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ABSTRACT OF THE THESIS

Statistical Modeling of Sensors and Dials in Metabolic Networks

by

Swathi Vishwanath Hoysala

Master of Science in Computer Science and Engineering

University of California San Diego, 2018

Professor Bernhard O. Palsson, Chair

Knowing how a microbe senses environmental inputs and regulates metabolic changes is

important for metabolic engineers trying to direct microbial resources and reactions to specific

pathways. Prediction of metabolic changes that result from genetic or environmental perturbations

has several important applications, including diagnosing metabolic disorders and discovering

novel drug targets. Most of the research in the field of modeling transcriptional regulatory

networks (TRNs) and their metabolic effects focuses on integrating metabolic networks with

additional data like transcriptional or genomic data. However, these existing methods are limited

by the availability of datasets and the huge parameter space associated with TRN models. Thus,

there is a need for alternative approaches to modeling regulation of metabolic networks.

xii



It was recently established that microbial cells contain flux sensors which measure the rate

at which enzymatic reactions take place, and then adjust, or dial, certain reactions and pathway

fluxes. We hypothesize that these flux sensors provide enough information to predict the

change in metabolic “dials”, i.e flux splits between different pathways. This project aims to

prove the above-mentioned hypothesis using statistical modeling of sensors and dials data in

metabolic network simulations.

Using Markov Chain Monte Carlo sampling methods, we sample the flux states of

the Escherichia coli K-12 MG1655 strain under varying nutrient sources. We sample from

34 conditions to create a dataset with 340000 datapoints, each representing a unique feasible

metabolic flux. We then apply statistical modeling techniques including linear regression, decision

trees and ensemble learning methods to predict metabolic dial values using sensor values as input.

The results from the statistical modeling techniques show that sensors can effectively predict the

dial values without the need for additional data like transcriptional or genomic data.
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Chapter 1

Introduction

To survive, microbial cells depend on precise regulation of metabolic operation. Cellular

metabolism is comprised of:

• catabolic pathways which produce energy by breaking down molecules, and

• anabolic reaction routes, which synthesize the molecules required by the cell by providing

the essential building blocks.

These catabolic pathways and anabolic reaction routes enable homeostasis and growth of the cells

[GBR+13].

A cell needs to control and adapt its enzyme production and metabolic activity depending

on its requirements for growth. The regulation of microbial metabolic operation is tightly

controlled by multiple layers [KZH10] as shown in figure 1.1.

Transcriptional, translational, allosteric, and post-translational regulations ensure that a

microbe can respond to diverse extracellular cues through global and local circuits [CGKS14].

This is done via signal transduction mechanisms that are closely related to regulatory mechanisms

through signalling cascades. The process of transcription and translation are clearly interconnected

as illustrated in figure 1.2 but have usually been studied separately in distinct sub-disciplines of

cellular biology.
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Figure 1.1: Different layers that control the regulation of microbial metabolic operations. From
[KZH10]

Microbial cells consist of both external and internal sensors. Flux sensors measure the

rate at which certain metabolic changes like enzymatic reactions take place. Knowing how a

microbe senses input and dials a response is important for metabolic engineers trying to direct

microbial resources and reactions to specific pathways. They typically aim to dial flux of certain

pathways or specific reactions.

To understand the effect of flux sensors on the network, through literature search, we made

a comprehensive list of discovered sensors and their potential effects on metabolic activities of

microbes. Additionally, through literature search, current desires of the engineering community,

as well as using the database RegulonDB [GCSSZ+16] which consists of TFs and their targets,

we made a comprehensive list of flux splits i.e dial values. Data from RegulonDB will give

insight into what pathways the sensors affect.

The objective of this project is the prove the following hypothesis: Sensors contain

enough information to predict the values of the dials.

From figure 1.2, the only components involved in this process are signals (both internal and

external) and metabolites. Unlike other modeling approaches described in chapter 3, this model

2



Figure 1.2: Schematic representation of the interconnection among signalling, gene regulation
and metabolism from [GBR+13]

does not require additional data collected from literature or analysis of transcriptional or genomic

data.

Table 1.1: List of BiGG models and their reference

BiGG Model Reference
iJO1366 [OCN+11]
iML1515 [MLB+17]

Genome-scale metabolic models (GEMs) are mathematically-structured knowledge bases.

GEMs contain descriptions of the biophysical constraints on metabolic systems like nutrient

uptake, oxygen availability, reaction stoichiometry and reversibility [FHT+09]. They also contain

descriptions of all the biochemical reactions, metabolites and genes in metabolism for a specific

organism a Biochemical, Genetic and Genomic (BiGG) knowledge base [FHT+09], [KLD+16].

Using Markov Chain Monte Carlo (MCMC) sampling methods, we sample the flux states

of the E. coli MG1655 strain under varying nutrient sources. We sample from 34 conditions

across the BiGG Models shown in 1.1 to create a dataset with 340000 datapoints. We then

apply statistical modeling techniques like linear regression, decision trees and ensemble learning

3



methods to predict the dial values using sensor values as input. The results from the statistical

modeling techniques show that sensors can effectively predict the dial values without the need for

additional data like transcriptional or genomic data.

Representing microbial regulation as a state of sensor and dial values is a new paradigm

that can aid in metabolic engineering. Based on the predictions of the learning model, follow-up

experiments can be designed to engineer desired dial parameters (phenotypes) through optimal

perturbations to the sensors or the regulatory network.
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Chapter 2

Background

2.1 Sensors

Cells have built-in sensors that can react to certain cues, directly and indirectly. In

addition to nutrient sensors, which measure the concentration of nutrients, metabolic flux sensors

have recently been discovered [KVG+13]. Flux sensors measure the rate of certain enzymatic

reactions, and then adjust, or dial, certain reactions and pathway fluxes. One example as shown

in figure 2.1 from [KVG+13] paper is a glycolytic flux sensor represented by fructose -1,6-

bisphosphate (FBP), which then represses the transcription factor (TF) Cra, affecting downstream

processes.

Figure 2.1: Glycolytic flux sensor from [KVG+13]
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Table 2.1 provides a list of all the sensors and their respective BiGG [KLD+16] IDs. For

the purposes of this project, only the first four sensors were chosen i.e only PGI, nadh c, nadhp c

and EX o2 e sensors are used to predict the dial values.

Table 2.1: List of sensors and their BiGG IDs

Sensor BiGG ID Literature
reference

fructose-1,6-bisphosphatase
(FBP)

PGI [KVG+13]

Aerobic respiration control
protein ArcA (ArcA), Fu-
marate and Nitrate reductase
Regulatory (FNR)

nadh c metabolite [FKE+14]

Fumarate and Nitrate reduc-
tase Regulatory (FNR)

EX o2 e [FKE+14]

nadph c metabolite
Cyclic adenosine monophos-
phate (cAMP)

ADNCYC [CGKS14]

L-glutamine (gln L c) EX gln L e; GLNS; GLUDy [CGKS14]

2.2 Dials

A dial is defined as a change in flux splits between two different pathways. Figure 2.2

from [CGKS14] shows a pictorial representation of a dial. One example is dialing flux from

glycolysis to pentose-phosphate pathways as shown in figure 2.3

Table 2.2 lists all the dials and the respective BiGG IDs. Only the first three dials were chosen i.e

only Pentose phosphate vs glycolysis, Fermentation - Pyruvate and Fermentation - Acetyl-CoA

dials.
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Table 2.2: List of dials and their BiGG IDs

Dial BiGG ID
Pentose phosphate vs glycoly-
sis

PGI / G6PDH2r

Fermentation – Pyruvate LDH D / PDH, PFL / PDH
Fermentation – Acetyl-CoA PTAr / ACALD, PTAr / CS
Glyoxylate shunt ICL - ICDHyr
Embden-Meyerhoff-Parnass
(EMP) vs Entner-Doudoroff
(ED)

GND / EDD

Pep Split (GLCptspp + PYK ) / PPC
NH4 uptake options GLUDy / GLUSy, GLUDy /

GLNS

Figure 2.2: Pictographic representation of Dial from [CGKS14]

Figure 2.3: Pentose-phosphate vs glycolysis dial

7



Chapter 3

Related Work

While a lot of work in genome-scale modeling has been devoted to the study of metabolic

networks and TRNs separately, a seamlessly integrated metabolic-regulatory network would

enable better predictions of how genetic mutations and transcriptional perturbations are translated

into flux responses at the metabolic level. There have been significant successes in this endeavor

[CKR+04], [HLPP06], yet substantial challenges remain. Among the integrated models, the

most commonly used genome-scale analysis method today is regulatory flux balance analy-

sis (RFBA) [CKR+04], [CSP01]. This method links the transcriptome of an organism with

metabolism and incorporates regulatory constraints into flux balance analysis (FBA). Figure 3.1

provides the system design and overview of RFBA.

Figure 3.1: Regulatory Flux Balance Analysis method of genome-scale analysis [CP10]

In the case of RFBA, the metabolic network is not only restricted by mass, thermodynamic,

and energy constraints, but also by the gene regulatory network that controls it.

Steady-state RFBA (SRFBA) [SESR07] and integrated FBA (iFBA) [CXCK08] are similar

8



methods based on Boolean logic. SR-FBA uses the same genome-scale integrated metabolic

regulatory network as RFBA but characterizes its steady-state behavior, whereas iFBA uses

differential equations to model a subset of the regulatory network.

Since RFBA model simplifies the relationship between the transcriptome and the metabolome

to a binary process, it has several shortcomings associated with it and other boolean logic-based

methods. The absence of an automated algorithm to determine the boolean rules for relating the

regulator with its target is the biggest shortcoming of RFBA when a large number of species

are considered. Although the manual process can be accurate in modeling metabolic regulation,

manual reconstruction greatly limits the number of interactions. Finally, this process also requires

extensive literature search.

In order to overcome the drawbacks associated with RFBA, probabilistic regulation of

metabolism (PROM) model was introduced in [CP10]. PROM, by automatically quantifying

the interactions from high-throughput data, enables direct integration of the transcriptional and

metabolic networks for modeling. It overcomes the need for manually writing the Boolean rules

which was the major drawback of RFBA. By virtue of automatically quantifying the interactions,

PROM greatly increases the capacity to generate genome-scale integrated models. Figures 3.2

and 3.3 provide the system design and overview of PROM.

Figure 3.2: Probabilistic Regulation of Metabolism method of genome-scale analysis from
[CP10]

PROM is robust to noise in high-throughput data and can be easily integrated with auto-

mated algorithms for network inference. The PROM algorithm uses conditional probabilities for

modeling transcriptional regulation, similar to the probabilistic Boolean networks of [SDKZ02]

9



and uses FBA [KPE03] for modeling metabolic networks. PROM introduces probabilities to

represent gene states and genetranscription factor interactions.

Figure 3.3: Overview of the process used to integrate the metabolic and regulatory network
using PROM from [CP10]

A different approach, one that is not associated with either probabilistic or Boolean

networks, but is dependent on signal networks is the Genetic sensory response units (GENSOR

units) [LTICV17]. GENSOR formalizes the process of detection and processing of environmental

information mediated by individual transcription factors (TFs). These units are composed of

four components namely a signal, signal transduction, genetic switch, and a response. In order

to assemble a GENSOR unit, experimentally validated data sets from two databases were used

for each of the 189 local TFs of E. coli K-12 contained in the RegulonDB database. Ideally,

GENSOR units describe the information that flows through different layers of cellular organization

to produce an appropriate response. Further analysis of the GENSOR unit set showed that less

than a quarter of the TFs regulate genes that belong to the same metabolic flux, but feedback

is a common occurrence. A gradient of response complexity can be observed and is partially

explained by the regulatory effect of the corresponding TF.

10



Beyond the biological insights of GENSORs, [LTICV17] provides the set of GENSOR

units as a standardized framework for small- and large-scale analyses of the interplay between

transcriptional regulation and metabolism.

Figure 3.4: Block diagram of different modeling approaches

From figure 3.4, we can see the both RFBA and PROM methods are dependent on data

from literature which is hard to curate. Although GENSOR method doesn’t require extensive data

collection, all three methods require the integeration of metabolic and transcriptional networks.

This additional step is not necessary in the sensors and dials approach. The approach presented

in this paper requires very little data gathering from literature. The sensors and dials approach

uses statistical modeling to mimic the workings of the TRN and genetic layer in figure 3.4.

Other methods based on stochastic models or differential equations [MLGEP08] and

[WDH+17] are usually restricted to modeling small systems and have not been extended thus far

to the genome scale.
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Chapter 4

System Design

The block diagram of the system is as show in figure 4.1

Figure 4.1: Block diagram of the sensors and dials modeling approach
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If the values of the sensors are known, using statistical modeling, the values of the dials

can be predicted.

This approach is different from both signal driven and data driven approaches shown in figure

3.4. It does not require information about the underlying transcription factors or the gene data.

One can directly predict the dial values using the sensor values through statistical modeling

approaches.

The following chapters will detail the dataset used in the modeling task. A number of

models with varying accuracy are used to predict the dial values. The workings and the results of

each of the models are detailed in chapters 6 and 7
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Chapter 5

Dataset

The dataset consists of metabolic flux values of E. coli str. K-12 substr. MG1655

[BPB+97] obtained by MCMC sampling of BiGG Models as seen in table 1.1.

Table 5.1: List of Sampling conditions used in MCMC sampling

Sources Lower bound values
EX_glc__D_e 0, 5 and 10
EX_xyl__D_e 0, 5 and 10
EX_rib__D_e 0, 5 and 10
EX_glyc_e 0, 5 and 10
EX_ac_e 0, 5 and 10
EX_pyr_e 0, 5 and 10
EX_nh4_e 0 and 1000
EX_o2_e 0, 2 and 20
EX_arg__L_e 0, 5 and 10
EX_asp__L_e 0, 5 and 10
EX_ser__L_e 0, 5 and 10
EX_cys__L_e 0, 5 and 10
EX_pro__L_e 0, 5 and 10
EX_ala__L_e 0, 5 and 10
EX_trp__L_e 0, 5 and 10

14



5.1 Sampling Conditions

The dataset was created by constraining the MCMC sampling of BiGG Models by a set

of conditions. The conditions were created by varying the magnitude and direction (positive

or negative) of the lower bound values of different Carbon, Nitrogen, Oxygen and Amino acid

sources. The complete list of sources is as shown in table 5.1.

5.2 MCMC Sampling Procedure

Since the dataset consists of metabolic flux values, the most widely used technique to

analyze these fluxes in large-scale metabolic reconstructions is FBA. In FBA, a liner objective

function , typically the biomass or some biological proxy of it is introduced, and the problem

reduces to finding the subspace of the polytope, which optimizes the objective function. If

this subspace consists in only one point, the problem can be efficiently solved using linear

programming. However, if one is interested in describing more general growth conditions, or is

interested in other fluxes than the biomass, different computational strategies must be envisaged.

As long as no prior knowledge is considered, each point of the polytope is an equally

viable metabolic phenotype of the biological system under investigation. Therefore, being able

to sample high-dimensional polytopes becomes a theoretical problem with concrete practical

applications. From a theoretical standpoint, the problem is known to be NP-hard and thus an

approximate solution to the problem must be sought. The approximate solution can be obtained

using MCMC sampling technique. MCMC sampling, basically, consists of iteratively collecting

samples by choosing random directions from a starting point belonging to the polytope.

For this project, the COBRApy software was used to perform MCMC sampling. A set of

34 conditions were created using all combinations of sources and lower bound values mentioned

in table 5.1. An example of the sampling condition set is as shown in listing 5.1. The feasibility

of each of the samples was checked by running FBA. If the solution objective of FBA (in this
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case the growth rate) is greater than 0.05, the optimized model was used for sampling. Before

MCMC sampling was run, the lower bound value of the biomass function was set to 99% of the

solution objective obtained after performing FBA. For each feasible condition, a sample of 1000

was collected. The dataset consisted of 340000 datapoints.

Listing 5.1: Sampling conditions

[
{

” EX nh4 e ” : −1000 ,
” EX o2 e ” : 0 ,
” EX glc D e ” : −10

} ,
{

” EX xyl D e ” : −10,
” EX nh4 e ” : −1000 ,
” EX o2 e ” : 0

} ,
{

” EX arg L e ” : −10,
” EX nh4 e ” : −1000 ,
” EX o2 e ” : 0 ,
” EX glc D e ” : −10

} ,
{

” E X s e r L e ” : −10,
” EX nh4 e ” : −1000 ,
” EX o2 e ” : −20,
” EX glc D e ” : −10

}

]

The COBRApy software contains implementation of two different types of sampling

techniques namely optGpSampler [MHM14] and ACHR Sampler [TPVP05]. From literature

and from extensive experimentation as shown in the COBRAPY SAMPLING BENCHMARKING

website, it was discovered that ACHR sampler performed better than optGpSampler. For the

purposes of this project, ACHR sampler was used to perform sampling.

The pseudocode of the sampling technique used is as shown in figure 5.1
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Figure 5.1: Pseudocode of the sampling technique

5.3 Dataset Validation

In order to validate the samples obtained using MCMC sampling, a number of experiments

were conducted and they are enumerated below.

5.3.1 Validate function

The most readily available validation technique is the ”validate” function that’s part of the

ARCH sampler library. The validate function checks to see if the set of points is feasible and give

detailed information about feasibility violations.

5.3.2 Auto-correlation Plots

The second technique used to validate the samples is by drawing an autocorrelation plot.

From the fig 5.2 we can see that the autocorrelation tends to be close to 0 towards the end of the

series. The sampling experiment was run repeatedly to select the best dataset with the lowest

autocorrelation value.

5.3.3 Drawing Pathway Maps in Escher

The third technique used to validate the samples is by drawing pathway maps in Escher

[KDE+15]. This will rule out the obvious errors in the sampling data like loops that are out of

the ordinary.
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Figure 5.2: Autocorrelation plot for the 340k flux data

5.3.4 Gelman and Rubin Test

The fourth technique used to validate the samples is using the Gelman and Rubin test

as explained in [MHM14] under the Empirical Convergence Diagnostics section. The R value

obtained was 1.032. This indicated that the dataset has achieved empirical convergence.
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Chapter 6

Methodology

In order to test the hypothesis about correlation between sensors and dials, an initial set of

line plots of each sensor and dial were drawn. Once a correlation was indeed noticed, statistical

modeling was done on the data. A number of statistical modeling techniques like linear regression,

tree based models and ensemble learning models were used.

6.1 Initial Analysis

A line plot consisting of both sensor and dial values was plotted. Since the dataset

consisted of 340000 datapoints, binned scatter plots of sensor vs dial were drawn.

A high correlation was noticed in case of PGI sensor and PGI-G6PDH2r dial which can be seen

in fig 6.1. Similar correlation can be seen in figures 6.2, 6.3 and 6.4

6.2 Inputs and Outputs

The inputs and outputs are flux values of the corresponding sensors and dials.

Since the flux values vary from −1000 to +1000, a number of normalization techniques namely

atan, log and min-max were used. After careful redrawing of line plots mentioned in section 6.1,
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Figure 6.1: A binned scatter plot of PGI sensor vs PGI-G6PDH2r dial.

it was established that min-max normalization best suited the data.

The dials are a pair of metabolic reactions. Different methods namely ratio of the dial and

difference between the absolute values of the dials, were used to represent the dials. The

absolute value of the dials were taken into consideration to prevent penalization while calculating

the difference. After careful redrawing of line plots mentioned in section 6.1, it was established

that difference between the absolute values of the dials best suited the data.

The sensor values for nadh c and nadph c where calculated by taking the sum of the flux values

for all the reactions associated with these metabolites.

The dataset was split into training-validation-testing sets. The split was 70%-10%-20%

respectively. The dataset was shuffled to make sure that all the conditions were seen in all the

sets.

A separate model was built for each dial.
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Figure 6.2: A line plot of Oxygen exchange reaction and (LDHD,PDH) dial.

Figure 6.3: A line plot of nadh c and (PFL−PDH) dial.

6.3 Statistical Modeling

Statistical modeling was done using Scikit-learn [PVG+11], [BLB+13] library.

6.3.1 Linear Regression

From the line plots in figures 6.1, 6.2, 6.3 and 6.4, we can see that there exists a liner

correlation between each of the sensors and dials. Since a linear correlation exists, the statistical

model best suited was linear regression. The results for linear regression are as shown in section

7.1
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Figure 6.4: A line plot of EX o2 c PGI-G6PDH2r dial.

6.3.2 Extreme Gradient Boosted Trees

From section 7.1, we can see that linear regression doesn’t perform as well as one would

expect. Although there exists a linear relationship between each of the sensors and the dials, a

combination of all the sensors leads to non-linearity. Since linear regression tries to fit a straight

line for the dataset at hand, it fails to capture this non-linearity. In order to learn this non-linearity,

ensemble learning techniques were used.

Extreme Gradient Boosted Trees (XGBoost) [CG16] is a class of gradient boosted tree

algorithms that employ the tree ensemble models. The XGBoost library has in-built APIs to

retrieve feature importance. Feature importance provides a score that indicates how useful

or valuable each feature is in the construction of the boosted decision trees within the model.

The more an attribute is used to make key decisions with decision trees, the higher its relative

importance.

Feature importance is calculated explicitly for each attribute in the dataset, allowing

attributes to be ranked and compared to each other. Importance is calculated for a single decision

tree by the amount that each attribute split point improves the performance measure, weighted by

the number of observations the node is responsible for. The performance measure may be the

purity (Gini index) used to select the split points or another more specific error function. The
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feature importances are then averaged across all of the the decision trees within the model.

Feature importance is calculated as follows -

feature_imp = [0] * n_features
#traverse tree
for each internal_node that splits on feature i

err = compute(error reduction of that node)
feature_imp[i] = feature_imp[i] + err * len(samples through internal_node)

The results from XGBoost and the feature importance plots are as shown in section 7.2

6.3.3 Decision Tree Regressor

From section 7.2, we can see that although XGBoost performs better than linear regression,

it is still not up to the mark. This is clearly visible in figure 7.10. We see that a large number

of points deviate from the 45◦ line i.e from the actual value. This is because XGBoost, which

employs boosting technique, is based on weak learners (high bias, low variance).

In terms of decision trees, weak learners are shallow trees, sometimes even as small as

decision stumps (trees with two leaves). Boosting reduces error mainly by reducing bias and

also to some extent variance, by aggregating the output from many models. The idea is to add a

classifier/regressor at a time, so that the next classifier/regressor is trained to improve the already

trained ensemble.

With respect to this dataset, XGBoost overfits to the training data and hence results in

lower accuracy. On the other hand, decision tree by means of not employing weak learners,

does not overfit the data and hence leads to more accurate result. XGBoost also requires a lot of

parameter tuning and either the lack of tuning or extensive tuning can lead to overfitting.

The results from decision tree regressor and feature importance plots are as shown in

section 7.3. The feature importance calculation is done similarly as in section 6.3.2.
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6.3.4 Random Forest Regressor

From section 7.3, we can see that random forest regressor performs marginally better

than decision trees.

Random Forest creates a large number of decision trees based on bagging. The basic idea

is to resample the data over and over and for each sample train a new classifier/regressor. Different

classifiers/regressors overfit the data in a different way, and through voting those differences are

averaged out.

The results from random forest regressor and feature importance plots are as shown in

section 7.4. The feature importance calculation is done similarly as in section 6.3.2.
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Chapter 7

Results

The results of statistical modeling will be reported in terms of mean-squared-error (MSE),

Pearson-r and Coefficient Rˆ2 values. The results will be accompanied by scatter plots of actual

vs predicted values.

7.1 Linear Regression

Table 7.1 reflects the results from linear regression.

From figures 7.1, 7.2, 7.3, 7.4 and 7.5, we can see that even though there exists a linear

correlation between each sensor and dials, when all the sensors are considered together, the model

performs poorly.

Table 7.1: Results from Linear Regression

Dial MSE Pearson-r Coefficient Rˆ2
(PGI, G6PDH2r) 0.0100 0.9554 0.9128
(LDH D, PDH) 0.0143 0.9297 0.8639
(PFL, PDH) 0.0113 0.9491 0.8639
(PTAr, ACALD) 0.0246 0.8339 0.6932
(PTAr, CS) 0.0290 0.8343 0.6921
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Figure 7.1: Linear Regression scatter plot of actual vs predict values for (PGI,G6PDH2r) dial

Figure 7.2: Linear Regression scatter plot of actual vs predict values for (PTAr,CS) dial

7.2 Extreme Gradient Boosted Trees

Table 7.2 reflects the results from XGBoost regressor. From figures 7.6, 7.7, 7.8, 7.9

and 7.10, we can see that the xgboost regressor performs better than linear regression. Figures

7.11, 7.12, 7.13, 7.14 and 7.15 shows the feature importance plots for each of the dials.
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Figure 7.3: Linear Regression scatter plot of actual vs predict values for (PFL,PDH) dial

Figure 7.4: Linear Regression scatter plot of actual vs predict values for (LDH D, PDH) dial

Table 7.2: Results from XGBoost Regressor

Dial MSE Pearson-r Coefficient Rˆ2
(PGI, G6PDH2r) 0.000247 0.99929 0.997847
(LDH D, PDH) 0.000609 0.997753 0.994214
(PFL, PDH) 0.000744 0.997318 0.993482
(PTAr, ACALD) 0.001241 0.994060 0.9845706
(PTAr, CS) 0.001215 0.995115 0.9873441
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Figure 7.5: Linear Regression scatter plot of actual vs predict values for (PTAr,ACALD) dial

Figure 7.6: XGBoost Regressor scatter plot of actual vs predict values for (PGI,G6PDH2r)
dial

7.3 Decision Tree Regressor

Table 7.3 reflects the results from decision tree regressor.

From figures 7.16, 7.17, 7.18, 7.19 and 7.20, we can see that the decision tree regressor

performs better than the xgboost regressor. It’s the closest to the actual value with precision up to

5 decimal places.
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Figure 7.7: XGBoost Regressor scatter plot of actual vs predict values for (PTAr,CS) dial

Figure 7.8: XGBoost Regressor scatter plot of actual vs predict values for (PFL,PDH) dial

Table 7.3: Results from Decision Tree Regressor

Dial MSE Pearson-r Coefficient Rˆ2
(PGI, G6PDH2r) 2.0987e-06 0.99999 0.99998
(LDH D, PDH) 4.9845e-06 0.99997 0.99995
(PFL, PDH) 1.8038e-06 0.99999 0.99998
(PTAr, ACALD) 1.75e-05 0.99989 0.99978
(PTAr, CS) 1.3527e-05 0.99992 0.99985
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Figure 7.9: XGBoost Regressor scatter plot of actual vs predict values for (LDHD,PDH) dial

Figure 7.10: XGBoost Regressor scatter plot of actual vs predict values for (PTAr,ACALD)
dial

7.4 Random Forest Regressor

Table 7.4 reflects the results from random forest regressor. From figures 7.26, 7.27,

7.28, 7.29 and 7.30, we can see that the random forest regressor performs marginally better than

decision tree regressor. It’s the closest to the actual value with precision up to 6 decimal places.

Figures 7.31, 7.32, 7.33, 7.34 and 7.35 shows the feature importance plots for each of the dials.

For (PGI, G6PDH2r) dial, from the figure 7.31, we can see that PGI sensor is the dominating

feature. Since statistical models depend largely on the dataset used to train them, it is obvious for
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Figure 7.11: XGBoost feature importance plot for (PGI,G6PDH2r) dial

Figure 7.12: XGBoost feature importance plot for (PTAr,CS) dial

PGI sensor to be the dominating feature since PGI is part of both input and output.

Table 7.4: Results from Random Forest Regressor

Dial MSE Pearson-r Coefficient Rˆ2
(PGI, G6PDH2r) 1.92471e-06 0.999991 0.9999994
(LDH D, PDH) 3.11794e-07 0.999998 0.999995
(PFL, PDH) 2.84958e-06 0.999987 0.999993
(PTAr, ACALD) 1.33654e-05 0.999917 0.999974
(PTAr, CS) 9.5527e-06 0.999950 0.999981
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Figure 7.13: XGBoost feature importance plot for (PFL,PDH) dial

Figure 7.14: XGBoost feature importance plot for (LDH D, PDH) dial

Figure 7.15: XGBoost feature importance plot for (PTAr,ACALD) dial
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Figure 7.16: Decision Tree Regressor scatter plot of actual vs predict values for
(PGI,G6PDH2r) dial

Figure 7.17: Decision Tree Regressor scatter plot of actual vs predict values for (PTAr,CS) dial

33



Figure 7.18: Decision Tree Regressor scatter plot of actual vs predict values for (PFL,PDH)
dial

Figure 7.19: Decision Tree Regressor scatter plot of actual vs predict values for (LDH D, PDH)
dial
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Figure 7.20: Decision Tree Regressor scatter plot of actual vs predict values for (PTAr,ACALD)
dial

Figure 7.21: Decision Tree feature importance plot for (PGI,G6PDH2r) dial

Figure 7.22: Decision Tree feature importance plot for (PTAr,CS) dial
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Figure 7.23: Decision Tree feature importance plot for (PFL,PDH) dial

Figure 7.24: Decision Tree feature importance plot for (LDH D, PDH) dial

Figure 7.25: Decision Tree feature importance plot for (PTAr,ACALD) dial
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Figure 7.26: Random Forest Regressor scatter plot of actual vs predict values for
(PGI,G6PDH2r) dial

Figure 7.27: Random Forest Regressor scatter plot of actual vs predict values for (PTAr,CS)
dial
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Figure 7.28: Random Forest Regressor scatter plot of actual vs predict values for (PFL,PDH)
dial

Figure 7.29: Random Forest Regressor scatter plot of actual vs predict values for (LDHD,PDH)
dial
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Figure 7.30: Random Forest Regressor scatter plot of actual vs predict values for
(PTAr,ACALD) dial

Figure 7.31: Random Forest feature importance plot for (PGI,G6PDH2r) dial

Figure 7.32: Random Forest feature importance plot for (PTAr,CS) dial
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Figure 7.33: Random Forest feature importance plot for (PFL,PDH) dial

Figure 7.34: Random Forest feature importance plot for (LDH D, PDH) dial

Figure 7.35: Random Forest feature importance plot for (PTAr,ACALD) dial
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Chapter 8

Biological Significance of Feature

Importance Plots

This chapter talks about the biological significance of feature importance plots by con-

sidering three dials namely Pentose Phosphate vs Glycolysis, Fermentation - Acetyl-CoA and

Fermentation - Pyruvate dials.

8.1 Pentose Phosphate vs Glycolysis

Figure 7.31 indicates that PGI sensor is the most dominant feature in predicting the (PGI,

G6PDH2r) dial. Although, [CF77] and [FL67] indicate that increased flux through the pentose

phosphate pathway leads to overproduction of NADPH which would indicate that the dial (PGI,

G6PDH2r) should have a high correlation with nadph c rather than PGI. But from figure 8.1, it is

evident that there is a strong correlation between PGI and (PGI, G6PDH2r) dial. This could be

due to the fact that the dataset used in this project does not contain sampling conditions where

pentose phosphate pathway leads to overproduction of NADPH.
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Figure 8.1: Scatter plot of PGI vs (PGI, G6PDH2r) dial

8.2 Fermentation - Acetyl-CoA

Figure 7.32 indicates that PGI sensor is most dominant feature in predicting the (PTAr,

CS) dial. Although [HFS98] indicates that the availability of oxygen is the driving factor in the

fermentation - Acetyl-CoA (PTAr, CS) dial, the model predicts that glycolysis is as much a good

indicator as oxygen.

8.3 Fermentation - Pyruvate

Figure 7.33 indicates that both oxygen and NADH play a key role in predicting (PFL,

PDH) dial. Papers [GPP89] and [SDR+12] indicate that presence or absence of pyruvate

dehydrogenase affects the levels of NADH in the organism. Fermentation occurs in anaerobic

conditions and hence is an indicator of presence or absence of oxygen. The fact that figure 7.33

indicates the same proves that the model predicts the dial values accurately.
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Chapter 9

Conclusion

Table 9.1 presents a consolidation of results from all the statistical methods used in this

project. The average and standard deviation (stdev) values of MSE, Pearson-r and Coefficient Rˆ2

are calculated for each method and are reported in table 9.1. From the table 9.1, it is evident that

through statistical modeling, dial values can be predicted effectively using sensors. From chapter

8, we can see that the model accurately predicts the biological responses of E. coli in different

media just by using sensors.

Figure 7.33 indicates that both oxygen and NADH are important features for fermentation

- pyruvate dial whereas figure 7.23 indicates that only oxygen is an important feature. From

section 8.3, it is evident that random forest regressors perform way better than decision tree

regressors in terms of modeling the underlying biology.

The research presented in this thesis provides a compelling argument that sensors contain

enough information to predict the values of dials. Additional data is not required to model the

metabolic activities of E. coli MG1655 strain.
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Table 9.1: Combined Results from All Methods

Method Average
MSE

Stdev of
MSE

Average
Pearson-r

Stdev of
Pearson-r

Average
Coef-
ficient
Rˆ2

Stdev
of Coef-
ficient
Rˆ2

Linear Re-
gression

0.01784 0.007576 0.900479 0.054857 0.80518 0.093599

Extreme
Gradient
Boosted
Trees

0.000811 0.000377 0.99670 0.00188 0.99149 0.004834

Decision
Tree
Regressor

7.98e-06 6.37e-06 0.99995 4.01e-05 0.99990 7.98e-05

Random
Forest
Regressor

5.60e-06 4.99e-06 0.999968 3.07e-05 0.999988 9.46e-06
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Chapter 10

Future Work

One of the very first steps in the future is to expand the number of sampling conditions.

In case of pentose phosphate vs glycolysis dial, there is a high PGI coupling in the dial. By

expanding the number of conditions, this high coupling can be avoided and more interesting

results can be uncovered. All conditions from evolutionary history of the organisms can be used.

The next step would be to add more sensors and dials to our comprehensive list by looking

into literature and by talking to researchers at the Systems Biology Research Group.

A more application oriented next step would be to answer the following question

Can 5 sensors predict flux through all extreme pathways?

If we can predict the flux through all extreme pathways by just using 5 sensor, then we can show

that only a small number of degrees of freedom is required for metabolic regulation.

A more ambitious next step would be to constrain the metabolic model using the predictive

model described in this research. The predictive model would add further constraints to the

metabolic model which at times predicts values which are not achievable by a live organism. The

combination of pre-existing metabolic modeling and the predictive model as described in this

research can be implemented as a single model using genetic algorithms.
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