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Abstract 

How Does Learning Shape Us? Exploring Mechanisms of Plasticity in Cognition 

by 

Belen Carolina Guerra-Carrillo 

Doctor of Philosophy in Psychology 

University of California, Berkeley 

Professor Silvia A. Bunge, Chair 

 

How do learning experiences shape our brain and cognitive skills? While there has been 

extensive evidence showing that learning experiences do have an impact on cognitive 

performance across the lifespan, we are still understanding how those changes take place. My 

dissertation work has sought to characterize the mechanisms that underlie improved performance 

resulting from different learning experiences. In Chapter 1, the general introduction, I present 

relevant background literature to provide a context for the rest of the chapters in my dissertation. 

In Chapter 2, I provide an overview of the type of changes to the functional connectivity of brain 

networks that result from sensory, motor, and cognitive learning experiences. The evidence from 

that body of work leads us to conclude that learning changes the way brain networks interact, 

such that BOLD fluctuations within the network engaged in the learning experience become 

more tightly synchronized at rest. Having established evidence for experience-dependent brain 

plasticity, we turn our attention to Chapter 3, where I examine the cognitive impact of broad 

learning experiences across five decades of life. I present findings suggesting that education has 

a greater influence on performance on assessments that measure more complex skills, like 

reasoning. Educational attainment also modulates ages of peak cognitive functioning, while it 

has little bearing on novel learning. Given that Chapter 2 and 3 provide evidence of the impact of 

learning on the brain and behavior, we then probe mechanisms of change. In Chapter 4, we 

present unified findings from a broad literature to explain how various eyetracking measures 

provide a relatively simple method to characterize cognitive mechanisms that support change as 

a result of maturation, which can be applied to study changes that occur as a result of learning. 

Using this eyetracking methodology, in Chapter 5 and 6, I provide empirical evidence about the 

mechanisms that support improvements in reasoning performance resulting from a real-world 

learning experience. We find that the young adults became more proficient at encoding, 

maintaining, and integrating visual relations after only a relatively short learning experience that 

emphasized reasoning about verbal relations and rules. Collectively, my dissertation work 

provides mechanistic insights about how learning experiences shape higher-level cognition. 
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Chapter 1 

General Introduction 

Learning experiences keep our brain in flux throughout our lives. Over a century ago, scientists 

thought otherwise. The brain was predominantly viewed as being immutable to environmental 

influences, and the mind, as a set of inherited traits that could not be shaped through learning. A 

series of seminal experiments have since then helped shift our understanding of brain plasticity 

and the cognitive impact of learning experiences (for a review see: Greenough, Black, Wallace, 

Development, & Jun, 1987). Now, we have evidence that even playing video games (Bediou et 

al., 2018) or learning how to juggle (Draganski & May, 2008) can shape the structure and 

function of the brain. Indeed, we have learned a lot in the last 70 years. We know for example, 

that some systems do have narrow windows during development when they are highly sensitive 

to environmental input, but become relatively stable thereafter (Hensch, 2005). By contrasts, 

other systems retain a higher degree of malleability even in adulthood (Simone Kühn & 

Lindenberger, 2016; May, 2011). Greenough and colleagues (1987) proposed a compelling 

explanation that this latter capacity for change is an evolutionary solution that helps animals 

adapt existing systems to experiences that may occur at different points in their lives and that are 

unique to their environments. According to this view, changes that occur as a result of learning 

experiences that are unique to an individual (e.g., learning how to juggle), constitute a form of 

experience-dependent plasticity (Galván, 2010; Greenough et al., 1987). Over the years, we have 

continued to understand the nature of experience-dependent plasticity in various domains, 

including perceptual learning (Bavelier, Levi, Li, Dan, & Hensch, 2010; Bonaccorsi, Berardi, & 

Sale, 2014), motor skill acquisition (Galea, Vazquez, Pasricha, de Xivry, & Celnik, 2011; May, 

2011), and changes in higher-order cognition. My dissertation work deals with the latter.  

In this introduction, I will briefly review relevant background literature to provide a 

context for the chapters in my dissertation. I will first explain some key concepts and illustrate 

the relevance of this work. Then, I will provide examples of prior evidence for the malleability of 

cognitive functions, and discuss possible mechanisms of change. As I discuss these topics, I will 

highlight how my dissertation chapters expand on this prior work when appropriate, but I also 

provide a summary of the chapters towards the end. 

What is higher-level cognition and why does it matter? 

Higher-level cognition is an umbrella term encompassing many functions, such as our ability to 

process information fluidly (processing speed), attend selectively to information relevant to our 

goals (selective attention), maintain and manipulate information in mind (working memory), 

integrate features of and consider relationships between stimuli (relational reasoning), among 

others. Each of these skills is considered a unique process, but all are highly interrelated 

(Mcardle, Ferrer-Caja, Hamagami, & Woodcock, 2002; Salthouse, 2005).  
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 Relational reasoning is arguably the most complex of these skills, as it relies on our 

ability to attend to, process, and maintain information in mind (Kail, Lerv, & Hulme, 2016), but 

it also builds on other unique processes that allow us to identify patterns, encode relations, and 

make connections between otherwise unrelated information (Alexander, 2016; Halford, Wilson, 

& Phillips, 2010). These processes are referred to as relational thinking (Alexander, 2016), and it 

constitutes a foundational step in our ability to make analogies, draw inferences, and arrive at 

conclusions via deductions. Regardless of how complex or relatively simple one of these higher-

cognitive skills may be, they all work together and constitute important aspects of human 

cognition. 

These cognitive skills contribute to our everyday functioning, including our ability to 

learn in school. For example, a student would have a hard time following the lecture if they do 

not pay attention to the correct part of a slide being presented, or would likely make a mistake in 

their math homework if they fail to keep the correct numbers in mind involved in the 

computation at hand (Alloway & Alloway, 2010; Salthouse, 2005). Also, a student would grasp a 

new complex concept more easily if they can identify how that concept relates to something they 

have learned in the past (Vendetti, Matlen, Richland, & Bunge, 2015). In short, these skills help 

us discover and navigate our world more easily.  

Given how important these skills are for our everyday functioning, you can imagine the 

promise it holds if we can understand whether and how they can be shaped by experiences. Thus 

far, we have gained a clearer understanding regarding the first part of this question. Indeed, there 

is ample evidence for the experience-dependent plasticity of higher-cognitive functions across 

the lifespan1. However, we are still working on understanding how these changes take place. 

That is the main focus of my dissertation work.  

Experience-dependent plasticity of higher-level cognition: evidence and approaches 

We have evidence that cognitive functions are malleable and respond to a variety of learning 

experiences, ranging from prolonged multifaceted activities like schooling to short-term lab-

based interventions that target one specific cognitive component, among others. 

Examining the effects of natural learning experiences, such as the impact of formal 

schooling or majoring in a specific subject in school, have set a precedent for the idea that 

learning and complex environments shape cognitive functioning. The benefit of this approach is 

that it allows us to measure the effect of prolonged experiences that most people already 

naturally engage in. Some of the challenges have involved the correlational nature of the 

findings: the classic chicken-or-egg problem. There are a few ingenious instances where people 

have leveraged natural breaks in the schooling process to characterize the directionality of effects 

better. For example, in one study, Brod and colleagues (Brod, Bunge, & Shing, 2017) followed 

five years olds who were at the cutoff age to start first grade in Germany, some entered school 

                                                           
1 I contributed to a book chapter (Blackwell, Rodriguez, & Guerra-Carrillo, 2014), where I discuss this work at 

greater length.  
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while other waited another year in kindergarten. At the end of the school year, the first graders 

had higher performance in a test of executive functions and increased engagement of brain 

regions that support the ability to sustain attention. These changes seemed attributable to the 

experience of schooling, rather than other changes in development or other individual 

differences. A recent meta-analysis of other quasi-experimental work have led to similar 

conclusions about the effect schooling on some reasoning measures (measured via I.Q tests), 

wherein changes in school reform prompted situations that permitted testing to a greater degree 

the directionality of effects (Ritchie & Tucker-Drob, 2017). These studies have provided 

compelling evidence for the cognitive effects of engaging in enriching experiences. The 

intensive, prolonged, and multifaceted nature of educational experiences provide a platform to 

also ask other exciting questions about the role of rich experiences in cognitive functioning. For 

example, which specific cognitive skills are most sensitive to educational experiences? What is 

the effect of these cumulative experiences in novel learning? And, what is the long-lasting 

impact of such prolonged experiences months, and even years, afterward? In Chapter 2, I discuss 

empirical work that sought to answer these questions. 

Targeted interventions offer the advantage of allowing us to examine the effect of one 

specific learning experience in relation to other changes that may occur as a result of other 

complexities in the environment (Greenough et al., 1987; Tidwell, Dougherty, Chrabaszcz, 

Thomas, & Mendoza, 2014).  This approach is not without its drawbacks. Lab-based 

interventions, for example, are difficult to implement, and there often ends up being a tradeoff 

between gaining selectivity and losing ecological validity. Many elegant arguments have been 

made for the importance of ecological validity (Moreau & Conway, 2014); one simple reason is 

that interventions can otherwise quickly become boring and irrelevant to a learner’s goal. The 

learner needs to feel motivated and engaged in the program to even want to complete the study, 

and there is an argument to be made for the importance of novelty (Kolb et al., 2012).  

A few of my favorite examples of targeted interventions that have overcome this 

challenge, while still retaining a respectable degree of selectivity, have involved playing fun 

games that emphasize a particular cognitive skill. The video-game work I alluded to earlier, for 

example, has shown that people who played several hours of first-person shooter games, which 

involve attending numerous moving targets, improved in various aspects of visuospatial attention 

compared to an active-control group who played life-simulation games (for a review see: Bediou 

et al., 2018). Improvements included better ability to sustain attention on target stimuli and 

quickly shift focus as needed to changing task demands on lab assessments. A separate body of 

work has shown that playing a variety of games that emphasize executive functions, for example, 

games that require conflict resolution and keeping bits of information in mind, have led to 

improved performance in assessments that measured similar skills (Goldin et al., 2014). The 

gains were even seen in academic performance for kids with low school attendance (Goldin et 

al., 2014). Games have also been an effective way to boost reasoning skills. Work from our own 

lab has shown that kids who played games that emphasized reasoning skills for eight weeks, such 

as those involving inferring rules, figuring out patterns, and solving visual logic puzzles 
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improved on tests of relational reasoning (Mackey, Hill, Stone, & Bunge, 2011). By contrast, 

their classmates, who played games that emphasized making speeded decisions improved on 

measures of processing speed. Together, these experiments have provided important, ground-

breaking work showing that short-term experiences that tax a particular skill lead to improved 

performance on unpracticed measures that emphasize the same skill.  

These and several other studies have shown that cognition is malleable and sensitive to 

learning experiences. Some important questions remain, however. For one, we have tried to 

understand the factors that influence the magnitude of change in the desired skill (Diamond & 

Ling, 2016), and how improvements in the practiced context would translate to gain in other 

domains (Moreau & Conway, 2014; Noack, Lövdén, & Schmiedek, 2014). These two issues 

relate to the transfer of learning, which is the process by which previously acquired knowledge 

or skills may influence performance in a new situation (Woodworth & Thorndike, 1901). 

Evidence of far transfer has been sought after in a wide range of skill acquisition domains 

(Schunk, 1996), including in studies examining the plasticity of higher-order cognition. The 

extent to which gains observed from a cognitive intervention extend to improved performance on 

other measures (i.e., the degree of transfer), has been the subject of heated debate, at least for 

some domains (Melby-Lervåg & Hulme, 2013; Shipstead, Redick, & Engle, 2012). Conversely, 

there is a broader consensus that the degree of transfer would depend heavily on the extent to 

which the transfer and studied task rely on shared neural and cognitive mechanisms, and the 

extent to which these shared processes are engaged during the learning phase (Buschkuehl, 

Jaeggi, & Jonides, 2012; Lindenberger, Wenger, & Lövdén, 2017). However, we do not yet fully 

understand what are the putative mechanisms underlying change.  

Mechanisms of plasticity in higher-level cognition  

Based on prior work, we know that there are factors that influence how much a person would 

benefit from a cognitive learning experience. Briefly, these include the age of a person (sorry, 

things start going downhill later in adulthood; Simone Kühn & Lindenberger, 2016), the length 

and practice intervals of the intervention (spacing practice helps; Wang, Zhou, & Shah, 2014), 

and, depending on the context, people’s baseline levels of performance (the rich get richer, but 

not always; Diamond & Ling, 2016; Walberg & Tsai, 1983). Although we know these factors are 

associated with the magnitude of learning outcomes, we are still elucidating what are the 

mechanisms of change at the brain and cognitive level. 

We have some evidence of experience-dependent brain plasticity at the level of gray and 

white-matter structure. For example, increases in gray matter volume in the hippocampus, 

cerebellum, and dorsolateral prefrontal cortex have been observed after two months of playing 

games that engage navigation and strategy (Kühn, Gleich, Lorenz, Lindenberger, & Gallinat, 

2014). At the cellular level, there are several possible interpretations that could explain these 

changes, including synaptogenesis (Zatorre, Fields, & Johansen-Berg, 2012). However, that 

interpretation is likely an oversimplification, since the changes reported do not capture the time 

course of the effects of learning. There is evidence from the motor literature that at least three 
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measurements are necessary to characterize the expected rise and fall in volume that occurs 

during skill acquisition in the human brain (Lindenberger et al., 2017). Even with three 

measurement timepoints, most studies could still miss any changes that occur at the level of gray 

matter (Lindenberger et al., 2017). Relatively few studies have characterized changes in white-

matter structure following cognitive interventions. We have evidence that practicing reasoning 

with the Law School Admissions Test was associated with greater changes in white-matter 

microstructure of tracts in the frontoparietal network (Mackey, Whitaker, & Bunge, 2012). A 

plausible explanation is that the changes observed in the study correspond changes in 

myelination (Zatorre et al., 2012). However, due to methodological limitations of neuroimaging, 

we cannot conclusively pinpoint the cellular mechanisms of change, which could include 

changes in glial cells, vasculature, and water content in axons, to name a few (Mottershead et al., 

2003; Zatorre et al., 2012). It would be exciting to see what more sensitive metrics of brain 

anatomy, including white matter imaging, reveal about the effects of learning experiences in the 

brain (Liu, Li, Tong, & Yeom, 2015; Sagi et al., 2012). 

Other work has characterized experience-dependent brain plasticity with functional 

neuroimaging. For example, working memory training has led to both an increase and decrease 

in BOLD response in frontal and parietal regions typically engaged during performance of 

working memory tasks (Constantinidis & Klingberg, 2016). Based on findings with non-human 

primates that have shown that neural firing during retention periods increases with improved 

performance during training (Qi, Meyer, Stanford, & Constantinidis, 2011), we might speculate 

that changes in BOLD response relate to an enhanced representation of the stimuli. However, as 

Constantinidis & Klingber (2016) point out, there is not a straightforward relationship between 

measures of neuronal firing rates and BOLD respond, nor a clear way to interpret changes in 

BOLD activity at that level. Indeed, there has not yet been a unified explanation of what those 

changes may mean regarding brain plasticity, but we at least know that it is problematic to 

interpret them simply as signifying changes in neural efficiency (Poldrack, 2015). Aside from 

providing little insight regarding changes in the functional properties of the brain, we are also 

limited in how to interpret changes in fluctuations as they relate to changes in behavior. 

Considering that in the majority of the lifespan, there may be more limited structural changes 

that could be captured with the gross measures of brain structure currently available (Simone 

Kühn & Lindenberger, 2016), it holds promise to leverage co-fluctuations in brain activity 

between different regions to assess experience-dependent brain plasticity. This is a method my 

colleagues, and I have argued in the past, work that I discuss more fully in Chapter 1.  

Another big unknown relates to the cognitive mechanisms that support improvements. As 

I have discussed earlier, higher-level cognition is multifaceted and relies on various processes. 

Behavioral measures only capture the output of all these computations, and thus, may not 

adequately help us characterize mechanisms of change. Furthermore, we are unable to draw 

inferences about changes in the cognitive processes from neuroimaging measures. One 

motivation to understand cognitive mechanisms is that they may be important contributors of 

plasticity in adulthood, a period during which it may be optimal to respond to new learning 
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demands by repurposing established processes; for example, by engaging metacognitive 

strategies to supplement any shortcomings in performance (Lövdén, Bäckman, Lindenberger, 

Schaefer, & Schmiedek, 2010). In examining cognitive mechanisms, we can guide our 

hypotheses based on the relationship between different cognitive processes and how they are 

engaged in problem-solving. In Chapter 4, I present work my colleagues and I have unified to 

explain the utility of eyetracking to study mechanisms that support changes in cognition during 

maturation. Many of the same methods can be applied to examine cognitive plasticity that results 

from learning experiences. Indeed, in Chapters 5 and 6, I discuss how we have employed 

eyetracking metrics to examine cognitive mechanisms supporting changes in reasoning.  

In sum, we know that people learn, but we are still figuring out how. Most of my 

dissertation work has sought to understand the mechanisms that support change. 

Overview of dissertation chapters 

The next section, Chapter 2, provides an overview of changes in functional connectivity of large 

brain networks resulting from sensory, motor, and cognitive learning experiences. In that work, 

we argue for the utility of an imaging methodology to further our understanding of the plasticity 

of the networks that support higher-level cognition. Having established evidence for experience-

dependent brain plasticity, we turn our attention to examining the effects of a prolonged and 

multifaceted learning experience on performance. In Chapter 3, I present empirical work 

characterizing the effects formal schooling on various domains of higher-level cognition. In that 

work, we had an unprecedented opportunity to examine the effects of education on performance 

and novel learning across five decades of the lifespan. Considering that Chapter 2 and 3 provide 

evidence of the impact of learning on the brain and performance, we turn our attention to probing 

mechanisms. In Chapter 4, we present unified findings from a broad literature to explain how 

various eyetracking measures constitute a relatively simple method for characterizing cognitive 

mechanisms of change. Using this methodology, in Chapter 5 and 6, I provide empirical 

evidence about the mechanisms that support improvements in reasoning performance in young 

adults who underwent a real-world learning experience.  
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Abstract 

Although brain plasticity is greatest in the first few years of life, the brain continues to be shaped 
by experience throughout adulthood. Advances in functional magnetic resonance imaging 
(fMRI) have enabled us to examine plasticity of large-scale networks using blood-oxygen-level-
dependent (BOLD) correlations measured at rest. Resting-state functional connectivity analysis 
makes it possible to measure task-independent changes in brain function, and therefore could 
provide unique insights into experience-dependent brain plasticity in humans. Here, we evaluate 
the hypothesis that resting-state functional connectivity reflects a repeated history of co-
activation between brain regions. To this end, we review resting-state fMRI studies in the 
sensory, motor, and cognitive learning literature. This body of research provides evidence that 

-state functional architecture displays dynamic properties in young adulthood.  

 

Keywords: brain plasticity, experience, resting-state fMRI, functional connectivity, training, 
practice, cognitive, sensory, motor, adult 
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Introduction 

Although the brain undergoes remarkable changes during early childhood, it retains the capacity 
to adapt to experience throughout life. Several decades ago, the late William T. Greenough 
proposed that brain plasticity is induced both by expected experiences shared among members of 
a species, or experience-expectant plasticity, and experiences that are specific to individuals, or 
experience-dependent plasticity (Greenough et al., 1987). Although these mechanisms likely fall 
along a continuum (Galván, 2010), the concept of experience-dependent brain plasticity provides 
the impetus for studying the brain changes that occur in adulthood as a result of the repeated 
engagement of specific neural systems through practice or training.  

In the 65 years since Hebb first proposed the idea that patterns of coincident neuronal 
firing lead to structural changes that strengthen a synapse (Hebb, 1949), research in laboratory 
animals has led to remarkable progress in our understanding of brain plasticity at the cellular and 
systems levels (e.g., Blundon & Zakharenko, 2013; Hensch, 2005; Lisman, Schulman, & Cline, 
2002). More recently, advances in structural and functional MRI data analysis have enabled us to 
measure experience-dependent brain plasticity in humans at the level of large-scale brain 

-frequency spontaneous 
fluctuations of BOLD signal across brain regions, known as resting-state functional connectivity 
(Raichle et al., 2001), provides an excellent opportunity to study brain plasticity in humans. 
Indeed, it has been hypothesized that these temporal correlations reflect the prior history of co-
activation between brain regions (Buckner & Vincent, 2007; Dosenbach et al., 2007; Miall & 
Robertson, 2006). In this review, we evaluate the strength of the evidence for this claim.     

Resting-state BOLD correlations are observed when subjects are instructed to relax inside 
the MRI scanner without engaging in a specific task. Temporal correlations do not appear to be 
random because patterns of connectivity have been reliably identified across studies and subjects 
(Damoiseaux et al., 2006; Smith et al., 2009). Further, patterns of correlation at rest follow along 
anatomical networks within primary sensory and motor cortices, as is the case of the 
somatomotor (SMN) and visual network (Figure 1). Resting state networks (RSNs) within 
association cortices include the dorsal attention, control/frontoparietal, salience, auditory, and 
default mode networks (DMN) (for a review see Buckner, Krienen, & Yeo, 2013). RSNs include 
but are not limited to areas that are monosynaptically connected. For example, right prefrontal 
cortex (PFC) and left parietal cortex show tightly correlated time courses at rest, but these 
regions are separated by at least two synapses.  

The strength of correlations within and between networks has behavioral relevance. For 
example, visual connectivity is related to perceptual discrimination ability (Baldassarre, Lewis, 
Committeri, & Snyder, 2012), and frontoparietal connectivity is related to fluid intelligence and 
working memory (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012). These findings support 
the hypothesis that training-related changes in rs-FC support performance improvements; they 
are not only an epiphenomenon of repeated co-activation. The association to behavior also 
speaks to the relevance of examining changes in rs-FC in the context of plasticity and learning. 

 



10 
 

 

Figure 1. Resting state functional connectivity maps illustrates the organization of the human 
cortex into the major large-scale networks. The outer maps show, in red-yellow color scale, the 
regions that are functionality connected to the seed regions (dark circle). The visual and 
somatosensory networks show predominantly local connectivity. The default network, fronto-
parietal/control network, and salience network present more distributed connectivity and lack 
strong coupling to sensory and motor areas. The map in the center displays a composite of the 
surrounding networks. We review findings from motor, sensory, and cognitive learning literature 
showing changes in the connectivity strength of these networks or between two independent 
regions. Adapted with permission from Buckner et al. (2013), Nature Neuroscience 16, 832-837. 

 

This review begins with methodological considerations and then presents evidence 
supporting that rs-FC reflects experience-dependent plasticity by summarizing findings from rs-
fMRI studies involving healthy young adults. It will also present studies that have used 
neuroscientific methods to induce plasticity, such as transcranial direct current stimulation 
(tDCS). This review will not cover the effect of medication on resting-state BOLD correlations 
nor review findings from developmental samples or clinical populations (for a recent review 
covering studies on brain injury, (see Gillebert & Mantini, 2013). 
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Methodological Considerations  

In order to evaluate the evidence in support of dynamic changes in rs-FC, we will first 
briefly address important methodological considerations that could bias the signal and 
interpretation of rs-FC. We will also consider physiological factors that impact connectivity 
patterns measured at rest. 

Experimental Design. The instruction a participant receives prior to scanning could influence 
resting-state connectivity patterns. For example, Benjamin and others (2010) compared the 
connectivity in the DMN after subjects received instructions either to attend to the scanner 
background noise, not to attend to that noise, or simply relax and remain still. When subjects 
were asked to attend or ignore the noise compared with asked to relax, there was greater 
activation in dorsomedial PFC. The studies included in this review have taken precautions with 
respect to the instructions provided to participants. In some studies, however, participants 
received instructions to either keep their eyes open, closed, or fixated in a simple visual stimulus 
(e.g., a crosshair). Even though these factors modulate the strength of the connectivity of resting 
state networks (Patriat et al., 2013), researchers minimized these confounds by giving 
participants the same instructions in the baseline and post-training scanning session. 

In addition to the instructions a participant receives for the rs-fMRI scan itself, activities 
performed immediately preceding the resting scan run could also impact the rs-FC signal. For 
instance, slow fluctuations occurring during cognitively demanding tasks have been found to 
have a greater delayed recovery period, indicating that traces of BOLD response to the 
cognitively demanding tasks do not subside, even after task completion (Barnes, Bullmore, & 
Suckling, 2009). Tung and others (2013) showed that even a task as simple as pressing a button 
for a fixed duration could significantly affect rs-FC correlations and fluctuations between regions 
and these changes return to baseline only after several minutes. The slow recovery period from a 
task could impact BOLD correlations observed during resting scans that are acquired directly 
after the task. Although the influence of prior cognitive tasks could bias rs-FC, there are 
pragmatic reasons that an experimenter would choose to acquire resting scans at the end of an 
experimental session or in addition to other tasks, such as the considerable cost for running a 
longitudinal imaging study. Of the studies included in this review, researchers conducting rs-FC 
at the end of the sessions minimized potential confounding effects by keeping the sequence of 
the tasks fixed across participants and experimental conditions (e.g., Mackey, Miller Singley, & 
Bunge, 2013; Powers, Hevey, & Wallace, 2012; Urner, Schwarzkopf, Friston, & Rees, 2013). 
Nonetheless, we encourage researchers to attempt to control as much as possible the level of 
cognitive demand required by participants before or during the scanning session. 

Scan duration could also influence the reliability of rs-FC. Birn and others (2013) 
investigated the rs-FC in time series lengths varying from three to 27 minutes in three-minute 
increments. The length of the scan significantly increased the consistency of the rs-FC measured 
within a session, as measured by an increase of the interclass correlation (ICC); this increase 
slowed down after nine minutes and plateaued at 13 minutes. However, Van Dijk and others 
(2010) acquired scans varying in length between two to 12 minutes and found that approximately 
five minutes of data were sufficient to obtain moderate to high reliability. 
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Data Analysis. In addition to design confounds, data processing steps could also influence the 
strength or directionality of the correlations between regions. For example, the use of global 
signal removal has been subject to debate because this preprocessing step could bias the rs-FC 
signal by introducing anticorrelations. These negative correlations arise due to the mathematical 
properties of global signal regression, which leads to a negative mean correlation value in seeded 
connectivity analyses (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009). Some researchers 
argue that global signal regression is a useful step because it removes high correlations driven by 
physiological noise. These researchers have opted to perform separate correlation analyses using 
only positive, only negative, and only absolute values (Cole et al., 2012). Others have proposed 
that anatomically and temporally constrained methods of physiological noise reduction make it 
possible to observe real, not artifactual, anticorrelations between networks (Chai, Ofen, Gabrieli, 
& Whitfield-Gabrieli, 2014). These anticorrelations are believed to reflect behaviorally relevant 
network segregation (Behzadi, Restom, Liau, & Liu, 2007). 

Physiological Confounds. In addition to factors related to experimental design and data 
analysis, the physiological state of the participants can also influence the connectivity patterns 
observed (for review, see (Duncan & Northoff, 2013). Stress and sleep patterns in the days 
leading up to the resting state scan could affect the architecture of the RSNs and the strength of 
rs-FC. Such effects have not been widely reported, but these factors are of prime concern given 
their well-documented influence in plasticity (McEwen & Morrison, 2013; Walker & Stickgold, 
2006). In a recent study (Vaisvaser et al., 2013), a non-clinical sample of young males was 
subjected to a Trier Social Stress Task, and rs-FC changes were analyzed from a scan acquired 
before the stressor, one scan recorded shortly after the stress induction, and one acquired after a 
90-minute intermission. Although by the third scan most transient changes in the rs-FC were not 
significantly different from baseline, the strength of the correlation between the posterior 
cingulate cortex and hippocampal regions of interest (ROI) remained significantly stronger. The 
change in rs-FC connectivity between these regions was also correlated with changes in 
subjective perception of stress.  

The effects of stress have also been observed over more prolonged periods of exposure to 
stressors. For example, Soares and others (2013) measured the effects of stress on DMN 
functional connectivity in medical interns over a three-month preparation period for residency 
examination. Compared with the changes observed in medical interns that were not preparing for 
the exam, the stressed group showed stronger connectivity within RSNs, such as the 
somatomotor network and DMN. These participants also showed increased cortisol response and 
self-reported feelings of stress after this period of preparation. In this study, the effects of 
studying for the exam remain elusive because they were not reported or correlated with the 
functional data. Although the effects of chronic and acute stress produce different physiological 
effects, it would be of interest to use a similar analytic approach to compare the results of the 
Soares and Vaivaser groups and to gain a better understanding of the different effects of acute 
and chronic stress on rs-FC.  

Partial sleep deprivation has also been reported to affect the properties of rs-FC. 
Following a night of no sleep, young adults with otherwise normal sleep routines showed a 
decreased coupling within the DMN compared with controls whose sleep was undisturbed (De 
Havas, Parimal, Soon, & Chee, 2012). Similar results were observed in a study that measured FC 
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from resting periods of a memory task in participants who experienced a night of sleep 
deprivation (Gujar, Yoo, Hu, & Walker, 2009). The connectivity patterns showed significantly 
less deactivation of the dorsal anterior cingulate cortex (dACC) with the DMN. 

Summary. The studies reviewed above indicate that experiment design decisions that could 
impact the cognitive demand required by subjects, subject-level physiological characteristics, 
and data analysis steps are important factors to consider in evaluating rs-fMRI studies of brain 
plasticity, as they could confound the effects of training at the individual and group levels. At the 
end of this review, we provide recommendations for future investigations.  

Experience-dependent Changes in rs-FC 

We begin by presenting findings from sensory and motor training studies, given their 
prominence in the study of plasticity. We will then review findings from the cognitive training 
literature, which has been traditionally more focused on human studies. In studies from these 
three domains, we expect to see changes in rs-FC between regions and within networks that are 
implicated in the trained domain. A summary of the results from the studies covered in this 
section is presented in Table 1. 

Plasticity in the Sensory Domain. Sensory plasticity can take place relatively fast, and rs-FC 
could be a valuable index of the functional changes taking place between regions that support the 
sensory processing. This idea is supported by research conducted by Powers and others (2012), 
who trained participants in multisensory temporal integration by providing accuracy feedback to 

r an auditory stimulus was played synchronously with a 
visual stimulus that was displayed 150 ms before or after the onset of the sound in 50 ms 
intervals. Performance on this task improved significantly after one training session, and the rs-
fMRI scans revealed increased coupling between the posterior superior temporal sulcus (pSTS), 
secondary auditory cortex, superior colliculus, and superior cerebellum, among other regions 
(Figure 2). These areas support the audiovisual perception and integration capacity, as well as the 
timing of the integration. 

 

Figure 2. Data from study 3 in 
Table 1. Resting-state functional 
connectivity changes after 
audiovisual integration training. 
(A) The functional map illustrates 
the cortical areas with greater 
connectivity increase with the 
posterior superior temporal sulcus 
(pSTS). (B) This map shows a 
connectivity increase between the 
pSTS and superior colliculus. 

These regions support sensory integration and the connectivity increases illustrate that changes 
observed at rest are seen in regions that support the trained function. Adapted with permission 
from Powers et al. (2012). Journal of Neuroscience  6274. 
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Sensory plasticity has also been observed during motion perception task training. In this 
study, Urner and others (2013) investigated the lasting effects of visual learning by acquiring 
resting scans immediately after the training session and 24 hours later and used stochastic 
dynamic causal modeling to test for changes in the connectivity at these two time points. The day 
after training, the best-fitting model showed a lasting increase in the bidirectional connectivity 
between the hippocampus and striatum, which was interpreted as an index of consolidation. 
These findings suggest that even after a training period is over, changes in rs-FC can be 
observed. It is unknown whether these functional connections remain present for longer periods 
after learning. 

The plasticity of other sensory modalities, mainly somatosensory input, has been 
examined through the use of acupuncture (Dhond, Yeh, Park, & Kettner, 2008) and electrical 
nerve stimulation (Klingner, Hasler, Brodoehl, Axer, & Witte, 2012). These studies have shown 
changes in rs-FC after a single session, either in canonical RSNs or the connectivity between 
regions of the secondary somatosensory cortex, thalamus, and association areas. 

These studies provide evidence that repeated training can induce plasticity in the specific 
networks and brain regions involved in sensory processing. The regions that exhibited change in 
rs-FC were consistent with the sensory experience manipulated in the training paradigm. 
Interestingly, these changes could be observed even after a single training session, which may 
suggest rapid plasticity of the regions supporting sensory processing; however, it would be 
important to examine whether the changes resulting from repeated experience are sustained from 
longer periods of time or are only transient adaptations that result from the short length of 
training. A distinction between these two effects was tested by Urner and others (2013) but only 
after a 24-hour delay. 

Plasticity in the Motor Domain. The use of rs-FC has provided opportunities to study the 
effects of motor learning in areas that are not classically defined as motor regions (i.e., support 
limb movement) but contribute to developing a complex motor skill. For example, changes in the 
coupling between motor regions and visual areas were observed after participants learned to 
reach for a target guiding their movements with indirect visual feedback and readjusting against 
resistance (Vahdat, Darainy, Milner, & Ostry, 2011). Vahdat and colleagues were able to 
dissociate rs-FC changes related to training that were mutual or exclusive to perceptual and 
motor learning. As shown in Figure 3, the changes in rs-FC between primary motor cortex and 
cerebellum were exclusive to the motor index of learning. These findings illustrate the benefit of 
using rs-FC measures to dissociate changes that occur in different systems that are not contingent 
on a specific task.  

In addition, rs-FC can also reflect the progression of the neuroplastic changes that occur 
throughout a training program. Ma and others (2012), for example, trained participants to repeat 
a finger tapping sequence with their non-dominant hand. The strength of rs-FC between the right 
primary somatosensory cortex and right supramarginal gyrus increased after two weeks of 
training and decreased from the second to the fourth week. Interestingly, behavioral learning was 
only observed after the second week and was stabilized by the fourth week. A similar decrease in 
connectivity was reported in a separate study in which participants learned to manipulate a tool 
with their non-dominant hand (Yoo, Sohn, & Jeong, 2013). After eight weeks of practice, the 



15 
 

correlations decreased within the sensory-motor network components, specifically between left 
primary motor cortex, supplementary motor area, and primary sensory cortex. Similarly, there 
was a decrease in rs-FC between regions that were initially correlated with manipulation of the 
tool, such as between right supramarginal gyrus and right premotor cortex. The authors 
suggested that this change in correlations reflects an enhanced efficiency in the functional 
network supporting motor control. However, the change in the directionality of rs-FC is not 
always consistent across motor learning paradigms. For example, rs-FC from training involving 
learning to balance an unstable structure showed increased coupling between bilateral 
supplementary/pre-supplementary motor areas and right ventral premotor cortex from baseline to 
the third week of training (Taubert, Lohmann, Margulies, Villringer, & Ragert, 2011).  

 

 

Figure 3. Data from study 10 in Table 1. Resting-state functional connectivity changes after 
motor reaching specific to perceptual and motor improvements. (A) Each row represents changes 
in connectivity in relation to motor and perceptual learning. Left column show the location of the 
seed ROIs; other columns show clusters with significant change in connectivity with the seed. Z-
score maps show increase in positive correlations (shown in red-yellow) and negative 
correlations (shown in dark-light blue) from training day (day 1) to post-learning testing (day 2) 
with respect to learning. (B) Mean correlation between individual changes in FC are shown in 
the bar graph, from left to right, for sensory (pi), motor (mi), and mutual (M) indices of learning, 
respectively. Green bars indicate the connectivity between primary motor cortex (M1) and 
Cerebellum (CB). Blue bars illustrate the connectivity between supplementary motor area (SMA) 
and secondary somatosensory cortex (SII). Adapted with permission from Vahdat et al. (2011) 
Journal of Neuroscience  

 

Resting state FC from motor training studies indicates that the changes associated with 
the development of a motor skill are not limited to the regions that support the movement 
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initiation but rather share intrinsic correlations with regions implicated in the perceptual 
components of the task. It is important to note that in these studies, the networks that exhibited 
changes were those expected to be engaged when performing the motor skill (Vahdat et al., 
2011). 

Plasticity in the Cognitive Domain. Behavioral and neuroimaging research examining the 
plasticity of higher cognition has aimed to develop and implement training regimes that could 
ameliorate or improve performance in a particular cognitive process, such as attention (Bavelier, 
Green, Pouget, & Schrater, 2012; Neville et al., 2013), reasoning (Bergman Nutley et al., 2011; 
Mackey et al., 2011, 2012), and working memory (Dahlin, Neely, Larsson, Bäckman, & Nyberg, 
2008; Klingberg et al., 2005; Söderqvist et al., 2012). As the field has progressed, emphasis has 
also been placed in understanding the mechanism underlying plasticity of the systems supporting 
these functions (Mcnab, Nix, Hauth, Jorgensen, & Bastiani, 2009). However, many findings are 
still subject to debate, such as individual differences determining who would benefit from an 
intervention showing transfer of learning to untrained tasks (Melby-Lervåg & Hulme, 2013; 
Shipstead et al., 2012). We argue that the analysis of rs-FC data could illuminate answers to 
these debates if we consider this connectivity as reflecting how networks are reconfigured as a 
result of repeated practice. The studies presented below demonstrate an important first step 
supporting the possibility that rs-FC measures could shed light on the effects of cognitive 
training, since they show that repeated engagement of a neural circuit supporting higher 
cognition is reflected in changes in rs-FC. 

To investigate changes in rs-FC after repeated experience with reasoning problems, 
Mackey and others (2013) recruited two groups of age- and IQ-matched pre-law students, in 
which only one group received preparation for the law school admission test (LSAT). The 
preparation course consisted of 100 hours of training over a three-month period, wherein two-
thirds of the curriculum was devoted to solving reasoning problems. After the three months of 
training, the experimental group showed an increase in fronto-parietal and parietal-striatal rs-FC 
within and between hemispheres, as shown in Figure 4. Notably, these changes were linked to 
larger LSAT improvements. Interestingly, increased connectivity between the striatum and PFC 
ROIs was associated with smaller behavioral improvements, which suggest that differences in 
the changes in rs-  

Changes in rs-FC were also observed after four weeks of working memory training 
(Takeuchi et al., 2013). Participants were asked to perform a series of tasks that required them to 
maintain, update, or reorder verbal or visuospatial information. The group of participants that 
received training showed decreased coupling between mPFC and precuneus. Changes in the 
connectivity pattern were not correlated with behavioral performance on the working memory 
measures or reasoning tasks, which were considered transfer measures. The lack of correlation 
between rs-FC and behavior may be explained by the low between-subject variability in 
improvements after training. In a separate study by the same group (Takeuchi et al., 2013), 
participants were trained to multitask by performing exercises in which they had to process 
simultaneously and respond to different target stimuli, such as spoken numbers played to the left 
ear and vowels played to the other. The results showed decreased rs-FC between dorsolateral 
PFC and ventral ACC, regions involved in cognitive flexibility, but these changes were not 
correlated with behavioral improvements in multitasking and related cognitive process.  
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Figure 4. Data from study 12 in Table 1. Resting-state functional connectivity (FC) changes and 
correlation with behavioral improvements after preparation for the Law School Admission Test 
(LSAT), which strongly emphasizes reasoning. (A) Number of increased pairwise correlations 
for 11 brain regions most often recruited during reasoning performance (Prado et al., 2011), 
including  rostrolateral prefrontal cortex and angular gyrus. (B-C) These diagrams indicate the 
increase in pairwise FC that were positively (B) and negatively (C) correlated with LSAT 
improvements. The thickness of the lines represents the number of connections with significant 
correlations. For more details, see original study. Adapted with permission from Mackey et al. 
(2013), Journal of Neuroscience  4803 

In these cognitive training studies, changes in rs-FC were studied in the context of 
experience-dependent plasticity and were also related to behavioral improvements in the trained 
domain (although with some mixed success, such as Takeuchi et al., 2013). Small sample sizes 
may partially explain the lack of behavioral associations, and further studies should be conducted 
to further confirm correlations between changes in rs-FC and behavior. The relationship between 
the distinct patterns of rs-FC and behavioral improvements reported by Mackey and others 
(2013) indicates the potential of rs-FC as a measure of learning success. It remains to be tested, 
however, whether BOLD correlations at rest could also be used to predict performance in an 
untrained cognitive domain and whether these correlations can serve as an index of individual 
differences in the benefits obtained from training.  
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Discussion 

The studies presented in this review support the hypothesis that the dynamic nature of resting-
state functional connectivity reflects experience-dependent plasticity and illustrate that rs-FC 
patterns change after repeated experience with sensory, motor, or cognitive tasks. Similar 
changes in resting state connectivity have also been reported from cross-sectional studies 
comparing the effects of expertise, such as with experienced meditators (Taylor et al., 2013), 
trained musicians (Luo et al., 2012), and expert athletes (Di et al., 2012). 

These findings raise questions about the nature of resting state architecture and the 
plasticity of neural systems. One important question is whether the changes observed in training 
studies in each domain are confined to the specific resting state networks associated with training 
demands. In the motor training literature, changes were confined to regions believed to support 
motor functions but were not exclusive to the canonical motor regions. Additionally, changes 
were observed in other networks that were also involved in the training (e.g., sensory cortices). 
However, testing for double dissociations of training effects is not widely performed. Vahdat and 
others (2011) tested the changes in connectivity exclusive to motor or perceptual learning. 
Furthermore, they tested for the changes observed at rest to be selectively present in the 
somatomotor network by examining plasticity in networks that were hypothesized to be 
unrelated to their training task (e.g., DMN). As expected, only the strength of the connectivity in 
the somatomotor network changed as a result of motor practice. Similar results were observed by 
Yoo and others (2013), who also observed changes specific to the motor network but not the 
DMN. It would be of interest for future work to test for these double dissociations more 
regularly, as these tests provide stronger casual evidence that the changes observed at rest reflect 
experience-dependent plasticity in specific circuits.  

A second empirical question that could be addressed with rs-FC is whether distinct 
networks have comparable potential for malleability. Complementary use of neuroscientific 
tools, such as with tDCS, with rs-FC will allow these comparisons. The use of this manipulation 
would help researchers overcome the challenge of developing a training program that would 
equally target different networks. For example, Polanía and others (2011) found that after 10 
minutes of bipolar tDCS with anodal stimulation to the left primary motor cortex (M1) and 
cathode stimulation to the contralateral frontopolar cortex, there was a strengthening of the 
intrinsic coupling between motor regions (left premotor, lM1, and left parietal cortex), and this 
change was accompanied by an increase in the efficiency of connectivity between the region that 
received the anodal stimulation and the rest of the brain. Such stimulation techniques could be 
used not only to compare the malleability potential of different networks but also the timing of 
these effects.  

The studies reviewed from each modality (sensory, motor, and cognitive) indirectly 
address the belief that the rate of plasticity varies depending on which modality is being trained. 
This hypothesis can be inferred from the training duration necessary to induce changes in rs-FC. 
For example, studies examining plasticity of higher cognition showed changes after nearly 100 
hours of training (e.g., Mackey et al., 2013), whereas those in the sensory domain identified 
plastic alterations after only one hour of training (e.g., Powers et al., 2012). To test this 
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hypothesis directly, multiple scanning sessions at different intervals would be necessary to 
capture the changes occurring as a result of training.  

An important question to consider is how changes observed in rs-FC are related to 
changes in behavioral performance. The results from the studies included in this review indicate 
that changes in rs-FC were strongly correlated with changes in behavior in the trained domain 
(e.g., Taubert et al., 2011; Mackey et al., 2013). Interestingly, in the studies that acquired more 
resting state data during the course of the study, certain patterns of change in rs-FC were 
detected prior to the actual behavioral improvement (Ma, Narayana, Robin, Fox, & Xiong, 2012; 
Taubert et al., 2011). Resting state FC could reflect the plasticity that can be observed prior to 
behavioral changes, although a link between behavioral improvements and changes in rs-FC was 
not observed in all studies (e.g., Takeuchi et al., 2013). In addition, correlations observed at rest 
have also served to predict behavioral gains from training paradigms, similar to how structural 
and task-based functional measures have been used in the past (for a recent review, see (Zatorre 
et al., 2012). For example, prior to training, Ventura-Campos and others (2013) were able to 
predict which participants would exhibit greater learning success after a training requiring the 
identification of non-native phonemes. The participants exhibiting greater learning showed 
stronger rs-FC between language-specific regions at baseline compared to poorer learners. The 
correlations of rs-FC could serve as an additional indicator of future behavioral gains and 
elucidate individual differences observed in training studies. 

As mentioned in the cognitive plasticity section, rs-FC could provide valuable insights to 
test for transfer. One can speculate that widespread changes to a network are more likely to 
support transfer on untrained tasks than more localized changes. Individual difference analyses 
could provide insights into the mechanisms that underlie transfer, and predict which transfer 
tasks are likely to show behavioral improvements.  

Functional connectivity observed at rest could be used to answer the empirical questions 
discuss thus far. It is important, however, for future research to also address the mechanisms 
underlying the changes observed in these intrinsic fluctuations. Computational and comparative 
work is needed to formulate possible cellular underpinnings of the changes observed in rs-FC, 
similar to the work that has been done to understand the cellular basis of structural plasticity in 
humans (for a review, see Zatorre et al, 2012). These investigations could also facilitate the 
understanding of what increases or decreases in rs-FC after a period of training specifically 
indicate. 

In addition to elucidating the mechanisms underlying the changes in rs-FC, it is 
recommended that future work follows standards to control for the possible confounding 
variables discussed previously. Importantly, given the documented effects of sleep and stress in 
plasticity and rs-FC (De Havas et al., 2012; Soares et al., 2013; Vaisvaser et al., 2013), these 
physiological variables should be reported more consistently in the literature to control for 
potential individual and group differences. Although measuring physiological states is cost-
intensive when these variables are considered of no-interest, it would be valuable to at least 
collect self-report measures. It would also be beneficial to monitor and report as much as 
possible other methodological considerations that could confound within- and between-subject 
comparisons, such as motion during scanning and cognitive demands prior to the scanning 
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session. Considering these factors could facilitate comparisons between studies, although when 
comparing data obtained from different training paradigms, the analysis approach would also 
need to be equated. These comparisons could help advance the understanding of the efficacy of 
different training programs and rs-FC plasticity. 

The findings reviewed here support the concept that rs-fMRI serves as an effective 
measure of plasticity; rs-fMRI appears to reflect a record of repeated synchronized activation 
between regions, as seen from correlation changes occurring in regions closely related to the 
trained task. The standardization of methodological approaches and better knowledge of the 
cellular underpinning of the changes observed in rs-FC may allow comparisons between studies 
and facilitate a better understanding of the impact of training on the connectivity observed at rest 
and provide greater insights into experience-dependent plasticity. 

 

Next chapter. Having established evidence for experience-dependent brain plasticity, we turn 
our attention to examining the effects of a prolonged and multifaceted learning experience on 
performance. In Chapter 3, I present empirical work characterizing the effects formal schooling 
on various domains of higher-level cognition. In that work, we had an unprecedented opportunity 
to examine the effects of education on performance and novel learning across five decades of the 
lifespan. 
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Chapter 3 

 

Does higher education hone cognitive functioning and learning efficacy? Findings from a 
large and diverse sample 
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Abstract 
 

Attending school is a multifaceted experience. Students are not only exposed to new knowledge 
but are also immersed in a structured environment in which they need to respond flexibly in 
accordance with changing task goals, keep relevant information in mind, and constantly tackle 
novel problems. To quantify the cumulative effect of this experience, we examined 
retrospectively and prospectively, the relationships between educational attainment and both 
cognitive performance and learning. We analyzed data from 196,388 subscribers to an online 
cognitive training program. These subscribers, ages 15-60, had completed eight behavioral 
assessments of executive functioning and reasoning at least once. Controlling for multiple 
demographic and engagement variables, we found that higher levels of education predicted better 
performance across the full age range, and modulated performance in some cognitive domains 
more than others (e.g., reasoning vs. processing speed). Differences were moderate for 

d = 0.51), and large between Ph.D. vs. Some High School (d 
= 0.80). Further, the ages of peak cognitive performance for each educational category closely 
followed the typical range of ages at graduation. This result is consistent with a cumulative effect 
of recent educational experiences, as well as a decrement in performance as completion of 
schooling becomes more distant. To begin to characterize the directionality of the relationship 
between educational attainment and cognitive performance, we conducted a prospective 
longitudinal analysis. For a subset of 69,202 subscribers who had completed 100 days of 
cognitive training, we tested whether the degree of novel learning was associated with their level 
of education. Higher educational attainment predicted bigger gains, but the differences were 
small (d = 0.04-0.37). Altogether, these results point to the long-lasting trace of an effect of prior 
cognitive challenges but suggest that new learning opportunities can reduce performance gaps 

 

Keywords: educational attainment, executive function, plasticity, reasoning, college 
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Introduction 

Across industrialized nations, only a minority of adults complete post-secondary education. For 
example, fewer than 40% of adults in the United States are expected to graduate from college in 
their lifetimes, and the percentage shrinks for more advanced degrees (OECD, 2016). 
Considering the cost of higher education, many wonder whether it is a worthwhile investment. 
Nevertheless, post-secondary educational attainment has been consistently linked to financial 
and non-monetary benefits (Barrow & Malamud, 2015). Higher education is intended to confer 

readiness towards life-long learning (Harvey, 2000). 

Indeed, universities may offer enriching experiences that enhance domain-general 
abilities to think and learn, such as thinking quickly (processing speed), keeping information in 
mind (working memory), responding flexibly to task goals (cognitive control), and tackling 
novel problems (reasoning). Although these skills are not explicitly taught in school, they may 
serve as a scaffold for learning and have been implicated in academic performance (Cattell, 
1971; Deary, Strand, Smith, & Fernandes, 2007). 

Prior research suggests that education has a positive effect on measures of intelligence 
(Ceci, 1991). For instance, longitudinal studies using data from compulsory military service in 
Scandinavian countries have estimated that each completed year of secondary school translates 
into a gain of nearly two to four IQ points during adolescence (Härnqvist, 1968) and early 
adulthood (Falch & Sandgren Massih, 2011). Moreover, the effects of schooling might be 
strongest for lower-performing individuals (Hansen, Heckman, & Mullen, 2003). The benefits of 
schooling have also been shown to be present in old adulthood, such that years of education 
predict IQ performance at the age of 70, even when controlling for individual differences in IQ at 
age 11 and other family characteristics such as parental socioeconomic status (Ritchie, Bates, 
Der, Starr, & Deary, 2013).  

Analysis of data collected during periods of significant educational reform has provided 
even stronger evidence for the causal role of schooling on IQ. The most notable example is data 
analyzed by Brinch and Galloway (Brinch & Galloway, 2012), which spans nearly two decades 
when the Norwegian government raised compulsory schooling from seven to 9 years. The 
authors exploited the fact that different municipalities adopted the reform at various times and 
that men take a mandatory IQ test on the entrance to military service at age 18. These factors 
allowed the authors to compare the IQ of individuals who were able to leave school earlier than 
others. The analysis of this data indicated on average a benefit of nearly four IQ points for each 
year of schooling.  

Aside from the composite measures of IQ used in the longitudinal and quasi-experimental 
studies described thus far, the effects of schooling have also been reported in studies that 
examine performance separately on tests that include scholastic knowledge and more abstract 
tests of cognition. Education positively predicts performance on the subcomponents of a typical 
IQ test including the reasoning and verbal portion (Cliffordson & Gustafsson, 2008; Kaufman, 
Kaufman, Liu, & Johnson, 2009), and it is a stronger predictor of performance on tests that 
directly measure skills taught in school, such as math and reading (Kaufman et al., 2009). The 
length of schooling has also been shown to positively predict performance on a measure of 
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cognitive control in adolescence (Noble, Korgaonkar, Grieve, & Brickman, 2013) and measures 
of reasoning and working memory, but not processing speed, in old adulthood (Ritchie, Bates, & 
Deary, 2015). These findings suggest that educational experience has differential moderating 
effects on different aspects of cognition. 

This prior body of work supports the notion that education positively influences higher 
cognition, consistent with principles of experience-dependent brain plasticity, from which one 
would predict improvements in cognitive skills that are repeatedly taxed in demanding and 
cognitively engaging coursework. However, the scope of prior work limits the conclusions that 
can be drawn, because they have focused on 1) limited cognitive domains or narrow age groups, 
2) are mostly based on Scandinavian men who enlisted in the military, 3) lack the power needed 
to test the effects of different school levels or adequately characterize the effects of education 
across the life span, and/or 4) have not examined the impact of education on future learning. 
Here, we seek to build on prior work by addressing each of these issues. 

The present study 

The goal of this study is to better understand the cognitive effects of education by testing 
whether educational attainment relates to cognitive abilities at one timepoint (a retrospective 
longitudinal approach), as well as learning efficacy from one timepoint to another (a prospective 
longitudinal approach). To this end, we examined performance on eight cognitive assessments of 
executive functioning and reasoning in a diverse sample of over 195,000 individuals, ages 15-60, 
who had subscribed to an online cognitive training program. Over 69,000 of these subscribers 
completed these assessments a second time approximately 100 days later, making it possible to 
evaluate practice-related gains in cognitive performance. We controlled for many variables, 
including income, sex, ethnicity, native language, and engagement with the training. Importantly, 
the engagement measures allowed us to quantify and control for individual differences in 
motivation in our learning context. 

We hypothesize that if the cognitive assessments used here capture skills that are relevant 
to real-world outcomes, we should detect differences in performance associated with educational 
attainment (Ceci, 1991) in addition to age (Cliffordson & Gustafsson, 2008; Hartshorne & 
Germine, 2015). Given previous findings showing positive cognitive outcomes associated with 
continuing education in adolescence/young adulthood (Brinch & Galloway, 2012; Falch & 
Sandgren Massih, 2011; Härnqvist, 1968; Noble et al., 2013), we predicted a significant benefit 
of completing high school relative to not finishing it, and a further benefit of completing college. 
We also considered it plausible that there might be differences between holders of graduate 
degrees relative to college degrees, given differences in the years of higher education required.  

Although we sought to understand the influence of education on cognition, it is 
incontrovertible that cognitive functioning itself influences educational attainment (Ferrer & 
McArdle, 2004). Some have argued that financial constraints, and not intellectual potential, are 
the major roadblock in educational attainment (Cardak & Ryan, 2009), but a selection bias is still 
to be expected, such that students with greater scholastic aptitude are more likely to pursue and 
attain higher degrees. While we cannot solve this chicken-and-egg problem short of randomly 
assigning students to pursue different degrees, the analyses described below help to address the 
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question of how, and the degree to which, cognitive performance and learning efficacy vary as a 
function of prior education. 

First, we examined whether educational attainment modulates age-related changes in 
cognitive performance at one timepoint. Previous work examining changes in cognition through 
the lifespan has shown that performance on some of the cognitive skills tested here peaks in late 
adolescence or early adulthood and declines thereafter (Hartshorne & Germine, 2015; McArdle, 
Ferrer-Caja, Hamagami, & Woodcock, 2002). Given the size and wide age range of our sample, 
it was possible to test whether these age effects are influenced by education  and, importantly, 
to determine how the cognitive effects of educational attainment differ across the lifespan, as 

experiences. To this end, we explored whether educational attainment modulates ages of peak 
cognitive performance, such that the age of maximal cognitive performance for participants who 
have achieved a given level of education varies as a function of the age at which this degree is 
typically completed. We expected to replicate findings showing that late adolescence and early 
adulthood are the periods during which performance peaks for comparable measures of cognition 
(Hartshorne & Germine, 2015; McArdle et al., 2002). However, we further hypothesized that 
maximal cognitive performance would coincide with or closely follow the age at which 
education was completed. As an initial test of this hypothesis, we compared, for each educational 
level, the average age of peak cognitive functioning with the average age of graduation.  

 Second, we examined whether educational attainment differentially modulates 
performance on the eight individual cognitive assessments. Based on prior work in old adulthood 
showing the differential effect of schooling on various cognitive measures (Ritchie et al., 2015), 
we predicted that educational attainment would moderate age-related effects on tests of higher-
level cognition, such as measures of reasoning, to a greater degree than on tests of lower-level 
cognition, such as measures of processing speed.  

Finally, we examined prospectively whether educational attainment modulates learning 
efficacy. It has been argued that the effects of education are cumulative, such that quantity of 
schooling influence the acquisition and maintenance of cognitive skills over time (Ceci, 1991; 
Ganguli et al., 2010). To date, however, there is scant evidence for or against this hypothesis. 
Here, we sought to test whether prior education modulates practice-related gains in cognitive 
performance. To this end, we analyzed data from the subset of participants (n = 69, 202) who had 
completed the cognitive assessments before and after engaging with a cognitive training 
program. We considered three equally plausible outcomes. First, findings in the cognitive 
training literature (Diamond & Ling, 2016) raise the possibility that people starting with lower 
scores would improve the most. Conversely, considering the proposed cumulative effect of 
education and the well-documented Matthew effect (Walberg & Tsai, 1983), another possibility 
is that higher levels of education would predict greater gains. Lastly, given that the training 
games and assessments are unrelated to educational curricula, a third possibility is that there 
would be no effect of education on the magnitude of practice-related improvements.  

To summarize, we examined retrospectively how educational attainment relates to 
cognitive performance in a large sample spanning the ages of 15-60. We examined the variance 
captured by educational attainment across the entire age range, and characterized how education 
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moderates performance on individual cognitive assessments and well-established age-related 
changes in performance (i.e., ages of peak cognitive functioning). Finally, with our prospective 
analysis, we examined the effect of educational attainment on changes in cognitive performance 
before and after participation in a cognitive training program that taxes various aspects of 
executive functioning and reasoning. 

Methods 

Participants 

Data were collected from Lumosity subscribers who had answered demographic questions and 
completed an online battery of cognitive assessments at least once. Subscribers were informed in 
advance that their data would be used for research purposes should they choose to complete the 
assessments. All data were de-identified and analyzed in aggregate in accordance with Lumos 
Labs' Privacy Policy (www.lumosity.com/legal/privacy_policy). 

To be included in this study, participants had to be between the ages of 15-60 and reside 
in the United States (n = 152,694), Canada (n = 21,767), or Australia (n = 21,927). These 
countries were selected for several reasons. First, they were the most represented countries in the 
sample. Second, they share the same official language. Third, education is typically compulsory 
until the age of 16. Finally, their university systems require equivalent qualifications for 
admissions into college and graduate programs.  

Additionally, we only included participants whose reported age was greater than their 
years of education (i.e., age > years of education + 4), and whose educational attainment was 
plausible given both their age and years of schooling (i.e., excluded participants younger than 17 

 Moreover, we recoded 

education, since their response most likely reflects a clerical error rather than their actual 
educational attainment (n = 181). We chose these cutoffs based on pertinent international 
statistics of typical graduation ages (OECD, 2016). Finally, we also included in our analyses data 
from participants who did not specify their educational attainment level, so as not to bias the 
normalization procedures of the cognitive assessments scores.  

Thus, the retrospective single timepoint analyses included 196,388 participants (53.72% 
females; Mage = 39.95 ±12.8 SD). The prospective learning analyses included a subset of these 
participants (n = 69,202; 58.84% females; Mage = 43.11 ±12.23 SD). The participants were from 
diverse demographic backgrounds and with educational attainment ranging from some high 
school to doctoral degrees (Fig 1, skewness years of education = -0.23). Our sample is slightly skewed 
towards higher educational attainment given that 52% of our sample has attained at least a 
Bac (OECD, 2016).  
However, the distributions of education categories across the age (Fig S1), income levels (Fig 
S2), and ethnic categories (Fig S3) are consistent with patterns seen in these general populations 
(OECD, 2016; Ryan & Bauman, 2016). 

In addition to establishing education categories, we subdivided our participant into five-
year age bins (e.g., 30-35) to maximize our ability to compare similarly represented educational 
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attainment levels and age groups. We subdivided the age range into one-year bins to test whether 
the age of peak cognitive performance varies as a function of educational history. 

 

 

Figure 1. Distribution of 
educational attainment. The 
number of participants reporting 
educational attainment between 

(N = 196,388). 

 

 

 

 

Cognitive Assessments 

Participants completed a battery of eight assessments designed to evaluate working memory, 
flexibility, processing speed, and verbal and non-verbal reasoning. The assessments are a valid 
and reliable (Morrison, Simone, Ng, & Hardy, 2015) computerized adaptation of classic pencil-
paper neuropsychological tests accessible online that can be completed in 30 minutes. These 
tests, including their performance metrics, have been described in detail elsewhere (Morrison et 
al., 2015). The working memory tests require participants to hold in mind strings of spatial 
locations (Forward and Reverse Spatial Span). The processing speed tasks involve quickly 
connecting numbers in a sequence (Trail Making A) and matching numbers to symbols (Digit 
Symbol Coding). The test of cognitive flexibility includes connecting in order-interleaved 
numbers and letters (Trail Making B). Finally, the tests of reasoning involve answering questions 
about simple logical statements (Grammatical Reasoning), performing simple word-based 
additions and subtractions (Arithmetic Reasoning), and completing a visual pattern based on 
rules and relationship between items (Progressive Matrices). 

Participants completed these assessments at two timepoints, before (T1) and after (T2) 
engaging with the cognitive training program. We used T1 data for our retrospective analyses 
and the change score data (T2-T1) for our prospective analyses. 

Performance scores and analysis 

The cognitive assessments have different performance metrics and distributions. Thus, we 
standardized the raw scores according to a conventional normalization procedure so that the 
performance scores will have a normal distribution with mean 100 (15 SD). Specifically, raw 
scores for a given subtest from T1 were ranked and then converted into percentile scores 
according to the empirical cumulative distribution. Normed scores were created by converting 
the percentile scores to their corresponding position on a normal distribution (M = 100, SD = 15). 
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We performed a similar normalization procedure for T2 scores, but they were converted to 
percentiles according to the empirical cumulative distribution of T1 raw scores to preserve 
changes in performance from T1 to T2. We used this normalization procedure to generate age-
specific normative data.  

We created an aggregate measure of T1 and T2 cognitive performance for each 
participant  a Grand Index (GI) score  by summing together for each timepoint the norm scores 
of each assessment and normalizing the sum scores to have a distribution with a mean of 100 (15 
SD). Before testing for cognitive effects of educational attainment, we regressed out from all 
normed performance metrics the effect of demographic variables and engagement with the 
Lumosity games. We calculated GI change scores by subtracting the raw GI scores of T1 from 
T2. Before testing the effects of educational attainment, we regressed out from the change score 
demographic and engagement variables, as well as the raw T1 score. 

not English was their native language. We included gender and ethnicity as covariates to control 
for differences in access to education and any effects of stereotype threat on cognitive test-taking 
ability (Steele, 1997). We also assessed effects of household income, given that income could 
influence access to education and other cognitively engaging activities. The engagement 
covariates were the number of hours each participant played the cognitive training games before 
each assessment and the number of days that elapsed between timepoints. We used the latter 
covariate only in the calculation of the change score. In all analyses, we used the log form of 
these engagement variables given their distribution and relationship to cognitive performance. 
Together, all these covariates accounted for a small variance in cognitive performance at both 
timepoints (R2 p < 0.0001; Table S1).  

All analyses use the adjusted normed scores resulting from these normalization 
procedures. The linear models used to probe the relationship of educational attainment with 
cognitive performance and learning are described in detail in the results section.  

Peak analysis procedures 

To test whether educational attainment modulates the ages of peak cognitive performance, we 
adopted a bootstrap resampling procedure similar to one previously employed with large cross-
sectional online samples (Hartshorne & Germine, 2015). Specifically, we drew a sample between 
ages of 15-60 (in one-year bins) from each educational category and identified the age group 
with the highest T1 GI score, using the age-specific normative data and adjusting for all the 
aforementioned control variables. We repeated the procedure 10,000 times, which allowed us to 
calculate a median age of maximal performance and the corresponding 95% confidence intervals 
(CIs). The sample size selected (with replacements) from each education group at each iteration 
equaled the sample size available for that education category (Fig 1), and we only considered age 
bins with at least 50 participants for each education level.  

To explore the possibility that age at peak cognitive functioning is related to the age at 
which education is terminated, we accessed international indicators of typical ages of graduation 
for each educational attainment category (OECD, 2016). The report listed ages of graduation as a 
range separately for each country included in our sample, which we used to calculate the median 
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age and typical age ranges of graduation for each education category. For instance, we estimated 

22.5 given the typical ages of graduation in each country: 21-23 in the USA, 22-24 in Canada, 
and 20-23 in Australia.  

Supplementary materials: supplementary information referenced in this chapter can be found 
in Appendix A.  

Results 

Effects of educational attainment and age on cognitive performance 

To test whether educational history modulated cognitive performance across a range of task 
demands, we used the aggregate measure based on all the cognitive assessments for each 
participant at T1, termed the Grand Index (GI) score. As described above, we controlled for 
demographic variables and level of prior engagement with the Lumosity training games. 

As predicted, educational attainment levels (Some High School, High School, Some 
-year age bins between 

ages 15 and 60), were significant predictors of the adjusted GI score at T1 (adjusted R2 = 0.18; p 
< 0.0001; Table 1; Fig 2). Household income did not account for additional variance (adjusted 
R2= 0.18, p < 0.0001; Table 1) and was therefore not included in subsequent analysis. 
 

Table 1. Educational attainment and age predicting T1 cognitive performance and 
learning, as measured by the Grand Index (GI) score.  

 

GI T1 
Estimate 

 
Controlling 
for income 

GI T1  
Estimate 

 
Estimate 

 
Controlling  

for T1 scores 
 

Estimate 

 

Age regressed out 

GI T1  
Estimate 

 
Estimate 

Intercept 100.63*** 100.87*** 5.12** 5.20 *** 95.11 *** 2.95*** 

Some high school -2.73*** -2.69*** 0.05 -0.33 -1.80 *** -0.31 
Assoc./Some College 3.90*** 3.90*** 0.31** 0.69*** 3.10 *** 0.73*** 

 7.83*** 7.78*** 0.42*** 1.20 *** 6.63 *** 1.31*** 
alent 8.91*** 8.83*** 0.52*** 1.42 *** 7.65 *** 1.58*** 

Ph.D. 10.81*** 10.74*** 1.12*** 2.20 *** 9.64 *** 2.44*** 
Unspecified 3.43*** 3.46*** 0.36* 0.78*** 2.50 *** 0.76*** 

Ages 20-25 0.52** 0.39** -0.43* -0.27  
 Ages 25-30 -0.39* -0.58* -0.70***  -0.63** 
Ages 30-35 -2.14*** -2.36*** -0.98*** -1.05 *** 
Ages 35-40 -3.86*** -4.10*** -1.42*** -1.67 *** 
Ages 40-45 -5.97*** -6.22*** -1.81*** -2.27 *** 
Ages 45-50 -8.59*** -8.85*** -1.73*** -2.49 *** 
Ages 50-55 -11.99*** -12.23*** -1.73***  -2.86 *** 
Ages 55-60 -15.11*** -15.33*** -2.07*** -3.51 *** 

Each GI score was normalized to have a 
distribution with mean of 100 (15 SD) and was adjusted for the effects of demographic covariates (gender, ethnicity, and 
indicator of English as native language), engagement variables (number of gameplay hours and days between T1 and T2), T1 
performance (T2 only), and other specified variable. The two rightmost columns additionally regress out the effects of age (5-age 
bins). Reference category: ages 15-20 and High School attainment. p p p  



31 
 

 

Figure 2. Effect of educational attainment on the adjusted Grand Index score at T1 across 
the ages of 15 and 60. Ribbons show bootstrapped 95% CIs from 10,000 iterations. Displaying 
age/education categories with 50+ participants who specified their educational attainment level 
(n = 179,141; N = 196,388). 

 

Quantifying the unique influence of educational attainment  

Having found that GI scores vary as a function of both age and education, we sought to quantify 
the amount of unique variance explained by the latter. To this end, we regressed out the 5-year 
age bins in addition to the demographic and engagement covariates when calculating the GI 
score. A linear regression showed that educational attainment positively predicted a significant, 
albeit small, amount of variance in cognitive performance (adjusted R2 = 0.04, p < 0.0001). All 
educational attainment categories were significant predictors of the GI score at T1, showing a 
pattern of results in line with the additional years of schooling required to complete each degree 
(Table 1). 
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Next, we sought to more carefully characterize the effects of different levels of 
educational attainment. Thus, we calculated pairwise differences in effect size between each 
educational attainment Differences in effect sizes were 
relatively large between the extremes of educational attainment (Ph.D. vs. Some High School, d 

d = 0.51), and small 
between other adjacent education levels (e.g., Master's vs. Bachelor's, d = 0.08). 

 

Table 2. Pairwise differences in effect size between educational attainment levels at T1   

 Some High 
School 

High School Some 
College/ 

Associates 

Bachelor's Master's or 
equivalent 

High School 0.13 * -    

Some College/ 
Associates 

0.36 * 0.23 * -   

Bachelor's 0.65 * 0.51 * 0.27 * -  

Master's or 
equivalent 

0.72 * 0.59 * 0.35 * 0.08 * - 

Ph.D. 0.80 * 0.71 * 0.49 * 0.23 *   0.16 * 
were calculated between each educational attainment category predicting T1 Grand 

 

 

Educational attainment moderates the age of peak cognitive performance  

Having found that education and age are stronger predictors of performance than education 
alone, we performed a granular analysis examining the effects of educational attainment on 
cognitive performance across the lifespan. Specifically, we tested whether the age of maximum 
performance differed between education categories. The literature suggests that late 
adolescence/early adulthood is when performance peaks on comparable measures of cognition 
(Hartshorne & Germine, 2015; McArdle et al., 2002). We reasoned that if educational attainment 
influences cognitive performance and these effects are greater as the educational experience are 
more recent, the age of peak performance would vary as a function of education and be proximal 
to the ages when people typically complete the education programs. We found that ages of peak 
performance were within the young adulthood period, occurred later the higher the education 
level, and overlapped with typical ages of graduation for each degree (Fig 3). Specifically, 17 

category. These ages were well-aligned with the typical ages of graduation from those 
educational categories, 17.5 and 22.5 respectively (OECD, 2016). Ages of peak performance for 
the other degrees were within the range of typical ages of graduation for their respective 
program. Importantly, peak performance was not at the youngest possible ages for each 
education category, which suggests that we may not be just capturing an effect of age or 
performance from higher achieving individuals (i.e., youngest people to receive a postsecondary 
degree), but instead the effects of a recent educational experience.  
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Figure 3. Educational attainment moderates the ages when cognitive performance peaks. 
Colored points show the median age of maximum performance and the error bars the 95% CIs. 
We calculated these ages using a 10,000 iteration bootstrap sampling procedure including the 
entire age range available in our sample (ages 15-60). Gray dotted lines represent the age range, 
and the colored squares represent the median age of typical graduation for each education level. 
We obtained these graduation ages from international indicator reports, which included data 
from all three countries represented in our sample (USA, Canada, and Australia).  

 

Influence of educational attainment on individual cognitive measures 

Thus far, we have presented how education relates to cognitive performance on an aggregate 
measure (GI) because it is the most reliable and robust measure (Morrison et al., 2015). 
However, we also sought to explore the possibility that educational attainment was specifically 
or preferentially related to a subset of the eight cognitive assessments, moderating typical age-
related changes in performance. Thus, we tested the effect of educational attainment and age on 
performance on tests of working memory, processing speed, cognitive flexibility, and verbal and 
non-verbal reasoning. The tests were free of educational content  except for Arithmetic 
Reasoning, which involved elementary scholastic content (e.g., simple word-based additions and 
subtractions) -- that all our participants are expected to have been exposed to in school. We 
hypothesized that higher education would have its largest effect on measures of reasoning, given 
the complex, abstract material covered in college and beyond, and that it would have its smallest 
effect on tests of processing speed. 

As predicted, age and education predicted distinct amounts of variance in performance on 
different assessments (Fig 4). On simple tests like Trail Making A, which requires speeded 
responding based on a simple rule, there was a noticeable age-related decline and a weaker effect 
of education. By contrast, scores on more cognitively complex tests, including Arithmetic 
Reasoning, Grammatical Reasoning, and Progressive Matrices, showed greater variance 
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explained by educational attainment when controlling for age (Fig S4). These assessments also 
tended to show later peak performance and initial points of decline as a function of age. 

 

 

Figure 4. Effects of educational attainment on individual cognitive assessments across ages 
15-60 (n = 179,141). Ribbons show bootstrapped 95% CIs based on 10,000 iterations. 
Displaying age/education categories with 50+ participants who indicated an educational 
attainment level (N = 196,388). 

 

Considering that the test that was most strongly modulated by education, Arithmetic 
Reasoning, required numerical competencies (albeit skills taught in elementary school), we 
tested whether our results would hold when excluding this assessment. Indeed, excluding it from 
the calculation of the GI score at T1 did not impact the amount of variance educational 
attainment explained, nor the differences in effect sizes between education levels. For example, 
educational attainment and age (categorical 5-year age bins between ages 15 and 60) remained 
significant predictors of the adjusted GI score (adjusted R2 = 0.19; p < 0.0001). Thus, 
educational history modulated performance even on tasks that bore no resemblance to those 
encountered in the classroom. 
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Effects of educational attainment and age on learning 

To test whether prior educational attainment influences how quickly one learns, we took 
advantage of the fact that 69,202 of the subscribers in the sample took the cognitive assessments 
twice, on average 100.77 days (± 57.67 SD) apart, playing a suite of cognitive games in the 
interim (M= 166.23 hours ± 290.20h SD). These games were different from the assessments but 
were designed to tax the same underlying cognitive skills (Hardy et al., 2015). The goal of this 
study was not to assess the overall effectiveness of the training (Hardy et al., 2015), but rather to 
test whether educational attainment would be associated with the magnitude of gain in the GI 
score. Thus, we calculated a GI change score as the difference in performance between the 
assessments taken after (T2) and before the training program (T1). We then tested whether 
educational attainment modulated the GI change score, regressing out the effects of the same 
demographic variables as T1, engagement in the training program (i.e., number of hours of 
gameplay and days elapsed between assessments), and T1 performance (to control for the 
plausible effect of regression to the mean). 

 

Figure 5. Effect of educational attainment on adjusted GI change score across ages 15-65 (n 
= 63,535). Y-axis units represent the change in GI scores from T1 to T2. At each timepoint, the 
GI scores were normalized to have a distribution with a mean of 100 (15 SD). Ribbons show 
bootstrapped 95% CIs based on 10,000 iterations. Displaying age/education categories with 50+ 
participants who indicated an educational attainment level (N = 69,202). 
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Quantifying the unique influence of educational attainment on learning 

We next sought to quantify the effect of educational attainment on the change in cognitive 
performance independently of the effect of age. To this end, we calculated the GI change score 
with the 5-year age bins as additional covariates, following similar procedures to the analogous 
T1 analysis. Educational attainment accounted for a negligible amount of variance in the 
adjusted GI change score (adjusted R2= 0.01, p < 0.0001; Table 1). Post-secondary attainment 
predicted additional improvements from the High School reference category, but overall, 
participants across education levels exhibited similar gains. The fact that educational attainment 
was not negatively related to the change score leads us to reject the hypothesis that individuals 
that are more educated stood to gain less from practice than their peers because of their higher 
starting performance level.  

We also compared the effects of different levels of educational attainment with pairwise 
differences in effect size between each education category (Table 3). As with T1 data, 
differences in effect sizes for the magnitude of learning were larger between the extremes of 
educational attainment (Ph.D. vs. Some High School, d = 0.37) than between adjacent levels 
(e.g., Master's vs. Bachelor's, d = 0.04). All of the results above of the effects of educational 
attainment on learning were replicated after excluding the Arithmetic Reasoning test from the 
calculation of the GI score at both timepoints. Thus, as with cognitive performance at one 
timepoint, practice-related gains were associated with educational attainment even for non-
academically related tasks. 

 

Table 3. Pairwise differences in effect size between educational attainment levels in the 
change score analysis 

 Some High 
School 

High School Some College/ 
Associates 

Bachelor's Master's or 
equivalent 

High School 0.04 -    

Some College/ 
Associates 

0.14 * 0.10 * -   

Bachelor's 0.22 * 0.18 * 0.08 * -  

Master's or 
equivalent 

0.26 * 0.22 * 0.12 * 0.04 * - 

Ph.D. 0.37 * 0.33 * 0.24 *  0.16 *   0.12 * 
were calculated between each educational attainment category predicting Grand Index Change 

Score with age regressed out. CIs calculated using 10 s does not include 0. 

 

Discussion 

We sought to test the extent to which cognitive performance and learning efficacy in adolescence 
and adulthood vary as a function of educational attainment, ranging from some high school to 
advanced degrees. To this end, we analyzed data from a large sample of 15-60-year-olds who 
completed eight cognitive assessments. Controlling for multiple demographic and engagement 
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variables, we found that educational attainment had a small but significant overall effect on 
performance at the initial timepoint, but had a negligible effect on learning efficacy. There were 
moderate differences in performance between secondary and post-secondary education levels, 
but minimal ones between post-secondary levels.  

Peak analyses revealed that the higher the education level, the later the age of maximal 
cognitive functioning. Further, the peaks overlapped with typical graduation ages for the 

the age of maximal performance coincided almost exactly with typical ages of graduation. For 
the other degrees, the age of peak performance was within the range of typical graduation ages. 
These results suggest that we may be capturing the cumulative effect of a recent educational 
experience. Although these preliminary results are cross-sectional and the dataset did not include 
the age at which individual participants completed their education, they are suggestive of an age-
related cognitive decline beginning shortly thereafter. 

The variance in performance explained by education was greater in some cognitive 
domains, such as reasoning, but nonetheless smaller compared to the effects of age. However, 
the effect of education was present across the broad age range, persisting for decades beyond 
typical graduation ages. Although we did not have a principled way of rank-ordering or grouping 
the eight assessments according to their level of cognitive complexity, our results are suggestive 
of the idea that education affects higher-level cognitive functions more strongly than lower-level 
ones. This observation complements previous findings (Ritchie et al., 2015) by documenting the 
effect across the five decades of life spanned by our sample. 

We found a modest effect of educational attainment on learning, as indexed by gains on 
the cognitive assessments after completing the training program. Post-secondary education 
categories exhibited only slightly larger gains than secondary levels. Moreover, High School 
graduates reached scores at post-test that were comparable to those attained at pre-test by 
individuals who had completed some college. Thus, practice may reduce gaps in performance 
observed as a function of educational history. The fact that education had only a small effect on 
learning is perhaps not surprising, given that the training program was not academic in nature. 
The cumulative benefits of education may be more salient when the curricula build directly on 
academic knowledge and skills explicitly taught in school. 

Limitations and Future Directions 

Our study has several limitations. First, it is impossible with our cross-sectional dataset  or even 
with our dataset including two timepoints of data per individual  to prove conclusively that 
higher education hones domain-general cognitive functioning. In fact, conclusively teasing apart 
the bi-directional influence of cognition and education is insurmountable even when individuals 
are followed for years because having an initial assessment of cognitive performance before 
undergoing an educational experience does not preclude the effect of other confounding 
variables (e.g., motivation) (Hansen et al., 2003).  such as 
instances of school reform, can provide stronger evidence on the directionality of effects, but 
these situations are rare and may suffer from other confounding variables (Brinch & Galloway, 
2012).  
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Despite this inherent challenge, the current study complements those that have employed 
a longitudinal design or a naturalistic experiment, since we demonstrate a positive relationship 
between educational attainment and cognitive performance within the range of effects in 
literature. Moreover, the unique size and heterogeneity of our sample allow us to quantify the 
effects of educational attainment relative to other factors, including the influence of demographic 
and engagement variables. Further, our analysis of age at peak cognitive functioning suggests 
that we are able to capture the effects of recent educational experiences on cognition and not just 
general effects of age. Also, the fact that our cognitive tests are so different from school curricula 
yet show differential effects of education helps further disambiguate the relationship between 
educational attainment and cognitive performance in our study. Finally, the test-retest data 
allowed us to test how prior educational experiences influence the efficacy of new learning.  

A second limitation is that our analyses hinged on self-reports of age, education, income, 
and other demographic variables. Errors in self-reporting could have led to miscategorization of 
participants, even though we took steps to remove participants whose answers were incongruous. 
If anything, however, miscategorization would introduce noise into the dataset that would likely 
lead to an underesti
childhood socioeconomic status or whether they completed their education in the countries 
included. Again here, however, such errors should reduce rather than inflate our ability to detect 
predicted effects. Relatedly, not knowing when our subjects completed their degrees, but instead 
inferring this information from reports of international indicators, constrains the interpretations 
that can be drawn from our analysis examining whether educational attainment modulates ages 
of peak cognitive performance. However, to maximize the possibility that our sample was 
representative of the larger population, we only included in the analysis age groups with a 
representative number of subjects in each education category.  

Another potential limitation is that there is a possible selection bias for subscribing in 

variables is similar to patterns observed in the general population, and the age-related declines in 
performance are systematic and consistent with the literature. We could alternatively consider 
this potential limitation as a feature of the dataset. If there is, in fact, a selection bias for 
subscribing to Lumosity such that our sample represents individuals who are motivated to pursue 
cognitive enriching activities despite their educational history, then motivation-related confounds 
 that have been hypothesized to drive in part the relationship between education and cognitive 

performance (Hansen et al., 2003)  should be attenuated in this sample.    

Finally, facility with computers could have contributed to our findings, given that the 
assessments were computerized and that prior experience with computers likely varied both as a 
function of age and education (OECD, 2016). However, our results are inconsistent with this 
account: for one, individual assessments were modulated differently by age or education; for 
another, if the results reflected computer skills or acquisition, the subset of participants expected 
to have better computer skills (e.g. higher education/younger ages) should benefit the least from 
the training program, not the most. 

Our unique dataset allowed us to begin answering important questions about the 
cognitive effects of education that should be further investigated with longitudinal studies. For 
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instance, performance differences between education levels were evident from our earliest 5-year 
age bin group. However, it remains an open question whether the magnitude of the education 
effects increase, narrow, or remain stable with age. Additionally, findings from the peak analysis 
showing that maximal performance and the subsequent decline occurs later in the higher 
education levels are consistent with the idea that higher education may help to stave off age-
related cognitive decrements (Ganguli et al., 2010; Shimamura, Berry, Mangels, Rusting, & 
Jurica, 1995). These observations raise a question about whether or how the timing of the 
educational experiences impacts cognitive functioning over the long term. Finally, our results 
from the learning efficacy analysis are consistent with findings showing that young adults show 
larger gains than older adults from cognitive interventions (Simone Kühn & Lindenberger, 
2016). The question remains, however, the degree to which prior educational experiences 
interact with the effects of age. The answers to these and similar questions have theorerical 
implications to increase our understanding of the sensitive periods in the development of higher 
cognition and its plasticity through adulthood, as well as practical implications for govermental 
decisions about school reform and policy geared towards increasing inclusive access to and 
completion of higher education. 

In conclusion, our results indicate a relation between educational attainment and 
cognitive abilities across a broad age range but small effects on learning efficacy. Although our 
results are statistically significant, even after controlling for multiple potential confounds, the 
amount of variance explained by educational attainment is small. In a smaller-scale study, these 
effects would probably not have been detected at all (Deary et al., 2007). Nonetheless, these 
findings support the idea that higher education provides the opportunity to hone domain-general 
cognitive skills as well as to acquire content knowledge and that education-related gap in 
performance can be mitigated with intensive cognitive engagement. 

Next section, Chapter 4-6 

In Chapter 2 and 3 I provided evidence of the impact of learning in the brain and performance. 
Now, we turn our attention to probing mechanisms. In Chapter 4, I present unified findings from 
a broad literature to explain how various eyetracking measures constitute a relatively simple 
method for characterizing cognitive mechanisms of change. Using this methodology, in Chapter 
5 and 6, I provide empirical evidence about the mechanisms that support improvements in 
reasoning performance in young adults who underwent a real-world learning experience. 
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Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive 
development? 
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Abstract 

This review provides an introduction to two eyetracking measures that can be used to study 
cognitive development and plasticity: pupil dilation and spontaneous blink rate. We begin by 
outlining the rich history of gaze analysis, which can reveal the current focus of attention as well 
as cognitive strategies. We then turn to the two lesser-utilized ocular measures. Pupil dilation is 

-norepinephrine system, which controls physiological 
arousal and attention, and has been used as a measure of subjective task difficulty, mental effort, 
and neural gain. Spontaneous eyeblink rate correlates with levels of dopamine in the central 
nervous system, and can reveal processes underlying learning and goal-directed behavior. Taken 
together, gaze, pupil dilation, and blink rate are three non-invasive and complementary measures 
of cognition with high temporal resolution and well-understood neural foundations. Here we 
review the neural foundations of pupil dilation and blink rate, provide examples of their usage, 
describe analytic methods and methodological considerations, and discuss their potential for 
research on learning, cognitive development, and plasticity. 

 

Keywords: eyetracking; saccades; pupillometry; pupil dilation; blink rate; children 

 

 

Highlights: 

 Eyetracking measures provide non-invasive and rich indices of brain function and 
cognition 

 Gaze analysis reveals current attentional focus and cognitive strategies 
 Pupil dilation is modulated by norepinephrine and reflects mental effort 
 Spontaneous blink rate is modulated by dopamine, which is involved in learning and 

goal-oriented behavior 
 Ocular measures can provide insights regarding cognition and cognitive development 
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Introduction 

A remarkable insight from the field of psychology is the fact that we can probe the inner 
workings of the mind by measuring how various eye muscles contract (Figure 1). Cognitive 
psychologists have exploited this fact for over two centuries (e.g., Wells, 1792; and Hering, 
1879; cited by Wade, 2015). Over the last two decades, however, eyetracking has largely taken a 
backseat to brain imaging research as a way to study the mechanisms that underlie behavior. 
Now, thanks to notable improvements in eyetracking hardware, software, and analytic 
approaches, as well as increased recognition of the limits of what we can learn from brain 
imaging, eyetracking is regaining its former status. The overarching goals of this review paper 
are threefold: first, to provide an overview of ocular measures and what we have learned from 
studies in adults about their neurobiological underpinnings and behavioral correlates; second, to 
discuss methodological approaches and considerations; and third, to discuss how eyetracking has 
been and could be extended to study cognitive development. The most commonly utilized ocular 
measure is that of eye gaze; we will provide only a brief overview of this approach before 
focusing primarily on task-evoked pupillary responses and spontaneous eyeblink rate. This 
review focuses on the applicability of these measures to our understanding of cognitive 
functioning in neurotypical children and adults; however, this methodology is also useful in 
clinical research (Blaser, Eglington, Carter, & Kaldy, 2014; Burkhouse, Siegle, Woody, 
Kudinova, & Gibb, 2015; Caplan & Guthrie, 1994; Chan & Chen, 2004; Fried et al., 2014; M. 
Hallett, 2000; C. N. Karson, 1988; Rommelse, Van der Stigchel, & Sergeant, 2008; Tulen et al., 
1999). 

Figure 1. Eye muscles responsible for eye movements and pupil dilation and contraction. a) 

vertical movements, whereas the lateral and medial rectus muscles control horizontal 
movements. Adapted with permission from Eds. Levin, Nilsson, Ver Hoeve, Wu, Kaufman, and 
Alm (2011). b) Top: The dilator pupillae muscle dilates the pupil and is controlled by 
sympathetic fibers. Bottom: The sphincter pupillae muscle contracts the pupil and is controlled 
by parasympathetic fibers. The balance between the activation of the dilator and sphincter 
pupillae muscles dictates pupil diameters. 
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One might think of eyetracking as either an impoverished measure of brain function or a 
rich measure of cognition. However, it can complement both behavioral and brain measures. 
Indeed, it has been argued that oculomotor studies provide an ideal neuroscience model to 
investigate association between brain mechanisms and behavior (e.g., Luna et al., 2008). Ocular 
measures can provide additional information over and above accuracy and response times as a 
result of their high temporal resolution, making it possible to measure how people respond to 
task demands on a moment-by-moment basis. Indeed, eyetracking sampling rates range from 25-
2000 measurements per second, which means that the faster eyetrackers achieve sub-millisecond 
temporal resolution, similar to EEG. Despite being an indirect measure of brain function, 
eyetracking has several advantages compared to EEG and fMRI, which make it the better choice 
for a number of paradigms and research questions. First, given that participants can be seated 
comfortably at a table during data collection (or can move freely, with a head-mounted 
eyetracker), testing can happen in a more natural environment than the noisy and space-restricted 
environment of the MRI scanner. Second, most eyetrackers are portable, making it possible to 
take them to schools, hospitals, and other venues. As such, it is possible to reach a larger and 
more diverse population than the small pool of participants who are willing and able to travel to 
research facilities. Third, the rapid calibration procedures available on modern eyetrackers make 
it possible to begin an experiment quickly. This is particularly helpful for developmental 
researchers seeking to minimize testing time. 

In many studies, ocular data are captured for the sole purpose of ensuring that 
participants maintain fixation at the center of the screen. However, the measurement of eye 
position can also provide a moment-by-moment assessment of thought processes in a wide 
variety of contexts (e.g., Shepherd, Findlay, & Hockey, 1986; Theeuwes, Belopolsky, & Olivers, 
2009; Van der Stigchel, Meeter, & Theeuwes, 2006). Yarbus (1967) provided a simple 
illustration of this idea, asking subjects different questions as they viewed the same painting. 
When asked to judge the age of each character, the sample participant looked primarily at the 
depicted faces; when asked to judge the material wealth of the family, he looked primarily at the 

 

(Ferreira, 
Apel, & Henderson, 2008; Just & Carpenter, 1976, 1980; Theeuwes et al., 2009; Thomas & 
Lleras, 2007; Van der Stigchel et al., 2006). Indeed, although it is possible to attend covertly to a 

effective to fixate what we are attending to (Deubel & Schneider, 1996; Shepherd et al., 1986; 
Theeuwes et al., 2009). Further, fMRI and cortical stimulation research corroborate the close link 
between attention and gaze, showing that the frontal eye fields (FEF), which control eye 
movements, are also implicated in the deployment of covert visual attention (Awh, Armstrong, & 
Moore, 2006; Corbetta et al., 1998; Grosbras, Laird, & Paus, 2005; Müller, Philiastides, & 
Newsome, 2005).  

Multiple gaze metrics that have been used to study cognition in adults are derived from 
eye position data. Fixations are used to calculate time spent looking at a particular location, 
which in turn is thought to reflect engagement of attention and the time needed to process the 
stimulus at that location. This metric has been used to gain insights into what we remember 
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(Hannula et al., 2010), how we perform mental computations (e.g., Green, Lemaire, & Dufau, 
2007), how we read (e.g., Rayner et al., 1998), how we solve problems (Grant & Spivey, 2003), 
and how we learn (Lai et al., 2013; Rehder & Hoffman, 2005). Saccades, the rapid eye 
movements that allow us to shift between fixations, can reflect shifts in attention that are either 
controlled (e.g. a voluntary eye movement or saccade towards a target) or automatic and 
stimulus-driven (e.g., a reflexive saccade towards a sudden stimulus) (Luna, Velanova, & Geier, 
2008). The accuracy and latency of saccades have provided insights for example about cognitive 
control capacity (e.g., Funahashi, Bruce, & Goldman-Rakic, 1989; Luna & Velanova, 2011; 
Munoz & Everling, 2004). The number of saccades between task-relevant stimuli, which is 
assumed to reflect the process of comparing specific stimuli or integrating several pieces of 
information, has been used to study reasoning (Demarais & Cohen, 1998; Thibaut & French, 
2016; Vigneau, Caissie, & Bors, 2006); Some research questions require analysis of scan paths, 
rather than simple quantification of fixation and saccade measures. In these types of 
investigations, the subject of interest is how people approach a problem space, so the measure 
must encapsulate multiple fixations and the path of movements between them (Bochynska & 
Laeng, 2015; Dewhurst et al., 2012; Hayes, Petrov, & Sederberg, 2011; Yoon & Narayanan, 
2004). 

We have identified three broad classes of eye movement studies of cognitive 
development (Figure 2). The first of these is comprised of studies that measure reflexive 
orienting to a stimulus (i.e., reflexive saccades). The second class involves tasks in which the 
target response is a voluntary eye movement (i.e., voluntary saccades), wherein measurement of 
saccades is needed to measure task accuracy and response latency. Finally, the third class 
involves measures of spontaneous eye gaze patterns (i.e., scan paths) during analysis of a 
complex stimulus or a set or series of stimuli, for example in studies of higher-order cognitive 
abilities like reading or reasoning. 

The first class of studies has been particularly useful for studying cognitive processes in 
infancy, since the brain pathways that control reflexive saccades are relatively mature at birth, 
whereas those controlling voluntary eye movements are immature at birth but develop rapidly 
during the first six months of infancy (Richards & Hunter, 2002).  

In an effort to understand what they know or remember, researchers measure how long 
infants look at a novel or unexpected stimulus. This implicit measure of attention is analogous to 

of head turns towards an object, but is considered more precise (Aslin & 
McMurray, 2004; Feng, 2011; Franchak, Kretch, Soska, & Adolph, 2011). Eye movement 
analyses have already been used extensively to characterize the expectations and cognitive 
processes of infants (for a review see Gredebäck et al., 2009).  

In a study of language comprehension, for example, Lewkowicz and Hansen-Tift (2012) 
showed that 8-10-month-
younger infants and older children and adults both showed the opposite preference (Figure 2a). 

-directed speech as opposed to 
adult-
mouth as they learn to produce sounds, whereas older children and adults tend to focus on the 
eyes to glean social cues (Lewkowicz & Hansen-Tift, 2012). A separate longitudinal study 
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and 9 months of age (Tenenbaum, Shah, Sobel, Malle, & Morgan, 2013). This approach has also 

completion, and relational memory (Gredebäck, Johnson, & von Hofsten, 2009; Johnson, Amso, 
& Slemmer, 2003; Richmond & Nelson, 2009; Yu & Smith, 2016). 

 

Figure 2. Gaze analyses in developmental research on attentional capture in infancy and 
-month olds spent a 

greater proportion-of-total-looking-time (PTLT) on a speaker's eyes, whereas 8- to 12-month 
olds spent greater PTLT on a speaker's mouth. In adulthood, the balance shifts back to a 
speaker's eyes. Reprinted with permission from Lewkowicz and Hansen-Tift (2012). b) In a 
developmental comparison of matrix reasoning, the authors defined an 
three subsequent fixations along a row or column of the matrix problem space. Using a median 
split by performance, higher-performing 5-6 year-olds demonstrated approximately the same 
encoding prevalence as 7-8 year-olds (left). Similarly, children who received feedback on how to 
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complete the puzzles demonstrated more encoding behavior than those who did not (right). 
Reprinted with permission from Chen, Honomichl, Kennedy, and Tan (2016).  

The second class of studies can only be successfully administered on older children and 
adults, wherein they must perform a task that explicitly requires them to make specific eye 
movements in accordance with task rules. Perhaps the best example is a measure of cognitive 
control known as the antisaccade task (Hallett, 1978; Munoz & Everling, 2004). On this task, 
participants are asked to fixate at the center of the screen and wait for a stimulus to flash. On 
prosaccade trials, they are asked to move their eyes rapidly to the target; on antisaccade trials, 
they must move their eyes to the mirror-opposite location of the screen. As noted previously, 
orienting towa
screen requires inhibitory control, as well as maintenance of the relevant task rule. Using this 
task, Luna and colleagues have shown that cognitive control improves gradually over childhood 
and adolescence, leading to fewer and fewer errors on antisaccade trials (Luna et al., 2004). In 
fact, this task reveals a more protracted developmental trajectory for cognitive control than most 
tasks involving hand movements, likely because it is particularly difficult to break the strong link 
between attention and gaze (Deubel & Schneider, 1996; Shepherd et al., 1986). This second class 
of oculomotor studies also includes investigations of the development of processing speed (Luna 
et al., 2004), planning (Asato, Sweeney, & Luna, 2006), language (e.g., atypical patterns in 
dyslexia; Tiadi, Gérard, Peyre, Bui-Quoc, & Bucci, 2016), mental imagery (Johansson, 
Holsanova, & Holmqvist, 2006), and spatial working memory (Luna & Velanova, 2011; see also 
Theewes, Belopolsky, & Olivers, 2009). 

The third class of studies involves analysis of sequences of saccades around a complex 
stimulus. There is a smaller developmental literature using this approach than the others, but 
there are some examples. For example, eye movement analysis has been used to characterize 
differences in the way in which beginning and skilled readers approach a text. Typically, while 
reading, very short words are not fixated at all, while longer words almost always are, and people 
often go back and fixate again on words that have more letters or are more difficult to 
comprehend (K. Rayner, 1998). Beginning readers or less-skilled readers exhibit longer 
fixations, shorter saccades, and more refixations than skilled readers (Rayner, 2009). Delving 
more deeply into sources of individual differences in eye movement patterns during reading, 
several researchers have found that working memory capacity is an important factor (Calvo, 
2001; Traxler, Williams, Blozis, & Morris, 2005). Thus, combining eye gaze analysis with 
independent cognitive measures can help us to isolate key processes underlying a complex 
behavior.  

 Researchers have also begun to use gaze measures to study the development of the ability 
to reason about novel problems (Chen, Honomichl, Kennedy, & Tan, 2016; French & Thibaut, 
2014; Glady, Thibaut, French, & Blaye, 2012; Thibaut, French, Missault, Gérard, & Glady, 
2011; J. P. Thibaut & French, 2016). We are beginning to understand the neural underpinnings 
of developmental improvements in reasoning ability (Dumontheil, Houlton, Christoff, & 
Blakemore, 2010; Wendelken, Ferrer, Whitaker, & Bunge, 2016), but these studies provide only 
limited insights into the underlying cognitive changes. Gaze path analyses can provide detailed 
insights into the strategies and approaches people use as they solve complex problems. In one 
recent study, Chen et al. (Chen et al., 2016) investigated the difference in reasoning strategies 
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between younger and older children, and also the change in strategies as children received 
feedback throughout the session (Figure 2b). Using a visuospatial matrices task, they identified 
specific gaze patterns that they proposed reflect necessary task operations, and counted the 
number of times those occurred in a trial, as opposed to other eye gaze patterns. They found that 
older children, better-performing children, and those who received helpful feedback during task 
performance all demonstrated more task-specific operations than children who performed less 
well due to their age, skill level, or lack of feedback.  

The breadth and depth of cognitive insights gleaned from gaze analyses motivates the 
expansion of eye-tracking methodology in several directions. Regarding gaze analyses, 
longitudinal studies examining the development of cognitive skills are relatively rare (exceptions 
include Huestegge, Radach, Corbic, & Huestegge, 2009; and Schneider, Kron, Hünnerkopf, & 
Krajewski, 2004). Such studies would enable us to illuminate the shift in strategies as children 
and adults construct new concepts, build new skills, and gain expertise across a variety of 
cognitive domains. Additionally, two methodologies now widely available via standard eye-
tracking technology have the potential to augment the insights of gaze analyses: pupillometry 
and spontaneous blink rate. The analysis of pupil dilation has been used for over a century in the 
scientific study of cognitive processes (Kahneman & Beatty, 1966; Löwenstein, 1920; 
Schweitzer, 1956), but obtaining these data required hand-measurement of photographs taken of 
the pupil every 0.5-1 second, or the use of infrared pupi
vision. Similarly, measures of blink rate have informed cognitive and clinical studies since the 
1920s (e.g., Ponder & Kennedy, 1927), but required hand-counting of visually observed blinks, 
the use of electrooculography (EOG), or other custom-made devices. Now that both of these 
measures can be obtained with modern eye-trackers and analyzed with automated data 
processing software, we recommend the expansion of their use in developmental studies.  

As the use of eyetrackers becomes more widespread, it is important that researchers who are 
just beginning to use this methodology understand both its affordances and its limitations. Just as 
fMRI indirectly measures brain activity by measuring blood oxygenation, necessitating that 
researchers mitigate and account for the effects of the physiological and idiosyncratic factors that 
affect blood flow, there are also many potential influences on ocular responses that must be 
considered (Gredebäck et al., 2009). Below, we provide an introduction to these ocular measures, 
the neural mechanisms they reflect, and the opportunities they present for new insights into 
cognition and cognitive development. 

1 Pupil Dilation 
Changes in pupil size are caused by two antagonistic muscles (Figure 1b): the dilator pupillae, 
which is located in the outer parts of the iris and dilates the pupil, and the sphincter pupillae, 
located in the central parts and constricting it. The constricting sphincter muscle receives input 
from brain systems involved in the pupillary light reflex (Loewenfeld & Lowenstein, 1993), but 
both pupillary muscles also receive inputs from brain systems involved in cognitive and 
autonomic functions (Samuels & Szabadi, 2008). As a result, changes in cognitive and 
autonomic activity influence pupil diameters. Pupil dilations cannot be inhibited voluntarily, 

(Loewenfeld & Lowenstein, 1993). Neuroscientists and cognitive psychologists have exploited 
the pupillary response to cognitive effort to study the unfolding of cognitive processes over time 
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by observing fluctuations in pupil diameters. A large number of studies has used this method for 
at least 6 decades in human adults (e.g., Lowenstein & Loewenfeld, 1958) and  to a lesser 
extent  in infants (review: Hepach & Westermann, 2016). But despite its many advantages, 
pupillometry has been underrepresented in the study of children and adolescents so far.  

Below, we first provide a detailed overview of the neural systems underlying the relationship 
between cognition and pupil dilation. We do so for two main reasons: First, the close relationship 
between task-evoked pupil dilation and its underlying neural mechanisms provides a strong 
argument that this method can be used with participants of any age. Second, knowledge about 
this relationship allows researchers to translate results about the neural system into cognitive 
studies, and to interpret results of cognitive studies in terms of underlying neurophysiological 
processes. After reviewing the neural substrates of the pupillary response, we will detail how this 
method has been used to study cognitive processes in adults, and how it could be used in 
children. 

1.1 Pupil dilation as a Proxy of Noradrenergic Activity in the Brain 
The pupils of the eye not only constrict in response to light and dilate in response to darkness; in 
children as well as adults, they also dilate during autonomic arousal (Beatty & Lucero-Wagoner, 
2000; Granholm & Steinhauer, 2004; Samuels & Szabadi, 2008) and mental activity (Beatty, 
1982; Granholm & Steinhauer, 2004; Loewenfeld & Lowenstein, 1993; Sirois & Brisson, 2014). 
The reason that the pupil responds to arousal and mental activity is that pupil dilation is 
modulated by the noradrenergic locus coeruleus (LC), as shown in Figure 3 (Rajkowski, Kubiak, 
& Aston-Jones, 1993). The LC is a small nucleus in the brainstem that plays a central role in the 
regulation of physiological arousal (Samuels & Szabadi, 2008) and cognitive functioning (Sara, 
2009). Below, we will first describe the neural structures underlying the tight relation between 
pupil dilation and LC activity and then turn to the role of the LC system in arousal and cognition. 

 

Figure 3. Temporal coupling between 
pupil diameter and firing of a single LC 
neuron of a monkey during performance 
of a signal-detection task. The 
relationship between LC firing and pupil 
diameter is mediated through the 
projection of the LC to the Edinger-
Westphal nucleus, the origin of the 

fibers, and through the influence of the 
LC-NE system on sympathetic nervous 
activity, which promotes pupil dilation. 
Reprinted with permission from 
Rajkowski et al. (Rajkowski et al., 1993). 

The LC is a cluster of neurons that release norepinephrine (NE; also called 
noradrenaline), a neuromodulator with widespread influences on central and peripheral nervous 
system activity that will be described later. NE is essential for normal brain development; it is 
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(Herlenius & 
Lagercrantz, 2001)
birth (Marshall, Christie, Finlayson, & Williams, 1991). Baseline levels of NE continue to 
change during development, increasing steadily before birth, reaching their maximum shortly 
after birth, and remaining largely stable throughout childhood (Herlenius & Lagercrantz, 2001; 
Robinson, 1975).  

The relationship between the pupillary system and LC-NE activity has been established 
through numerous anatomical and physiological studies in both adult humans and animals. The 
strength of temporal coupling between LC firing frequencies and pupil diameter in monkeys is 
striking (Costa & Rudebeck, 2016; Joshi, Li, Kalwani, & Gold, 2017; Rajkowski et al., 1993; 
Varazzani, San-Galli, Gilardeau, & Bouret, 2015), and fMRI studies have shown corresponding 
links between LC BOLD signals and pupil diameter in humans (Alnaes et al., 2014; Murphy, 

. A recent study involved simultaneous 
recording in rhesus monkeys of pupil diameter, neuronal firing of the LC, and neuronal firing of 
the substantia nigra pars compacta (SNc), which is the production site of the neuromodulator 
dopamine (DA). This study showed that LC activity was linked to pupil dilation and the 

between pupil dilation and cognition (Varazzani et al., 2015). LC-NE activity leads to pupil 
dilation because the LC has direct inhibitory projections to the parasympathetic Edinger-

ing fibers originate. By inhibiting the Edinger-

pupil (Beatty & Lucero-Wagoner, 2000; Loewenfeld & Lowenstein, 1993; Samuels & Szabadi, 
2008). LC activity also increases activity in the sympathetic system (Samuels & Szabadi, 2008), 
including sympathetic fibers that innervate the pupil, resulting in additional pupil dilation 
(Loewenfeld & Lowenstein, 1993). A pharmacological study in humans has shown that both 
inhibition of the parasympathetic constricting fibers and excitation of the sympathetic dilating 
fibers contribute to the cognitively-evoked pupil response (Steinhauer, Siegle, Condray, & Pless, 
2004). 



50 
 

 

Figure 4. Anatomy of the autonomic nervous system and its sympathetic (fight-or-flight) and 
parasympathetic (rest-and-digest) branches. Post-ganglionic activity is mostly mediated by NE in 
the sympathetic branch and by acetylcholine in the parasympathetic branch. Many organs receive 
inputs from the sympathetic and parasympathetic branches, in which case functions are often 
reciprocal, as with pupil dilation (sympathetic dilates, parasympathetic constricts) or heart rate 
(sympathetic accelerates, parasympathetic slows). Reprinted with permission from the Merck 
Manual Professional Version, known as the Merck Manual in the US and Canada and the MSD 
Manual in the rest of the world, edited by Robert Porter. Copyright 2016 by Merck Sharp & 
Dohme Corp., a subsidiary of Merck & Co, Inc, Kenilworth, NJ. Available at 
http://www.merckmanuals.com/professional. Accessed April 27, 2016. 

 

Samuels and Szabadi (2008) have provided a comprehensive review of the anatomical 

wakefulness through the LC
and to other structures related to alertness. At the same time, LC activity suppresses sleepiness 
through its substantial inhibitory projections to sleep-promoting GABAergic neurons in the basal 
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forebrain and to other structures related to low arousal throughout the central nervous system 
(Samuels & Szabadi, 2008). LC activity also increases sympathetic activity and decreases 
parasympathetic activity via direct projections to the sympathetic and parasympathetic divisions 
of the spinal cord and indirect projections to various nuclei influencing the autonomic system. 

As a neuromodulator of brain activity, NE influences cortical processing globally and has 
a crucial influence on cognitive processes. The LC is the only source of NE in the cerebral cortex 
(Sara, 2009), projecting to widespread but highly specific sites (Figure 5a). Sara (2009) and 
Ramos and Arnsten (2007) have provided comprehensive reviews on NE, focusing specifically 
on its role in attention and memory (Sara, 2009) and executive function (Ramos & Arnsten, 
2007)
primary sensory neurons in the auditory or somatosensory cortex, spontaneous firing rates 

(Foote, 
Freedman, & Oliver, 1975; Waterhouse & Woodward, 1980). In other words, NE boosts the 
signal-to-
because it determines which input will be processed further. Similar gating effects have been 
found for many target areas of the LC, including the cerebral cortex, hippocampus, midbrain, 
thalamus, and spinal cord (Foote, Bloom, & Aston-Jones, 1983) onal 

orientation that is held in working memory, while decreasing the firing rates of neighboring 
neurons that represent slightly different orientations. In other words, NE narrows the tuning 
curve of the responding neurons, resulting in a steeper decrease in activation from the 
memorized line orientation compared to slightly different line orientations (Ramos & Arnsten, 

uning effects crucially influence how narrow or broad 
the attentional focus is. This underlies a variety of complex cognitive functions, ranging from 
working memory to learning, memory, reward processing, decision making, and behavioral 
adaptation (Sara, 2009). Tracking pupil diameter over time allows researchers to study these 
processes by indirectly measuring the timing of norepinephrine release in response to a 
challenge.  
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Figure 5. NE and DA pathways in the brain and their relationship to cognitive performance. a) 
The LC is the only source of cortical NE but has widespread and highly specific connections 
throughout the entire nervous system. The LC-NE system promotes physiological arousal and is 
crucial for a variety of cognitive functions, such as attention, memory, and decision making. b) 
DA cells in ventral tegmental area (VTA) innervate the mesocorticolimbic pathway that projects 
to limbic and cortical regions. In the mesostriatal pathway, the striatum receives input from DA 
cells of the substantia nigra. Reprinted with permission from Breedlove, Watson, and 
Rosenzweig (2010). c) Task performance is optimal at intermediate levels of NE, at which task-
relevant stimuli elicit pronounced phasic LC responses. Low levels of NE are associated with 
inattentive behavior and drowsiness, and high levels with distractibility. Adapted with 
permission from Aston-Jones et al. (1999). d) Just as for NE, the relationship between DA levels 
and cognitive control performance can be described by a quadratic function. Specifically, this 
inverted U-shape relationship has been widely documented for D1 receptor activity and working 
memory performance. Adapted with permission from Goldman-Rakic et al. (2000). 

 

The role of the LC-NE system in physiological arousal and its specific role in signal 
processing and cognition are intrinsically linked. This point is illustrated by a study by Aston-
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Jones, Rajkowski, and Cohen (Aston-Jones et al., 1999). Nearly all of the 300+ monkey LC 
neurons recorded from in this study responded selectively to target stimuli in a visual 
discrimination task, but not to distractors, suggesting that the LC-NE system selectively boosts 
the processing of relevant, but not irrelevant, sensory information. As might be expected, this 
preferential processing of task-relevant stimuli is reduced at both extremely low and high levels 
of arousal. Consequently, periods of extremely reduced and extremely elevated baseline activity 
in the LC, resulting in drowsiness and physiological arousal, respectively, were accompanied by 
larger variab
diminished LC responses to task-relevant stimuli. Only intermediate levels of tonic LC activity, 
resulting in alertness and attentional focus, seem to allow for phasic LC responses to task-
relevant stimuli (Figure 5c). Taken together, both extremely low and high levels of tonic LC 
activity are accompanied by a lack of task-dependent phasic LC responses as well as poor task 
performance, whereas intermediate levels are accompanied by phasic responses to task-relevant 
stimuli and good task performance. On a behavioral level, this inverse-U relationship has been 
famously described by Yerkes & Dodson (1908). The same relationship between LC-NE activity 
and task performance has since been shown in humans, using pupil dilation as a measure of LC-
NE activity. Intermediate levels of LC activity, accompanied by phasic pupil dilation in response 
to task-relevant stimuli, were associated with better performance than both low and high tonic 
dilations, which were associated with diminished phasic responses (Gilzenrat, Nieuwenhuis, 
Jepma, & Cohen, 2010; . 

Two different theories have been proposed regarding the role of the LC-NE system in 
attention and behavior: the adaptive-gain theory (for a review, see Aston-Jones & Cohen, 2005) 
and the unexpected-uncertainty theory (Yu & Dayan, 2005). The adaptive-gain theory postulates 
that the LC-NE system balances the evolutionary trade-off between the exploration of unknown 
but potentially superior resources on the one hand, and the exploitation of well-known but 
potentially inferior ones on the other. According to this theory, intermediate levels of tonic LC 
activity, leading to focused attention and task engagement, are linked to exploitation, whereas 
high levels of tonic LC activity, resulting in distractibility and task disengagement, are linked to 
exploration (Aston-Jones & Cohen, 2005). The unexpected-uncertainty theory, on the other 
hand, postulates that tonic LC activity reflects uncertainty about the probability of upcoming 
events. According to this theory, high levels of tonic LC activity reflect high uncertainty and 
intermediate levels reflect a certain degree of predictability; phasic LC activity is evoked at 

expectation, which is usually the case for behaviorally relevant stimuli and initiates the updating 
of the prior interpretation (Yu & Dayan, 2005).  

1.1.1 Relation between pupillometry and other measures of brain activity 
Functional magnetic resonance imaging (fMRI). Studies employing concurrent fMRI and 
pupillometry have shown that human pupil dilation and BOLD signals in the LC are temporally 
coupled, as mentioned above, supporting the use of pupil dilation as a measure of LC activity in 
humans (Alnaes et al., 2014; Murphy et al., 2014). Based on a review of the combined 
pupillometry-fMRI studies available to date, it seems that pupil dilation is also correlated with 
the activity of the brain regions engaged by the current task demands. We provide three 
examples here based on different tasks. First, on a digit-sorting fMRI task, pupil dilation was 
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used as a regressor for the BOLD signal, and was found to be temporally correlated with 
activation of regions in left lateral prefrontal cortex and bilateral parietal cortex that have been 
implicated in working memory and cognitive control (Siegle, Steinhauer, Stenger, Konecky, & 
Carter, 2003). Similarly, on a gambling task, pupil dilation was found to be temporally correlated 
with activation of regions in bilateral posterior inferior prefrontal cortex and pre-supplementary 
motor area that have been implicated in decision-making (Satterthwaite et al., 2007). Third, in a 
multiple object-tracking paradigm, individual differences in pupil dilation between different 
numbers of tracked objects predicted activity in the dorsal frontoparietal attention network, 
including the FEF, anterior and posterior intraparietal sulcus, and superior parietal lobule, 
assessed in a separate session, above and beyond the number of tracked objects (Alnaes et al., 
2014).  

In addition to the task-related findings above, it has been shown that pupil dilation during 
resting-state fMRI or mental imagery is temporally correlated with activation of default-mode 
areas (medial prefrontal cortex, inferior parietal lobule, and junction of precuneus and posterior 
cingulate), and negatively correlated with activation of sensorimotor areas (Yellin, Berkovich-
Ohana, & Malach, 2015). In this study, a slow buildup of activity in default-mode areas preceded 
pupil dilation, along with widespread BOLD suppression in the sensorimotor cortex. Given these 
findings, Yellin and colleagues suggested that elevated tonic LC activity, reflected in pupil 
dilation, is linked to the suppression of sensorimotor processes and the production of 
spontaneous thought. As a possible neural mechanism of this complex interplay, the authors 
propose a lagged connection between posterior inferior parietal lobule and the LC, acting as a 
neural accumulator regulating tonic LC activity and the balance between exploration and 
exploitation. Taken together, these studies show that the pupillary response not only correlates 
with LC activity, but also with any other type of cortical activity associated with ongoing thought 
processes.  

We posit that these pupillary-brain correlations can be explained in at least two ways: (1) 
Pupil dilation reflects attentional focus and mental effort, and should therefore naturally correlate 
with the brain regions carrying out an attended task. In other words, pupil dilation and the 
activity of specific brain regions should be temporally coupled: as a task unfolds, arousal and 
mental effort, reflected in pupil dilation, wax and wane and are temporally coupled to the activity 
of implicated brain regions. (2) There is also a more mechanistic explanation, although the two 
are not mutually exclusive. NE boosts the signal-to-noise ratio in task-relevant brain regions, 
which is reflected in an increased task-related BOLD signal. In parallel, NE also dilates the 
pupils. In other words, the amplitude of pupil dilation and BOLD signal should be correlated, 
with higher levels of neural gain and task engagement reflected in greater pupil dilation.  

Most of the studies on cognitive tasks described above used average measures of pupil 
dilation as regressors in their fMRI analysis, whereas the resting state study used the raw dilation 
time course. The correlation between the raw pupil dilation and the BOLD signal reveals an 
aspect of temporal coupling, but the correlation between BOLD and average pupil dilation also 
points to a coupling of amplitudes. When task-related pupil responses averaged over multiple 
trials and several seconds still show a correlation with BOLD signals, this cannot be explained in 
terms of temporal coupling alone. The evidence therefore seems to be consistent with both 
explanations. 
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Electroencephalography (EEG). As a measure of activity of the LC-NE system, pupil dilation 
is related not only to BOLD signals, but also to EEG signals. This section will review evidence 
for this relationship, with the goal of convincing readers that pupil dilation is, like EEG, a 
reliable measure of certain aspects of brain function. The second goal of this section is to allow 
readers who are already familiar with EEG to relate the two measures. A number of studies have 
combined pupillometry with EEG in adults, in an effort to characterize the overlaps and 
differences between the processes measured by the two methods. No such studies have been 
conducted in children so far, and more research is necessary to prove that the findings obtained 
with adults hold at all ages. The positive-going event-related potential (ERP) labeled the P3 has  
just like task-evoked pupil dilation  been proposed as a marker of LC-NE activity (Murphy et 
al., 2011; Nieuwenhuis, Aston-Jones, & Cohen, 2005). The P3, one of the most studied ERPs, 
peaks 300-600 milliseconds after the presentation of a task-relevant stimulus and is most 
prominent at frontal-central midline electrodes (Sutton, Braren, Zubin, & John, 1965). The 
notion that the P3 reflects (phasic) LC-NE activity is supported by a number of human and 
animal studies (for a comprehensive review, see Nieuwenhuis et al., 2005). For example, a 
primate neurophysiology study found that both LC neuronal firing and the simultaneously 

(Aston-Jones, 
Chiang, & Alexinsky, 1991).  

The specific relationships between the LC-NE system, P3, and pupil dilation have only 
recently been investigated in greater depth (Hong, Walz, & Sajda, 2014; Kamp & Donchin, 
2015; Murphy et al., 2011). In one study, tonic pupil dilation prior to stimulus presentation on an 
auditory oddball task showed an inverse-U relationship to both the evoked P3 amplitude and to 
task performance, supporting the claim that P3 amplitude reflects phasic LC-NE activity and task 
engagement (Murphy et al., 2011), similar to what we have described for tonic pupil dilation. In 
addition, P3 amplitude as well as stimulus-evoked pupil dilation decreased substantially over the 
course of the experiment, pointing to decreasing task engagement, while pre-stimulus pupil 
diameters and response times increased, revealing increasing distractibility. A similar but more 
data-driven study showed comparable relationships between pre-stimulus pupil diameter, 
stimulus-evoked dilation, and a P3-like EEG component (Hong et al., 2014). This study also 
showed a link between stimulus-evoked pupil dilation and pre-trial EEG alpha band activity (8-
12 Hertz), in that reduced alpha, indicative of elevated attention, coincided with increased 
stimulus-evoked pupil dilation, associated with elevated task engagement (Figure 5c). These 
results suggest a strong link between phasic pupil dilation and the P3, making pupillometry a 
promising alternative (or addition) to EEG studies about attention, novelty, and surprise. 

However, despite the many similarities between the two measures, neither of the 
abovementioned studies (Hong et al., 2014; Murphy et al., 2011) found a direct correlation 
between them. In fact, an even more recent investigation has revealed additional discrepancies 
(Kamp & Donchin, 2015), suggesting that the measures reflect at least partially distinct 
underlying mechanisms. This is not, perhaps, surprising, given that pupillometry provides a more 
indirect and global measure of brain function than a specific ERP component. Taken together, 
both pupil dilation and P3 amplitude have been used as measures of LC-NE activity and task-
directed attention and are typically elicited by similar cognitive tasks. Nevertheless, the two are 
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not interchangeable, and further research is needed to clarify how the two measures, 
independently or jointly, elucidate cognitive processing. 

In summary, research in human adults has started to reveal the precise relationship between 
pupillometry and EEG and fMRI, and demonstrates that pupillometry may augment these 
methods. For example, including pupil dilation as a regressor in whole-brain fMRI analysis has 
increased the sensitivity and specificity of the results (Siegle et al., 2003), and has revealed finer 
temporal patterns than would be possible with fMRI alone (Yellin et al., 2015). Additional 
research involving simultaneous pupillometry and brain imaging data collection is warranted to 
articulate more clearly the relationships between them, but the evidence to date is sufficient to 
conclude that pupil diameter is an indirect measure of brain function. 

1.2 Cognitive Processes Studied with Pupillometry 
Most cognitive experiments that employ pupillometry focus on the fast, task-related LC-NE 
response reflected in phasic pupil dilation, while studies focusing on alertness and arousal also 
consider the slower, autonomic, tonic modulations reflected in baseline pupil diameters. Here, 
we provide only a broad overview of the topics and phenomena that have been studied by 
measuring phasic pupil dilation, and refer the interested reader to more detailed reviews. So far, 
pupillometry has been used extensively in the study of adult cognition (reviews: Andreassi, 
2000; Beatty, 1982; Goldinger & Papesh, 2012; Granholm & Steinhauer, 2004; Loewenfeld & 
Lowenstein, 1993), and an increasing number of publications reflects its gain in popularity in 
infant research (Hepach & Westermann, 2016; Sirois & Brisson, 2014). To date, however, 
pupillometry has only been used in a handful of studies to investigate child cognition (Chatham, 
Frank, & Munakata, 2009; Chevalier, Martis, Curran, & Munakata, 2015; Johnson, Miller 
Singley, Peckham, Johnson, & Bunge, 2014; Karatekin, Marcus, & Couperus, 2007; Tharp et al., 
2015). 

(Beatty, 1982). A more recent 
computational framework has proposed that pupil dilation reflects capacity utilization, the 
balance between task demands and individual cognitive resources (Just, Carpenter, & Miyake, 
2003). Other suggestions of how to relate the physiological pupillary response to cognitive 
descriptions have been proposed in terms of adaptive gain and unexpected uncertainty, as 
described above (Aston-Jones & Cohen, 2005; Yu & Dayan, 2003). 

Although the labels for the cognitive processes underlying the pupillary response differ 
between theories, it is clear that pupil dilation reflects a specific, intensity- and attention-related 
aspect of cognitive processing. For example, a large number of studies has shown that pupil 
dilation scales with levels of difficulty across a wide range of tasks, including short-term 
memory (Kahneman & Beatty, 1966; J. Klingner, Tversky, & Hanrahan, 2011), arithmetic 
operations (Figure 6b; Ahern & Beatty, 1979; Hossain & Yeasin, 2014; J. Klingner et al., 2011), 
digit sorting (Siegle et al., 2003), sentence comprehension (Ahern, 1978), and perceptual 
matching (Ahern & Beatty, 1979). Across all of these tasks, more difficult problem-solving 
conditions elicited larger pupil dilations than easier conditions. The same has been shown in 
children (Boersma, Wilton, Barham, & Muir, 1970), making pupillometry a promising method 
with which to quantify differences in task difficulty. The relationship between the intensity of 
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cognitive processing and pupil dilation also holds across tasks, with simpler paradigms eliciting 
smaller pupil dilations than more complex ones, even when the tasks stem from unrelated 
domains, such as when comparing a perceptual task to mental calculation and sentence 
comprehension (Beatty, 1982). Taken together, the fact that pupil diameter scales with task 
demands makes it a valuable tool for objectively measuring the intensity of cognitive processing 
in participants of any age. 

 

 

Figure 6. Pupil dilation scales with task difficulty in a variety of cognitive domains. a) Short-
term memory: Digit-span task. Subjects saw 3-8 digits, presented sequentially for one second 
each, and attempted to recall all digits after a retention interval of 3 seconds. Pupil dilation 
increased as a function of short-term memory load. Reprinted with permission from Klingner, 
Tversky, and Hanrahan (J. Klingner et al., 2011). b) Working memory: Multiplication task. 
Subjects were asked to mentally multiply two visually presented numbers. The numbers were 

condition. Pupil dilation scaled with task difficulty and remained elevated for several seconds 
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after stimulus presentation. Reprinted with permission from Klingner (2010). c) Task-relevant 
processing: Oddball task. Subjects listened to a stream of auditory stimuli and were instructed to 
press a button in response to target tones only. Target tones (1500 Hz) made up 10% of the 
presented stimuli, 80% were standard stimuli (1000 Hz), and 10% were novel stimuli (bells, 
whistles, horns, etc.). There was no sign of pupil dilation in response to standard stimuli. Novel 
stimuli elicited a pronounced pupil dilation of more than 0.5 millimeters, but target tones elicited 
a much larger response of 2 millimeters, reflecting selective orientation toward task-relevant 
stimuli. Reprinted with permission from Book, Stevens, Pearlson, and Kiehl (2008). d) Cognitive 
control: Stroop task. Subjects were asked to name the color of 320 letter combinations presented 
for 2 seconds. In congruent trials, the colored letters formed the name of the color, whereas in 
incongruent trials, the letters formed the name of another color. Non-color words were used as a 
control condition. Pupil dilation was reduced in congruent trials relative to non-color words and 
was increased in incongruent trials, suggesting that pupil dilation is a sensitive measure of 
cognitive control. Reprinted with permission from Laeng, Ørbo, Holmlund, and Miozzo (2010). 

 

Pupil dilation also reveals which trials in a task elicit the greatest cognitive effort, such as 
target tones in a target detection task (Book et al., 2008) or incongruent trials in a cognitive 
control task (Laeng et al., 2010; Siegle, Steinhauer, & Thase, 2004). Similarly, adults and infants 
show elevated pupillary responses to deviant tones embedded in a sequence of identical tones, in 
an auditory oddball paradigm (Wetzel, Buttelmann, Schieler, & Widmann, 2016). In children, 
proactive and reactive cognitive control (Chatham et al., 2009; Chevalier et al., 2015) and 
working memory (Karatekin et al., 2007) have been studied using pupil dilation to reveal the 
intensity of cognitive processing at every time point in a trial.  

In addition to reflecting differences in cognitive processing between tasks, pupil dilation 
also reflects cognitive characteristics of the individual participant. In one study, adults with 
higher scores on intelligence tests showed smaller pupil dilations during a number of cognitive 
tasks (mental multiplication, digit span, sentence comprehension) than those with lower scores 
(Beatty, 1982), suggesting that more skilled participants exerted less effort to complete the task. 
This study highlights the relation between the pupillary response and individual differences in 
cognitive processing. We do not know of similar studies in children, but note that pupillary 
responses are a promising objective measure of cognitive effort for children who are too young 
to provide reliable self-assessments. Taken together with the abovementioned studies that 
examined the effects of manipulating task difficulty, pupil dilation seems to reflect how intensity 
and attention unfold over time during the cognitive process, which is shaped by task demands as 
well as individual differences in cognitive functioning. 

Although we emphasize here studies in which pupillometry has been used to study 
cognition, it can also be used to study responsiveness to motivationally salient stimuli (for a 
review, see Sirois and Brisson, 2014). Indeed, pupil dilation has been shown to be a sensitive 
index of pain perception, negative emotions, sexual attraction, and subjective preferences across 
a range of stimuli, highlighting the point that pupil dilation reflects arousal across a range of 
contexts, and is not specific to cognitive challenges. Thus, tight experimental control is required 
to avoid potential confounds.  
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1.3 Potential of Pupillometry to Inform Developmental Research 
The rich literature on task-evoked pupillometry in adult humans and in animals reviewed above 
lays a solid foundation for research on learning and development. While few studies have 
applied this technique in research with children thus far, we introduce below two lines of 
research that show how pupillometry has already been used to provide mechanistic insights into 
cognitive development. We first introduce the experimental paradigm, analyses, and results from 
both lines of research, and then discuss the applicability of pupillometry in developmental 
cognitive research. 

In one line of research (Jackson & Sirois, 2009; Laeng, Sirois, & Gredeback, 2012; Sirois 
& Jackson, 2012), pupillometry has been used to shed light on object permanence in infants, a 
topic that has provoked decades of debate. In one study (Sirois & Ja
were recorded while they looked at events that did or did not violate the principles of object 
permanence: a drawbridge that either passed through an occluded box or stopped upon touching 
the hidden object, similar to Baillarg (Baillargeon, Spelke, 
& Wasserman, 1985)
similar ways as in the experimental conditions, but no box was present (for a more detailed 
description, see Figure 7a). The authors employed functional data analysis (see following 
section) to precisely characterize the effects of the two experimental factors (presence of the box 

The effect of the presence of the box on pupil dilation was confined to the moments at the 
beginning and end of the trial when the box was visible in one condition, but not in the other 
(Figure 7a, dashed line), and the effect of the rotation angle of the drawbridge was confined to 

Figure 7a, thin 
solid line). These findings suggest that the infants paid attention to the relevant features and 
events in this paradigm, and also that pupil dilation is a sensitive measure of cognitive processing 

permanence, Sirois and Jackson tested for an interaction between presence of the box and 
rotation angle of the drawbridge (Figure 7a, thick solid line), which would indicate that the 
infants processed the impossible event differently from the possible events. The fact that there 

 that the box 
continued to exist after it was occluded  and of their knowledge about object permanence in 
general. 

The second study outlined here aimed to evaluate the extent to which differences in 
allocation of attention at encoding could explain differences in short-term memory (STM) 
between children and adults. It is well-known from previous research that pupils dilate while to-
be-remembered digits are presented in a digit span paradigm, plateau while the digits need to be 
retained, and slowly constrict as they are recalled (Cabestrero, Crespo, & Quirós, 2009; 
Granholm, Asarnow, Sarkin, & Dykes, 1996; Kahneman & Beatty, 1966). In the developmental 
study featured here, 10-year-olds and adults performed a task in which they were asked to 
memorize a number of digits that exceeded their STM capacity  
(Johnson et al., 2014)
plateaued around the sixth digit and constricted during the later ones (Figure 7b), suggesting that 
their attention waned prior to the end of the stimulus sequence. Adults reached a similar plateau 



60 
 

significantly later. Notably, the position of the digit at which the dilation peak was reached 

above STM capacity as measured with the eyetracking task. The authors concluded that the 
allocation of cognitive resources at encoding is an important factor in the development of STM 
(Johnson et al., 2014). With behavioral measures collected at the end of a trial, it would not have 
been possible to directly measure cognitive processing during encoding; by contrast, with 
eyetracking, it was possible to collect moment-by-moment measurements throughout the trial.  

 

 

Figure 7. Examples for the use of pupillometry in development. a) Object permanence. Ten-
month-
responded to the rotation of the drawbridge, revealed by a main effect of rotation (180° or 120°), 
and to the presence of a box, revealed by a main effect of the presence or absence of the box, but 
did not respond to the violation of the principles of object permanence (box present and 180°), as 
would be revealed by an interaction between both. Adapted with permission from Sirois and 
Jackson (Sirois & Jackson, 2012). b) Short-term memory. Differences in pupil dilation between 
children and adults while listening to long sequences of to-be-recalled digits. The premature drop 

he sequence suggests that their worse recall 
performance might be caused by a lack of attention during encoding and a failure to allocate 
sufficient cognitive resources. Reprinted with permission from Johnson et al. (Johnson et al., 
2014). 

 

Taken together, both of the studies featured here show how much detail pupil dilation can 
provide about cognitive processes, even when these processes have already attracted decades of 
scientific attention. The effects of the different trial events (movement of the bridge and 
occlusion of the object in the first study; presentation of each digit in the second study) could be 
characterized individually by measuring pupillary dilation in response to each event. The same 
would not have been possible with summary measures of behavior, such as looking times or 
behavioral responses, which reflect the final outcome of various mental processes operating at 
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different points in a trial. Further, interpreting pupil dilations is more straightforward than 
looking times because of its close link to a single brain system (Aslin, 2007; Jackson & Sirois, 
2009).  

1.4 Methodology of Pupillometry 
Pupil diameter is measured automatically by most conventional eyetrackers because pupil 
tracking is necessary to determine gaze position. Some eyetrackers are directly integrated into 
computer screens; others are external devices and set up below a screen or other medium of 
interest. Modern eyetrackers include calibration software, and pupil diameter is provided in 
millimeters (rather than pixels, as with older-generation eyetrackers).  

Pupil diameters vary between 1.5 mm in bright light and 9 mm in total darkness. Whereas 
they can double or halve in size due to changes in luminance, cognitively-evoked responses are 
usually smaller than 0.5 mm (Beatty, 1982; Sirois & Brisson, 2014). Nevertheless, these changes 
can be detected reliably when luminance is held constant or when the data have been cleaned 
from the effects of changing luminance, for example using the method proposed by Pomplun, 
Sunkara, Fairley, and Xiao (2009). Some researchers conduct pupillometry experiments in dimly 
lit rooms with the goal of obtaining maximum amplitudes of pupil dilation. Contrary to this 
intuition, cognitively-evoked pupil dilation is larger in moderate light than in darkness 
(Steinhauer et al., 2004). (Figures 1b and 4). We therefore recommend conducting cognitive 
experiments in moderately lit rooms. 

Pupil dilation can be measured at the sub-millisecond time scale, but researchers should 
keep in mind the response latency of the pupillary system when designing experiments. The 
pupil takes up to 1.5 seconds to reach maximum constriction after a sudden flash of light 
(Loewenfeld & Lowenstein, 1993), and tracks slow changes in luminance with a lag of about 1 
second (Yellin et al., 2015). In cognitive studies, the pupil usually begins dilating immediately 
after stimulus presentation, but takes approximately 1-1.5 seconds to reach its maximum elicited 
dilation, depending on the nature and difficulty of the task (Murphy et al., 2011; also compare 
the different pupil dilation time courses in Figure 6). In order to reduce overlaps between 
consecutive stimuli and trials, most researchers temporally separate subsequent stimuli by about 
1 second, and insert inter-trial intervals of at least 3 seconds. Nevertheless, analysis methods also 
exist for much faster task designs at the border of conscious perception (Wierda, van Rijn, 
Taatgen, & Martens, 2012). 

Of relevance for developmental studies, pupil diameter changes with age. Diameter 
increases rapidly during the first decade of life (when measured in dim light, starting at 5.66 mm 
in 1-month olds), plateaus at the age of 11-15 years (with diameters between 7.10-7.45 mm in 
dim light), and slowly but consistently shrinks thereafter (reaching 4.5 mm in 80-year olds) 
(Loewenfeld & Lowenstein, 1993; MacLachlan & Howland, 2002). These changes coincide 
partially with changes in cerebral levels of NE (Herlenius & Lagercrantz, 2001; Robinson, 
1975). For the purposes of interpreting age-related differences, relative measures of pupil 
dilation as compared with a baseline should therefore be used instead of absolute diameters, as 
described below. 

Taken together, possible confounds of the task-evoked pupillary response include testing-
related factors such as varying stimulus luminance, rapid presentation of stimuli, and varying 
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lighting conditions, as well as a variety of participant-related factors, such as age, wakefulness, 
anxiety level, and use of pharmacological agents that affect NE levels (e.g., caffeine, marijuana, 
and various medications). Testing-related factors are easier to control than participant-related 
ones, although participants can be asked to refrain from taking stimulants or other drugs prior to 
testing, and a friendly testing environment can help reduce anxiety. Fortunately, many of these 
factors are thought to influence baseline pupil diameter rather than the phasic, task-evoked 
responses that are usually of interest in cognitive studies, so their effects are usually recorded but 
only taken into account in extreme cases. A more detailed practical guide on designing 
eyetracking and pupillometry experiments has been provided by Holmqvist and colleagues 
(Holmqvist et al., 2011). 

The first step in analyzing pupillometry data is data cleaning. Dilation values reflecting 
measurement errors need to be identified and removed and short gaps of missing data, usually 
caused by blinking, can be interpolated (refer to Sirois and Brisson, 2014 for a practical guide). 
In the next step, absolute pupil diameters are usually transformed into relative pupil dilations. To 
obtain trial-wise relative pupil dilations, the pupil diameter prior to trial onset is subtracted from 
each data point in the trial. In the next step, trials of the same experimental conditions are 
averaged within subjects. EEG analysis software can be used to preprocess pupillometry data in 
this way, although many researchers develop their own in-house preprocessing procedures. 

In the next step, data can be compared between groups or between conditions using 
standard statistical software. The easiest way to compare pupillary responses is to calculate 
average pupil dilations for a small number of pre-defined time windows (for example, stimulus 
presentation and response) and compare these using t-tests, ANOVA, or regression. More 
sensitive results can be achieved with other methods, for example functional data analysis. Here, 
the time course of the pupillary response is fit by a mathematical function, which is then 
submitted to a statistical test. The resulting test statistic is also a function over time, making it 
possible to determine the exact time points when a critical value is exceeded, without the need of 
controlling for multiple comparisons due to the number of time points. No data are lost due to 
averaging over large time windows, which makes functional data analysis a sensitive and precise 
method for analyzing pupil dilations. More detailed descriptions of this technique have been 
provided elsewhere (Jackson & Sirois, 2009; Ramsay, 2016; Ramsay & Silverman, 2002; Sirois 
& Brisson, 2014). 

Many alternatives exist for analyzing pupil dilation data. As briefly mentioned above, 
automated deconvolution has been used to analyze a task that was at the border of conscious 
perception in terms of speed (Wierda et al., 2012). Principal component analysis (PCA) has been 
used to decompose the pupil dilation waveform and isolate dilation components associated with 
task performance and general cognitive abilities (Verney, Granholm, & Marshall, 2004). Time-
frequency analyses, such as Fourier transform and short-time Fourier transform, have revealed 
specific frequency bands in the pupil dilation signal that relate to alertness (Nowak, Andrzej, & 
Kasprzak, 2007). The Hilbert analytic phase has been used to extract signals from the pupillary 
response that reflect cognitive overload (Hossain & Yeasin, 2014). A variety of methods, such as 
independent component analysis (ICA) , has also been proposed to 
facilitate the combination of pupillometry with fMRI, EEG, genetic, or other data. 
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 As detailed above, pupil dilation provides a rich measure of neuro-cognitive processing 
in children and adults, and is suitable for a variety of data analysis techniques, ranging from the 
classic comparison of means to more data-intensive methods, such as PCA and time-frequency 
analysis, to cutting-edge statistical methods from the areas of machine learning and big data. 
However, several key points must be kept in mind with regard to study design and interpretation. 
First, various factors aside from cognitive demands can, if not properly controlled, influence 
pupil size. However, it is possible, with tightly controlled experiments, to isolate task-evoked 
pupillary responses that are sensitive to cognitive manipulations. Secondly, researchers must 
bear in mind that pupil dilation provides only an indirect measure of LC-NE activity. However, 
the relationship between the LC-NE system and pupil dilation has been established with a variety 
of methods, including human and animal studies with pharmacological manipulations and brain 
imaging techniques (Samuels & Szabadi, 2008; Sara, 2009), allowing researchers to draw 
inferences about neural processes from pupillometry data. 

2 Spontaneous Eyeblink Rate 
Dopamine (DA) is an important neurotransmitter involved in learning, working memory, and 
goal-oriented behavior (Westbrook & Braver, 2016). Despite decades of research on animal 
models and adult samples, we currently lack suitable methods for directly measuring DA activity 
in children and adolescents.  

It has been proposed that spontaneous eyeblink rate, or the frequency at which the eyelids 
open and close, can serve as a non-invasive, indirect measure of DA activity in the central 
nervous system. In this section we review evidence that establishes the link between blink rate 
and the dopaminergic system, as well as studies showing the feasibility of using this marker to 
examine the modulatory role of DA in cognitive development and learning. 

2.1 Spontaneous Eyeblink Rate as a Proxy of Dopaminergic Activity  
Blinking serves various functions, ranging from the maintenance of ocular health to non-verbal 
communication. There are three main types of blinks  voluntary, reflexive, and spontaneous  
which differ in their purpose and underlying mechanisms. Both reflexive and spontaneous blinks 
occur without volition. Reflexive blinks occur mainly as a response to environmental stimuli and 
cause the eyelids to shut quickly, for instance to protect the eyes from a foreign particle. 
Spontaneous blinks, by contrast, occur in the absence of such triggers and are characterized by a 
highly synchronized and transient closing and reopening of the eyelids, a movement that helps to 
distribute the tear film uniformly over the eye (Cruz, Garcia, Pinto, & Cechetti, 2011).  

The muscles that control the opening and closing of the eyelids are the levator palpebrae 
superioris and orbicularis oculi muscles, respectively (Figure 1a). The neural processes that 
control the movement of these muscles during spontaneous blinking are not yet well 
characterized (Cruz et al., 2011; Jongkees & Colzato, 2016). Neuroimaging studies in non-
human primates suggest that spontaneous blinking produces broad activation patterns across the 
cortex, but interestingly not in areas that respond to voluntary blink production, such as the FEF 
and the lateral intraparietal cortex (Guipponi, Odouard, Pinède, Wardak, & Ben Hamed, 2014). 
Research in a rodent model points to the spinal trigeminal complex of the medulla, which has 
been previously associated with the production of reflexive blinks, as a key region in the circuit 
that controls spontaneous blinking (Kaminer, Powers, Horn, Hui, & Evinger, 2011).  
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It has been hypothesized that DA modulates the frequency of spontaneous blinks 
indirectly, by regulating the inhibition of the spinal trigeminal complex (Kaminer et al., 2011). 
Although the precise neural circuitry that controls blink rate still requires further investigation, 
several lines of research have demonstrated a link between spontaneous blink rate and 
dopaminergic activity in the central nervous system. In the following two sections, we 
summarize key pharmacological manipulation studies and findings from populations with DA-
related disorders. For a more comprehensive review on the relationship between DA activity and 
spontaneous blinking, we refer readers to Jongkees and Colzato (2016). 

2.1.1 Pharmacological manipulations 
Studies of pharmacological manipulations in non-human animals have provided the most 
compelling evidence of the relationship between blink rate and DA activity. This work 
demonstrates that blink rate rises steeply after the administration of DA receptor agonists such as 
apomorphine. Conversely, administering DA receptor antagonists leads to a notable decrease in 
blink rate (Karson et al., 1981). This effect is specific to DA, and not simply a byproduct of 
general sedation (Karson, 1983).  

Subsequent research has aimed to characterize the selective roles of different DA 
receptors in blink rate modulation, since this information would elucidate the mechanisms of 
blinking and also provide vital information for using blink rate as a marker of dopaminergic 
function. DA is transmitted to various areas of the brain (Figure 5b) that have receptors of 
varying structural, biochemical, and functional properties. The two main families of DA 
receptors in the brain are D1-class receptors, abundant in prefrontal cortex, and D2-class 
receptors, primarily expressed in subcortical structures like the striatum (Beaulieu & 
Gainetdinov, 2011). The cognitive functions associated with these receptor classes will be 
discussed in more detail in section 2.2. 

In an effort to pinpoint the receptors that underlie blink rate, researchers have examined 
the effects of pharmacological agents that affect D1 and/or D2 receptor function. This work has 
yielded mixed evidence as to which receptor class is most closely involved in modulating blink 
rate (Figure 8). Some pharmacological studies suggest D2 as the primary modulator of blink rate 
(Groman et al., 2014; Taylor et al., 1999). For instance, the administration of a D2 agonist, but 
not D1 agonist, results in increases in blink rate that correlate with PET (Figure 8a and 8b) and 
post-mortem measurements of D2-like receptor availability in the striatum of vervet monkeys 
(Groman et al, 2014). 

In contrast, other studies point to D1 as the primary modulator of blink rate (Kotani et al., 
2016; van der Post, de Waal, de Kam, Cohen, & van Gerven, 2004). The most compelling 
evidence comes from a study where the systematic administration of a D1-agonist produced 
dose-dependent increases in blink rate in marmosets (Kotani et al., 2016). A similar dose-
dependent blink rate response (Figure 8c) was observed after the administration of a D1/D2 non-
selective agonist that has been used on previous seminal blink rate studies (e.g. Karson, 1983). 
Importantly, the effect on blink rate of this D1/D2 agonist was selectively reversed only with the 
administration of a D1-antagonist (Figure 8d). Lastly, other studies posit an interaction or 
common effect of D1 and D2, in addition to independent modulatory effects of each receptor 
(Elsworth et al., 1991; Karson, 1983; Kleven & Koek, 1996). These conflicting results 
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underscore the complex relationship between blink rate and DA activity (for a review, see 
Jongkees & Colzato., 2016). Much of the evidence suggests that both D1 and D2 receptors can 
modulate spontaneous blinking, and Jongkees and Colzato propose that the effects of D1 
receptors on spontaneous blink rate might only be produced at certain dosages of 
pharmacological manipulations, whereas tonic blink rate might be more closely related with D2 
activity in the basal ganglia more generally. However, this account may not be consistent with 
the developmental trajectories of DA tone, expression of D2 receptors, and spontaneous blink 
rate: DA tone and expression of D2 receptors in the basal ganglia peak during adolescence (Ernst 
et al., 2009), whereas blink rate, as far as we can tell from cross-sectional samples, increases 
from infancy to adulthood (Zametkin et al., 1979). Given these conflicting accounts about D1 
and D2 receptor involvement, we can conclude only at this point that spontaneous blink rate is 
modulated by central dopaminergic activity. 

Figure 8. Relationship between blink rate and DA receptor activity. a) Blink rate is positively 
related with PET measures of D2-like receptor availability in the ventral striatum (white circles) 
and caudate nucleus (black circles), but not putamen (gray circles). These relationships were not 
observed with D1-like receptors (not shown).  b) Statistical map (p-values) of the voxelwise 
linear regression of blink rate on D2-like receptor availability from (a) overlaid on the striatal 
volume of the vervet monkey's MRI template. Adapted with permission from Groman et al. 
(Groman et al., 2014). c) Systemic administration of apomorphine, a non-selective DA agonist, 
increased blink rate in a dose-dependent manner (orange lines) above baseline levels (saline 
administration, black line) in marmosets. d) This effect was only reversed with the 
administration of SCH39166, a D1-antagonist (blue line), but not with the administration of 
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haloperidol, a D2-antagonist (not shown). Adapted with permission from Kotani et al. (Kotani et 
al., 2016). 

 

2.1.2 Clinical studies 
Patients with conditions that are known to compromise the dopaminergic system show 

disease (PD), a disorder that results from the loss of dopaminergic cells in the substantia nigra 
(Agostino et al., 2008). Medications that raise DA levels also increase blink rate in these patients 
(Bologna, Fasano, Modugno, Fabbrini, & Berardelli, 2012). By contrast, schizophrenia and 

 conditions linked to elevated dopaminergic activity (Chan & Chen, 2004) 
 are associated with elevated blink rate (Tharp et al., 2015). The severity of the symptoms in 

these conditions is positively correlated with blink rate, a relationship that is also present in 
pediatric patients with early-onset schizophrenia (Caplan & Guthrie, 1994).  

Although the precise influence of each dopamine receptor on the neural circuitry that 
controls spontaneous blink rate remains an open area of research, findings from studies with 
pharmacological manipulations and clinical samples with compromised dopaminergic function 
support the viability of blink rate as a biomarker of central dopaminergic activity. The fact that 
we can acquire blink rate data non-invasively makes it possible to assess DA-related cognitive 
functions in adulthood and development.  

2.2 Cognitive Processes Studied with Blink Rate 
Blink rate has been used as a peripheral measure of DA involvement in various cognitive and 
affective functions (Colzato, Van Den Wildenberg, Van Wouwe, Pannebakker, & Hommel, 
2009; den Daas, Häfner, & de Wit, 2013; Fukuda, 2001; Karson et al., 1981; Oh, Han, Peterson, 
& Jeong, 2012; Smilek, Carriere, & Cheyne, 2010; Tharp & Pickering, 2011; Wiseman & 
Nakano, 2016). Cognitive control and learning have been heavily represented in the literature, 
and thus will be the focus of this section. 

Our ability to control impulses, maintain long-term goals, and flexibly adapt to changing 
rules from the environment are all important aspects of cognitive control. DA is an important 
neuromodulator of fronto-striatal circuits that support these functions. It has been proposed that 
during goal-oriented behavior, DA aids in the maintenance of abstract goals in higher levels of 
the cognitive control hierarchy, while also allowing flexibility in updating lower-level rules 
guiding attainment of subgoals (Puig, Rose, Schmidt, & Freund, 2014; Westbrook & Braver, 
2016). Just as for NE (Figure 5c, see pupillometry section), the relationship between cognitive 
control and DA is often described with an inverted U-shape function 
2011), as shown in Figure 5d. There is some evidence that this relationship can be captured with 
blink rate, for example in the context of cognitive flexibility on a divergent thinking task 
(Chermahini & Hommel, 2010), as well as performance on an attentional task subsequent to 
cognitive depletion (Dang, Xiao, Liu, Jiang, & Mao, 2016). Most of the research in this domain 
has associated baseline blink rate with cognitive control, often showing a positive linear 
relationship. 
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Different functional roles related to cognitive control have been ascribed to the two DA 
receptor families. For instance, D1 signaling is traditionally associated with maintenance of 
representations of long-term goals, while D2 signaling in the striatum is associated with an 
increase in flexible processing and distractibility (Puig et al., 2014; Takahashi, 2013; Westbrook 
& Braver, 2016). In a recent study, Zhang and colleagues (Zhang et al., 2015) tested the 
relationship between baseline blink rate and these dimensions of cognitive control in a sample of 
young adults. They found that higher blink rates predicted better performance on set-shifting and 
Stroop tasks, but worse performance on an updating task that taxes working memory (3-back). 
These and other findings indicate that higher baseline blink rate is associated with better 
cognitive flexibility but worse maintenance (Dreisbach et al., 2005; Müller et al., 2007; Tharp & 
Pickering, 2011). However, other research has shown that higher blink rate at baseline is related 
with lower distractibility on tasks that place high demands on working memory (Colzato, 
Slagter, Spapé, & Hommel, 2008). Research isolating cognitive flexibility, updating, and 
maintenance processes is needed to better understand which aspects of the modulatory effect of 
DA on cognitive control can be captured with blink rate, which will be essential for examining 
how DA influences the developmental trajectories of these different processes. 

In addition to resting blink rate, some paradigms lend themselves to measure task-evoked 
blink rate, which could act as an indirect measure of phasic DA and could provide additional 
insights into the relationship between DA and cognitive control. For example, phasic DA release 

relevant for ongoing goal-directed behavior 
Braver, 2016). A similar phenomenon has been captured with task-related blink rate on a Flanker 
task, wherein the occurrence of spontaneous blinks on one trial predicted the exertion of greater 
control on the subsequent trial (van Bochove, Van der Haegen, Notebaert, & Verguts, 2013). 
These findings suggest that task-evoked blink rate can capture functions typically associated with 
phasic DA release, and point to the feasibility of using similar paradigms to examine, on a 
moment-by-moment basis, how differences in the functioning of the DA system contribute to 
age-related differences in cognitive control  in particular, the ability to proactively update the 
level of control needed given changing task demands.  

Beyond cognitive control, DA also supports learning. Striatal DA activity has been linked 
to reinforcement learning, as it signals reward prediction errors, exhibiting a large phasic DA 
release when rewards are greater than expected, and firing rates below baseline when rewards are 
smaller than expected (Bayer & Glimcher, 2005; Glimcher, 2011; W. Schultz, Dayan, & 
Montague, 1997). Additionally, lower levels of tonic DA have been related to better ability to 
learn from negative outcomes (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; van der 
Schaaf et al., 2014). This DA-related effect has been studied using blink rate. Slagter and 
colleagues (Slagter, Georgopoulou, & Frank, 2015) found that, compared to participants with a 
higher blink rate at rest, participants with a lower one learned more from negative than positive 
outcomes in a probabilistic learning task. In another study, positive feedback was found to 
mediate the relationship between PET measures of D2-like receptor availability and performance 
on a reversal-learning task (Groman et al., 2014). Blink rate mediated the relationship between 
the availability of D2-like receptors and ex-vivo measures of D2-like receptor density, thus 
providing a crucial link between these measures of DA and behavioral measures of reward 
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sensitivity. Taken together, these studies show that blink rate can be used as a measure of DA-
related learning, and could help bridge neuroimaging and direct measurement of DA activity.  

One view of DA's role in learning is that it codes the consequences of prediction and 
learning signals, and not the prediction errors themselves. Instead, bursts of phasic DA release 

(Berridge, 2007). This 
hypothesis has not been assessed with blink rate in the context of learning, but Peckham and 
Johnson (2015) showed the feasibility of using event-related blink rate as an indirect measure of 
phasic DA, in the context of reward processing in bipolar patients and healthy controls. In both 
groups, receiving a reward increased blink rate above resting levels, but to a lesser extent in 
anticipation of having to exert effort to obtain a reward (Peckham & Johnson, 2015). This study 
shows an exciting possibility of using task-evoked blink rate as a proxy for phasic DA release 
during reward processing, which could inform current hypotheses about the functional role of 
DA in learning. In addition, this study shows the possibility of examining mechanisms 
underlying developmental differences in decision-making, for example during adolescence. 

In summary, there is converging evidence that blink rate can be a sensitive measure of DA 
involvement in certain aspects of cognitive control (e.g., cognitive flexibility) and learning, 
producing findings that are consistent with PET and research with laboratory animals. Designing 
paradigms that would allow us to measure both resting and task-evoked blink rate could help to 
further elucidate whether blink rate can be used to measure the effects of phasic DA release on 
DA tone, and to better understand individual differences and age-related changes in goal-directed 
behavior.  

2.3 Potential of Blink Rate to Inform Developmental Research 
 The developmental trajectory of blink rate from infancy to adulthood has been primarily 
characterized with cross-sectional samples (for reviews, see Cruz et al., 2011; and Jongkees & 
Corzato, 2016). Based on the findings to date, even a fetus is capable of producing spontaneous 
blinks starting during the third trimester of pregnancy. Neonates and infants have a very low 
blink rate, blinking on average less than 3 times per minute. Blink rate increases during 
childhood (6-8 blinks/min) (Lavezzo, Schellini, Padovani, & Hirai, 2007; Zametkin, Stevens, & 
Pittman, 1979), and stabilizes at adult levels by late adolescence (10-20 blinks/minute). 

The fact that blink rate can be obtained at different ages has enabled cross-sectional 
comparisons and the (non-invasive) study of the role of DA in typical and atypical cognitive 
development. The following studies represent areas of research that have used blink rate in this 
manner, and that can be most closely related to the adult literature; these include cognitive 
control, decision-making, and learning.   

As highlighted in the previous section, DA is strongly implicated in cognitive control, 
which undergoes important changes in childhood and adolescence (Bunge & Wright, 2007; 
Casey, Galván, & Somerville, 2015; Luna, Marek, Larsen, Tervo-Clemmens, & Chahal, 2015). 
The development of the prefrontal-striatal networks in part drives age-related improvements in 
these abilities (Casey et al., 2015). Dynamic changes occur in the DA system in childhood and 
adolescence that may contribute to the development of cognitive control. For example, an 
increase in striatal DA activity during adolescence (Padmanabhan & Luna, 2014) could be 
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related in part to enhanced flexibility in learning that has been observed during adolescence 
(Johnson & Wilbrecht, 2011). 

Although no studies to date have used blink rate to measure DA and the development of 
cognitive control longitudinally, Tharp and colleagues (Tharp et al., 2015) provided evidence 
that blink rate can be used as a measure of DA function in childhood. They used blink rate both 
at rest and during performance of a task that required rule switching to differentiate between 
typically developing children and children with Tourette syndrome (TS), a condition associated 
with elevated levels of DA (Albin & Mink, 2006; Singer, Butler, Tune, Seifert, & Coyle, 1982). 

incorrect rules when required to switch flexibly between two rules from trial to trial. Patients also 
exhibited uniformly high blink rates, wherein they failed to show the pattern that typically 
developing children showed, of a gradation of increase in blink rate as a function of task 
difficulty (Figure 9a). This effect was observed even in unmedicated children, and was selective 
to blink rate since no associations were found with the amplitude or timing of pupil dilation. This 
study provides evidence that blink rate can be used to examine individual differences in DA 
functioning and engagement of cognitive control in various pediatric populations. 

 

Figure 9. Measurement of spontaneous eyeblink rate in developmental studies. a) Blink rate 
during performance of a task that requires rule switching flexibility can be used to differentiate 
between typically developing children and children with Tourette syndrome (TS), a condition 
associated with elevated levels of DA. Patients showed higher average blink rate at rest as did 
the control subjects, and also did not show task difficulty-related increases in blink rate. Adapted 
with permission from Tharp et al. (Tharp et al., 2015). b) Relationship between blink rate at rest 
and age-related differences in reward-seeking behavior on a risky decision-making task. Higher 
blink rate predicted increased use of a gain-maximizing strategy for adolescents but not for 
adults. Adapted with permission from Barkley-Levenson and Galván (Barkley-Levenson & 
Galván, 2016). 
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Research on rodents and non-human primates has shown that cortico-striatal circuits that 
are influenced by DA undergo dramatic, non-linear changes during development. Adolescence is 
a period of heightened plasticity of the DA system, with a marked proliferation of D2 receptors 
in the prefrontal cortex and striatum (Ernst, Romeo, & Andersen, 2009). It has been proposed 
that the peak in striatal DA activity during puberty influences reward processing and sensation 
seeking (Padmanabhan & Luna, 2014). Barkley-Levenson and Galván (Barkley-Levenson & 
Galván, 2016) provided the first evidence that blink rate could be a powerful measure of age-
related differences in reward sensitivity between adolescents and adults. Specifically, they used a 
risky decision-making task to test whether blink rate would predict how often a participant would 
choose options that would maximize their gains, irrespective of the probability of winning. Even 
though baseline levels of blink rate did not differ between adolescents and adults, higher blink 
rate only predicted more use of gain-maximizing strategies in the adolescent group. Considering 
that there was no group difference in baseline blink rate, it would be intriguing to test in future 
studies whether task-related blink rate could capture DA contributions, as well as age-related 
differences in the ability to update decision-making strategies based on past gains or losses.  

The type of learning that could guide shifts in decision-making would in part require 
building associations between cues, actions, and outcomes over time  in other words, learning 
rules. Werchan and colleagues (Werchan, Collins, Frank, & Amso, 2015) have provided one of 
the first demonstrations that blink rate could be a valuable tool to test DA involvement in rule 
learning. They found that eight-month-olds were capable of learning implicit hierarchical rules, 
and that trials with higher-order rule switches elicited higher blink rates. Importantly, this 
relationship with blink rate was only present in the second half of the experiment, when the rule 
sets had been learned. This learning process relies on DA-innervated pathways in adults and 
other species (Money & Stanwood, 2013; Rothmond, Weickert, & Webster, 2012; Weickert et 
al., 2007). Even though the blink rate results of this study suggest that the DA system has a 
functional role in infancy similar to its role in adults, the functional properties or development of 
the DA system in the first years of human life is not well understood (Money & Stanwood, 2013; 
Rothmond et al., 2012; Weickert et al., 2007). There is indirect evidence from longitudinal 
research that there might be rapid changes occurring in this system, given the observation of an 
increase in resting blink rate between four and 12 months of age (Bacher, 2014).These findings 
are encouraging in that they suggest that blink rate can be used as a marker of DA across 
development, beginning in infancy.  

In conclusion, these studies show the feasibility of using blink rate to indirectly measure 
the involvement of DA in cognitive development in both typically developing children and 
pediatric patient populations. Given the widespread contributions of DA to cognition, there are 
several lines of research that could benefit from the measurement of blink rate. An extension of 
the prior literature cited here could be to characterize the involvement of DA in the development 
of cognitive flexibility, which has been found to follow a non-linear developmental trajectory, 
with adolescents outperforming adults (Johnson & Wilbrecht, 2011; Simon, Gregory, Wood, & 
Moghaddam, 2013).  

Blink rate measurement could also inform the study of the development of decision-
making and learning. As shown by Barkley-Levenson and Galvan (Barkley-Levenson & Galván, 
2016), blink rate is associated with age-related differences in reward-seeking behavior. Future 
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research could evaluate whether task-evoked blink rate in decision-making paradigms has the 
temporal resolution needed to capture phasic changes in DA release, which are known to occur 
during reward processing (Wolfram Schultz, 2013). If so, this metric could prove useful for 
assessing changes in decision-making flexibility (i.e., change in decision-making strategies) as 
well as for characterizing reinforcement learning (e.g. how past outcomes affect future strategy 
use) during different points in development. In addition, blink rate could be a suitable method to 
examine individual differences in motivation during learning. It has been hypothesized that DA 
translates incentives into motivation, which can direct working memory allocation (Westbrook & 
Braver, 2016). Blink rate could also be a useful method to assess whether incentive-related 
changes in DA (as measured by phasic blink rate) during academic learning are predictive of 
future learning success. If so, blink rate could be a complementary ocular measure to improve 
currently available gaze-based computer tutors (e.g., Gütl et al., 2005), and a valuable method for 
education-based research. 

Although blink rate is a promising measure for studying the development of DA-related 
cognitive processes, there is a strong need for a longitudinal study to assess the developmental 
trajectories of blink rate from childhood to adulthood. To date, only a handful of studies have 
measured blink rate longitudinally, and these have involved time points that were rather close in 
time (e.g., Bacher, 2014). Longitudinal studies would not only enrich our understanding of 
typical development, but could also be useful to measure outcomes of psychiatric treatment in 
pediatric populations, and also potentially facilitate earlier detection of risk factors for later 
substance abuse problems, such as enhanced sensitivity to cues of rewards and blunted D2 
activity (Berridge, 2007; Goldstein & Volkow, 2011; Yin & Knowlton, 2006). 

2.4 Methodology of Spontaneous Blink Rate  
The studies reviewed thus far suggest that blink rate, as measured during paradigms known to be 
sensitive to DA modulation, can be a promising tool to capture DA function throughout 
development and adulthood. Below, we describe how spontaneous blink rate can be estimated 
with an eyetracker. 

Some of the most popular methods to record blink rate are infrared eyetrackers, EOG, 
electromyography (EMG), EEG, and video cameras. Besides video cameras built into a 
computer, eyetrackers are arguably the most cost effective and convenient method to use with 
special samples. Since blinks are often characterized as a gap in data recording, traditional 
eyetrackers have not enabled researchers to differentiate with good fidelity whether loss of data 
is due to blinks, muscular artifacts (e.g. as caused by yawning) or head movements away from 
the visibility of the eyetracker lens. However, newer models have built-in technology to account 
for these issues, such as automatic adjustments for small head movements, concurrent 
measurement of pupil dilation, and video cameras that can be used to perform manual 
inspections of eyelid closures in a subset of the data (e.g., Pedrotti, Lei, Dzaack, & Rötting, 
2011). Even though combining these features can improve blink detection accuracy, it is still 
possible to misclassify blinks that are reflexive or voluntary as spontaneous blinks. The 
development of detection algorithms with higher precision, as those employed with other ocular 
recording methods , is 
needed to increase the validity of the calculation of blink rate from data that can be obtained 
from eyetrackers.  
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Eyeblinks are defined in eyetracking data as continuous periods of approximately 100-
500 msec (corresponding to the typical range of spontaneous eyeblink durations) during which 
the coordinates or pupil diameters of the eyes are not recorded. This threshold could vary 
depending on the sampling rate of the apparatus or other methodological considerations (Jiang, 
Tien, Huang, Zheng, & Atkins, 2013; Siegle, Ichikawa, & Steinhauer, 2008). Blink rate is then 
calculated as the number of blinks occurring over a specified time interval and is usually 
expressed in terms of number of blinks per minute (Holmqvist et al., 2011). An inverse measure, 
which is used less often, is the interblink interval, which refers to the time between blinks.  

Another important consideration is when to measure blink rate. The studies we have 
reviewed have measured blink rate either at baseline or during performance of a task. Baseline 
blink rate is used as a proxy of tonic DA levels, whereas blink rate recorded during performance 
of a task is considered to reflect phasic DA. A typical paradigm for acquiring baseline or tonic 
measures involves having participants look at a fixation cross on the center of a dark computer 
screen for 5 to 6 minutes (Holmqvist et al., 2011) and as little as 3 minutes (Zaman & Doughty, 
1997) to be able to capture fluctuations in blink rate that can naturally occur. Phasic or task-
related blink rate is captured in response to a task manipulation, either in an event-related or 
block design, and the data are averaged over static or moving windows of varying lengths, and as 
little as 30 seconds (Peckham & Johnson, 2015; Siegle et al., 2008; Tharp et al., 2015; Werchan 
et al., 2015). Alternatively, some studies have also treated blink rate as time series data, which 
facilitates examining event-related blink rate modulations during natural viewing (e.g., Shultz, 
Klin, & Jones, 2011). 

Several methodological factors need to be taken into consideration in order to maximize 
the interpretability of spontaneous blink rate measures. These include controlling for 
environmental and subject-specific variables that could affect blinking behaviors. Specifically, 
factors that affect the moisture level of the eye, such as dry eye conditions, seasonal allergies, 
temperature and humidity of the room, and use of contact lenses directly affect how much a 
person blinks to restore optimal levels of eye moisture (Al-Abdulmunem & Briggs, 1999; Cruz 
et al., 2011; Doughty, 2001). In addition, the presence of air pollutants, like cigarette smoke, 
elicit reflexive eyeblinks (Holmqvist et al., 2011). These factors can be controlled by maintaining 

contact lenses, and if possible rescheduling sessions for participants who are suffering from 
seasonal allergies or colds. Blink rate can also be affected by sleep deprivation (Barbato et al., 
2000), as well as certain medications and stimulants that affect the DA system, like caffeine, 
cannabis, and antipsychotics (Holmqvist et al., 2011). It is recommended to ask participants to 
get a good rest before a session and to abstain from use of these drugs to minimize the acute 
effect of usage. In situations when it is not feasible for the participant to withhold medical 
treatment, the inclusion of unmedicated patients or a dose-response analysis would be needed 
(e.g., as done in Tharp et al., 2015). 

Blink rate is also susceptible to confounds that can arise from experimental design. For 
example, blinking frequency increases as a factor of time in long experiments because it can 
affect the moisture of the eyes and also produce fatigue, both factors that modulate blink rate 
(Stern, Boyer, & Schroeder, 1994). Frequent breaks can eliminate these problems (Holmqvist et 
al., 2011). Also, visual designs that prompt large saccades or involve complex visual processing 
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could increase blink rate irrespective of the mental workload (Al-Abdulmunem et al., 1999; Cruz 
et al., 2011). Thus, if measuring event-related blink rate, we recommended presenting visual 
stimuli centrally on the screen to minimize the number of saccades. Finally, the time of day when 
the session takes place can also affect results, since blink rate increases in the evening (Barbato 
et al., 2000). It is typically recommended that sessions take place before 5 pm.  

Even when controlling for environmental and experiment design factors, a special 
population for whom blink rate is still challenging to obtain are infants and young children. 
Changes in behavioral states could alter the rate of blinking and data validity could also be 
affected by artifacts or gaps in the data caused by excessive motion (see L. Bacher & 
Smotherman, 2004 for a review of blink rate in infants). Recent technical advances such as 
automated body-movement adjustments and lighter, head-mounted gear can alleviate certain 
challenges associated with head movements (e.g., Smith, Yu, Yoshida, & Fausey, 2015), but the 
temporal requirements of maintaining fixed gaze for a tonic measurement may still render the 
data unreliable. It is therefore recommended to also carefully monitor the behavioral state of the 
infant or child during ocular data acquisition. Despite these cautionary notes, blink rate is still a 
measure that could further our understanding of the development of the dopaminergic system, as 
well as DA contributions to goal-oriented behavior and learning during development.  

3 Conclusion 
We have presented evidence that pupillometry and blink rate are, like eye gaze, sensitive 
measures of specific aspects of cognitive processing. All three ocular measures can be collected 
in a single session and with the same equipment, and can provide complementary information 
about cognitive processing. Although pupillometry and blink rate have been used extensively in 
adults, and to a lesser extent in infants, they have been used much less in children and 
adolescents  and even then, only rarely for the study of cognition. These gaps in the literature 
provide an opportunity to augment behavioral and brain imaging methods in studying how the 
mind changes over a broad developmental window.  

3.1 Complementarity of Ocular Measures 
Broadly, eye gaze can provide a moment-to-moment measure of the focus of attention, and can 
reveal which cognitive strategies are employed in complex tasks. Pupil dilation provides a 

-NE system, and reveals the subjective difficulty of cognitive tasks 
and the intensity of current cognitive processing. Blink rate is modulated by DA, and has been 
used to study cognitive control, learning, working memory, and decision making. The 
differences and commonalities between these measures are described further below. 

Eye gaze metrics are especially suited to revealing aspects about attentional focus during 
visual processing. Saccades and fixations can reveal what parts of the displayed information are 
most salient, and to what extent and in what order information is processed within a complex 
stimulus set. Eye gaze can also reveal how several pieces of information are integrated or 
compared during a task. Unlike eye gaze measures that are well suited for visually complex 
tasks, pupil dilation and blink rate are best captured in tasks with auditory stimuli or simple 
visual design that minimize sources of artifacts, such as eye movements and large luminance 
contrast.  
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Pupil dilation and blink rate can be recorded simultaneously, given that the same task 
designs can be optimized for both; thus, it is possible to ask how the two measures are related. 
DA and NE are closely related catecholamines that modulate neural activity in overlapping brain 
regions (Figures 5a and 5b) and are associated with overlapping functional roles in cognition 
(Arnsten & Li, 2004; Meindertsma, 2014; Sara, 2009). Given the strong relationship between 
these neuromodulators, could we expect to tease apart DA and NE effects with blink rate and 
pupil dilation? Various research suggests that pupil dilation and blink rate do in fact reflect 
different processes that are uniquely associated with DA and NE (Siegle et al., 2008; Tharp et al., 
2015; van Bochove et al., 2013). For example, phasic changes in pupil dilation have been 
associated with sustained processing of information, often associated with NE (e.g., Siegle et al., 
2008), whereas phasic blink rate may respond to changing needs for flexible updating of 
representations, associated with DA (e.g., Tharp et al., 2015). In a working memory task, during 
which pupil dilation and blink rate were recorded concurrently (Siegle et al., 2008), pupil 
dilation but not blink rate scaled with the working-memory load of the task, as has been observed 
previously (Johnson et al., 2014; Kahneman & Beatty, 1966), whereas the timing of blinks but 
not pupil dilation was related to the presentation of new information, as has also been observed 
previously (e.g., Tharp et al., 2015). 

Although the studies described above show that blink rate and pupil dilation are not 
redundant measures, there are likely cases in which they parallel one another closely, given that 
DA and NE release occur in tandem in many circumstances. Indeed, tonic levels of both 
catecholamines vary as a function of arousal, with low levels during drowsiness, intermediate 

see also Figures 5c and 5d). Although NE is released in response to task-relevant or surprising 
stimuli (Aston-Jones & Cohen, 2005; A. Yu & Dayan, 2003), whereas DA is released in 
response to reward-predicting stimuli or unexpected rewards (Glimcher, 2011), these conditions 
co-occur in many tasks. For example, a pupillary response is observed when participants receive 
an unexpected reward (Einhäuser, Koch, & Carter, 2010)  the classic scenario for DA release. 
However, the pupillary response in these situations can also be explained as the response to a 
surprising event. Thus, although pupil diameter and blink rate have different biological 
underpinnings and can be dissociated in many circumstances, this is not to be expected under 
conditions that elicit both NE and DA release.  

Studies employing both pupillometry and measurement of eye blink rate should be 
conducted in developmental samples, with the goal of shedding light on the developmental 
trajectories of the NE and DA systems. It is conceivable that the two neurotransmitter systems 
mature at different rates (see Sections 1.1, 2.1, and 2.3) and that the balance between them 
changes during development. Longitudinal or cross-sectional studies with surprising as well as 
reward-predicting elements might be able to shed light on such developmental trajectories 
through the measurement of pupil dilation and blink rates. In addition, such studies would be 
crucial to determine the extent of overlap between the NE and DA systems during development.  

Although eye gaze, blink rate, and pupil dilation seem to be able to provide 
complementary information about cognitive processing, only a small number of studies has used 
more than one measure simultaneously so far (e.g., Siegle et al, 2008). Employing multiple eye-
tracking measures in the same task would provide the unique opportunity to assess mutual 
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relationships between them and also to directly compare the assessments of similar cognitive 
processes. This is especially important because all three measures have independently been used 
as measures of attention, employed strategies, and effortful cognitive processing. More studies 
are needed to identify circumstances under which these measures may reveal either 
complementary or redundant information about cognitive development.  

3.2 Next Steps: Foundational Research 
Much foundational research is still needed before we can fully interpret developmental changes 
in pupil diameter or blink rate. For example, additional longitudinal studies tracking individuals 
between infancy, childhood, and adolescence are needed to characterize developmental changes 
in these measures, and how they relate to changes in cognitive performance. So far, studies have 
shown cross-sectional differences in tonic pupil dilation (Loewenfeld & Lowenstein, 1993; 
MacLachlan & Howland, 2002), the saccade system (e.g., Luna, Garver, Urban, Lazar, & 
Sweeney, 2004), and for blink rate (Zametkin et al., 1979; Cruz et al., 2011). But far less is 
known about systematic differences in task-evoked pupillary responses and blink rates. Only 
studies that examine these changes longitudinally will be able to characterize the precise 
developmental trajectory of the three ocular systems and to reveal individual differences. This 
research is necessary as a foundation for studies comparing age groups because differences in 
ocular responses need not necessarily arise from differences in cognitive processing, as which 
they are usually interpreted in cognitive studies. Only knowledge about the typical development 
of these responses will allow for an adequate interpretation of differences between age groups. 

Longitudinal studies combining ocular measurements with cognitive tasks are needed to 
characterize the relationships between cognitive processing and changes in the underlying 
neurophysiology during development. This research is crucial for several reasons. First, the close 
links between the LC-NE system and pupil dilation and between the DA system and spontaneous 
blink rate have been established solely based on adult (and animal) work, and need to be 
replicated in children and adolescents. Second, several differences in ocular responses are 
conceivable between children and adults. These differences need to be characterized, explained, 
and related to cognitive processing. For example, the magnitude of the task-evoked pupillary 
response may change during development merely as a result of the dramatic changes in baseline 
pupil dilation; the same is true for spontaneous blink rate. It is important to study in what ways 
these changes, likely reflecting the maturation of the underlying neural system, are related to 
changes in cognitive processing. Third, the question needs to be answered as to how far 
developmental changes in the ocular measures are driven by age, pointing to a role of 
physiological maturation, versus how much they are driven by cognitive abilities, pointing to a 
role of experience. Very simple paradigms for which performance can be well-matched across 
ages (e.g., basic sensory discrimination paradigms, such as the auditory oddball task in Wetzel et 
al., 2016), should be used to answer this questions. Lastly, no non-invasive measures of the NE 
and DA neuromodulatory systems have been developed for use in humans yet (i.e., not requiring 
injection of radioactive isotopes, as is done for positron emission tomography (PET) studies of 
dopamine receptor binding). In the absence of such tools, pupil dilation and blink rate are our 
best available options for probing neurochemical underpinnings of cognition in pediatric 
populations. These methods can facilitate the study of the early development of abilities such as 
attention, working memory, cognitive control, decision making, and learning. 
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3.3 Future Directions: Application to the Study of Cognitive Development 
The adult cognitive literature employing ocular measures has revealed a number of promising 
avenues for research, some of which we have reviewed above. Many of the used paradigms lend 
themselves to investigations in younger participants, shedding light on the development of the 
cognitive abilities in question. We will first focus on using pupillometry to study attention and 
using blink rate to study motivated behavior. After that, we will turn to more general topics and 
discuss how ocular measures can be used to identify cognitive processes that underlie 
developmental changes and how learning progress or the effects of interventions can be tracked 
using these measures.  

One example of adult research that could reveal new aspects of neurocognitive 
development has focused on the influence of LC-NE activity on attention, as measured via 
pupillometry (Eldar, Cohen, & Niv, 2013). In this study, participants with different levels of LC-

-gain theory; Aston-Jones and Cohen, 
2005) were identified based on their task-evoked pupillary responses. Participants with the 
largest neural gain were found to show a strong correlation between attention during the task and 
their attentional predisposition. In other words, participants who were predisposed to attend to 
certain image features, independently of the task at hand, attended to these same features during 
the task. Participants with smaller neural gain, on the other hand, showed no such correlation, or 
even a negative one. These participants attended to any image features, independent of their own 
predisposition. This relationship reveals that high levels of neural gain led participants to rely 
heavily on their attentional predispositions, whereas lower levels led participants to relax these 
predispositions and to explore features more equally. The correlation between levels of neural 
gain and reliance on attentional predispositions was almost perfect (r = 0.96). Employing a 
similar task design in children could reveal if the LC-NE system is equally important for guiding 
attention during development. If the relationship were indeed found to be similarly strong, the 
pupillary response alone could be used as a quantitative measure of this aspect of attention, 
making obsolete verbal responses and thereby facilitating research on attention in even younger 
children, including preverbal infants. 

The use of blink rate to study motivated behavior is another example of adult research for 
which translation into developmental studies seems promising. DA release in the striatum 
typically occurs in response to rewards and reward-predicting cues (Schultz, 2013). In reward-
motivated behavior, the initial valuation of a reward or reward-predicting cue is thought to drive 
the allocation of effort to a task. The striatum is implicated in this stage of processing, which can 
occur without awareness of the signal or presence of the reward. In contrast, later reward 
processing stages can inform strategic decision-making and engage cortical areas (Bijleveld, 
Custers, & Aarts, 2012). Using blink rate as a proxy of striatal DA activity, Pas and colleagues 
(2014) found that individuals with higher tonic blink rate exerted more effort in a finger-tapping 
task when they were presented with cues that indicated higher pay-off of their work, but this 
effect only occurred in response to reward cues presented subliminally (i.e., an extremely fast 
and masked cue). Prior to this work, studying the neurobiological underpinnings of the initial 
phase of reward processing in humans was more difficult due to temporal and/or spatial 
constrains of neuroimaging methods (e.g., van Hell et al., 2010). Thus, blink rate can provide an 
invaluable way to examine reward processing. In particular, it could be used to characterize age-
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related differences at different stages of reward processing, which could inform current models 
and theories of decision-making during adolescence. 

More broadly, ocular measures can be helpful in determining which of several candidate 
processes determine age-related differences in performance. If the experimental protocol 
achieves a separation in time of the processes in question, for example through sequential phases 
of encoding, retention, and recall in a memory experiment, the ocular responses for each can be 
assessed and compared independently. Such paradigms are useful in developmental research 
whenever it is necessary to pinpoint which cognitive processes are affected in a complex task, or 
to determine what the underlying reasons are for differences in behavior.  

Another potential application of ocular measures is to track learning progressions and to 
specify the underlying mechanisms of behavioral change. For example, reduced cognitive effort 
associated with task performance (i.e., greater efficiency) could be evident in reduced task-
evoked pupillary responses and blink rates. Reduced numbers of saccades would also suggest 
increased efficiency, and the same is true for fixation patterns that are more concentrated on the 
crucial elements of a task. In other words, quantitative changes in the ocular responses often 
reveal changes in cognitive efficiency, rather than qualitative changes in strategy. If an 
intervention led to changes in strategy, qualitatively different ocular response patterns would be 
expected, such as pupil dilations and blink rates whose intensities have shifted from some task 
components to others, or eye movements with qualitatively different patterns of saccades and 
fixations. Ocular measures are therefore a promising tool for determining whether a behavioral 
improvement reflects continuous or discontinuous, quantitative or qualitative change in 
underlying mechanisms.  

3.4 Summary  
Summing up, three different measures of the eyetracking toolbox, eye gaze, pupil dilation, and 
blink rate, have the promise of accessing crucial aspects of cognitive processing, such as 
attention, working memory, decision making, and cognitive control, across age groups. In this 
review, we have described the neural systems underlying pupil dilation and spontaneous blink 
rate, the LC-NE and DA systems, respectively. Amongst others, these systems play central roles 
in a number of complex cognitive functions, such as attention and working memory (LC-NE), 
and reward processing and cognitive control (DA). Building on a characterization of these neural 
systems, we next exemplified the range of cognitive studies in which these methods have been 
applied so far. Due to gaps in the literature in the use of these measures in the study of cognitive 
development, these sections focused mainly on adult work. The subsequent sections introduced a 
small number of selected examples from the developmental literature to show what kinds of 
analyses can be done with each measure and what results have been obtained in a developmental 
setting. We then explained the methodological details and considerations of each method. 

In the final section, we compared eye gaze, pupil dilation, and blink rate in terms of 
appropriate task designs and underlying cognitive processes, and showed that these measures can 
be used as complementary measures of different aspects of cognitive processing. We also 
highlighted gaps in the current literature that need to be addressed to provide a solid foundation 
for developmental studies and studies comparing different age groups with these methods. 
Lastly, we pointed out several directions in which future research using ocular measures could 
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advance the study of cognitive development. Research on attention and motivated behavior 
might be areas that will especially benefit from these methods, but the methods also have the 
potential to unveil aspects of neurophysiological processes underlying a much broader range of 
cognitive functions. Finally, we argued that qualitative and quantitative changes during learning 
and development could be differentiated with these measures. In closing, we expect that the 
eytracking toolbox  the measurement of eye gaze, pupil dilation, and blink rate  will yield 
novel insights about cognitive development over the coming years.  

 

Next Chapter: Using the methodology discussed in this chapter, in Chapter 5 and 6, I provide 
empirical evidence about the mechanisms that support improvements in reasoning performance 
in young adults who underwent a real-world learning experience. 
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Eye gaze patterns reveal how reasoning skills improve 
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Abstract 

Reasoning, our ability to solve novel problems, has been shown to improve as a result of learning 
experiences. However, the underlying mechanisms of change in this high-level cognitive ability 
are unclear. We hypothesized that possible mechanisms include improvements in the encoding, 
maintenance, and/or integration of relations among mental representations  i.e., relational 
thinking. Here, we used several eye gaze metrics that we developed to pinpoint learning 
mechanisms that underpin improved reasoning performance. We collected behavioral and 
eyetracking data from young adults who participated in a Law School Admission Test 
preparation course involving word-based reasoning problems or reading comprehension. The 
Reasoning group improved more than the Comprehension group on a composite measure of four 
visuospatial reasoning assessments. Both groups improved similarly on an eyetracking paradigm 
involving transitive inference problems, exhibiting faster response times while maintaining high 
accuracy levels; nevertheless, the Reasoning group exhibited a larger change than the 
Comprehension group on an ocular metric of relational thinking. Across the full sample, 
individual differences in response time reductions were associated with increased efficiency of 
relational thinking. Accounting for changes in visual search and a more specific measure of 
relational integration improved the prediction accuracy of the model, but changes in these two 
processes alone did not adequately explain behavioral improvements. These findings provide 
evidence of transfer of learning across different kinds of reasoning problems after completing a 
brief but intensive course. More broadly, the high temporal precision and rich derivable 
parameters of eyetracking make it a powerful approach for probing learning mechanisms. 

 

Keywords: reasoning, plasticity, education, learning, eyetracking 
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Introduction 

Reasoning, the ability to solve novel problems, relies on multiple cognitive processes including 
various aspects of cognitive control and relational thinking (Goodwin & Johnson-Laird, 2006). 
Indeed, relational thinking is an essential component, as it allows us to form relational 
representations from mere percepts (Alexander, 2016). Solving reasoning problems, such those 
involving transitive inference, relies heavily on processes supported by relational thinking, 
including the ability to encode, maintain, and integrate mental relations (Goodwin & Johnson-
Laird, 2006; Halford et al., 2010). Together, these processes allow us to identify patterns and 
solve novel problems, and are fundamental for human learning (Halford et al., 2010). 
 Prior research has demonstrated that reasoning can improve with targeted practice and 
increased task-specific expertise across the lifespan (Alexander, 2016; Bergman Nutley et al., 
2011; Klauer & Phye, 2008; Knoll et al., 2016). However, it is still unknown which aspects of 
reasoning contribute to improved behavioral performance. Do people become more efficient at 
relational thinking with experience? To address this question, we leveraged the high temporal 
precision and rich derivable parameters of eyetracking to index cognitive processes that may 
support improvements in reasoning over time. 

In earlier work, our lab demonstrated that young adults who underwent 100 hours of 
preparation for an exam that taxes relational reasoning (the Law School Admission Test, LSAT) 
showed improvements in reasoning performance and changes in the frontoparietal network 
(Mackey et al., 2013; Mackey, Miller Singley, Wendelken, & Bunge, 2015; Mackey et al., 
2012). Compared to a passive control group, the LSAT group improved more in accuracy and 
speed on a test of transitive inference (Fig. 1A) that required the integration of novel visuospatial 
relations (Mackey et al., 2015; Wendelken & Bunge, 2009). Moreover, they showed a greater 
concomitant decrease in activation of dorsolateral prefrontal cortex (Mackey et al., 2015), a 
region broadly implicated in high-level cognition (e.g., Fuster, 2015).  The LSAT group also 
showed changes in structural and resting-state functional connectivity of the frontoparietal 
network (Mackey et al., 2013, 2012), particularly between regions implicated in relational 
thinking (Krawczyk, 2012; Prado, Chadha, & Booth, 2011).  Together, these findings provide 
evidence of experience-dependent brain plasticity as a result of practice with reasoning. 
However, these brain imaging results alone are insufficient to conclude which cognitive 
mechanisms were altered by the intervention (Constantinidis & Klingberg, 2016; Poldrack, 
2015). 

Candidate mechanisms that may underlie improvements in reasoning include the ability 
to identify relevant pieces of information (visual search) (Goodwin & Johnson-Laird, 2006), and 
relational thinking processes such as the encoding, maintenance, and integration of relations 
(Alexander, 2016; Halford, Wilson, & Phillips, 1998). Manipulating any of these elements have 
been shown to influence reasoning performance. For example, reasoning problems become 
harder as the number of relations one needs to integrate increases (Halford et al., 2010; Johnson-
Laird, 2010). Additionally, people tend to make incorrect deductions when individual premises 
contain convoluted wording, as this hinders relational encoding (Goodwin & Johnson-Laird, 
2006). Moreover, drawing attention to relevant relations or segmenting a complex task to 
facilitate focus on single relations can improve performance, even after controlling for other 
cognitive demands of the task (Duncan, Chylinski, Mitchell, & Bhandari, 2017). These examples 
illustrate the numerous factors that can influence reasoning ability.  
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In the present study, we sought to determine which cognitive processes, if any, are honed 
with experience  both as a result of reasoning instruction/practice and more generally from 
repeated experience with a test (i.e., a test-retest effect). To this end, we probed changes in 
patterns of eye movements on a reasoning task. In the ~7 seconds that it takes to solve one of the 
problems on this task, participants make ~23 eye fixations. As such, we posited that analyzing 
patterns of eye movements should be able to reveal more about the process of reasoning and 
mechanisms of learning than could accuracy, RTs, or fMRI activation. 

Participants in this study performed a transitive inference task (Fig. 1A; adapted from 
Mackey et al., 2015; Wendelken & Bunge, 2009) while we collected eyetracking data, before 
and after they completed one of two online LSAT preparation courses developed by Kaplan, Inc. 
The Logic Games course focused on reasoning about novel problems, and the Reading 
Comprehension course on answering questions about passages of text (see Methods for sample 
problems for both sections of the LSAT). Our eyetracking task requires participants to jointly 
consider a subset of relevant visuospatial relations depicted by balance scales (see Figure 1). On 
the surface, this task bears no resemblance to the text-based problems in the LSAT curriculum. 
However, at a deeper level, both tax relational thinking. 

 

 
Figure 1. Transitive inference task. (a) Sample stimulus array, with four relations at the top 
and the question at the bottom. In this sample problem, participants had to encode that the blue 
ball was heavier than the orange one, and that the orange and purple balls were equally heavy, to 
determine that the blue ball was heavier than the purple one. (b) Eyetracking adaptation from 
(Mackey et al., 2015; Wendelken & Bunge, 2009): each trial began with a fixation cross in the 
center of the screen (1000ms) that cued participants to fixate on it, followed by the presentation 
of the question and target balls. After 100ms, four scales would appear, only two of which were 
relevant to the problem. A trial ended immediately after the participant pressed a button to 
indicate which of the two target balls was heavier.  
 

We developed three gaze metrics to assess (1) visual search, (2) a broad measure of 
relational thinking encompassing encoding, maintenance, and integration of relations, and (3) a 
more specific measure of relational integration (see Table 1 and Methods for details). We based 
these metrics on findings from eyetracking studies that relate similar ocular behaviors to the 
processes of searching for task-relevant information (Rao, Zelinsky, Hayhoe, & Ballard, 2002), 
stimulus encoding and maintenance (Hannula et al., 2010), and relational integration (Thibaut & 
French, 2011; Vigneau et al., 2006).  
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We had initially sought to use eye gaze metrics to isolate three distinct stages of task 
performance: visual search, relational encoding, and relational integration (S3). However, 
examination of the eye gaze data (collapsed across groups and timepoints, Fig S2) did not 
support such clear-cut stages of processing (see also Goodwin & Johnson-Laird, 2006); rather, 
the data indicated a more gradual transition from visual search to relational integration. As such, 
we refined the planned gaze metrics to account for the reality of how participants solved the 
problems (see methods), and then tested for effects of group and timepoint. 

 
 

Table 1. Gaze metrics indexing processes that may support improvements in reasoning 
 

 Evidence supporting H1 

BF10 P(H1 | data) / P(H0 | data) 
H1 = POST < PRE  

 
H0 = G+T 
H1 = G x T 

BF10  

 (% error) 

Reasoning Comprehension 

Cognitive 
Process 

Gaze metric 

PRE 
Mdn 

[95%CI] 

POST 
Mdn 

[95%CI] BF10 

(%error) 

PRE 
Mdn 

[95%CI] 

POST 
Mdn 

[95%CI] BF10 

(%error) 

Visual 
Search 

Decrease in the 
number of fixations 
on any scale before 
honing in on the 
relevant scales 

5.75  
[4, 7] 

5  
[4, 5] 

6.51* 
(±<0.00) 

5  
[4, 5.75] 

4  
[3, 5] 

0.67 
(±<0.00) 

0.60  
(±2.79) 

Relational 
Thinking 

Decrease in the total 
duration of fixations 
on relevant relations 
after honing in on 
the relevant scales 

2526.5 
[1010.5, 
3259.00] 

1122.5 
[555.99, 
1854.50] 

240.03*** 
(±<0.00) 

1635.75 
[1069, 

2256.25] 

1725 
[1387.5, 
1990.18] 

0.30  
(±0.02) 

3.66* 
(±1.98) 

Relational 
Integration 

Fewer saccades 
between the two 
relevant scales after 
honing in on the 
relevant scales 

3 
[1.75, 
3.75] 

2 
 [1, 3] 

3.15* 
(±<0.00) 

2 
 [2, 3] 

2.5  
[2, 3] 

0.14  
(±<0.00) 

1.58 
(±2.62) 

Mdn[95%CI]: Median with 95% confidence intervals, calculated with 1000 bootstrap iterations. H1 = POST < PRE 
assessed with Bayesian paired single-sided t-test. Interaction models (Group x Time) tested with Bayesian mixed 

(Morey, Rouder, & Jamil, 2015) default Cauchy prior scale  

  and prior uniform probability to the models. Refer to Table S1 for specification of the models and posterior 

odd estimates. Approximate classification scheme for the interpretation of Bayes factors from (Wagenmakers et al., 

2017): *** Extreme evidence for H1, *Moderate evidence for H1,,  Moderate evidence for H0.  

 
Our key predictions were that reasoning instruction/practice would be associated with 

improved reasoning performance and efficiency in relational thinking, including the more 
specific measure of integration. We tested these hypothesis with behavioral and gaze data from 
the transitive inference task. We also assessed behavioral improvements with a composite 
measure of four reasoning tests, to better characterize the generalizability of the intervention 
(Lindenberger et al., 2017; Lövdén, Bäckman, Lindenberger, Schaefer, & Schmiedek, 2010; 
Noack et al., 2014). The behavioral test battery additionally included assessments of working 
memory, planning, and selective attention, which we used to characterize the extent of transfer to 
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untrained tasks. However, we did not anticipate far transfer to these measures, given limited 
evidence to date of far transfer of learning in adults (Au et al., 2015). 

Finally, we undertook an exploratory analysis to understand the cognitive mechanisms 
that support test-retest improvements on the transitive inference task, and underlie individual 
differences in pre-test performance. Thus, we examined the relationship between relational 
thinking, integration, visual search, and behavior.  

 
Methods 

Ethics statement 

The research was approved by the Committee for the Protection of Human Subjects at the 
University of California, Berkeley. Written informed consent was obtained from all participants. 

Participants and eligibility 

We recruited college students planning to take the LSAT within one year. Inclusion 
criteria included being native English speakers, at least 18 years old, normal/corrected vision, 
and no history of psychiatric disorders, learning disabilities, or prior LSAT experience. 
Participants were assigned pseudo-randomly to study for one of these two sections of the LSAT, 
the Logic Games or the Reading Comprehension section. The first quarter of participants were 
assigned to a group at random, whereas we distributed the rest to match the groups on age, 
gender, reasoning, working memory, and LSAT performance (Table S1). 

Ninety-five participants completed the pre-tests, and 49 completed the LSAT course and 
post-tests. We excluded two of these participants because they failed to study for their assigned 
course. Participants in our final sample did not differ from those who only completed one 
timepoint on either cognitive performance or demographic variables. The final sample who 
prepared for the Logic Games section of the LSAT included 23 students (14 Females, mean age 
21.55). The final sample who prepared for the Reading Comprehension section of the LSAT 
included 24 students (13 females, mean age 21.88). Levels of attrition did not differ significantly 
between the groups ( ² = 0.01, p = 0.93). For analyses involving the transitive inference task, we 
excluded two subjects from each group for having more than 60% of trials missing valid fixation 
data, and one subject from the Reasoning group for having performance below chance levels 
(20% accuracy, chance was 50%). 

Summary of procedures 

Before and after studying for the LSAT courses, participants completed a battery of nine 
online cognitive assessments (Hampshire, Highfield, Parkin, & Owen, 2012), followed by an in-
person testing session. Participants were blind to their LSAT group at pre-test, and the 
experimenters carrying out the testing sessions were blind to the group assignment at both 
timepoints. 

During the lab sessions, we recorded gaze data from participants while they completed a 
transitive inference task, followed by two tests of inductive reasoning. Data from the transitive 
inference task is the subject of the current investigation. After finishing the eyetracking tasks, 
participants completed a standardized test of reasoning termed Analysis Synthesis (Woodcock-
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Johnson Battery III; Woodcock, McGrew, & Mather, 2001), LSAT sample problems, and a 
survey. The survey included demographic and ocular health questions, questions regarding prior 
experience with the LSAT, and at post-
their LSAT course. The order of tests was the same at both timepoints. 

LSAT courses  

Participants studied for either the Logic Games or Reading Comprehension section of the 
LSAT with a commercially available online course (Kaplan, Inc.) for 6 weeks. During the 
intervention, students only had access to the instructional material related to their assigned 
section, and we monitored their progress in the course. We requested participants to 1) study 
only for the LSAT section we assigned to them, 2) complete all six lessons of the course within 7 
weeks (~one lesson/week), and 3) space their practice (i.e., study every other day, three times per 
week). The latter was important because prior work has established that spacing practice 
promotes learning (Greene, 1989) and transfer effects (Wang et al., 2014). We chose these 
practice intervals so that students could incorporate their LSAT courses more easily with their 
typical school schedules. Participants reported having complied with these instructions, and that 
they completed on average, one lesson per week (range = 0.5-2 lessons) and studied their course 
for 24 hours (range = 4-24h). Both groups reported similar studying times. 

The Logic Games section involves solving word problems that contain many rules that 
must be integrated to find the correct answer (sample problems: 
https://www.lsac.org/jd/lsat/prep/analytical-reasoning). The preparatory course for this section 
instructed on strategies such as organizing relational information into sketches to minimize the 
amount of information one needs to remember, as well as to facilitate deductions, rule 
abstractions, and correct rule application.  

The Reading Comprehension section involves reading long passages and answering 
multiple choice questions based on relevant information in the passages (sample problems: 
https://www.lsac.org/jd/lsat/prep/reading-comprehension). The preparatory course for this 
section involved learning strategic reading techniques, such as finding keywords based on the 
passage questions and annotating main ideas on the passages to minimize working memory 
demands. 

The courses were similar in critical ways. Both courses included six lessons, each 
consisting of online videos and homework practice problems designed to help improve timing 
and increase mastery with different question types. Both courses featured the same instructors in 
the online videos, who explained problem-solving strategies and had students practice those 
skills with real LSAT problems. Participants in the two groups found their respective courses 
similarly effective and enjoyable (Table S2).  

We measured the effectiveness of the LSAT courses with short Logic Games,and 
Reading Comprehension problem sets that participants completed in the lab. We found little 
evidence of the effectiveness of the mini-courses in improving performance on either section 
(S1). However, our participants had pre-test scores on a full practice LSAT exam (Table S1) 
comparabl
previous study (Mackey et al., 2015).  
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Eyetracking apparatus and procedures 

We recorded binocular gaze data from participants completing a transitive inference task 
using Tobii T120 Eye Tracker (17-inch monitor, 1280 ×1024 pixel resolution). We sampled at a 
temporal resolution of 120Hz, with participants sitting at 60 cm from the eyetracker camera. We 
took several precautions to collect high-quality ocular data following recommendations from 
(Holmqvist et al., 2011). Furthermore, participants reported that they did not suffer from medical 
conditions or used medication that could affect ocular behaviors. We used Presentation® 
software (v. 18.0, Neurobehavioral Systems, Inc.) to present the task stimuli and the Tobii Eye 
Tracker Extension for Presentation v1.1 (Martin et al., 2007) to synchronize the timing of the 
stimulus presentation and ocular events. 

Transitive Inference Task 

In the transitive inference task (adapted from Mackey et al., 2015; Wendelken & Bunge, 2009; 
Fig.1), participants see four balance scales, each one with two color balls. Based on the relations 
shown by the scales, participants needed to infer the relative weights of two target balls. To solve 
the problems correctly, it was necessary to integrate the relationship shown by two of the four 
scales (i.e., the relevant scales). Participants completed 60 of these problems, divided into two 
blocks of 30 trials. We recalibrated the eyetracker during the short break between blocks. 

We minimized potential confounds in gaze patterns by controlling for features that could 
impact visual saliency 
appear and which balls were likely to be relevant. We changed the position of the relevant scales 
across trials, and the program selected the color of the five balls at random from a set of six colors, 
which were all matched in luminance. Additionally
question area by first presenting the question alone, and then adding the four scales (see trial 
sequence in Fig 1.B). 

Behavioral outcome measures. We examined changes in response times (RTs) and 
accuracy (proportion of trials answered correctly). Performance did not vary as a function of the 
spatial arrangement of the scales (e.g., the position of relevant scales) or the number of scales 
showing inequalities (Fig S1). Thus, we did not include these factors in our analyses in favor of 
maximizing the statistical power to assses our hypotheses. 

Given that pre-test RTs were highly positively skewed (sk = 4.55), we trimmed outlier trials 
falling on the long end of the tail (i.e., Q3+1.5*IQR) to minimize bias in our gaze analysis that 
could result from including the highly variable fixation durations that could occur on these 
atypically long trials. Outlier trials were identified separately by subject, timepoint, and block, to 
retain individual differences in performance. Approximately 5% of trials were trimmed due to 
outlier RTs from each group per timepoint.  

Gaze preprocessing and outcome measures. We used custom scripts written in Python 
v3.6 to preprocess and calculate gaze outcome metrics. 

We classified gaze data into fixations using a standard dispersion-based algorithm 
adapted from (Salvucci & Goldberg, 2000), allowing a maximum dispersion of 35px over a 
100ms window (see details in S2). Participants had a median of 22 fixations on correct trials. Our 
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analysis included only trials with at least three valid fixations, under the assumption that this is 
the minimum number of fixations needed to solve the problem, with a maximum of 64 fixations 
(i.e., Q3 + 1.5*IQR) to minimize the bias that those outlier trials could induce. 

We assigned an area of interest (AOI) label to the fixations. The AOIs included each of 
the four scales (two relevant and two irrelevant scales) and the area where the target balls and 
question appeared. We used these labeled fixations to calculate the number of gaze transitions 
between different AOIs fixation on 

was coded as one transition between the relevant scales. We refer to these 
events as transitions because we were primarily concerned with measuring how often fixations 
shifted between two different scales; we ignored, at most, one fixation that may have occurred 
elsewhere between those two target fixations.  

We used the transitions and fixation data from each trial to derive three gaze outcome 
measures (Table 1), informed by an analysis of fixation sequences performed across groups and 
timepoints (Fig S2). To compute the gaze metrics, we first marked the point when it became 
more probable that a participant had honed in on the relevant scales during a trial. For each trial, 
and on an individual subject basis, we measured that point in the trial by calculating the 
empirical probability that the number of fixations on irrelevant scales was below chance (25%), 
and that the number of fixations on relevant scales was greater than chance. We estimated these 
probabilities with a sliding window that evaluated 20% of the fixations at once (min size 4, max 
size 8 fixations). This approach enabled us to capture a common pattern of fixations (Fig.2), 
whereby participants began to preferentially fixate on the relevant scales after a certain point in 
the trial. Accordingly, the visual search metric constitutes the number of fixations the participant 
made on any scale prior to that point, and we indexed relational thinking as the duration of 
fixations on relevant scales occurring after that point. We additionally computed a more 
conservative metric of relational integration as the number of saccades between the two relevant 
scales.  

Composite reasoning measure and other transfer tasks 

Three subtests included in the composite reasoning measure (Table 2) were part of a larger 
battery of nine online assessments, which included tests of selective attention, planning, and 
working memory (Table S4). These tests were developed by the Cambridge Brain Sciences 
Laboratory (http://www.cambridgebrainsciences.com), as an online adaptation of assessments 
designed and validated at the Medical Research Council Cognition and Brain Sciences Unit 
(Hampshire et al., 2012; Owen et al., 2010).  

Task difficulty in all the assessments was adaptive as a function of performance. 
Performance metrics differed between the tasks (e.g., a maximum level achieved vs. total correct 
responses), so we standardized the scores after removing outlier scores (i.e., scores that deviated 
more than 3 S.D. away from the grand pre-test mean).  Using this normalized dataset, we created 
composite measures of reasoning, planning, and working memory by averaging performance 
across related assessments. Composite measures provide a robust test of trasnfer (Lindenberger 
et al., 2017; Lövdén et al., 2010) and help minimize the number of statistical tests necessary. We 
derived these composite measures with a theory-driven approach, given that factor analytic 
methods were not appropriate for our sample size. For the reasoning measure, we averaged the 
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standardized scores from the Analogical Reasoning, Object Reasoning, and Odd One Out tests, 
as well as the Analysis Synthesis test administered in the lab.  

Statistical Analysis 

We used Bayesian models to quantify the strength of evidence supporting the model that 
tested a given hypothesis in question, as described in the results section. For all analyses, we 

probabilities with default Cauchy prior scales from the BayesFactor R package (Morey et al., 
2015). We performed all analyses in Python 3.6 and R 3.2. 

Supplementary materials: all supplementary information referenced in this chapter can be 
found in Appendix B. 

 
Results 

Improvements related to targeted reasoning instruction/practice 

We quantified evidence in support of our hypotheses with Bayesian tests, permitting us to assess 
how likely our data is to support one model versus another using the Bayes Factor (BF10), and 
thus also quantify the strength for the null hypothesis (Wagenmakers et al., 2017). We used 
Bayesian single sided t-tests to gauge support for the prediction that the Reasoning group would 
improve in the behavioral and gaze metrics. We followed these tests with Bayesian mixed 
regressions to assess the probability that these changes could be attributed to reasoning practice 
beyond test-retest alone or subject variance. As such, we quantified the strength of evidence in 
favor of including the Group x Time term relative to a model containing both main effects. We 
modeled subject variance as a random nuisance factor, but the model design is otherwise 
equivalent to a 2x2 repeated-measures ANOVA. We report BF10 (see Table S3 for detailed 
output), and interpret this metric in accordance with prior work (Wagenmakers et al., 2017): 
BF10 >1: data provide positive evidence for the hypothesis, BF10>3: moderate evidence, 
BF10>10: strong evidence. The inverse applies for the null hypothesis (1/BF10). 
 

Transfer to the composite reasoning metric. The Reasoning group showed 
approximately a 22% improvement on this metric; by contrast, there was no evidence that 
performance of the Comprehension group changed between timepoints (Figure 2; Table 2). The 
Group x Time interaction model also received strong support. Thus, according to the Bayesian 
analysis, there is strong evidence that the Reasoning group improved on the composite of four 
measures of reasoning; this was not the case for the Comprehension group.  
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Figure 2. Performance on reasoning assessments. Scaled 
score on the composite measure of reasoning (y-axis), before 
and after (x-axis) each group completed their LSAT course. 
Error bars are 95% C.I estimated with 5000 bootstrap 
iterations. **Strong evidence that the Reasoning group 
showed greater improvements across timepoints. See Table 2 
for detailed statistics. 

 

 

 

Table 2. Transfer to Composite Reasoning Measure  

Subtest 
included 

Description of subtest 

Evidence supporting H1  

BF10 P(H1 | data) / P(H0 | data) 

H1 = POST < PRE 
BF10 (~ % error) 

H0 =G + T 
H1 = G x T 

BF10   

(% error) Reasoning Comprehension 

Odd One 
Out 

Infer rules that relate object features to identify a 
deviant object among 9 choices 

20.78 ** 
(±<0.00) 

0.63 
 (±<0.00) 

15.06** 
(±3.04) 

Object 
Reasoning 

Decide whether four 2x2 matrices containing 
geometrical patterns form a sequence 

Analogical 
Reasoning 

Apply the rule governing the relationship between 
three objects to a new set of objects 

Analysis 
Synthesis 

Solve logical puzzles involving color codes 
representing symbolic rules 

H1= POST<PRE assessed with Bayesian single-sided paired t-test. Interaction models (Group x Time) tested with 
(Morey et al., 2015) default Cauchy prior scale  

 and prior uniform probabilities. See Table S1 for model specification & posterior odd estimates. 

Approximate classification scheme for the interpretation of Bayes factors from (Wagenmakers et al., 2017): ** 
Strong evidence for H1 

 

We also tested for transfer to the measures of working memory, planning, selective 
attention, and verbal fluency. There was no evidence that performance on these measures 
changed between timepoints in either group (Table S4). Based on these results, there was 
evidence of transfer from the LSAT Logic Games course to a composite score of four measures 
of reasoning, but little evidence of far transfer from the study materials to other cognitive 
domains.  
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Transfer to the Transitive Inference Task. Given that accuracy was at ceiling already at pre-
test (Fig. S1) for this sample, unlike the sample in our prior study (Mackey et al., 2015), we 
focused exclusively on response times (RTs) on correct problems as a measure of performance. 
The data provided strong evidence in support of the hypothesis that the Reasoning group would 
become faster at accurately solving the problems between timepoints (BF10 0.00, 

improved (BF10  2.18± <0.00). Although the data provided support for the model containing the 
Group x Time term (BF10  ±4.48), the strongest model included only the effect of Time 
(BF10  39.24 ±2.41). Thus, although the evidence of improvement was stronger for the 
Reasoning group, both groups got faster at solving the task between timepoints (Fig. 3A). 

Gaze metrics. We predicted that reasoning instruction would lead to improved efficiency 
of relational thinking, including changes in relational integration. For the Reasoning group, the 
gaze data provided moderate support for the model stipulating changes in the selective measure 
of relational integration, and extreme evidence in favor of the model testing improvements in the 
broader measure of relational thinking (for these and subsequent results, see Table 1; Fig. 3.B-
D). By contrast, for the Comprehension group, there was moderate evidence in favor of the null 
model of both metrics, suggesting that their pre- and post-test scores are comparable. When 
considering whether the changes in relational thinking in the Reasoning group were greater than 
in the Comprehension group, we find that the data are 3.66 times more likely under the model 
including the Group x Time term compared to the model testing only the main effects. Indeed, 
the interaction model was best supported by the relational thinking data (BF10  7.27 ±1.51). 
Conversely, there was moderate evidence against including the interaction term to model the 
relational integration data (BF10  0.17 ±2.32). Thus, there is moderate evidence that reasoning 
instruction/practice led to improved efficiency of relational thinking. 

We also tested for improved efficiency of visual search. For the Reasoning group, the 
data provided moderate support for the model stipulating increased search efficiency; this was 
not the case for the Comprehension group. However, the data did not support the Group x Time 
model: rather, there was moderate support for the main effect of Time (BF10 .01 ±1.14). These 
results suggest that changes in visual search were likely due to individual differences, test-retest 
effects, or a general effect of being exposed to an intervention, rather than specifically an effect 
of reasoning instruction/practice.  
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Figure 3. Performance and gaze metrics from the transitive inference task. Cumulative 
distribution functions (CDF) on each measure, for each group (left panels = Reasoning group) 
and timepoint (blue functions = post-test scores). Vertical lines denote: medians (solid), and 25th 
or 75th percentiles (dotted lines left or right to the median, respectively). Classification scheme to 
interpret Bayes factors (BF10) used to quantify the strength of evidence in support of the models 
testing: improvements across timepoints (i.e., POST < PRE), and differential improvements 
between the groups (i.e., Group x Time): ***Extreme, **Strong, *Moderate, ~Anecdotal. Refer 
to Table 1 for detailed statistics. 

 

Individual differences in performance and test-retest improvements on the transitive 
inference task across the full sample 

We first assessed the relationships among the gaze metrics at pre-
Bayesian correlations. At pre-test, relational thinking was strongly correlated with both visual 

BF10 BF10 ), but the 
BF10 

Similarly, change in relational thinking correlated strongly with changes in relational integration 
BF10 24534.15), and moderately with changes BF10 6.61); 

by contrast, there was no evidence that changes in visual search and relational integration were 
BF10 0.91). These results provide evidence that greater 

efficiency of relational thinking was related to both visual search and relational integration, 
which in turn were separable components of relational reasoning. 
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 Next, we used Bayesian regression models to determine which gaze metric(s) could best 
explain changes in RTs between timepoints across the full sample. The models included LSAT 
group as a nuisance variable and RT changes as a dependent variable. The predictors included 
one or more of the gaze metrics. We found the strongest evidence in favor of a model that 
included changes in relational integration, relational thinking, and visual search as predictors of 
change in RTs (BF10 28.05 ±0.79). Together, these metrics accounted for ~35% of the variance 
in RT reduction. In simpler models testing individual gaze predictors of changes in RTs, there 
was strong evidence in favor of relational thinking (BF10 20.42 ±0.79), which accounted for 
~23% of the variance in RT reductions. By contrast, there was mild evidence for visual search 
(BF10 2.81 ±0.80%, R2 =0.14), and no evidence in favor of the more specific measure of 
relational integration (BF10 0.55 ±0.89). Overall, these results point to relational thinking as a 
key facet of practice-related improvements in transitive inference task performance.  

Discussion 

Which cognitive mechanisms underlie improvements in relational reasoning? We sought to 
address this question by examining improvements related to targeted reasoning instruction and 
practice with the Logic Games section of the LSAT, and general test-retest improvements across 
two timepoints by also considering the changes in the group who prepared for the Reading 
Comprehension section of the LSAT. Our key prediction was that practicing solving word-based 
logic problems would lead to improved performance on visuospatial tests of reasoning, as well as 
improved efficiency of relational thinking on a visuospatial transitive inference task, as measured 
via gaze metrics. We additionally tested whether either group exhibited increased efficiency of 
visual search.  

We found evidence that reasoning instruction/practice led to improved performance on a 
composite of four measures of reasoning. On the surface, these measures of reasoning did not 
resemble the LSAT problems, but rather shared a deeper commonality of demands on relational 
thinking. Thus, these results provide evidence of moderate transfer from one type of reasoning 
practice to other reasoning tests.  

Additionally, we found evidence that reasoning instruction/practice led to increased 
efficiency on our ocular measure of relational thinking. By contrast with the relational thinking 
metric, there was no compelling evidence that the changes in visual search or the conservative 
metric of relational integration could be attributed specifically to the reasoning intervention. 
Thus, we conclude that reasoning instruction/practice predominantly honed the ability to encode 
and maintain several mental relations in mind.  

Although reasoning/instruction affected relational thinking on the transitive inference 
task, it did not yield a benefit in terms of behavioral changes on this task over and above a test-
retest effect and the gains observed in the active control group. This discrepancy illustrates the 
idea that gaze metrics can pinpoint changes in specific cognitive processes even if the behavioral 
measures administered in the study are insufficiently sensitive. Similar arguments have been 
made with regard to brain imaging studies examining the effects of an intervention (Neville et 
al., 2013) or predicting future behavior (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015).  
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Having found evidence that the Reasoning group improved on reasoning measures, we 
sought to characterize the extent of transfer to other cognitive domains. In our prior study 
(Mackey et al., 2015), we did not observe transfer of reasoning instruction/practice to individual 
measures of matrix reasoning, rule induction, working memory, or processing speed. Here, we 
examined transfer to composite measures of various cognitive abilities, rather than individual 
tests, as a more robust test of transfer (Lövdén et al., 2010). We found moderate evidence in 
favor of the null hypothesis  i.e., no change  for measures of planning, working memory, 
selective attention, and verbal comprehension. Taking together the results from both studies, 
there is  as predicted based on prior intervention studies (Au et al., 2015; Melby-Lervåg & 
Hulme, 2013)  no evidence of far transfer from LSAT practice.  

Finally, we adopted an individual differences approach to understand the processes that 
support test-retest improvements and performance on the transitive inference task. At pre-test, 
relational thinking was strongly correlated with both visual search and relational integration, but 
these two metrics were only weakly correlated with each other. This pattern of results was also 
obtained for correlations among the change scores for these metrics. These findings suggest that 
there could be temporal overlap between visual search and the early stages of relational thinking 
(i.e., initial encoding of scales), whereas relational integration may overlap with the later stages 
(i.e., maintenance). 

Across the entire sample, we found evidence that RT reductions were associated with 
improved efficiency of relational thinking and visual search, but that relational thinking was 
likely the strongest driver of change. This finding, along with the pattern of correlations among 
gaze metrics, suggests that these gaze metrics capture at least partially separable cognitive 
processes  and that each contributes differentially to improved performance. Indeed, even when 
accounting for improved attentional control underlying visual search, changes in relational 
thinking are still a critical predictor of improved reasoning performance. 

Although this study leverages eyetracking measures in a novel way to provide insights 
regarding learning mechanisms, there are several limitations to consider. First, while we have 
evidence that practicing Logic Games is associated with gains in other measures of reasoning, 
we lack strong evidence that Logic Games performance itself improved after the 6-week online 
course, as measured via one brief (8-minute) problem set administered at pre-test and two at 
post-test
(Mackey et al., 2015), which differed from the current study in multiple ways. In particular, 
changes in LSAT performance in the previous study were assessed with full-length practice 
exams, which included 4 problem sets (35 minutes) for Logic Games as well as for Reading 
Comprehension. Although the problems we had selected are considered of medium difficulty and 
test common question types, the strategies taught in the LSAT course may not have been 
particularly useful for solving the specific problems we selected, or perhaps students needed 
additional instruction on how to apply those strategies effectively. Alternatively, the online 
course format  while ideal from an experimental standpoint, as it enabled us to compare two 
separate but similarly structured courses  may not have been an ideal learning platform. 
However, participants rated both courses as effective. Finally there may have been a synergistic 
effect in the previous study of studying for all sections of the LSAT together (Logic Games, 
Analytical Reasoning, and Reading Comprehension), and spreading the course over 3 months as 
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opposed to 6 weeks. However, despite the lack of improvement on our brief Logic Games 
assessment, we contend that we can meaningfully assess effects of this experience on other 
assessments that tap overlapping skills.  

Second, pre-test accuracy on the transitive inference task was at ceiling, in contrast with 
our prior study (Mackey et al., 2015). This difference likely reflects differing sample 
characteristics. The task was sensitive to RTs in this study, but the two groups sped up to a 
similar degree. We can only speculate that if the task had been more difficult for these 
participants, we would have had an opportunity to observe a differential effect of Reasoning and 
Comprehension courses on accuracy.  

A final limitation is that recruitment and retention were challenging. The study required 
students who were inexperienced with the LSAT and were willing to commit to studying for 
only one section  a requirement that likely dissuaded students who sought to take the LSAT 
immediately. Additionally, the study required a serious time commitment for undergraduates 
who already had a full course load. However, considering that there were similar levels of 
attrition in the Reasoning and the Comprehension groups, we are still able to draw meaningful 
conclusions about the effects of reasoning practice. 

To conclude, our study highlights the utility of eyetracking for probing the mechanisms 
underlying real-world learning. The gaze measures used in our study revealed that changes in 
relational thinking contributed to improved reasoning performance, beyond changes in 
supporting attentional processes. Additionally, the high temporal resolution of the eyetracker 
provides a more detailed window into the series of rapid computations and highly interactive 
processes that underlie reasoning (Duncan et al., 2017) than is possible with neuroimaging or 
behavioral methods alone. Beyond elucidating mechanisms of plasticity, then, this study also 
provides a window into the thought processes that unfold during reasoning. In future research, 
the combined use of eyetracking with behavioral and neuroimaging methods could provide 
unique insights into the brain mechanisms that support cognitive functioning and learning, and 
sources of individual differences therein.  

 

Next chapter: given that relational thinking was the mechanisms impacted by reasoning 
instruction, we next examine the degree of transfer to another domain in reasoning that also 
relies in the same cognitive process but in the service of rule induction. In the next chapter, we 
examine the degree of transfer from practicing reasoning in a context that primarily taxes 
deductive reasoning to performance in a rule induction task, which we would consider a further 
degree of transfer than what was documented in Chapter 5. Furthermore, we use metrics of pupil 
dilation to characterize whether and how the learning experience influences how rule induction 
unfolds during problem-solving. 
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Chapter 6 

 

Phasic pupillary responses reveal insights into practice-related changes in inductive 
reasoning 
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Abstract 

Relational reasoning has been shown to improve following learning experiences that 
emphasize either deductive or inductive reasoning. Even though both inductive and deductive 
reasoning rely on shared cognitive and neural mechanisms that support relational reasoning, the 
evidence of transfer of learning between these domains is scant. Here, we examine transfer from 
practicing reasoning in a domain that mainly emphasized deductive reasoning over a short time-
frame to 
review). We hypothesized that completing a 6-week preparatory course for the Logic Games 
section of the Law School Admission Test (LSAT) would lead to greater improvements in the 
rule induction task, and influence how rule inference processes unfold during problem-solving. 
Despite prior evidence that the Reasoning group improved in relational thinking efficiency 
during a transitive inference task and had improved performance on a composite measure of four 
tests of relational reasoning (Guerra-Carrillo & Bunge, under review), we found moderate 
evidence against the hypothesized transfer effect to this rule induction task. However, accuracy 
was already at ceiling prior to training. By contrast, the pupillary measures provided evidence 
that this group engaged in active rule inference to a greater degree at post-test, whereas there was 
no evidence of this change in the active control group. Although there was no evidence of this 
change in the active control group, the changes in the Reasoning group were likely due to test-
retest effects or individual differences. Thus, we consider these results as evidence of practice-
related improvements in the process of active rule induction. We postulate that the pupillary 
metrics could reflect ongoing changes over the course of an intervention that either accompany 
or precede changes in behavior. 

 

Keywords: pupil dilation; rule inference; inductive reasoning; transfer; learning  
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Introduction 

Relational reasoning, our ability to derive meaningful relations between mental representations, 
is thought to be malleable  even in adulthood (for review, see Alexander, 2016). Considering 
the importance of reasoning in human cognition (Halford, Wilson, & Phillips, 2010), several 
studies have aimed to promote transfer to reasoning performance from a variety of learning 
experiences (Dumas & Schmidt, 2015; Gamino et al., 2014; Owen et al., 2010; Schmiedek, 
Lövdén, & Lindenberger, 2010). The most consistent evidence of positive transfer comes from 
studies involving targeted reasoning instruction and practice in both healthy (Bergman Nutley et 
al., 2011; Klauer, Meiser, & Naumer, 2000; Klauer & Phye, 2008; Mackey, Hill, Stone, & 
Bunge, 2011) and clinical populations (Chapman & Mudar, 2014; Christoforides, Spanoudis, & 
Demetriou, 2016; Han, Davis, Chapman, & Krawczyk, 2017). A key motivation in this line of 
work has been for the gains experienced during an intervention to support relational reasoning in 
a variety of novel contexts and tasks, but this type of broad transfer has not always occurred 
(Daniel & Klaczynski, 2006; Roth-Van Der Werf, Resing, & Slenders, 2002). Thus, an important 
question is, what are the boundaries of transfer in relational reasoning?  

In the general context of cognitive plasticity, it has been argued that the degree of transfer 
depends heavily on the extent to which the trained and transfer tasks rely on shared neural and 
cognitive mechanisms  in particular, that performance on the transfer task depends on the 
cognitive processes taxed by the trained tasks (Lindenberger et al., 2017; Lustig, Shah, Seidler, 
& Reuter-Lorenz, 2009). There has been empirical evidence in support of this argument from 
interventions targeting higher-cognitive skills, such as working memory (Constantinidis & 
Klingberg, 2016). Work from our lab has also provided support for this argument in the context 
of relational reasoning with findings from two separate sets of studies, whereby we probed 
changes in the cognitive and neural mechanisms that support relational reasoning following 
targeted reasoning instruction and practice (Guerra-Carrillo & Bunge, under review; Mackey, 
Miller Singley, & Bunge, 2013; Mackey, Miller Singley, Wendelken, & Bunge, 2015; Mackey, 
Whitaker, & Bunge, 2012). 

In one study, young adults who prepared for the Logic Games section of the Law School 
Admission Test (LSAT) with a 6-week online course involving approximately 33 hours of 
instruction and practice improved in relational thinking efficiency, as indexed by gaze metrics on 
an eyetracking transitive inference task (Guerra-Carrillo & Bunge, under review). The transitive 
inference task engages various aspects of relational thinking, including the ability to encode, 
maintain, and integrate visuospatial relations in the service of deducing the ordering of the 
stimuli (Wendelken & Bunge, 2009). We have postulated that these same deductive processes 
are emphasized in the Logic Games course, wherein students practice ordering and integrating 
verbal relations according to a set of given rules (Mackey et al., 2015). Compared to the active 
control group, who prepared for the Reading Comprehension section of the exam by completing 
a well-matched online course, the Reasoning group also showed greater gains on a composite 
measure of four tests of relational reasoning, which included tests of deduction and induction2. 
                                                           
2 Composite score included Analysis Synthesis from the Woodcock Johnson III (Woodcock, McGrew, & Mather, 
2001), and three tests from Cambridge Brain Science online testing platform (Hampshire, Highfield, Parkin, & 
Owen, 2012): Odd one Out, Object Reasoning, and Analogical Reasoning (for details see Guerra-Carrillo & Bunge, 
under review) 
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We observed no evidence of transfer in either group to tests of working memory, planning, or 
selective attention. These findings suggest that transfer was limited to tests of reasoning, and 
provide evidence of the malleability of processes that underlie relational reasoning. 

In a previous set of studies involving students who completed a 3-month course including 
all sections of the LSAT, in comparison with a well-matched passive control group, the LSAT 
group showed improved performance on the fMRI version of the transitive inference task 
(Mackey et al., 2015), as well as change in structural connectivity (Mackey et al., 2012a) and 
functional connectivity (Mackey et al., 2013) within a lateral fronto-parietal network that has 
been implicated in reasoning (Krawczyk, 2012; Prado et al., 2011). In that study, there was no 
transfer from LSAT practice to test of working memory and processing speed, and null results in 
regards to two tests of inductive reasoning. However, there were methodological issues with both 
of the inductive reasoning tasks, which rendered the null results ambiguous (see discussion in 
Mackey et al., 2015). Taken together, the results from all these prior studies provide evidence of 
moderate transfer from one type of reasoning practice to other tests of reasoning, because the 
measures did not resemble the LSAT problems at a surface-level (visuospatial puzzles as 
compared with word problems), but they all emphasized relational reasoning in some manner.  

Considering the hypothesis that transfer can occur between domains with shared 
cognitive mechanisms, we could expect broader transfer between different types of context that 
rely on relational reasoning, such as between inductive and deductive reasoning. Indeed, both 
domains rely on shared cognitive processes that support relational reasoning, such as relational 
thinking (Alexander, 2016; Halford et al., 2010) and cognitive control (i.e., working memory, 
selective attention; Andrews, Birney, & Halford, 2006; Duncan, Chylinski, Mitchell, & 
Bhandari, 2017). Little work has directly compared inductive and deductive reasoning 
activations (e.g., Goel & Dolan, 2004), but the evidence to date suggests an  overlap in the brain 
regions that support relational reasoning in both domains (Krawczyk, 2012; Vendetti & Bunge, 
2014) Thus, it possible that transfer between inductive and deductive reasoning could occur. 

Among the few studies that have assessed transfer between inductive and deductive 
reasoning, the results have been mixed. Some studies have reported no transfer between the 
domains (Klauer, Meiser, & Naumer, 2000), while others have reported positive transfer from 
inductive reasoning instruction to deductive reasoning (Barkl, Porter, & Ginns, 2012; Chapman 
& Mudar, 2014; Han et al., 2017; K. J. Klauer, Willmes, & Phye, 2002; Roth-Van Der Werf et 
al., 2002). However, in these studies, transfer was only observed in a subsample of the study 
(Roth-Van Der Werf et al., 2002), or the gains in deductive reasoning were not retained to the 
same degree as gains in induction but instead were only apparent at an immediate posttest 
(Klauer et al., 2002). This latter result was interpreted as the immediate gains stemming from 
test-retest effects, and not from transfer. Even though there is some evidence of transfer between 
inductive and deductive reasoning, the conditions under which it occurs have yet to be 
determined. 

Considering the complexity of reasoning skills, including the involvement of several 
cognitive processes and metacognitive influences (Alexander, 2016; Halford, Wilson, & Phillips, 
1998), we need a deep, mechanistic understanding of the cognitive processes that overlap 
between tasks to predict transfer. Furthermore, a richer understanding of how improvements may 
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influence problem-solving in the transfer domain is an important step towards identifying the 
mechanisms that either limit or promote transfer effects in reasoning. 

Here we seek to provide such insights. We expand on our prior work to assess how 
improvements in relational thinking after preparing for the Logic Games section of the LSAT 
may influence performance on an unpracticed test of rule inference. This test, 
(based on a commercially available card game, and adapted from Eckstein et al., under review), 
required participants to infer the rules that relate four colored shapes to one another. In this 
study, we assessed evidence of transfer to behavior, using response times (RTs) and d-prime. We 
also measured phasic pupillary dilation patterns from participants as they complete this task. The 
high temporal resolution of the pupillary measure allowed us test whether completion of the 
Logic Games course could benefit active rule inference on a laboratory task that bore no overt 
similarity to the problems assigned in the course. 

 

Figure 1. SET task (adapted from Eckstein et al., under review). (A) Sample stimuli of trials 
where items spanned in one (top panel) or three dimensions (bottom panel ). 
Sample 2-span trials are not shown, but were grouped with 1-

 Items in all trials spanned in at least one dimension. In half the trials, the items formed a 
SET (top row of each panel). In the trials where items did not for a SET (i.e., No-SET trials), the 
rule-incongruent items were presented on the third (middle row of each panel; i.e., No-SET 3 
trials) or fourth position (bottom row of each panel; i.e., No-SET 3 trials). (B) The trial sequence 
began after an inter-trial fixation. Each item was presented for 1s and the inter-stimulus fixation 
for 500ms. Pupillometry analyses were performed over these inter-stimulus fixation windows 
(see methods for details).  

We briefly discuss relevant prior research with the SET task (Eckstein et al., under 
review), and then present our hypotheses in the next section. The design of the SET task, shown 
in Figure 1, permits us to probe patterns of pupil dilation as participants accumulated evidence 
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from a series of sequentially presented stimuli, enabling them to generate a hypothesis regarding 
the governing principle that relates the stimuli to one another. In this task, participants decide 

 based on whether all four match or all four differ on a given 
dimension (see Fig 1 for example stimuli and methods for details).  

On the trials in which the items form a SET (i.e., SET trials), all four items are necessary 
to make a final decision (Figure 1A). On trials in which the items do not form a SET (i.e., No-
SET trials), a rule-incongruent item appears on either the third position (No-SET-3) or the fourth 
position (No-SET-4; Fig 1A). These items provide conclusive evidence that the group of items 
does not form a SET. Thus, on trials where the rule-incongruent item appears third in the 
sequence of four stimuli (No-SET-3 condition), it is possible to know that the items do not form 
a SET before seeing the final item. This task design permits us to test the timing of when 
inductive processes occur. Specifically, to index the temporal dynamics of how people integrate 
evidence as they generate and test rules, we examined phasic pupil dilations that vary as a 
function of task demands.  

It has been well-established that these phasic pupillary responses occur as norepinephrine 
release in the brain boosts arousal and dilates the pupils (Eckstein, Guerra-Carrillo, Singley, & 
Bunge, 2016; Joshi, Li, Kalwani, & Gold, 2017). There are two key pupillary properties of 
interest that allow us to test our hypothesis in the current study. 

The first pupillary property of interest relates to the fact that surprising events elicit 
phasic pupillary -Jones, 
Rajkowski, Kubiak, & Alexinsky, 1994; Book, Stevens, Pearlson, & Kiehl, 2008; Wetzel, 
Buttelmann, Schieler, & Widmann, 2016). Based on the terminology in the literature, we will 
refe -of- This effect has 
been extensively reported in the context of classic perceptual oddball paradigms, whereby 
perceptual deviants elicit phasic dilations (for a review see Eckstein et al., 2016). Our prior work 
with the SET task has shown that this phasic pupillary dilation also occurs in response to 
conceptual deviants, wherein rule-incongruent items elicit a VOE response relative to rule-
congruent items (Eckstein et al., under review). This finding is consistent with related work 
showing that rule violations are salient and lead to prediction errors (Aston-Jones & Cohen, 
2005). Thus, identification of a VOE response evoked by a rule-incongruent item allows us to 
infer that   and, by 
extension, that the participant was engaged in active rule inference while encoding the stimuli.  

The second property of interest relates to pupil constrictions or attenuated dilations that 
occur in response to goal-irrelevant information (Aston-Jones & Cohen, 2005; Gilzenrat et al., 
2010). In our prior findings (Eckstein et al., under review), pupil dilation was weaker in response 
to a rule-congruent item presented immediately after a rule-incongruent item (i.e., the fourth item 
on a trial in which the third item violated the rules  i.e., a No-SET-3 trial) than after a rule-
congruent item presented in the same ordinal position (i.e., the fourth item on a trial in which all 
items were consistent with the rule  i.e., a SET trial). This pattern suggested a greater level of 
engagement with evidence deemed informative, and that is yet to be integrated with old 
evidence. Thus, pupillary constrictions following a rule-incongruent item represent a second 
opportunity to assess whether participants have inferred the relevant rules, and that they have 
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combined their knowledge about rules with knowledge about already-seen items to determine the 
relevance of incoming evidence. 

Thus, by measuring pupil dilation associated with  and following  a rule violation, we 
can assess rule induction in real time. Building on our prior work, in which we showed improved 
relational thinking on a transitive inference task after practicing reasoning the Logic Games 
section of the LSAT (Guerra-Carrillo & Bunge, under review), we hypothesized that improved 
relational thinking could increase efficiency of the evaluation and integration of evidence, and 
thus support rule induction. As such, if the Reasoning group were to show an enhanced VOE 
response to rule-incongruent items from pre- to post-test, we would infer that practicing 
reasoning led to an increase in active hypothesis generation. If the VOE to a rule-incongruent 
item in the third position were to show an increased amplitude after reasoning practice, we would 
infer that they became more effective at evaluating the evidence and inferring rules with little 
information. Similarly, if we were to observe a pupillary constriction in response to items that 
appear after a rule-incongruent item, we would infer improvements in the ability to effectively 
integrate evidence to make predictions about the importance of future evidence. Thus, pupillary 
responses to both the third and fourth items in the sequence allowed us to test for improvements 
in rule induction at different points during problem-solving. 

In summary, we assessed evidence of transfer from a course that predominantly 
emphasizes deductive reasoning to performance and the cognitive mechanisms engaged during 
rule induction. As detailed below, the design of the SET task allowed us to evaluate our 
predictions at varying gradations of cognitive complexity. We evaluated whether any changes in 
performance and pupillometry were greater in the Reasoning than in the Comprehension group, 
to assess whether they could be attributed to an effect of the reasoning course, or rather to 
learning as a result of repeated exposure to the task. 

Methods 

We provide a summary of general methods that we have reported elsewhere (Eckstein et al., 
under review; Guerra-Carrillo & Bunge, under review), and devote greater attention to aspects of 
the methods most relevant to the current investigation. 

Ethics statement 

The research was approved by the Committee for the Protection of Human Subjects at the 
University of California, Berkeley. Written informed consent was obtained from all participants. 

Participants and eligibility 

We recruited college students planning to take the LSAT within a year. We assigned participants 
pseudo-randomly to study for one of two sections of the LSAT: Logic Games or Reading 
Comprehension. The groups matched on age, gender, reasoning, working memory, and LSAT 
performance at pre-test (Guerra-Carrillo & Bunge, under review). Inclusion criteria included 
being native English speakers, at least 18 years old, normal/corrected vision, and no history of 
psychiatric disorders, learning disabilities, or prior LSAT experience.  
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Forty-nine participants completed the pre- and post-tests and the LSAT course. We 
excluded two participants because they failed to study for their assigned course. The final sample 
who prepared for the Logic Games section of the LSAT included 23 students (14 Females, mean 
age 21.55). The final sample who prepared for the Reading Comprehension section of the LSAT 
included 24 students (13 females, mean age 21.88). Furthermore, we excluded four participants 
(2 from Reasoning group) due to technical issues during their eyetracking session, and two 
participants from the Comprehension group for having more than 60% of trials missing valid 
pupillometry data and performance below chance levels (where chance was defined as d-prime 
below 0.51, which is equivalent to scoring below chance in either SET or No-SET trials).  

Summary of procedures 

Before and after studying for the LSAT courses, participants completed a battery of nine online 
cognitive assessments (Hampshire et al., 2012), followed by an in-person testing session.  

During the lab sessions, we recorded pupillometry data from participants while they 
completed the SET task. Participants also completed two other eyetracking tasks during this 
session: transitive inference (Guerra-Carrillo & Bunge, under review) and a matrix reasoning 
task. Data from the SET task is the subject of the current investigation. After finishing the 
eyetracking tasks, participants completed pencil and paper tests, including a standardized test of 
deductive reasoning, termed Analysis Synthesis (Woodcock et al., 2001), LSAT sample 
problems, and a survey. The order of tests was the same at both timepoints. Participants were 
blind to their LSAT group at pre-test, and the experimenters carrying out the testing sessions 
were blind to the group assignment at both timepoints. 

LSAT courses  

Participants studied for either the Logic Games or Reading Comprehension section of the LSAT 
with a commercially available online course (Kaplan, Inc.) for six weeks. During the 
intervention, we gave students access only to the instructional material related to their assigned 
section. Furthermore, we asked participants to space their practice (i.e., study every other day, 
three times per week), as this has been shown effective in promoting transfer effects (Wang et 
al., 2014). Participants reported having complied with these instructions, and both groups 
reported similar studying times (Guerra-Carrillo & Bunge, under review). 

The Logic Games section involves solving word problems that contain many rules that 
must be integrated to find the correct answer (sample problems: 
https://www.lsac.org/jd/lsat/prep/analytical-reasoning). In the preparatory course, participants 
learn strategies, such as organizing relational information into sketches, to facilitate deduction 
and correct rule application. The Reading Comprehension section involves reading long passages 
and answering multiple-choice questions based on relevant information in the passages (sample 
problems: https://www.lsac.org/jd/lsat/prep/reading-comprehension). In the course, participants 
learn strategic reading techniques, such as finding keywords and annotating key ideas. Both 
courses contained the same number of lessons, used the same instructional format, and 
emphasized improvement in timing and increased mastery with different question types for the 
relevant section. Overall study time was approximately 24 hours. 

Eyetracking apparatus and procedures 
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We recorded binocular pupil data from participants completing the SET task using Tobii T120 
Eye Tracker (17-inch monitor, 1280 ×1024 pixel resolution). We sampled at a temporal 
resolution of 120Hz, with participants sitting at 60 cm from the eyetracker camera. We used E-
prime (Psychology Software Tools, Pittsburgh, PA) to present the task stimuli and the Tobii 
Extension for E-prime to synchronize the timing of the stimulus presentation and ocular events. 

We took several precautions to collect high-quality ocular data following 
recommendations from (Holmqvist et al., 2011), including testing in a quiet room with no 
windows and controlled luminance Furthermore, participants reported that they did not suffer 
from medical conditions or used medication that could affect ocular behaviors. 

The SET task 

We adapted the task from (Eckstein et al., under review). In this task, participants compare four 
 based on the symmetry between all items on each 

of these dimensions: color, shape, and filling. Four items form a SET if they fulfill either of two 
symmetry rules on each dimension: 1) all items match on the dimension, or 2) all items 
mismatch span
Items in every trial span in at least one dimension, but can span up to three dimensions. This 
manipulation was designed to increase the cognitive load of the task (see Eckstein et al., under 
review, for an in-depth discussion about the effects of the span manipulation). Pre-test 
performance (RT and accuracy) on the lower span levels did not differ in our main condition of 
interest (No-SET trials), which is a result we replicated from our previous study (Eckstein et al., 
under review). Thus, for our purposes, we will consider trials where items span in one or two 

, and trials where items span all three dimensions 
(see Figure 1 for sample stimuli).  

At both time points, participants completed 60 problems, in two blocks of 30 trials. Half 
of the problems had items that formed a valid SET (i.e., 30 SET trials), and the other half of 
trials did not form a valid SET (i.e., 30 No-SET trials). The rule-incongruent item in the No-SET 
trials appeared either in the fourth or third position in an equal number of trials. The first two 
items provided the foundation for rule induction and hypothesis generation for all trials, but the 
third or fourth item provided conclusive evidence. The trials were divided equally among the 
three-span conditions. 

Each trial started with a 3-second fixation period. The items then appeared sequentially in 
the center of the screen, for 1 second each and interleaved by fixation periods of 500ms. After 

No-SET d. This prompt 
disappeared after participants selected their answer via a button press or 10 seconds had elapsed 
(see Fig 1B for trial sequence). Stimuli were matched in luminance and varied across trials, so as 
not to create an expectation that a certain shape will always be associated with a particular rule 
or condition. 

Behavioral metrics 

The behavioral metrics in the task include response times (RTs) and d-prime, which allow us to 
characterize accuracy for SET and No-SET trials. We bounded the range of hits and false alarm 
rates to be between 99% and 0.1%, to be able to include participants in our analyses who 
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completed the task perfectly. Also, we used in the logarithmic form of RTs, as they were 
positively skewed at both timepoints. We performed these corrections separately for each 
session.   

Preprocessing and analysis of pupil dilation data 

We first preprocessed the data, on a trial and subject basis at each timepoint, following similar 
procedures that we have described elsewhere (Eckstein et al., under review). Briefly, we 
averaged pupil diameter values from both eyes, then removed artifacts and interpolated the data 
using a local loess regression model (Cleveland, Grosse, & Shyu, 1992). This latter step removed 
data points that fell more than five standard deviations from the local mean, based on 160 
consecutive time points (~1,333 ms), and interpolated small gaps of missing data within a 
window of 50 data points (~416ms). We then downsampled and smoothed the data to 20hz using 
a 100ms rolling average and 3-point smoother. This procedure resulted in a local average of 
pupil diameter for every 50ms.  

We then calculated pupil dilation values relative to a trial-level baseline, calculated as the 
average of the pupil diameter across the first 200ms of the trial. This approach allowed us to 
assess pupillary dilations during the task relative to a normalized baseline for each trial and 
subject. Finally, we used these normalized dilation data to calculate event-related changes in 
pupillary dilation in response to an item, which we quantified as the difference between pupil 
dilation associated with the current versus the previous item during the 500ms inter-stimulus 
fixation proceeding the item of interest (see Fig 1B). Quantifying relative changes in pupil 
dilation during that fixation windows accommodates for the natural pupillary time courses 
(Loewenfeld & Lowenstein, 1993), and permits us to directly compare dilation patterns across 
items and conditions when the visual stimulus was identical. We used these final values to 
compute the violation-of-expectation (VOE) pupillary dilation and the constrictions following 
the rule-incongruent item. 

We indexed the pupillary VOE response as the difference in mean amplitude of the pupil 
dilation evoked by the rule-incongruent item (i.e., the third or fourth item in No-SET-3 and No-
SET-4 trials, respectively) vs. the mean amplitude of the pupillary response evoked by a rule-
congruent item in the same ordinal position in a SET trial (i.e., the third or fourth item in the SET 
trials). We indexed the constrictions following the rule-incongruent items as the difference 
between the mean amplitude of the pupillary response evoked by the rule-incongruent item and 
the pupillary response to the item that followed it (i.e., the fourth vs. third item in No-SET-3 
trials).  

We acknowledge that changes in latency of the VOE response from pre- to post-test have 
the potential to bias the magnitude of the VOE response, given that we measure the response in 
the 500ms time window following the presentation of the item of interest. However, considering 
the normative time course of pupillary dilations, whereby dilations peak between 1-1.5s after the 
onset of a stimulus (Loewenfeld & Lowenstein, 1993), our VOE metric should still capture the 
majority of the pupillary response and the peak dilation amplitude elicited by the items.  

Statistical Analysis 
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We quantified evidence in support of our hypotheses with Bayesian tests because they provide 
more explanatory power in situations in which a null effect could be informative (i.e., lack of 
transfer). Thus, we used Bayes Factor (BF10) to assess how likely our data are to support the 
model testing the hypothesized effect of transfer compared the null model (i.e., no transfer). 
Thus, we can also quantify the strength for the null hypothesis (Wagenmakers et al., 2017). That 
is the ratio of the marginal likelihood of the two hypotheses. For all analyses, we used a uniform 
distribution of prior probabilities with default Cauchy prior scales from the BayesFactor R 
package (Morey et al., 2015). 

We used Bayesian t-tests to evaluate the level of support for the prediction that the 
Reasoning group would improve on the behavioral and pupillary metrics. If there was evidence 
that the means within each group differed between timepoints, we used Bayesian mixed 
regressions to assess the probability that those changes could be attributed to reasoning practice 
beyond test-retest alone or subject variance. Thus, we quantified the strength of evidence in favor 
of including the Group x Time term relative to a model containing both main effects. We 
modeled subject variance as a random nuisance factor, but the model design was otherwise 
equivalent to a 2x2 repeated-measures ANOVA. We conducted separate models for easier and 
harder span trials. Considering our interest in model comparison, we report BF10, and interpret 
this metric in accordance with prior work (Wagenmakers et al., 2017): BF10 >1: data provide 
positive evidence for the hypothesis, BF10>3: moderate evidence, BF10>10: strong evidence. The 
inverse applies for the null hypothesis (1/BF10). We performed all analyses in Python 3.6 and R 
3.2.  

 
Results 

Probing behavioral scores for evidence of transfer  

Participants had high accuracy and fast response times (RTs) both at pre-test and post-test (Fig 
2). There was moderate evidence against our hypothesis that the Reasoning group would 
improve in d-prime scores and RTs between timepoints on either the easier or harder problems 
(see Table 1 for this and subsequent statistics). There was also moderate evidence that the active 

-prime scores did not change between timepoints, but there 
was moderate evidence that the Comprehension group became faster at accurately solving the 
easier SET trials ( and No-SET trials ( from pre- to post-test. 
However, there was no evidence indicating that this reduction in RTs could be attributed to 
having prepared for the Reading Comprehension course during the intervention. Indeed, the data 
provided the strongest support for the model that only included the fixed effect of Time for both 
easier SET (BF10  ±1.09) and No-SET (BF10  ±1.68) trials. By contrast, adding the 
Group x Time term worsened the performance of both models (SET BF10  ±1.93; No-SET 
BF10  ±1.54). Thus, changes in RTs in the Comprehension group were likely due to 
individual differences and test-retest effects. In sum, there was moderate evidence indicating a 
lack of transfer from practicing reasoning with the Logic Games section of the LSAT to 
performance on the SET task. However, performance from both groups was already very fast and 
accurate at pre-test.  
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Figure 2. Behavioral outcomes. (A) Mean d-prime scores for easier and harder trials for each 
group at each timepoint. The d-prime scores were calculated with accuracy on SET and No-SET 
trials. (B) Mean response times (RTs) in milliseconds for No-SET, easier and harder trials for 
each group at each timepoint. RT data for SET trials presented in Table 1. Analysis performed on 
the log-transformed data. Error bars are 95% C.I estimated with 5000 bootstrap iterations. 
*Moderate evidence that the Comprehension group showed greater improvements across 
timepoints. See Table 1 for detailed statistics. 

 

Table 1. Evidence of transfer to behavioral metrics 

 Evidence supporting H1   

H1 = change between sessions (POST != PRE) 
BF10 P(H1 | data) / P(H0 | data) 

Reasoning Comprehension 

Metric Trial Type PRE 
M [95%CI] 

POST 
M [95%CI] 

BF10 

(%error) 
PRE 

M [95%CI] 
POST 

M [95%CI] 
BF10 

(%error) 

d-prime 
Easier 

3.94 
[ 3.92,  3.95] 

3.98 
[ 3.97, 4.00] 

0.23  
(±0.03) 

3.86  
[3.84, 3.88] 

4.00 
[ 3.99, 4.01] 

0.30  
(±0.01) 

Harder 
3.18 

[ 3.15,  3.20] 
3.23 

[ 3.20,  3.26] 
0.23  

(±0.03) 
3.19 

[3.17, 3.21] 
3.20 

[ 3.17, 3.22] 
0.24  

(±0.03) 

RTs  
No-SET 

(log) 

Easier 
6.12 

[ 6.11,  6.13] 
5.98 

[ 5.96, 5.99] 
1.03 

(±<0.00) 
6.16 

[6.15, 6.17] 
5.90 

[ 5.89, 5.91] 
7.43* 

(±<0.00) 

Harder 
6.25 

[ 6.23,  6.26] 
6.23 

[ 6.22, 6.25] 
0.23  

(±0.03) 
6.26 

[6.25, 6.28] 
6.07 

[ 6.06, 6.08] 
0.74 

(±<0.00) 

RTs SET 
(log) 

Easier 
6.30 

[ 6.29,  6.32] 
6.17 

[ 6.16  6.18] 
0.63 

(±0.01) 
6.25  

[6.24, 6.26] 
6.03 

[ 6.02,  6.04] 
6.46* 

(±<0.00) 

Harder 
6.50 

[ 6.48,  6.52] 
6.42 

[ 6.40, 6.43] 
0.32  

(±0.03) 
6.5 

 [ 6.50, 6.52] 

6.29 
[ 6.28, 6.30] 

 

1.11 
(±<0.00) 

M[95%CI]: Mean 95% confidence intervals, calculated with 5000 bootstrap iterations. H1 assessed with Bayesian 
paired t-tests. No evidence for Group x Time interactions. Estimations made using  (Morey et al., 

2015) default Cauchy prior scale    and prior uniform probability to the models. Approximate classification 

scheme to interpret Bayes factors from (Wagenmakers et al., 2017):  

*Moderate evidence for H1,,  Moderate evidence for H0.  
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Probing pupil dilation patterns for evidence of transfer  

 

 

Figure 3. Pupillary outcome metrics and evidence of transfer. (A) Pupillary timecourse 
collapsed across groups and testing sessions. The lines indicate the time course of pupil dilations 
on SET (green), and No-SET trials, where the rule-incongruent item was presented in the third 
(orange; No-SET 3) or fourth position (purple; No-SET 4). The ribbons are 95% C.I estimated 
with 5000 bootstrap iterations. The x-axis denotes the time in the trial from the onset of the first 
item to the response period. Vertical dotted lines after the third and fourth item, indicate the time 
windows where we probed the pupil responses of interest.  (B) Event-related pupil responses to 
the third or fourth item on SET, No-SET 3, and No-SET 4 trials. We calculated the VOE 
responses as the difference between the pupil dilation elicited by a rule-incongruent item (i.e., in 
No-SET trials) with a rule-congruent item (i.e., in SET trials) appearing in the same position. 
The fourth item in No-SET 3 trials reflects pupillary constrictions following the rule-incongruent 
item. Error bars are 95% C.I estimated with 5000 bootstrap iterations (C) Cumulative 
distribution functions (CDF) for VOE and (D) pupillary constrictions following the rule-
incongruent item for each group at each timepoint. Vertical lines denote medians (solid), and 25th 
or 75th percentiles (dotted lines left or right to the median, respectively). Classification scheme to 
interpret Bayes factors (BF10) used to quantify the strength of evidence in support of the model 
testing changes between timepoints: ***Extreme, *Moderate. See Table 2 for detailed statistics. 

 

Before testing for the effects of transfer, we examined whether rule-incongruent items elicited a 
VOE response at either timepoint. Replicating our prior findings (Eckstein et al., under review) 
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with the pretest data and across both groups, we found strong evidence that rule-incongruent 
items on No-SET trials elicited a larger pupil dilation than items presented on the same ordinal 
position on SET trials (Fig 3A - 3B). Indeed, a VOE response occurred on both No-SET-3 trials 
(BF10 121.85 ±<0.00; VOEM = 0.029, 95% CI = [0.028, 0.030]) and No-SET-4 trials (BF10 

93.16 ±<0.00; VOEM =0.028, 95% CI = [0.027, 0.030]). A similar pattern of results emerged at 
post-test (Fig 3B), such that both groups had a VOE response on No-SET-3 trials (BF10 

35588.07 ±<0.00; VOEM =0.037, 95% CI = [0.036, 0.038]) and No-SET-4 trials (BF10  
±<0.00; VOEM =0.021, 95% CI = [0.020, 0.023]). Thus, there is evidence that the groups 
engaged in active rule induction, even when  in the case of No-SET-3 trials  they only had two 
pieces of evidence as a foundation to start formulating their hypotheses.  

Having found strong evidence that a VOE response occurred at both timepoints, we 
sought to test for effects of reasoning training. We found moderate evidence against our 
hypothesis that the Reasoning group would have a larger VOE response to rule-incongruent 
items from pre- to post-test (Fig 3C; for this and subsequent statistics, see Table 2). There was 
also moderate evidence that the VOE responses of the Comprehension group did not change 
between timepoints. These results were similar for trials where the rule-incongruent item 
appeared third or fourth. Thus, these results suggest that there was no effect of reasoning 
instruction and no change between timepoints for either group in the VOE response.   

 

Table 2. Evidence of transfer in pupillary responses indexing rule-induction 

 Evidence supporting H1   

H1 = change between sessions (POST != PRE) 
BF10 P(H1 | data) / P(H0 | data) 

Reasoning Comprehension 

Pupillary 
Response 

PRE 
M [95%CI] 

POST 
M [95%CI] 

BF10 

(%error) 
PRE 

M [95%CI] 
POST 

M [95%CI] 
BF10 

(%error) 
VOE  
(No-SET 3) 

0.034  
[0.033, 0.035] 

0.045  
[0.044, 0.046] 

0.34  
(±0.02) 

0.025  
[0.024, 0.026] 

0.029  
[0.028, 0.030] 

0.26  
(±0.02) 

VOE  
(No-SET 4) 

0.030  
[0.029, 0.032] 

0.033 
[0.032, 0.034] 

0.23  
(±0.03) 

0.027  
[0.025, 0.028] 

0.010  
[0.009, 0.012] 

0.54 
(±0.01) 

Pupil 
Constriction 
following rule-
incongruent item 

0.011  
[0.009, 0.013] 

-0.010  
[-0.012,  
-0.008] 

3.94* 
(±0.01) 

-0.005  
[-0.007,  
-0.004] 

-0.007  
[-0.009, 
-0.006] 

0.24  
(±0.02) 

M [95%CI]: Mean with 95% confidence intervals, calculated with 5000 bootstrap iterations. H1 assessed with 
Bayesian paired t-tests. No evidence for Group x Time interactions. Estimations made using  (Morey 

et al., 2015) default Cauchy prior scale    and prior uniform probability to the models. Approximate 

classification scheme to interpret Bayes factors from (Wagenmakers et al., 2017):  

*Moderate evidence for H1,,  Moderate evidence for H0.  

 

Next, we examined evidence of changes in rule induction at a different point during 
problem-solving, by probing pupillary constrictions in response to the item immediately 
following the rule-incongruent item. We found moderate evidence that the Reasoning group had 
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larger constrictions following the rule-incongruent item from pre- to post-test (Fig 3D, for this 
and subsequent statistics, see Table 2). By contrast, there was moderate evidence that the 
Comprehension group did not change on this metric between timepoints. We examined whether 
changes in the Reasoning group could be attributed to the intervention. The data provided no 
evidence either in support of or against the Group x Time interaction term (BF10 ). 
There was weak support for the effect of Time (BF10 1.25 ±9.73). Thus, there is no evidence of 
transfer from practicing reasoning with the Logic Games section of the LSAT to the way people 
engage in rule induction on the SET task, but rather, practice-related improvements in the 
Reasoning group (i.e., test-retest effects) or possibly regression to the mean. 

Discussion 

We sought to examine transfer from practicing reasoning in a context that primarily involves 
deductive reasoning to performance on a rule induction task termed SET (Eckstein et al., 2018). 
We probed pupillary dilation patterns to characterize how practicing reasoning with a 6-week 
preparatory course for the Logic Games section of the LSAT exam may influence how rule 
induction processes unfold during problem-solving.  

We found moderate evidence against the hypothesized transfer effect on both behavioral 
and pupillometry outcome measures, which included changes in RTs, d-prime, and VOE 
response to rule-incongruent items. However, we found moderate evidence of practice-related 
(i.e., test-retest) improvements in the pupil dilation patterns indexing changes in the way the 
Reasoning group engaged in rule induction. Indeed, the group showed greater pupillary 
constrictions to pieces of evidence that provided redundant information and appeared after items 
that provided conclusive evidence about the rule that applied to the trial. The active control 
group that prepared for the Reading Comprehension section of the exam did not show those 
changes. Despite the changes observed in the Reasoning group on this ocular index of active rule 
induction, there was no evidence that the improvements were directly related to the intervention.  

We had expected to find broader evidence of transfer from practicing reasoning with the 
Logic Games course to rule-inductive processes. Indeed, we had previously shown that the 
Reasoning group improved on a composite measure of four reasoning tests, which combined 
measures of inductive and deductive reasoning, as well as in relational thinking efficiency, as 
indexed with eye gaze data collected while they solved a transitive inference task that taps into 
deductive reasoning (Guerra-Carrillo & Bunge, under review). These improvements were larger 
than those of the Comprehension group. The behavioral changes in the Reasoning group were 
consistent with prior work from our lab with a sample of young adults who prepared for all the 
sections of the LSAT with a three-month course (Mackey et al., 2015). The sample who prepared 
for the LSAT also showed changes in structural and functional connectivity between key nodes 
in the frontoparietal network (Mackey et al., 2013, 2012), which have been implicated in 
relational reasoning (Krawczyk, 2012; Prado et al., 2011). Considering all these prior findings 
and the fact that inductive and deductive reasoning share many of the same underlying cognitive 
and neural mechanisms, we had expected to find evidence of positive transfer in the present 
study that could be directly attributed to the learning experience. However, our present findings 
support results we had previously considered inconclusive in regards to transfer from studying 
for all sections of the LSAT to performance on a rule-generation task (Mackey et al., 2015). 
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It is possible that lack of transfer we observe in our current study stems from a large 
degree of individual differences, for example in the way participants represent rules (Eckstein et 
al., under review). The current task could also be too easy and not sensitive enough to detect 
transfer effects, at least at a behavioral level. However, it is also possible that the lack of transfer 
in our study reflects that improving in relational thinking may not be sufficient to boost other 
processes engaged in rule induction, such as generating hypotheses with minimal evidence about 
rules that relate the observed evidence. This latter interpretation could explain why there was 
evidence that the Reasoning group had bigger increases in pupillary constrictions following a 
rule-incongruent item (i.e., fourth item on No-SET trials where the incongruent item was 
presented third), but not larger VOE response to the rule-incongruent item itself at post-test (i.e., 
rule-incongruent item appearing on the third position). 

There are at least four limitations of our study to consider. First, we could not explain the 

examined. It is plausible that other changes in pupillary responses that we were not able to 
examine with the version of the task we used in the present study (e.g., metrics of rule 
representation, see Eckstein et al., under review) could have influenced the changes in RTs in 
this group.  Second, the sample size is relatively small. As we have discussed previously 
(Guerra-Carrillo & Bunge, under review), recruitment and retention were an issue considering 
that we needed participants willing to study for only one section of the LSAT, which was a 
problem for students seeking to take the exam immediately. Third, there seemed to be more 
noise in the pupillometry data at post-test during the response period. Although the noise 
occurred in the response period, it is possible that we may not be fully capturing the entire 
pupillary time course in response to the final items presented during a trial. In our previous study 
with the SET task (Eckstein et al., under review), we had found that the responses elicited by the 
rule-incongruent item presented in the last position extended into the first second of the response 
period. A related issue is that changes in rule induction could also result in shifts in latency of the 
pupillary responses we used as an indicator of active rule inference. If so, the period where we 
calculated our pupillary metrics may not have included the entire pupillary response. Even 
though these two issues have the potential to introduce some noise in our pupillary metrics, we 
likely still captured all or the majority of the pupillary responses at both pre- and post-test 
considering the natural time course of pupil dilations. Indeed, we measured dilation amplitude 
during a time window that could contain the peak dilation response.  

Despite these limitations, our null results can inform the growing literature that has aimed 
to delineate the extent of transfer resulting from cognitive learning experiences (Noack et al., 
2014) in the following ways. First, we quantified the strength of the null hypothesis of no 
transfer, and our approach could directly inform how priors are set in future work and contribute 
to a growing body of evidence about transfer effects (Wagenmakers et al., 2017). Compared to 
frequentist methods, this approach is also more powerful for testing hypotheses about transfer 
with smaller sample sizes, wherein several measures are necessary to delineate boundaries of 
transfer between domains (Lövdén et al., 2010).  Second, we obtained evidence from pupil 
dilation patterns that permit us to characterize how rule induction processes unfold during 
problem-solving. Based on the pupil dilation patterns, we were able to identify a subtle change in 
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the way the Reasoning group actively engaged in rule inference, despite lack of changes in 
behavior.  

Our study illustrates the use of a method that could be employed to obtain insights about 
the malleability of higher-level cognition in different domains. We hypothesize that these types 
of ocular metrics could provide sensitive measures of ongoing changes over the course of an 
intervention that either accompany or precede changes in behavior. This argument has been 
made for neuroimaging methods (Blakemore & Bunge, 2012), but translates well to eyetracking 
measures given the strong link between ocular behaviors and cognitive processing (Eckstein et 
al., 2016; Kowler, 2011). 
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General discussion 

Over the years, we acquire knowledge, develop new skills, and engage in numerous activities 
that are rich in novelty and cognitive challenge. How do all these experiences shape us?  

For one, there are changes in how the brain networks engage after learning. Spontaneous 
fluctuations of BOLD activity between regions of a network that support the learned task become 
more tightly synchronized at rest. These changes give us clues about the history of co-activation 
that might have repeatedly occurred between those regions during learning, as discussed in 
Chapter 1. Since publishing that review, there have been other studies using rsfMRI correlations 
to study brain plasticity resulting from motor rehabilitation (Rjosk et al., 2017), gained skill-
based expertise (Cantou et al., 2017), and seeking to understand the role of environmental input 
in the ontogeny of cortical and subcortical circuits in the human brain (Gabard-Durnam et al., 
2016). A better understanding of how networks change with experience can continue to open up 
opportunities to develop effective rehabilitation therapies, and further our understanding of the 
plasticity of networks underlying higher-level cognition. 

There is also evidence that the long-lasting experience of formal education influences 
cognitive performance across late adolescence and adulthood in unique ways. In Chapter 2, I 
showed that educational attainment is more strongly associated with how well people perform on 
reasoning tests than on other measures, like processing speed, which is more influenced by the 
age of the person. Also, it turns out that educational experiences modulate previously identified 
ages of when cognitive functioning is supposedly at its peak. We also provided evidence that 
although es their starting level in a new learning context, 
it has little bearing on how much they can benefit from the new opportunity. An intriguing future 
direction for this work would be a longitudinal investigation of periods preceding and following 
critical junctures in formal schooling, such as graduating from high school and attending college, 
or graduating from college and entering the workforce. More longitudinal work is necessary not 
only for a scientific perspective but also to provide even stronger arguments for advocates 
fighting to make higher education more widely accessible.  

Finally, I have characterized cognitive mechanisms that support improved performance 
on reasoning skills following targeted reasoning instruction and practice. One of the mechanisms 
we identified was improved relational thinking. That is, a group of young adults became more 
proficient at encoding, maintaining, and integrating visual relations after only a relatively short 
learning experience that mainly involved dealing with verbal relations and rules. Even in the 
cases where changes were probably due to having had prior experience with the test, it is still 
remarkable to observe how cognitive processing adapts and becomes fine-tuned to the demands 
of a task only after having performed it once. The ability to measure this type of change is 
something that could be applied to further our understanding of changes that occur from other 
learning experiences and during development, and may also be a fruitful venue to examine 
plasticity in late adulthood (Kühn & Lindenberger, 2016). 

In sum, we know that people learn and we now know a little more about how that happens. 
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Appendix A 

Supplementary information for Chapter 3 

 

Figure S1. Distribution of 
educational attainment 
across age groups. The 
number of participants 
between the ages of 15-60, 
reporting educational 
attainment between Some 

T1 (N = 196,388). 

 

Figure S2. Distribution of educational attainment across household income. The number of 
participants who identified their household income bracket in U.S. dollars, and reported their 

N = 196,388). 
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Figure S3. Distribution of educational attainment across ethnicity categories. The number of 
participants across ethnic categories, reporting educational attainment between Some High 

N = 196,388). 
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Figure S4. Unique variance in 
cognitive performance explained 
by educational attainment at T1. 
Displaying R2 values from 
regression models of educational 
attainment predicting performance 
on individual cognitive 
assessments.  

 

 

 

Table S1. Demographic and engagement covariates predicting T1 cognitive performance and 
learning, as measured by the Grand Index score (GI)  

Covariate Type GI T1 
Estimate 

 
Estimate 

 Intercept 100.69*** 6.83*** 

Engagement  Lumosity game play time (h)  2.67*** 1.37*** 
Days between T1 and T2  -2.51*** 

Native language English not native language -5.77*** -0.52*** 

Native language unspecified  -0.65** -0.52** 
Gender Female -3.79*** -0.80*** 

Gender unspecified -3.60*** -0.23 
Ethnicity Asian 5.63*** 0.43** 

Black -7.08*** -1.26*** 
 Latinx -1.98*** -0.57*** 
Native American -2.16*** -0.36 
Pacific Islander -0.21 0.58 
Other -2.88*** -0.39* 
Unspecified -1.18*** 0.10 

Household Income 0-25k 0.20 0.23 
25-50k 0.16 0.09 
50-75k 0.25 0.09 
100-125k 0.22 0.15 
125-150k 0.70** 0.15 
150-200k 0.97*** 0.06 
200-250k 0.77** -0.01 
Over 250k 0.83*** 0.38* 
Non US income 0.74*** 0.50** 
Unspecified -1.01*** 0.05 

T1 Performance  -0.10*** 
Together, all these variables account for 5% of the variance in cognitive performance at both timepoints. It is plausible that the 

the GI score from T1 and T2. Each GI score was normalized to have a distribution with mean of 100 (15 SD) Reference 
categories: English speaker, Male, White, 75-100k household income. The logarithmic form of the engagement variables was 
used in the analyses. p p p  
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Appendix B 

 

Supplementary information for Chapter 5 

 

Sample 

 

Table S1. Participant Information 

 

Reasoning group 

Logic Games Course 

n = 23 

Active control 

Comprehension 
Course 

n = 24 

 

Pairwise 
comparisons 

t or 2 

Females 14 13 0.12 

Age 21.55 (3.96) 21.88 (4.93) 0.25 

WJ III Analysis Synthesis 29.39 (1.90) 30.43 (2.61) 1.55 

Digit Span   7.00 (2.34) 6.92 (1.18) -0.16 

Spatial Span 6.39 (1.53) 6.38 (0.97) -0.04 

Logic Games sample problems 1.74 (1.25) 1.58 (1.10) -0.45 

Reading Comprehension sample problems 2.61 (1.28) 2.62 (1.12) 0.05 

LSAT score (T1 practice exam)  145 147 -0.83 

Mean and SDs. t or X2 values reported for the variables the groups were matched on at T1 (  > 0.54, Analysis 
Synthesis p=0.14). Performance on assessments as raw scores. The maximum score on the sample LSAT Logic 
Games and Reading Comprehension problems are six points. LSAT scores are based on the full practice exam 
administered at T1 and on the standard 120-180 LSAT point scale.  
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LSAT manipulation 

S1. Improvements in LSAT performance 

We tested for changes in performance on a set of Logic Games and Reading Comprehension 
problems administered in the lab at each timepoint3. Each set consisted of 6 problems. An 
additional set of 6 questions per section was administered at post-test4. Participants had up to 
eight minutes to answer each problem set.We found no significant effect of Time, Group, or their 
interaction on performance on the Reading Comprehension problems (all p > 0.36) or the Logic 
Games problems (all p > 0.14) administered at both timepoints. On the new set of problems 
administered only at post-test, the Comprehension group performed better on the Reading 
Comprehension problems (t(42) = 2.07, p = 0.05), and incorporated the strategies taught in their 
course more when solving these problems (Table S2). However, the groups did not differ in 
performance on the Logic Games problems (t(42) = -0.66, p = 0.51). Although participants in 
both groups reported after the post-test assessment that they thought they had improved most on 
the section they had studied (Table S2), it was not the case that the Logic Games group improved 
more than the other group on Logic Games  at least, not on the basis of the limited number of 
LSAT problems administered in the laboratory. 

 

Table S2. LSAT self-report data and strategy use ratings 

 

Reasoning group 
Logic Games Course 
n = 23 

Active control 
Comprehension Course 
n = 24 

Rating of course effectiveness   

Rating of course enjoyment    

Perceived improvements on Logic Games    

Perceived improvements on Reading Comprehension  
 

% change in Logic Games strategy-use  11% 11% 

% change in Reading Comprehension strategy-use  25% 56% 
Median of self-reported enjoyment, course effectiveness, and perceived improvement on a 5-point Likert scale, 
showing in parenthesis the answer choice equivalent to the numerical rating. 

-2, +2] to [1, 5] on this table to be consistent with the other measures. 
Use of LSAT strategies could amount to 10 points each. Showing the percent change for each section, calculated 
using the median score at each timepoint. Scoring of strategies available upon request. 

 

                                                           
3 Game 3.3, LSAT 02/1992 Prep Test 4; Passage 4.2, LSAT 10/2011 Prep Test 64 
4 Game 2.4, LSAT 02/1994 Prep Test 10; Passage 3.2, LSAT 10/1994 Prep Test 12 
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Transitive inference task: gaze and behavioral metrics 

 

 

Fig S1. Effect of problem type on behavioral performance on the transitive inference task at 
pretest. The order in which relevant relations appeared (i.e., 0-2 scales apart) or whether the question 
involved integrating between inequalities (II) or between an inequality and an equality (IE) did not 
significantly impact either a) proportion of correct responses, or b) RTs on accurate trials. All error bars 
are 95% C.I estimated with 5000 bootstrap iterations 

 

 

S2. Gaze data preprocessing and fixation detection algorithm 

We used custom scripts written in Python v3.6 to preprocess the gaze data and identify fixations. 
We classified gaze data points into fixations using a dispersion-based algorithm (Salvucci & 
Goldberg, 2000), such that in a 100ms window the gaze position could not exceed a radius of 35 
pixels (1° visual angle) to be considered part of the same fixation. That distance has been 
previously identified as a reliable threshold for accurate fixation classification (van der Lans, 
Wedel, & Pieters, 2011) and is sufficient given the size of our stimuli. Single gaze points that 
deviated from the distance threshold were considered part of the same ongoing fixation as long 
as the next legitimate gaze measure returned to the accepted threshold. Gaps between gaze data 
points of less than 40ms were ignored, as it is physiologically unlikely that a separate fixation or 
blink occurred during that time; it is more likely that those gaps represent an artifact of the 
apparatus (Holmqvist et al., 2011). Both groups showed a reduction in total fixation times at T2 
(t(44) = -3.52, p < 0.01), but the groups did not significantly differ on total fixation times at 
either timepoint (p > 0.2).  
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S3. Rationale behind gaze metric development. We had initially theorized that reasoning 
would proceed in three discrete stages: first, identification of the relevant scales (visual search); 
then, a singular focus on these relevant scales, aimed at encoding the relations they depicted 
(relational encoding); and finally, joint consideration of these relations as individuals engaged in 
the last step of transitive inference (relational integration). However, an analysis of sequences of 
fixations, collapsing across groups and timepoints, provided two clues that the process of 
reasoning was not strictly stage-like, as described below. 

 First, fixations on irrelevant scales did not cease abruptly after an initial search of the 
array; rather, they tapered off slowly over the course of the trial (Fig S2). As such, rather than 
measuring visual search as the number of fixations a participant made before they stopped 
looking at the irrelevant scales anymore, we identified the point in the trial at which the 
probability of looking at an irrelevant scale dipped below chance, and the probability of looking 
at a relevant scale rose above chance.  

 
Fig S2. Fixations patterns on 
the transitive inference task. 
Plotting fixations during 
problem solving across groups 
and timepoints. Participants 
made a median of 22 fixations 
on correct problems. Trials 
with up to 64 fixations were 
included in the analyses (i.e., 
range x-axis). Vertical dotted 
lines denote quartiles of total 
fixations (e.g., the vertical line 
denoting Q1, the first quartile, 
indicates that 75% of the trials 
had at least 14 fixations. Only 
25% of trials had more than 34 
fixations, as denoted by the Q3 
line). Colored dots represent 
the total number of fixations (y-
axis) across both groups and 
timepoints. The colors indicate 
the areas of interest (AOIs) 
where those fixations occurred: 
two relevant scales (teal), two 
irrelevant scales (purple), and 
the question area (yellow). In 
gray, fixations not on an AOI, 
but elsewhere on the screen. 
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(S2 continues) Second, the duration of fixations on relevant scales did not decrease over 
the course of a trial, as it should if this were a pure metric of relational encoding; rather, it 
increased (Fig. S3). This finding intimates that long fixations on a relevant scale towards the end 
of the trial reflect simultaneous consideration of that scale and the other relevant scale  i.e., 

to te the fact that it likely reflects relational encoding and 
maintenance towards the beginning of the trial (after preferentially looking at the relevant 
scales), and relational integration towards the end of the trial.  

 

Fig S3. Count and median duration of fixations on relevant scales on the transitive inference task. 
Plotting fixations on relevant scales across groups and timepoints on accurate problems. Trials up to 64 
fixations were included in the analyses (i.e., range in x-axis). Vertical dotted lines denote quartiles of total 
fixations. Median fixation duration (y-axis) and total fixation count (size of circles) calculated across 
groups and timepoints. The colors indicate whether fixations occurred on the first (i.e., most-left during a 
trial; green) or second (gray) relevant scale. 
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Bayesian Analysis 

 

Table S3. Posterior odds and model comparison: gaze metrics and composite reasoning score 

Metric Models P(M) P(M|data) BFM BF10 error % 
Visual search Null model (incl. Group, Time, Subject) 0.50 0.63 1.73 1.00  

Group x Time 0.50 0.37 0.60 0.60 2.79 
Relational 
Thinking 

Null model (incl. Group, Time, Subject) 0.50 0.21 0.27 1.00  
Group x Time 0.50 0.79 3.66 3.66 1.98 

Relational 
Integration 

Null model (incl. Group, Time, Subject) 0.50 0.40 0.68 1.00  
Group x Time 0.50 0.60 1.58 1.58 2.62 

Composite 
Reasoning 

Null model (incl. Group, Time, Subject) 0.50 0.06 0.07 1.00  
Group x Time 0.50 0.94 15.06 15.06 3.04 

Estimations made using BayesFactor (Morey et al., 2015) default Cauchy prior scale   

 

Table S4. Performance on the behavioral assessments  

Composite 
Measure 

Subtest Description 

Evidence supporting H1 

BF10 P(H1 | data) / P(H0 | data) 
H1 = POST < PRE 

Reasoning Comprehension 
PRE 

M 
(± S.D) 

POST 
M  

(± S.D) 
BF10 

(%error) 

PRE  
M  

(± S.D) 

POST M  
(± S.D) 

BF10 

(%error) 

Planning 

Spatial 
Slider 

Reconfigure 
numbered shapes 
in ascending order 
using as few 
moves as possible 

0.43 
(0.19) 

0.46 
(0.20) 

0.25  
(±<0.00)  

0.49 
(0.20) 

0.55 
(0.23) 

0.50 
(±<0.00) Hampshire 

Tree Task 

Working 
Memory 

Digit Span 
Forward 

Hold in mind 
strings of digits or 
spatial locations 
and recall them in 
the order in which 
they had appeared 

0.53 
(0.16) 

0.55 
(0.17) 

0.20  
(±<0.00) 

0.59 
(0.21) 

0.56 
(0.20) 

0.34  
(±0.01) Spatial Span 

Backward 

Selective 
Attention 

Feature 
Match 

Decide whether all 
the geometrical 
elements in a 
visual array were 
identical 

0.52 
(0.24) 

0.57 
(0.24) 

0.6 
(±0.01) 

0.56 
(0.26) 

0.64 
(0.24) 

0.99 
(±<0.00) 

Verbal 
Fluency 

Grammatical 
Reasoning 

Make speeded 
judgments as to 
whether a 
statement correctly 
describes a pair of 
objects 

0.38 
(0.20) 

0.33 
(0.25) 

0.19  
(±<0.00) 

0.38 
(0.25) 

0.41 
(0.30) 

0.37  
(±<0.00) 

H1 = POST < PRE assessed with Bayesian single-sided paired t-test. Interaction models tested with Bayesian mixed 

regressions. Estimations made using BayesFactor (Morey et al., 2015) default Cauchy prior scale   and 

prior uniform probability to the models. Approximate classification scheme for the interpretation of Bayes factors 

from (Wagenmakers et al., 2017): *Moderate evidence for H1,,  Moderate evidence for H0. 




