

9. Montfort, N. “PvP: Portal versus Passage.” Grand Text

Auto 2008. Available at

grandtextauto.org/2008/02/24/pvp-portal-versus-

passage/

10.Montfort, N. and Bogost, I. Racing the Beam. MIT

Press, Cambridge MA, 2009.

11.Murray, J. Hamlet on the Holodeck. Free Press, New

York, 1997.

12.Sicart, M. “Defining game mechanics.” Game Studies 8.

2. Available at gamestudies.org/0802/articles/sicart

13.Wardrip-Fruin, N. “Playable media and textual

instruments.” Dichtung Digital 1, 2005. Available at

http://www.dichtung-digital.com/2005/1/Wardrip-Fruin

14.Wardrip-Fruin, N. “Expressive Processing: On process-

intensive literature and digital media,” PhD dissertation,

Brown University, 2006.

15.Wardrip-Fruin, N. Expressive Processing: Digital

fictions, computer games, and software studies. MIT

Press, Cambridge MA, 2009.

