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In this note, using the colour string model, we study the configuration space

distribution of stopped nucleons in heavy-ion collisions. We find that the stopped

nucleons from the target and the projectile end up separated from each other by

the distance increasing with the collision energy. In consequence, for the center of

mass energies larger than 6 or 10 GeV (depending on the details of the model) it

appears that the system created is not in thermal and chemical equilibrium, and the

net baryon density reached is likely not much higher than that already present in

the colliding nuclei.
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I. INTRODUCTION

Searching of structures in the QCD phase diagram has been at the centre of the research
on the strong interactions for many years. Experimentally, dense and hot QCD matter is
created by colliding heavy ions at ultra relativistic energies, and experiments at RHIC and
the LHC have found that this matter has remarkable properties, such as a small shear-
viscosity to entropy ratio as well as an unexpected opaqueness for jets [1–3]. At the same
time Lattice QCD methods have improved to the point that continuum extrapolated results
for the equation of state [4, 5] and also for the nature of the phase transition at vanishing
baryon density [6] have been obtained. The latter was found to be an analytic cross-over
transition. Model calculations on the other hand predict (see e.g. [7, 8]) a first order
transition at vanishing temperature and large baryon densities. If this were the case this
first order phase co-existence will have to end at a critical point, the location of which is not
well constrained by neither model nor lattice calculations.

The existence of a critical point and first order phase co-existence region in the QCD
phase diagram has sparked a dedicated experimental program, the so called RHIC beam
energy scan (BES). The basic idea behind this program is that by lowering the beam energy,
one can create systems at higher average net-baryon density, and indeed experiments at
the CERN SPS and results from the first phase of the BES show that the observed net
baryon number at mid rapidity increases with decreasing beam energy (see e.g. [9, 10]).
Since no net-baryon number is being produced in the collision, the only way to increase the
average net baryon density is to transport baryons from projectile and target to the mid
rapidity region. Or in other words the baryons need to be stopped in the centre of mass
frame. However, stopping the baryons is not enough. In order to have matter at high baryon
density the stopped baryons from both nuclei also need to be located within the same (and
small enough) region in configuration space. That this is not so easy to achieve will be the
central point of this note.

This paper is organised as follows: In the next section we will set up the formalism based
on a simple string picture. Next we will show some results before we conclude.

II. CONFIGURATION SPACE DISTRIBUTION OF STOPPED NUCLEONS

As already pointed out in the introduction, studies of the new states of matter created in
collisions of heavy ions must involve the discussion of the particle distributions in configura-
tion space. As these distributions cannot be directly measured, one has to rely on indirect
methods or on models of particle production. Here we study the distribution along the beam
(z) direction of nucleons which, after collision of two heavy nuclei, lost a large part of their
momentum and are located in the mid-rapidity region, i.e. close to the c.m. rapidity, y = 0.

Denoting by σ the energy loss per unit length one has

dEz = −σdz (1)

where Ez is the nucleon energy (depending on z) and z is its position along the beam axis.
Assuming σ to be a constant, as is the case of the Lund model [11] and in the bremsstrahlung
mechanism [12] one obtains

Ez = Ei − σ(z − zc) (2)

where Ei is the initial energy and zc is the collision point in configuration space.
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In the c.m. frame, the two nucleons which are to collide, move right and left with velocity
V , defined by the initial energy Ei = 1

2

√
s =
√
P 2 +M2. We denote their positions at t = 0

by ζL and ζR.
The collision space-time point (zc, tc) satisfies

zc = ζR + V tc; zc = ζL − V tc (3)

giving

V tc =
ζL − ζR

2
; zc =

ζL + ζR
2

. (4)

It is straightforward to relate zc and tc to the position of the nucleon z, its rapidity y,
and the time at which it arrives at z. From (2) we have

z − zc = ±Ei − Ez
σ

= ±Ei −M⊥ cosh y

σ
(5)

where the sign depends on the direction of the nucleon (left or right) and M2
⊥ = M2 + P 2

⊥.
The time when the nucleon arrives at the point z can be obtained using the equation of
motion dP/dt = −σ giving

t− tc =
Pi − Pz

σ
=
Pi −M⊥ sinh y

σ
(6)

Now that we have an expression for the space and time distance from the collision space-
time point for the right and left moving particles in a nucleon-nucleon collision, we turn to
nucleus-nucleus collisions. To this end we first derive the distribution of collision points,
given the distributions of nucleons in the colliding nuclei.

The distributions of the nucleon positions at t = 0, given by the nuclear shapes, depend
on (ζL − ζL0) and (ζR − ζR0) where the subscript 0 denotes the position of the centre of the
nucleus (at t = 0). Using (4) one obtains the distribution of collision points

Fc(zc) =
∫
dζLdζRGL[γ(ζL − ζL0)]GR[γ(ζR − ζR0)]δ(

ζL + ζR
2

− zc)

= 2
∫
dζ−GL[γ(zc − ζ− − ζL0)]GR[γ(zc + ζ− − ζR0)] (7)

where ζ± = (ζR ± ζL)/2 and γ is the Lorentz factor. Here GL and GR are the distributions
of the left and right going nuclei, respectively. It should be realised that this formula treats
the multiple collisions of a nucleon as independent collection of nucleon-nucleon collisions.
Although this is a crude approximation, we feel that it is sufficient for our semi-quantitative
study.

The distribution of the positions z, where the particles are decelerated to rapidity y for
the right-moving, PR, and the left-moving nucleons, PL, are then readily obtained from the
collision point distribution, Eq. (7), by using Eqs. (5)

PR(z; y) = Fc

(
z − Ei −M⊥ cosh y

σ

)
(8)

PL(z; y) = Fc

(
z +

Ei −M⊥ cosh y

σ

)
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FIG. 1. The z distribution of stopped nucleons at mid-rapidity for σ = 1 GeV/fm (wounded

nucleon model) and various c.m. energies,
√
s = 3, 7, 11 and 19 GeV/c.

and

P (z; y) = PR(z; y) + PL(z; y) (9)

is then the distribution of the space points where the incident nucleons from the projectile
and the target nuclei are decelerated to rapidity y (see the last section for further discussion).

In our semi-quantitative studies we assume Gaussians for GL and GR with central posi-
tions ζL0, ζR0 and widths RL and RR,

GL(ζL) ∼ e−(ζL−ζL0)2/R2
L ; GR(ζR) ∼ e−(ζR−ζR0)2/R2

R (10)

The collision point distribution is consequently given by

Fc(zc) ∼ e−4γ2[zc−∆0]2/(R2
L+R2

R); ∆0 =
ζR0 + ζL0

2
(11)

and in the following we will take ∆0 = 0.

III. RESULTS

The distributions of z, evaluated for the flat rapidity distribution in the region |y| < 1,1

assuming baryon density per unit of rapidity equal to unity, are shown in Fig. 1 (σ = 1
GeV/fm, wounded nucleon model [13]) and Fig. 2 (σ = 3 GeV/fm, wounded quark model
[14]). Here RL = RR = 6.5 fm, see Eq. (10), and the transverse momentum, P⊥, of the final
nucleons was taken 1 GeV/c.

With increasing energy of the collision the separation between the positions of the left-
and the right-movers is increasing while the width of the two peaks is decreasing. They are
clearly separated at energies above

√
s ' 10 GeV for the wounded nucleon model and for√

s ' 20 GeV for the wounded quark model.

1 Our results change weakly when narrowing the rapidity bin.
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FIG. 2. Same as in Fig. 1 but σ = 3 GeV/fm (wounded quark model).

At the same time one sees that the density in the two separated peaks increases rapidly
with the incident energy. Thus at these higher energies there are two regions in configuration
space where the baryon density may reach substantial values.

One should keep in mind, however, that the distributions shown in Figs. 1 and 2 are
normalised to a fixed number (the integrals of PR and PL over z equal 1). Consequently, to
obtain the predicted baryon density in the configuration space, they must be multiplied by
the measured baryon density in the central rapidity region, |y| ≤ 1. With increasing energy
the net baryon density in this region decreases and this may substantially reduce the effect.

Although the nucleons in the two separated peaks of Figs. 1 and 2 are close enough
in space (and time) to interact, it remains an open and interesting question if they can
eventually form an equilibrated state at high baryon density. Even if this is not the case,
however, they may contribute to the elliptical flow v2 of protons measured by the STAR
Collaboration [15]. Indeed, in the transverse space they are apparently correlated with the
produced particles, since both groups likely reveal a similar ”almond” shape. To translate
this transverse space correlation into the transverse momentum distribution is not easily
achieved, however, as it demands a certain number of collisions to happen before the nucleons
fly apart. This question may perhaps be answered by studying various event generators [16],
[17].

IV. CONCLUDING REMARKS AND COMMENTS

Based on the colour string fragmentation picture, we have studied the distribution of
“stopped” nucleons in the longitudinal configuration space (z). We find that there are two
regions where one may hope to create a baryonic system with net baryon density higher
than nuclear density.

In the central region, z ≈ 0, where the stopped nucleons from the two colliding nuclei
overlap, the relatively high baryon density can be achieved at low energies. The actual value
of this limiting energy varies from

√
s ∼ 10 GeV to

√
s ∼ 6 GeV, depending on details of

the model.
In the regions far off z = 0, Lorentz contraction of nucleons from one of the colliding

nuclei may, at high enough energy, also produce relatively large baryon density, provided
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the number of baryons stopped at y ∼ 0 is large enough. Since this number is rapidly
decreasing with increasing energy, however, it seems unlikely that these regions play an
important role, except in events of very high multiplicity.

Clearly a longitudinal configuration for higher energies, as seen in Figs. 1 and 2, does
not resemble a system in thermal and chemical equilibrium, where the baryons should be
uniformly distributed in configuration space. Therefore, if our considerations are correct, it
may be difficult to extract information about the properties of dense matter such as it is
determined for example in Lattice QCD.

Several comments are in order.
(i) Equation (8) describes the distribution of the z points where the incident nucleons

from the projectile and the target nuclei are decelerated to rapidity y. What we neglect
in our discussion is the fact that nucleons stop loosing energy (and reach their rapidity y)
at different times, not only because they come from different collision points, but also they
final rapidities are different (when we consider particles in some finite rapidity bin). Ideally
we should study the time evolution (time snapshots) of all decelerating nucleons, however,
this is a rather nontrivial problem to tackle analytically.

(ii) Although at high energies the process of particle emission is practically the only effec-
tive way to transport the colliding nucleons to the central rapidity region, at relatively low
energies we are considering, other mechanisms may be important and cannot be neglected.
The most effective one seems to be the excitation of nucleon resonances.2 This may give
substantially larger baryon density than that expected from the Lund model.

(iii) When the nuclei pass through each other, the baryon density may of course reach
values which exceed the nuclear density. However, even at the energy as low as

√
s = 6 GeV,

the rapidities of the incident nucleons exceed 1, and thus they cannot be observed in the
present RHIC experiments. Moreover, it is difficult to see how these nucleons may form an
equilibrated system without important inelastic interactions. Investigation of this question
(as well as the one mentioned above) using event generators [16], [17] may help to clear up
this problem.

(iv) It remains an open question if, at high energy, the nucleons from one nucleus, arriving
to the small region of z (see, e.g., the curves for

√
s = 19 GeV in Figs. 1 and 2) may actually

form an equilibrated baryon system. This is an interesting problem to study using various
event generators.

(v) One may worry that the relative distance between the nucleons which, according to
the Lund model, stop at a specific position in the z-space, is affected by their interaction
through the nuclear forces before they reach the final destination. We expect this effect to
be small because the time needed for the nuclear forces to operate (∼ 1 fm) is longer than
the time needed for nucleons (in their rest frame) to travel from the collision point to the
point when they stop to radiate.

(vi) Recent progress in femtoscopy opens the possibility of experimental verification of
the ideas presented in this work.3 We feel that such measurements could be of real help in
determining if at low and medium energies (which are of main interest in investigation of the
strongly interacting matter at high density) the colour string model is indeed the dominant
mechanism of bringing baryons at rest in the c.m. frame.

2 E.g. production and decay of a baryon resonance of mass M∗ in the process p+ p→M∗ +M∗ gives the

approximate shift of the baryon rapidity which varies from log(M/2M∗) (at threshold) to log(M/M∗) (at

high energy, E �M∗)
3 We thank M. Lisa for for bringing this to our attention.
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(vii) It should be pointed out that our argument does not answer the question how many
nucleons actually do stop at y ≈ 0.

(viii) Our model essentially scales p+p collisions to A+A collisions by folding in the
distributions of nucleons in the colliding nuclei. In order to account for the increased rapidity
shifts in p+A and A+A, see, e.g., [18], we use the so called wounded quark model, which
was shown to reproduce the charged particle distributions in p+A and A+A systems, see,
e.g., [19–22]. Therefore, we consider the results shown in Fig. 2 as the more realistic ones.

In our view the present study, although admittedly based on a simple model and fairly
crude approximations, calls for a detailed investigation of the phase-space density evolution
of baryons in the various event generators, such as UrQMD [16] or AMPT [17]. Such
simulations are particularly interesting because they should allow to study fluctuations of
the configuration space density of nucleons on the event-by-event basis.
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