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Defining Operational Logics 

Michael Mateas and Noah Wardrip-Fruin 

michaelm, nwf @soe.ucsc.edu 

ABSTRACT 

Much analysis of games focuses, understandably, on their 

mechanics and the resulting audience experiences. 

Similarly, many genres of games are understood at the level 

of mechanics. But there is also the persistent sense that a 

deeper level of analysis would be useful, and a number of 

proposals have been made that attempt to look toward a 

level that undergirds mechanics. This paper focuses on a 

particular approach of this sort—operational logics—first 

proposed by Noah Wardrip-Fruin (2005) and since then 

discussed by authors such as Michael Mateas (2006) and 

Ian Bogost (2007). Operational logics connect fundamental 

abstract operations, which determine the state evolution of a 

system, with how they are understood at a human level. In 

this paper we expand on the concept of operational logics, 

offering a more detailed and rigorous discussion than 

provided in earlier accounts, setting the stage for more 

effective future use of logics as an analytical tool. In 

particular, we clarify that an operational logic defines an 

authoring (representational) strategy, supported by abstract 

processes or lower-level logics, for specifying the behaviors 

a system must exhibit in order to be understood as 

representing a specified domain to a specified audience. We 

provide detailed discussion of graphical and resource 

management logics, as well as explaining problems with 

certain earlier expansions of the term (e.g., to file handling 

and interactive fiction’s riddles). 

Author Keywords 

operational logics, mechanics, code studies, unit operations, 

software studies 

INTRODUCTION 

Games can be studied at many levels of abstraction, and in 

relationship to many social, cultural, psychological, media-

theoretic, and formal phenomena. This multivalent nature of 

games contributes to the methodological pluralism seen in 

the game studies community. Montfort and Bogost 

introduce a five level model for the analysis of digital 

artifacts as a framework for organizing this plurality of 

methods and viewpoints [10]. The levels range from 

reception/operation through interface, form/function, code

and finally platform. In the context of games, the first three 

levels are the traditional purview of game studies, with a 

focus, respectively, on the reception of the artifact in the 

social and cultural field; the game interface and the visual 

and auditory representational strategies; and the mechanics, 

rules, formal, and simulational elements of games. The last 

two levels, code and platform, have been far less studied, 

with the code level focusing on deep readings of software 

structures, and platform studies focusing on deep readings 

of the hardware and system abstractions that underlie 

software. In this paper we present operational logics as a 

unit of analysis centered at the code and platform levels, but 

that connects technical implementation strategies with 

authorial and audience meanings. Operational logics are the 

fundamental abstract operations—with effective 

interpretations available to both authors and players—that 

determine the state evolution of the system and underwrite 

the gameplay. As such they provide “deep cores” that bind 

together issues ranging from the platform to reception level 

for specific representational domains.  

Wardrip-Fruin introduced the notion of operational logics 

(though did not name them as such until his 2006 

dissertation [14]) in a 2005 paper exploring the different 

ways in which interactive texts can be made playable [13]. 

To briefly recapitulate the argument of that paper, Wardrip-

Fruin argues that, rather than focusing on the question of 

which interactive experiences are or are not games, it is 

more fruitful to focus on the analytic category of the 

playable, and to ask of various interactive experiences “in 

what way is this experience playable?” He then introduces 

the notion of operational logics as a way of analyzing how a 

given interactive experience structures the space of play, 

particularly focusing on two families of operational logics: 

graphical logics and textual logics. Wardrip-Fruin further 

developed the idea of operational logics in his dissertation 

[14] and in Expressive Processing [15], though not 

providing a wholly consistent account across these three 

treatments. Other authors, such as Mateas [7] and Bogost 

[4], have further expanded on the notion of operational 

logics, but generally as a niche discussion in the context of 

a larger project; even Wardrip-Fruin, in his three different 
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accounts, always introduces operational logics in the 

context of making a larger argument. In this paper we seek 

to define operational logics as a first-class unit of analysis, 

offering a more detailed and rigorous discussion than 

provided in earlier accounts. We discuss graphical and 

resource management logics in some detail, outline a 

number of limit cases for the concept of operational logics, 

and then provide and expand a full definition of the 

concept. Finally, we discuss how this work sets the stage 

for the use of operational logics in connecting a number of 

issues in game studies to the emerging area of software 

studies, offering a powerful combination of technical 

grounding with authorial and audience concerns.   

OPERATIONAL LOGICS 

In this section we introduce operational logics with an 

informal discussion of graphical and resource management 

logics. The next section provides a more formal definition 

of operational logics.  

Graphical Logics 

To introduce graphical logics, consider two early 

videogames, Spacewar! (1962) and Pong (1972). In 

Spacewar!, two players control the flight of virtual 

spacecraft. Player controls are clockwise and 

counterclockwise rotation, thrust, fire and hyperspace 

(which jumps the ship to a random location on screen). 

Each player tries to shoot the other while avoiding being hit 

by enemy fire or crashing into the enemy ship, while 

navigating within the gravitational field of a star in the 

center of the screen. A ship is destroyed when it collides 

with a bullet, the other ship, or the star in the center.  

In Pong, a simple table tennis simulator, two players control 

paddles that are able to move vertically along the goal lines 

at the left and right edges of the screen. A simple computer 

controlled opponent can be substituted for one of the 

players. The players volley a ball back and forth; when 

either player misses (the ball fails to collide with the 

paddle), the other player scores. The angle at which the ball 

reflects from the paddle on collision depends on where the 

ball hits the paddle, reflecting at sharper angles towards the 

ends of the paddle.  

Though the fictional worlds of space warfare and table 

tennis are quite distinct from each other, and the two games 

would typically be classified as belonging to distinct game 

genres (the shoot-em-up and sports simulation 

respectively), there are strong similarities between them. 

Both games represent the movement of simulated objects 

(space ships, projectiles, balls, paddles) by constantly 

erasing and redrawing collections of pixels (or, in the 

original Spacewar!, collections of vectors) on the screen. 

Major gameplay events occur when two virtual objects 

collide, naively, when pixels/vectors belonging to one 

virtual object are drawn at the same screen location as 

pixels/vectors belonging to another virtual object. The 

simulated movement of objects is influenced by an 

underlying physics simulation, giving spaceships inertia and 

making them subject to gravity, or changing the angle of a 

ball’s trajectory as a function of where it hits the paddle (the 

physics simulation does not have to obey the physics of our 

world). These similarities constitute operational logics, 

which we, as discussed above, define as fundamental 

abstract operations—with effective interpretations available 

to both authors and players—that determine the state 

evolution of the system and underwrite the gameplay. Both 

Spacewar! and Pong exhibit canonical graphical logics, 

specifically logics of movement, collision detection and 

physics. There’s an additional logic operating in Spacewar!: 

navigation. Navigation involves player-controlled 

(simulated) movement of a (virtual) object in a represented 

space, in this case the movement of space ships in a two-

dimensional field. Pong can be said to make use of 

navigation logic, though it is the degenerate case of 

navigation along a line segment.  

Graphical logics, which underwrite the simulation of spaces 

and objects within spaces, are the most common logics 

employed in videogames, found at the heart of everything 

from the playful Mario games to the gritty Grand Theft 

Auto franchise. Consider the logic of collision detection. 

Collision detection is operating when Pac-Man eats a dot or 

power pill, or is touched by a ghost; it’s operating when the 

player is unable to move through walls in Doom, picks up 

health packs, hits demons with weapons, and is hit by 

demon attacks; it’s operating when the player’s katamari 

picks up or bounces off an object in Katamari Damacy. 

Similar examples can be enumerated for movement, 

navigation, and physics, across the vast majority of 

contemporary and historical games.  

Resource Management Logics 

Before discussing some general properties of operational 

logics, we will examine one more family of logics in this 

section. Consider two other early computer-based games, 

Hamurabi and Oregon Trail. Richard Merrill wrote a land 

management game called The Sumer Game in 1969 in 

FOCAL for the PDP-8. David Ahl ported it to BASIC for 

the PDP-8, and later published an expanded version of the 

program, renamed Hamurabi, in his best-selling book 

BASIC Computer Games [2]. It is in this version that the 

game became well-known among personal computer 

hobbyists, who would type in the program to play the game 

(and, because the game was distributed as source code, 

often tinker with the program to explore variants). In 

Hamurabi the player takes the role of “Hamurabi,” the 

ancient king of “Sumeria.”
1
  

In this turn-based, text-based game, the player makes a 

series of decisions about land management and the 

                                                          

1
Hamurabi is presumably a shortening of Hammurabi to fit 

in an eight-character file name limit. The game invites 

players to “Try your hand at governing ancient Sumeria” 

(rather than Sumer). 
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allocation of grain. During each of 10 rounds, each 

representing one year, the player decides how many acres 

of land to buy or sell, how many bushels of grain to feed the 

people (20 per person required to avoid starving anyone), 

and how many acres of land to plant (one bushel of grain 

plants 2 acres)
2
. At each step, the game state consists of the 

population, the number of acres owned, the number of 

bushels of grain owned, and the current price of land in 

bushels per acre.  

As one would expect, feedback loops and tradeoffs exist 

between the various player choices. For example, you can 

only plant as many acres as ten times your population (each 

person can farm 10 acres), and your population grows as 

function of the number of acres owned and the amount of 

stored grain—though more acres and grain are required to 

grow the population by the same absolute value as the 

population gets bigger. Further, random events can strike, 

such as plagues that eliminate half your population and rats 

eating your stored grain. This introduces further tradeoffs 

into the system. For example, the amount of stored grain 

destroyed if a rat infestation strikes increases with the 

amount of total grain stored. This encourages the player to 

minimize the amount of stored grain in order to minimize 

exposure to this risk, yet the player must also maximize the 

amount of stored grain in order to grow their population. 

Finally, there is random fluctuation in the yield per acre 

(number of bushels produced per acre planted) as well as in 

the price per acre, introducing an element of uncertainty 

and encouraging the player to try strategies such as buying 

land low and selling high, which can become necessary in 

low-yield years in order to avoid mass starvation. 

In Oregon Trail the player guides a wagon that is traversing 

the Oregon Trail from Independence Missouri to Oregon’s 

Willamette Valley in 1848. The player’s goal is to reach the 

end of the trail while minimizing the number of party 

members lost along the way. Oregon Trail was developed 

by Don Rawitsch, Bill Heinemann and Paul Dillenberger to 

teach school children about the realities of pioneer life 

along the Oregon Trail in the mid 19
th

 century. The game 

exists in several versions, with the original mainframe 

versions developed in 1971 and released in 1974, and the 

Apple II versions that most players are familiar with first 

released in 1980 with an updated version in 1985.  

At the beginning of the game, players are given a budget for 

equipping their wagon. Purchase decisions include sets of 

clothes (influences health as a function of weather), wagon 

spare parts (wagons break down), food, bullets (can be used 

to hunt as another way of getting food), and so on. Once the 

trip is underway, the player is able to adjust the pace at 

which the wagon moves, rate of consumption of food, 

whether to trade (during trading, the player is offered swaps 

for items in her inventory), the opportunity to hunt (use 

                                                          

2
 The simulation constants reported here are based on David 

Ahl’s 1973 BASIC version for the PDP.  

bullets to try to hit game to supplement food), the 

opportunity to rest (costs days, and therefore food, but can 

improve the health of party members and rest oxen) and, at 

the occasional fort, opportunities to purchase items. The 

player must manage tradeoffs between the health of the 

party members, consumption of food, and number of miles 

traversed per day. Additionally, the player must contend 

with a variety of random events, such as party members 

becoming sick, thieves stealing items, wagon parts breaking 

down, and so forth. 

Though the fictional worlds of land management in ancient 

Sumer and 19
th

 century pioneer life along the Oregon Trail 

are quite distinct, and the two games would typically be 

classified as belonging to distinct game genres (the tycoon 

game and the simulation game respectively), there are 

strong similarities between them. Both games represent 

acquiring, using, and transforming resources such as food 

and money by representing the amount of each resource 

currently possessed by the player as a number, and defining 

sources that produce resources, sinks that consume 

resources, and transformers that convert one resource into 

another. Random events within the fictional world can 

consume or produce resources, or change rate constants for 

production, consumption, and transformation; the 

probability of a random event occurring is modulated by the 

amount of resources possessed and/or by the current rates of 

production, consumption, and transformation. Resource 

allocation involves the player selecting among different 

sources, sinks, or transformations to apply to different 

resources, selecting either absolute values or rates. These 

similarities constitute resource management logics. 

Collectively, these logics provide the fundamental abstract 

operations and effective interpretations for computational 

representations of resource acquisition and spending.  

Resource management logics, while not as ubiquitous in 

games as graphical logics, are still found at the heart of 

many videogames, including turn-based and real-time 

strategy games, tycoon games, city-management games and 

god games.  

Observations 

Given these two different families of operational logics as 

examples, we can now suggest some general properties that 

characterize operational logics: 

• Operational logics are more general, and more 

fundamental, than game rules or mechanics. Doom and 

Super Mario Brothers have very different rules, but 

both make heavy use of graphical logics. The graphical 

logics provide the more fundamental constraints and 

affordances on top of which rules are defined. 

• Operational logics provide strategies of computational 

representation. Graphical logics are concerned with 

representing movement, virtual touch, the effects of 

physics, and so forth. Resource management logics are 

concerned with representing finite resources, resource 
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production and consumption, resource tradeoffs, and so 

forth. As representations, operational logics operate for 

both authors and audiences, simultaneously providing 

representational tropes for authors and actionable 

representations for players. An algorithm or concrete 

implementation of an algorithm is not enough to be an 

operational logic, as the code on its own does not 

specify a representational strategy.  

• Operational logics are fundamentally computational. 

They provide specific strategies for procedural 

representation. Consider the example of representing 

moral decision making, as is found in games such as 

Star Wars: Knights of the Old Republic or Fable.

Simply identifying the game design trope of “moral 

decision making”, or even, more specifically, “offer 

players choices between good and evil options,” is 

insufficient to have identified an operational logic. In 

order to, in this case, develop logics of moral decision 

making, the logics would have to provide strategies for 

mapping representations of moral choices and their 

effects into a computational representation; an example 

of such a logic is the moral alignment logic of 

representing moral status as a point in a one or more 

dimensional space, with different player actions 

moving the point around within the “morality space.”  

In the next section, we provide a more formal definition of 

operational logics that further unpacks these general 

properties.  

FORMALIZING OPERATIONAL LOGICS   

Since Wardrip-Fruin’s original description of operational 

logics [13], a number of authors have built on this concept, 

including both Wardrip-Fruin [14, 15] and Bogost [4]. 

While these authors usefully deploy operational logics in 

their analyses, they also provide examples of logics that 

muddy the concept and risk diluting its analytic power. In 

this section we examine a couple of problematic (and 

useful) examples of operational logics to motivate the need 

for a more formal treatment, then, extending the treatment 

presented in Wardrip-Fruin [14], provide a definition that 

sharpens its use as an analytic tool. 

Overly Broad Uses 

Bogost, after introducing the graphical and textual logic 

examples provided in Wardrip-Fruin’s dissertation [14] in 

the context of playable media, goes on to provide 

additional, general computing examples [4]:   

Outside of videogames, procedural tropes often 

take the form of common models of user 

interaction. Elements of a graphical user interface 

could be understood as procedural tropes, for 

example, the scrollbar or push-button. These 

elements facilitate a wide range of user interactions 

in a variety of content domains. Operational logics 

for opening and saving files are also reasonable 

candidates; these tropes encapsulate lower-level 

logics for getting handles to filestreams and 

reading or writing byte data. We might call the 

former group of procedural tropes interface logics,

and the later input/output (I/O) logics.  

Here we see a couple of interesting moves being made. 

First, operational logic has slid into the more general term 

procedural trope, any commonly employed computational 

pattern. Second, the user interface examples provide a 

useful reminder that games are not the only computational 

media form in which an author expresses intent through 

providing operational interpretive affordances to an 

audience. Thus, we can expect operational logics to be 

useful wherever we find computational media.  

However, the file system examples become problematic. 

Yes, file systems are an abstraction, one that is provided by 

system programmers, for use by application programmers. 

But every computational system is a dizzying tower of 

abstractions, with processes defined at one level 

underwriting the abstraction defined at the next level. Yet 

abstraction is not a unitary phenomenon—it rather involves 

distinct phenomena such as functional abstraction and 

language abstraction. If operational logic is stretched to 

account for the ubiquitous and multi-faceted phenomenon 

of abstraction, it risks losing any analytic and explanatory 

power.  

Further, moving outside of computer science into the 

interdiscipline of software studies, the shift from 

operational logic to the more general category of 

“procedural trope” loses analytic power to account for 

specific processes of meaning making. One of the central 

questions of software studies is “How does computation 

mean?” There is no single answer to this question, but 

rather many different answers to how software means in 

different contexts, and thus many different types of 

“procedural tropes.” In order for operational logic to be a 

useful analytic category, it needs to describe a specific kind 

of “procedural trope,” a specific mechanism of meaning.  

Now consider the following passage from Wardrip-Fruin 

[14]. In this passage, he has just introduced the text-based 

interactive fiction (IF) of Infocom, and is describing the 

logics operating in these works.  

These textual games used a different operational 

vocabulary from video games, supported by 

different logics, including arguably-literary logics 

that operate at relatively abstract levels (which 

others have discussed in terms of the literary riddle 

(Montfort, 2003) and the performative quest 

(Aarseth, 2004)). These more abstract logics had to 

be supported by lower-level ones, including those 

for textual parsing and reply, world simulation, and 

progress tracking.  

Here a different problematic emerges in identifying 

operational logics in the reference to the literary riddle. 

Montfort argues that the pleasures of the puzzle-like 
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situations presented to players of IF can be understood in 

reference to the figure of the literary riddle [8]. That is, the 

same kinds of conceptual shifts required of readers to solve 

a literary riddle (or understand a presented solution) are 

required of players of IF. In this quote, the riddle-like 

operation of IF is identified as an abstract operational logic. 

But in what sense is there computational support for this 

riddle-like nature?  

Within interactive fiction there are operational logics 

supporting navigation, object manipulation, and other 

aspects of a simulated world. Whether a particular piece of 

interactive fiction requires the player to make the 

conceptual shifts associated with the riddle, however, is 

“merely” an issue of authorial skill in deploying the 

operational logics in combination with good writing. If all 

developed authoring approaches for computational media 

fall under the sign of operational logic, then the concept 

devolves, losing explanatory power. Putting it crudely, if 

the filesystem abstractions fail at being operational logics 

because they are code without meaning (they are decoupled 

from author and audience), the IF riddle fails at being an 

operational logic because it is meaning without code.  

An Expanded Definition 

We are now ready to state a more formal definition of 

operational logic that captures the intuitive properties of 

logics described in the previous section, and can make 

principled distinctions to avoid the problems described 

above:  

An operational logic defines an authoring 

(representational) strategy, supported by abstract 

processes or lower-level logics, for specifying the 

behaviors a system must exhibit in order to be 

understood as representing a specified domain to a 

specified audience.   

We unpack the elements of this definition below, starting 

with abstract process. An abstract process is a specification 

for how a process operates. An abstract process for 

determining whether two visual representations (collections 

of pixels) overlap is to declare an overlap has occurred if 

any of the pixels of the two objects occupy the same 

location. An abstract process for randomly adding or 

subtracting an amount from a numeric value is to define a 

set of positive and negative numbers and non-

deterministically select one of these numbers to add to the 

value (we will make use of this abstract process in a 

discussion of the random event resource management logic 

below). Almost any abstract process could be carried out 

through (“implemented in”) human effort as well as 

automatic computation, but for many contemporary works 

of digital media the calculations would be intractable to 

manually carry out. Abstract processes describe sets of 

algorithms whose behavior meets the abstract specification.  

Implemented processes are concrete realizations of abstract 

processes. Some implementations are through human effort, 

others through automatic computation. implementations 

make different tradeoffs in the amount of memory and 

processing time they require, which can determine whether 

work of a particular sort is possible with the available 

resources (e.g., certain approaches for representing 

statistical models balloon much more quickly than others) 

and fast enough to be responsive (e.g., fast 3D rendering 

enables fluid interactive navigation of virtual space). 

Implementation specifics may also alter the results of 

processes in ways that can appear profoundly different on 

the surface (e.g., using a piece of data as a model of its own 

statistics may meet the abstract definition of a statistical 

technique while producing very different results from an 

external model). An implemented process is a specific 

algorithm that meets the specifications of an abstract 

process.  

An operational logic is not just a naked process, but 

provides a strategy for mapping a desired representational 

effect onto the process; that is, it defines a unit of authorial 

and interpretive affordance [6]. Interpretive affordances 

support the interpretations an audience makes about the 

operations of a computational system, conditioning the 

meanings negotiated between author and audience. 

Interpretive affordances provide resources both for creating 

a mental model of the operation of the system, and 

additionally, in the case of an interactive systems, for 

supporting intentions for action. The authorial affordances 

of a computational system are the “hooks” that the system 

architecture (processes and data) provides for an author to 

inscribe their authorial intention in the machine. Different 

architectures provide different relationships between 

authorial control and the combinatorial possibilities of 

computation. Operational logics are the units that provide 

effective authorial affordances for specific representational 

tasks. To define an effective authorial affordance, we first 

need to understand the double meanings that all 

computational systems participate in.  

Every computational system can be read as a static text and 

executed as a process. As a static text, a computational 

system is a description of an implemented process. The 

process may be described using code in a particular 

programming language, a particular configuration of 

hardware elements, or precise natural language description. 

The execution of a process description is purely 

mechanical, that is, it requires no processes of human 

meaning making. As a pre-interpreted machine, an 

executing process consists entirely of complex causal flows 

mediating changes in abstract state.  

The executing process gains a layer of human meaning 

through interpretations of outputs and of the relationship 

between inputs and outputs. The static, textual description 

of the process simultaneously specifies an uninterpreted, 

meaningless machine (the executing process), and 

represents properties of the (desired) human interpretations 

of potential executions. This raises a conundrum: how can 

process descriptions be simultaneously amenable to the 
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uninterpreted manipulations of computational systems 

(execution) and to serving as signs for human subjects? The 

answer is that the literal process description (the “code 

machine”) must be coupled with a collection of rhetorical 

strategies for talking about the static process description 

and its executions (the “rhetorical machine”). For example, 

the rhetorical machine associated with the process 

description of a planner supports the use of language such 

as “goal,” “plan,” and “knowledge” to simultaneously refer 

to specific formal entities within the process, and to make 

use of the systems of meaning these words have when 

applied to human beings. In fact, these rhetorical structures 

are also important to the initial construction of the planner 

itself, by its author(s). 

Now we can define an effective authorial affordance: a 

computational media system exhibits effective authorial 

affordances for a specific representational task when the 

internal structures and processes made available by the 

system are coupled with rhetorical strategies such that the 

author is able to represent desired interpretive affordances 

in the static process description, and, when executed, the 

process does indeed provide the desired interpretive 

affordances for the audience. An operational logic is 

precisely such a packaging of a rhetorical strategy—“an 

authoring (representational) strategy”—with a process— 

“supported by abstract processes or lower-level logics”—in 

order to provide an effective authorial affordance—

supporting the specification of “the behaviors a system 

must exhibit in order to be understood as representing a 

specified domain to a specified audience.”   

Examples Revisited 

Now we will look again at a couple of our previous 

examples of operational logics in light of this more formal 

definition. Consider the movement graphical logic. 

• The abstract process is “continuously redraw 

collections of pixels, erasing the previous drawing 

between each redraw, while applying a small, 

identical offset to the screen location at which each 

pixel is drawn.”  

• The domain is the representation on the screen of 

the movement of physical objects.  

• The representational strategy is “in order to 

represent on the screen a physical object moving 

along a trajectory, make the collection of pixels be 

an image of the object, specify a sequence of 

offsets along the desired trajectory, using larger 

offsets to represent faster movement.”  

• The specified audience is an audience that is 

primed to interpret the continuous redrawing of an 

image as the movement of an object. While this 

interpretation can be scaffolded, like any 

representational system it is ultimately 

conventional.  

Fortunately for the designers of videogames, this 

representation is a so broadly understood convention that 

the specified audience is in some sense “everybody” (one 

can make the argument that this representational convention 

is supported by features of the human vision system). But 

operational logics can partake of interpretive conventions 

that are understood by narrow audiences. Consider the 

random event resource management logic.  

• The abstract process is “given a collection of one 

or more labeled numeric values, define a set of 

positive and negative numbers each associated 

with a label and a sensory representation that will 

make use of other operational logics, define a 

probability distribution over these numbers, and 

non-deterministically select a number according to 

the distribution, displaying its associated 

representation and adding it to the number 

associated with its label.”  

• The domain is the representation of random events 

within a fictional world that impact the amount of 

managed resources.  

• The representational strategy says “in order to 

represent randomly occurring fictional events 

impacting managed resources, associate each 

resource with a numeric value, associate ‘good’ 

fictional events with positive numbers, ‘bad’ 

fictional events with negative numbers, create a 

sensory representation of the fictional event, and 

define a probability of the event occurring, 

generally associating smaller probabilities with 

larger positive and negative resource changes.”  

• On the audience interpretive side, this 

representation is entirely conventional for players 

of simulation games (and thus most videogame 

players). 

It is possible to now clearly see how both the file system 

and riddle examples introduced at the beginning of this 

section fail to qualify as operational logics. For the file 

system operations, while they provide abstractions useable 

by programmers, abstractions that in fact might be used as 

part of a process description, they do not participate in the 

computational media ecosystem of authorial intention 

mediated through a computational representation to an 

audience. While one can talk about meaning in the context 

of file systems, it is not this kind of meaning making. On 

the other hand, while the trope of the riddle is certainly a 

representation an author can intend, there is no abstract 

process nor representational strategy supporting the riddle. 

When the trope of the riddle successfully operates in an IF, 

it is because the author has made idiomatic use of many 

logics that are conventional in IF, but these idioms are not 

yet codified to the point of providing effective authorial 

affordances.   
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In the two examples above, pulling apart the abstract 

process from the representational strategy resulted in 

awkward, and perhaps overly abstruse-sounding, 

descriptions of the processes and strategies. This is 

precisely because an operational logic actually binds 

process and strategy into a unified whole; the strategy 

provides the language for talking about the process. When 

you pull the two halves apart, it reveals the hidden, inner 

complexity of the union. Especially for logics that are as 

deeply conventional in computational media production as 

graphical and resource management logics, it can feel as if 

the process is intrinsically about the representational 

domain. Thus “move objects by continuously redrawing 

them” and “random events add and subtract from managed 

resources” can feel like unproblematic descriptions of 

processes. But processes, on their own, have no intrinsic 

representational power (and can thus be quite difficult to 

talk about in the abstract). A representational strategy 

functions precisely because it provides a way of talking and 

thinking about a process. But the original establishment of 

this mapping between process and rhetoric takes work. 

Fundamental innovation in computational media involves 

doing the work of establishing new strategies for mapping 

representational effects onto (potentially new) processes.    

DISCUSSION 

In this paper we have gone to some length to give examples 

of operational logics (and examples that aren’t logics), 

define the term, and expand on the definition. We do this 

not from a love of terminology, but because we believe that 

a relatively precise notion of operational logics makes it 

possible to discuss important issues with connections 

“under the hood” of games. In particular, we believe 

operational logics provide one of the most potentially 

fruitful ways to bring game studies together with software 

studies. We sketch a few directions for possible work of this 

sort here. 

Operational logics provide a useful analytical tool for 

understanding constraints on game mechanics and game 

rules, two of the central topics of game studies. (While 

these topics are not always clearly distinguished, Sicart [12] 

and others define mechanics in relation to player/agent 

actions, while rules are more general.) Discussion in game 

design and game scholarship often identifies mechanics and 

rules as central sites for innovation. But the space of 

possible innovation is not free—it is fundamentally 

constrained by the operational logics available. This is 

because operational logics deeply underwrite mechanics 

and rules.  

Given this, considering operational logics can clarify what 

differentiates certain types of alternative game creation. 

Wardrip-Fruin et al's Regime Change (2004) is driven by 

the serial-ordering logic of Markov chains, which he argues 

is an appropriate logic for textual play. Mateas and Andrew 

Stern's Façade (2005) required the development of new 

interpersonal logics that could support structures such as its 

“affinity game.” Arguably, the definition and development 

of new types of logics presents an important alternative to 

creating games, commercially or otherwise, that primarily 

depend on longstanding spatial and resource management 

logics. In undertaking such expansions, some necessary 

logics may already have formalized abstract and 

implemented processes (further work in textual logics may 

draw on computational linguistics) while others may require 

novel computational models (e.g., to broaden interpersonal 

logics to include friendship or humor).  

This is not to say that interesting innovation can’t involve 

working within established logics. It is certainly possible to 

define interesting new kinds of mechanics and rules on top 

of existing logics. In fact, such work can arguably lead to 

the production of new logics. Consider Passage (2007) by 

Jason Roherer. In this game graphical logics are used as the 

basis of spatial mechanics associated with metaphors about 

life. For example, collision detection is used to determine 

whether the character’s journey will take place with a 

partner or alone. This isn’t just part of the fictional world—

solo characters can explore parts of the world that couples 

can’t. As time passes, the player character inevitably grows 

old and dies. Nick Montfort argues that in Passage

choosing to do things like explore the world, perhaps 

searching for hidden treasure, become as much about how 

one lives one’s life as about spatial exploration and game 

accomplishment [9]. One can imagine such currently-

unusual uses of graphical logics eventually becoming well-

understood, to the point that the underlying abstract 

processes become recognized as participating in two kinds 

of operational logics: both the current graphical/spatial 

logics and another in which the shifting position of 

elements on the screen is actually understood as the making 

of non-spatial life decisions. This seems unlikely in the 

specific case of Passage, but it explains part of what seems 

unusual and full of potential about the work. 

On a different note, there is a non-obvious issue with the 

fact that operational logics are defined in terms of abstract 

rather than implemented processes. It raises the specter that 

bogus operational logics can be defined which are not 

actually underwritten by implementable computational 

processes. However, in order to qualify as an abstract 

process, there must be an implemented process that meets 

the specification of the abstract process. We are not allowed 

to cheat by defining an operational logic around “magic” 

abstract processes such as “generate the same kinds of 

emotional responses to interpersonal interactions that 

people do.” Unless an operational logic has actually been 

demonstrated to operate by creating a computational media 

artifact that achieves the claimed representational effect 

using the claimed process and a strategy, then it doesn’t 

exist. Once demonstrated, operational logics support a level 

of analysis that is safely computational (no cheating), 

without having to drop to the level of the code in which the 

processes are implemented. This differentiates the approach 

from one such as Mark Marino's “Critical Code Studies” 
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[5], eliminating the need to acquire (rarely available) source 

code access. On the other hand, operational logics are more 

specific to computational systems than concepts such as 

Bogost’s of the “unit operation,” which creates a foundation 

for “any medium—poetic, literary, cinematic, 

computational” to be “read as a configurative system, an 

arrangement of discrete, interlocking units of expressive 

meaning” [3]. Instead, operational logics are an 

implementation-independent way of talking about system 

architectures and their fundamental actions.  

Finally, operational logics are also a tool for comparing and 

examining individual works. For example, while at the level 

of interface actions the mechanics of Façade may seem 

similar to those of Joseph Weizenbaum's (1966) 

Eliza/Doctor—each supports conversational interaction, 

with the player allowed arbitrary textual input—an 

examination of the underlying logics reveals a stark 

contrast. Eliza/Doctor's conversational logic is one of 

transformation, turning each audience statement into its 

own reply (though designed to avoid immediate detection). 

Façade, on the other hand, interprets audience text as 

discourse acts within the game's social space. Further, 

looking at the relationships between operational logics 

within a system can reveal where interpretive energy is best 

spent (and help avoid error). For example, while Janet 

Murray (1997) and Espen Aarseth (1997) both understand 

the interaction mechanics of the Tale-Spin system, their 

interpretations ignore the fact that planbox-based character 

simulation is its central operational logic, leading both to 

missed opportunities and inaccuracies.
3
  

In short, operational logics can help us see the structure of 

games and the field more deeply and broadly, imagine the 

future in constructive new ways, and interpret individual 

works more accurately. By employing an analytic unit that 

cuts across multiple levels of analysis to describe the 

relationship between implementation and representation, we 

can begin to map the space of possibility for procedural 

representation that underlies games and all computational 

media work.   

                                                          

3
 In particular, Murray critiques Tale-Spin for plot 

structures that are too abstract (in fact, it contains no plot 

structures) and devotes the next chapter to simulated 

characters (but makes no mention of Tale-Spin’s interesting 

planning logic for character behavior) [11]. Aarseth, on the 

other hand, uses Tale-Spin as an example in an argument 

that machines should not be forced to simulate human 

narrators, when the absence of simulated narration is a 

primary critique of Tale-Spin from those who engage its 

operations. Aarseth’s missed opportunity is to consider 

Tale-Spin as a step toward the new genres for which he is 

calling [1]. 
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