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CHEMICAL EVOImION OF LIFE AND SENSIBILITI

Melvin Calvin

INrROOUCTION

It is sarething of the nature of asking a "silly question" that I seek

to discuss the problem of chemical evolution, but it is not going to be ask­

ing it of you in the audience, but rather of a broad area of science. Only

someone as ignorant as I am of many of the fields in which I am asking these

particular questions would dare to ask the questions and do the kind of

speculating that I am going to do today. There will be arrDng you, I am

sure, those who know a good deal rrore about certain bits of the areas

with which I have contact, and, therefore, will recognize sorre of the

questions with which I am concerned and the formulations I propose as

being naive. But I don't really offer a preliminary apology. I am rrerely

trying to say to you that I feel a certain kind of concern and determination

to ask these naive questions, because I have seen what happened to rre when

my students carre fresh each year (they are just as fresh every year as they

were the year before -- sonetirres they are fresher!) and the fact that the

students are that way and have the terrerity to ask the kind of questions

they do has helped ne to what I hope are fundarrental understandings which

I v.Duld never have arrived at otherwise. The reason for this ~s that in the

oourse of the evolution of the computer system of the mind, over the years
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of an individual life, certain kinds of programs have been built-in and

you tend not to rronkey with those programs in any way. And these programs

rray or may not be right -- but they are there! These "silly questions" that

the students ask every year push Ire to go back and change the settings on

the dials, or even the dials themselves, and this gives rise very often to

entirely different points of view which I normally would not arrive at. And

it is this type of thing which encourages Ire to do what I am going to do

today.

In the past ten years or so I have been concerned with the problem of

the evolution of living things fran the nonliving world, with which we pre­

sumably began roughly five billion years ago. Until this particular talk,

my norrral procedure was to begin with a solid earth roughly five billion

years ago, having a primitive reducing atIrosphere which was subjected to

a variety of energy inputs (generally in the fonn of cosmic radiation,

ultraviolet radiation from the sun and heat giving rise to electrostatic

discharges in the earth's atnosphere and possibly the radioactre ionizing

energies in the earth's rocks). These various sources of energy, all ta­

ken together, would produce a series of changes in the primitive atrrosphere

of the earth, and I have tried to trace what those changes are, doing ex­

perirrents whenever it is possible to do a laboratory experirrent suggested

by the proposed series of events. If an experirrent can I t yet be done, I

assure the proposition and go on to the next step until an experirrent

can be done. What this actually lTEans is devising a chain of events fran

the primitive atIrosphere to the first living cell, and testing the hyp::>­

thesis of that chain of events whenever it inpinges lJIXln a circumstance

which is susceptible to laboratory test, or observational test, as the

case may be.
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Up until today that discussion usually terminated when we arrive at

a living cell, a system of rrolecules surrounded by a boundary (barrier,

rrembrane) which is capable of reproducing itself and transfonning energy

in a directed way. Generally that is the end of the discussion. Today,

hONever, I hope that that point will corre roughly in the middle of the

discussion, because while one can describe the sequence of transitions

fran the primitive s.iJnple rrolecular abrosphere of the earth to the func-

tioning living cell in a series of chemical and physical changes, and one

can talk about critical points along the tine sequence, it seems to Ire

that looking at the problem rrore broadly this appearance of the defined

CEll (defined by an active rrembrane seParating the internal contents of

the CEll fran the rest of the world) is s.iJnply one stage in a much longer

chain. Thus, the next .iJnportant transfonm.tion which ultimately gave rise

to I'I\3Il is the evolution of a system for transmitting infonm.tion from the

environITEI1t into the CEll, so that the cell can react to that environrrent.

I would like to carry the discussion, then, another stage further to the

evolution of that infonnation-gathering, infonnation-transrnitting, infor-

rnation-processing, infonm.tion-storing function which we nON know to be
even

evident/in the nervous system of the primitive animals and on even ulti-

mately to the higher animals, including nan. In a sense, the appearance of

a cell, together with its rrernbrane boundary, should be only one of the

critical stages in the transfonm.tion of inanimate, initial simple rrole-

cules to the kind of infonm.tion processing apparatus which is represented

by the human neural system.

You can see that this is a much bigger job and must neCEssarily be rrore

speculative for two reasons. One is that the real rrechanism by which the
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neuronal system works is not yet really knovm to us in its intimate de­

tails in the sarre way as what little we do know about the energy trans­

fonning system which is part of the earlier evolutionary pattern. How­

ever, be that as it may, I am going to undertake this speculation and

see where we care out.

PRIMITIVE (PREBlarIC) GIEMISTRY

We begin, therefore, with the idea of the prirnitive earth in its ini­

tial form, insofar as we understand it today. The geological history of

the earth, beginning roughly about five billion years ago, is depicted in

FIGURE 1. The prirnitive abrosphere fomed shortly thereafter was believed

to contain the simplest rrolecules -- atoms of the first row of the periodic

table, generally in their rrost reduced form; carbon attached to hydrogen

(rrethane), oxygen attached to hydrogen (water), nitrogen attached to hy­

drogen (ammonia), and hydrogen itself, as well as some partly oxidized

carbon, such as CO (see FIGURE 2). The period of chemical evolution

leading to the single-celled organism presumably occurred somewhere in the

early region, between five and three billion years ago. The complexity of

organic chemical organization is increasing during the period of chemical

evolution while the corrplexity of the inanimate organic environrrent de­

creases after the appearance of living things, i. e., after organic evolu­

tion has begun. This cross-over point between chemical evolution and or­

ganic evolution (after the single cell had appeared) is now believed to be

at about three billion years, or perhaps even earlier.

An answer to the question of when the nervous system -- these specialized

instruments for gathering and transmitting information -- appears is totally
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tmknown, and as yet there is no chemical record (fingerprint) that can iden­

tify the neIVDUS system. The neIVDUS system presumably began sorrewhere

around two billion years ago, at least the information-transmitting cells

appeared then, but that is pure guesswork at this ti.rTe. By the ti.rre we have

reached 500 million years ago, the well-known fossils have appeared. It

nON appears fairly certain that there may be earlier fossils, one billion

years ago, and we now believe that single-celled organisms have been seen

as early as two billion years ago. In any case, no multicellular organism

is unequivocally known earlier than 500 million years ago, and by the ti.rTe

such evolved there must be organisms which clearly have neuronal systems

in them; at least they have them today, and their early counterparts pro­

bably had them as well. A unique paleobiochemical identification of the

neIVDUS system, as I said a m::nent ago, is still undone.

We have been able to examine this problem by going backwards in ti.rTe and

looking at the fossils which were present, and have been able to find

"rrolecular" fossils as early as three billion years ago. These rrolecular

fossils are in the nature of hydrocarbonS of very particular structures;

not random hydrocarbons but hydrocarbon chains and rings (very highly spe-

cialized structures) related to the steroids of today's living organisms.

The fact that these molecular fossils were present as early as three

billion years ago tells us that ccrnplex Iretabolic machinery was in existence

at that ti.rTe, so the single cell must have carre into being before then.

The other way of examining chemical evolution by fonnulating a series of

chemical events which led up to the point of appearance of "rrolecular" fos­

sils is to begin with the sinple rrolecules of the primitive atm:::>sphere (FI­

GURE 2) and try to reproduce sate of the chemical transformations" ')'his,
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of rourse, is where our exper.i.m2ntal science can playa role. Roughly fif-

teen years ago we did sane of the first experirrents of this type, starting

with carbon dioxide, water and hydrogen, and we were able to shew that with

ionizing radiation we rould make reduced carbon. In :Jact, carbon-to-carbon

links rould be created in this way, folla.ving the ionization and breaking
and hydrogen

of the water/rrolecules and construction of reduced carbon. Shortly after

that, Miller put anm::mia into the primitive reducing system and was able

to shew even rrore OJITPlex corrpounds. There has been a whole series of ex-

perirrents in which examinations have been IlB.de of the products that are

fonred when high energy (or ionizing) radiation in the form of IN energy,

electrical discharge, etc. is introduced into the primitive atmosphere

of the earth. FIGURE 2, in the top roN, shews the sirrple prirrordial rrole-

cules, and in the serond ITM are depicted the COfl1jX)unds which are obtained

when the ionizing radiations are introduced into the gaseous system shewn

in the top roN. You can see that the rrolecules in the serond and third

ITMS of FIGURE 2 are the very rrolecules of which the rrodem day living

cell is ronstructed and upon which it operates. The amino acids in the

bottom roN are the typical ones of which proteins are ultima.tely ronstruct-

ed. There should be a fourth rew in this figure which would shew even

rrore carplex small rrolecules, such as the heterocyclic purine and pyrimi-

dine rings which are the basic units for the ronstruction of the nucleic

acids, another type of biopolyrrer of major importance in the reproduction

of living things, just as the polypeptide and protein rrolecuIes, which are

the biopolymers IlB.de of the amino acids, are also macromolecules essential

to the ronstruction and function of living organisms.
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This type of experirrent has been done repeatedly, by many people, with

a wide variety of energy inputs into the simple IlDlecules. HCMever, this

in itself does not give rise to the biopolyITEr (s) or, in the next stage, to

the selective energy converting apparatus that we nCM knCM in the living

a:!ll, nor does i t give rise to the limiting rrerrbrane of the living cell.

The next stage in chemical evolution is thatp-eading to the biopolyITEr(s),

and a quick examination of the kinds of chemical reactions that are requir­

ed to lead to the essential biopolyners (polypeptides, nucleic acids, poly­

saccharides and lipids) are ShCMl in FIGURES 3 and 4. These ShCM sanething

ccmron to all of these chemical reactions. First of all, in the polyrreriza­

tion reactions leading to proteins, there is an elimination of a water

molecule between the carboxylic acid end of an amino acid and the amino

end of an amino acid, giving rise to a peptide linkage. This produces

a d.irreric IlDlecule with the corresponding original functions at each end

an acid group at one end and an amino group at the other. This reaction

can continue by adding units at either end. For the construction of the

polysaccharides, which are the biopolyners which we recognize as the

structural elerrents of the a:!ll wall in plants as well as one of the

energy storage units of plants and animals, a dehydration condensation

(the characteristic single reaction of all these biopolyrrers which are

fomed fran the simple nolecules) takes place between a semiacetal hy­

droxyl group and Sate other hydroxyl fran a carbohydrate nolecule to give

a linkage involving the elimination of water. Thus, a disaccharide which

then has the semiacetal hYdroxyl and alcoholic hydroxyl at either end,

and which can thus grcM on to the polyner, is made. Lipids, the fat-type
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rrolecules, again ShON the sane type of reaction, i.e., the elimination

of water between an acid hydroxyl group and an alcoholic hydroxyl, to

create the ester bond. This, ho.vever, does not give rise to a potentially

indefinitely long polyrrer but can give rise to rather large rrolecules.

With the polysaccharides and proteins, polyrrers can be created which can

grON indefinitely, and because of the variety of R groups can make an

enorrrous variety of nolecular structures.

The last great class of biopolyrrers shown in FIGURE 4 involves three

different kinds of dehydration reactions. There is a purine ring (adenine)

which can be fOITI'Ed in the first stage of chemical evolution, on which it

is nON possible to have a dehydration condensation between one of the NH

groups in the nolecule and the semiacetal hydroxyl of a five-carbon sugar,

thus giving rise to one kind of linkage. Another kind of dehydration con­

densation can take place between a phosphoric acid rrolecule and the pri­

nary alcohol group at the endof the sugar nolecule, thus giving rise to

a phosphate ester. And, finally, a second phosphate ester group can be

fOmEd between another one of the hydroxyl groups of the phosphoric acid

and the secondary alcohol on another sugar rrolecule.

You will notice that the three dehydration condensations have nON given

rise to a unit which is capable of still further grcMt.h, indefinitely,

much ln the sane way as the polypeptide. There is still another hydroxyl

which can undergo a condensation, i.e., there is an additional hydroxyl on

the sugar nolecule (a secondary hydroxyl) which can undergo the sane kind

of condensation as in the first case. We therefore have a unit which has

two functional groups (hydroxyl and phosphoric acid) which can condense

with each other, at either end, and thus grON indefinitely to make very

long linear arrays.
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The question now is: How can we induce that kind of a dehydration

p::>lyrrerization in water? We know that this kind of dehydration conden­

sation takes place today in water; the living organism performs this type

of reaction all the ti.Ire. How could this kind of dehydration condensation

have happened in the absence of a living organism? Is there any kind of

system we can devise in the laboatory which will do this with the mater­

ials available fran the initial energy input on the rnethane-ammnia­

hydrogen-water system? Today' s organisms use phosphoric anhydride linkages

in order to induce dehydration condensation in an aqueous milieu. But the

formation of such phosphoric anhydride linkages in a nonliving system,

while it can be achieved,can be achieved only in special circumstances.

It may very well be that these special circumstances pertained. However,

I find it rrore satisfying to use the kinds of rrolecules made generally by

the introduction of high energy radiation into the initial chemical milieu

of the prirnitive reducing atrrosphere to achieve these phosphoric anhydride

linkages.

A series of those very interesting rrolecules is represented by the cyan­

amides. HCN itself is for:ned in the prirnitive atrrosphere, and two rrole­

cules of HCN reacting with amronia can fonn dicyanarnide. These dicyanarnides,

in turn, are now energy rich materials since they have a carbon-ni trogen

linkage having rrore than one bond between the two atoms (two or three bonds

between the carbon and the nitrogen). This multiple bonding between the

carbon and the nitrogen can be used to accanplish the dehydration conden­

sation. The bond between the carbon and the nitrogen is unsaturated,

that is, can take up water aITDng other things, and do this in a specific

manner. We have used dicyanamide (an ammnia rrolecule with two cyano
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groups replacigg two of the hydrogen atoms) as a condensing agent to in-

duce all of the dehydration condensations (polyrrerizations) in one fonn or

another in dilute aqueous solution, using the dicyanamide as the only ener-

91 source. It is useful because the dicyanamide groups do not react very

rapidly with water itself but will react with phosphoric acid, with car-

boxylic acids, and with the alcohols rrore rapidly than they will react

with water itself. We can therefore use (di) cyanamide in water solution.

The series of reactions by which a peptide is fomed by dehydration

condensation reactions is shCllNl1 in FIGURE 5. You can see dicyanamide in
tautorreric

it> various/fonus. Notice that one of the tautorreric fonus can be written

as a carbodiimide and thus corresponds to the well knCllNl1 reagent which has

been used rrost frequently in a nonaqueous rredium for the sane reaction

series. Here an amino acid will add to the carbodiimide linkage, and once

the oxygen atom is attached rothe carbon it stays there, and the carboxyl

carbon is then subject to nucleophilic attack by another amino group, the

nitrogen attacking that carbon and fonning the peptide link. Notice that

what was originally the cyano group of· the carbodiimide has becorre urea.

A water rrolecule has been added to the carbon-nitrogen triple bond (carbo-

diimide), giving the dehydration condensation to the dipeptide. The other

reactions shCllNl1 in FIGURE 5 are side reactions which should be minimized

in order to nake this a useful reaction. However, the overall reaction

may be of the order of ten percent, and this is efficient enough for our

purposes.

The sane kind of dehydration condensation reaction can be used to

fonn rhosphate esters, glycosidic linkages, fatty acid esters, and the

like, and all these things have been perfomed in the laboratory. We are



11

thus able to achieve a certain killd of dehydration pJlyrrerization, even ln

water solution. We have now reached the stage of the biopJlyrrers, dissolv­
in

ed/water. The question now is: Can sorre higher degree of order be obtain-

ed from this?

GENERATION OF HIGHER DEGREES OF IDLEaJLAR ORDER

Let us examine what happens when a pJlypeptide becares eight or ten

units long, i.e., when it begins to have built into it factors which may

give rise to a secondary order. The primary order is simply the sequence

of amino acids which is hooked together, and the secondary order graws

out of that. FIGURE 6 shows the nature of sorre of the amino acids, giving

rise to the primary pJlypeptide (or protein) structure -- the Rl, ~, R3'

etc., sequence. The figure shows sorre of the varieties of R group which

are available. The secondary structure of the pJlypeptide, hawever, is

shawn in FIGURE 7, which depicts a helical coiled structure whose nature

is built right into the peptide structure by virtue of the carbonyl groups

of the amide linkages which fonn hydrogen bonds with the hydrogen of the

amide link three or four amides rerroved from it dawn the chain. The he-

lix is what we call the secondary structure of the linear array and it

is thenrodynamically stable under suitable conditions. This characteristic

is derronstrated in FIGURE 8, showing the result of an experirrent in which

conditions were arranged for rrelting out the helix, producing a random

coil, and then reversing the conditions, causing the secondary structure

to return. By adjustrrent of the pH, the structure can be changed from a

randcrn coil at alkiine pH to an alpha helix at pH 4.9, and this is perfect-

ly reversible. Thus, SOl'lE of the evidence appears that the seo.:mdary struc-



12

ture is built right into the linear array and does not have to be wound

up by hand, so to speak. The secondary structure is an elerrent of "infor­

rm.tion", if you like, an elerrent of structure built into the linear array.

W2 can go one step further. FollOtJing the secondary helical struc­

ture, the folding of that helical cof!lX)nent into SOITE secondary folding

is also builtin and can be reversibly rerroved, as shCMIl in FIGURE 9.

This tertiary structure is itself built into the secondary structure

which, in turn, is a function of the primary structure. This can be

shOlffi by rrelting out, or destroying, the tertiary structure by a rise

in temperature and havint the tertiary structure refonred upon cooling

(FIGURE 9). In FIGJRE 9 is shOlffi the folded helix rrelting out of chyrro­

trypsin as a function of temperature. At pH 3.5, the folded helix is

not rrelted out mtil a temperature of about 50°C is reached, and it goes

right back upon cooling dCMIl again, to get back the folded structure such

as the one shOlffi for myoglobin in FIGURE 10. we are not rrelting out

the alpha helix, now; we are rrelting out the tertiary structure. We can

go one step further and show that the aggregation and de-aggregation of

these tertiary structures into quaternary structures is also a reversible

thing. FIQJRE 10 actually shows a quaternary structure in which four

chains of a protein (herroglobin) all folded up into a tertiary structure

are packed together in what might be called a quaternary structure.

For polypeptides we have thus traced a degree of order from the amino

acids, which are randomly forrred, to the polypeptides, to the helix, to

the folded helix, to the packed, aggregated folded helices; in other

words, fran primary to secondary to tertiary to quaternary structure.
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The ordering of the polynucleotides, for the components of which the

rrechanism of formation by random procedures was sha.vn earlier, is seen

in FIGURE 11. This indicates hOtJ they organize into a secondary helical

structure in much the sane way as a polypeptide organizes itself in a

secondary structure. Two nucleic acid chains are here involved in the

fornation of the secondary helical structure of the nucleic acids, the

reversibility of which is sha.vn in FIGURE 12 which derronstrates a temper­

ature rrelting out process. By raising the temperature from 22° to 99°

the double helix of the nucleic acid lIDits relts into a random coil, and

when it is (X)()led dONn again to 22° it reconvenes into the helical struc­

ture, which is the second degree of structure corresponding to the helix­

coil transition in the proteins. The linear array of the nucleic acids

has built into it the second order structural feature.

AUIOCATALYSIS

The next step we must take in our evolutionary developrent is to

introouce the notion that once certain kinds of structures appear they,

in turn, can in SaTE way control, or induce, their self-fonna.tion, or

formation frcm their component units. This is what the chemists call

autocatalysis, and a very nice exanple is sha.vn in FIGURE 13. Here in

diagrarmnatic form are sha.vn the results of a nurrber of experirrental ob­

servations. If an attempt is made to induce a hexaner of thYmine (dia­

graIl\3.tically indicated along the top) to undergo a dehydration condensa­

tion between a hydroxyl group on one end of the hexaner and the phosphate

on another one, with a dehydrating condensing agent such as the carbodiimide,

you find that they will not condense. Instead, a variety of other events

occur, and the yield of condensation products is extrerrely small. HCMever,
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if a polyadenylic acid, which contains the complerrentary base of thymine,

is added to the reaction mixture, the condensation reaction is much nore

efficient, with about a ten percent yield of the condensation product, that

is, the one obtained by hooking together the two hexarrer unit. Here we

have the case in which the polyrrer is catalytic for its 0NIl carrplerrentary

polyrrer formation. In the sarre way, the polythyrnidylic acid would catalyze

the condensation of adenylic acid to polyadenylic acid. Here is the cross

autocatalysis which is the essential feature of the self-reproducing gene­

tic system and which is here denonstrated in a sinple nonliving laboratory

system. This autocatalytic quality is an essential feature of the chemical

evolutionary scherre, and the reactions ShONIl in FIGURE 13 are one of the

first cases I have been able to extract from the literature which is really

rertinent. Formerly in discussing autocatalysis I had used other examples

(Fe catalysis of oxidation leading to the efficient catalysis by Fe-Pt-Me)

with which you are all familiar, but even though sorre of them were experi­

rrentally observable they illustrated the basic idea, but on systems which

were not of such direct interest in the evolution of the genetic system of

living organism. So much, then, for the introduction of autocatalysis in

the control of the generation of the kinds of nolecules which are necess­

ary for organic evolution.

APPEARANCE OF VISIBLE STRUCTIJRE ------ LINEAR ARRAY

We new need to go to a higher degree of organization and order, and

we can get, so to speak, a :fifth degree of order which brings us into the re­

gion of visible structure. FIGURE 14 shews the example of taking apart

the protein material of colligen and reassenbling it into visible collagen
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fibrils. By readjusting the salt concentration of the solution, the colla-

gen fibrils, after being dismantled, reaggregate into visible units which

can be seen as identical with the naturally-occurring collagen fibrils.

we have nON reached the level of visible structure which is contained irn-

plicitly within the units of the rrolecules themselves. We have thus tra-

veled all the way fran IIEthane-arnronia-water-hydrogen to visible structure

without the introduction of Maxwell's derron.

The next step is the reconstitution of linear structures from rrolecules,

linear biologically interesting structures from relatively simple small

rrolecules. One such example is the reconstitution of TMV virus particle,

sho.vn in FIGURES 15, 16 and 17. FIGURE 15 shows the native TMV particle,

and the size is quite definite both in diaIIEter and in length. In FIGURE

16 is sho.vn the reconstituted TMV protein without RNA. The TMV particle

has been taken apart and dissolved, the nucleic acid has been rerroved,

and the protein rrolecules have been reaggregated. Here we can see that

the protein rrolecules of the TMV virus particle reaggregate, but at random

lengths. If, however, the separated protein rrolecules and the separated
nucleic acid

TMV/rrolecules are corrbined and reaggregated in the presence of each other,

the reconstitution is nore precise (FIGURE 17). Here we have reconstitution

in what is a linear array. The thing that detennines the length is the

nucleic acid; the protein tends to aggregate but its length is indetennin-

ate.

Another type of reconstitution of a still higher order is that of

the flagellum of a bacterium. In FIGURE 18 four different types of bac-

terial flagella (I, II, III, IV) are shawn. You can see that three of

the bacteria have flagella with quite long, wavy shapes, and the fourth

one has a shorter, curly shape. It is possible to separate the flagella,
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take them out of the bacteria and dissolve them into rrolecular solution,

with a rrolecular weight of about 40, 000 . These can then be reconstituted -­

get back the flagella, so to speak -- which process is ShCM7I1 in FIGURE 19.

The rronorrer fran III and seed from III (that is, the rronorrer is seeded

with fragrrents of III) and a III type flagellum results from the rronorrer.

In the lower part of FIGURE 19 is the rronorrer from IV (the "curly" one)

seeded with III, and the curly type predominates. This shows that the

protein structure of IV is different from III, and because even when you

use the sane seed nuclei for both solutions, the flagellar growth pattern

is detennined, in this case, by the protein rrolecular structure itself.

Much rrore complex spontaneous reassenbly proCEsses have been derronstra­

ted, Le., the enzyrre oonplex of alpha-keto acid oxidases. Here, a can­

plex made of three different proteins (the decarboxylase, the acyltrans­

ferase and the flavoprotein) is reasserrbled into a very specific, cata­

lytically active canplex, using the carponent rroleeules in the ratio

12:1:6; this is the elegant work of Reed in Texas.

The flagella (and virus) which we have been describing above are

still essentially linear arrays. A two-dirrensional array would be the

next stage in the develop:rent. We would thus be on the way to a film, or

a rre.rrbrane structure, which would surround the energy conversion (enzyrre

corrplex) and structure detennining apparatus (genetic material). This is

the beginning of our analysis of the rrenbrane structure.
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THE NEXT HIGHER ORDER ---- STRUCTIJRE OF A MEMBRANE

FIGURE 20 shows an electron micrograph of one of the individual rrem­

branes, larrellar structures, within the chloroplast (a nodel for a rrenbrane,

if you like) and you can see that the rrerrbrane is not a srrooth structure

but a granular one. It is canposed of granular units of protein, probably

hooked together in the first approximation by virtue of properties of

their CMI1 structure and then covered by sorre kind of lipid layer. In FI­

GURE 21 this sarre type of structure is shCMI1 in even greater detail, and

the cracking of the larrellar structures can be seen at various levels.

You can see that the larrellar structures are granular and that the granules

are of different sizes at different levels, with alternating lipid and pro­

tein layers. The two-dirrensional array is a result of the rrolecular struc­

tures from which it is built.

We have not yet reconstructed an energy converting rrenbrane such as

the chloroplast larrellae. W2 have taken it apart, but have not yet learned

hCM to reconstruct it. A few efforts have been made, and I fully expect

that in the not too distant future sare reconstructions of the two-dirren­

sional energy converting arrays will occur.

There has, hCMever, been an effort to reconstruct another biologically

interesting rrembrane by using as yet rather crude rrethods, but it is the

first effort I have seen in the literature to reconstruct a biologically

active rrenbrane. This is shawn in FIGURE 22, which gives the reconstruction

of a rrenbrane of Mycoplasma, a slirre rrold. The upper right shCMs the lll­

tact rrold, the upper right the isolated intact rrembrane before it is taken

apart, and in the lONer part of FIGURE 22 is ShCMIl the attempted reconstruc-
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tion of the rrerrbrane fragrrents. After the lipid and protein is redissolved

it is reconstituted to give the type of structure shown. We can begin to

see here the reconstruction of rrerrbranes 111 section which appear very simi­

1ar to the intact initial rrerrbrane. This 1S a step to.vard the reconstruction

of two-dirrensional asymretric IreITbranes which are essential for the contain­

rrent of the material functioning structure inside the living cell.

This is hardly a bare beginning. Not only llRlSt we probe much rrore

deeply into the constitution, construction and reconstruction of the var­

ious types of biological rrerrbranes, but the basic physics and chemistry

of synthetic, and partially synthetic, m:xlel systems requires the develop­

rrent of both synthetic and theoretical principles which are as yet extreme­

1y rudirrentary.

DEVEIDPMENT OF THE NERVOUS SYSTEM

A next step in our evolutionary travels is the developrrent of the

nervous system. We have repeatedly heard that the factors which select

for the survival of a system, whether it be a simple chemical system or a

single living organism which is really a complex physical-chemical system

of a certain sort, is the environnent in which it resides. If one parti­

cular array of physical-chemical systems has survival advantage over

another in a particular environrrent, it is clear that one will have rrore

probability of reproducing itself and thus fully cx::cuging the environrrent,

than the other one. This is rrerely a staterrent to the effect that the

P1ysical-chemical system which has sore reproductive survival advantage in

a particular environrrent will eventually use up all the raw material of
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that enviroI1ITent to the exclusion of other systems requiring the sane

materials. This is the basic process which has been taken:fOr granted

in all of the evolutionary steps which we have discussed up until this

point. This discussion has brought us to the evolution of a single

entity surrounded by a rrembrane which keeps it separated from its out­

side enviroI1ITent, i.e., a cell. M::>st of the responses of that cell,

that single entity, to the environrrent are responses to chemical stimuli.

A chemical stimulus can be sane change in the chemistry of the environ­

nent and the organism sensES that change by virtue of a physico-chemical

reaction of its o.vn, which is dePendent upon the concentration of sorre

chemical in its environrrent. Thus, a gradient of the concentration of

that chemical in its surroundings can produce a reaction to that gradient.

Initially, there is no "directionality" to that kind of sensing other than

the gradient itself, but it does work so long as the organism is ama.ll -­

single cells.

Even when cells aggregate linearly, every cell can sense the environ­

nent directly and does not need any help; it responds !TOre or less chemi­

cally to the environrrent. An example of such a linear array is Nostoc, a

W1icellular algae which aggregates linearly, as does Nitella. Every single

cell is exposed at least in two dimensions to the outside environment, so

that every cell can sense the outside environment directly. So the linear

aggregation of cells does not require any kind of specialized information

gathering or transferring equiptent. However, if the cells aggregate in

two dirrensions and then the sheet is allowed to close and form a hollow

sphere, or tube, there will be cells inside which do not have direct

access to the environrrent on the outside. Therefore, it is necessary to
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have same information transferring appautus to help the cells on the inside.

All cells already have a rrembrane which is asynmetric because the inside of

'the single cell is different from the outside. Sorre of the cells on the out­

side of the tube, or sphere, could extend that rrembrane through the double

or triple layer of cells into the inside and find a way of transmitting the

information about the environrrent which they (the outside cells) can sense

directly by same sensing device, into the cells on the inside of the mul­

tiple layers which cannot so sense directly the environrrent. The organism

(system of cells) which devises a rrechanism for doing this, with a miniIm.nn

loss of information in the transfer, is the organism which can react to

changes in the environrrent with the least loss to itself and its offspring.

This is, I think, the focussing requirerrent for the evolution of the ner­

vous system.

The evolution of a tansmitting system is the first step in the evolu­

tion of the nervous system. Presumably the sensing device on the outside

is still chemical (it could be physical if it were responding to light,

for example). The sensing device, the initial transducer for exanple,

can still be the sarre as it was originally, but the transmitting system

must, in same way, be improved beyond that of the single cell.

We already have an asymretric nembrane which was evolved in response

to the requirerrent for the initial encaserrent of the cell and which is

capable of keeping salts ln or out, as the case may be, depending on where

the organism is, as well as keeping certain organic nolecules in or out.

Thus will arise an electrically asymmetric membrane. For exanple, in order

to nove into the fresh water fran salt water it will have to devise ways

of keeping the salt that it needs for its functioning nside in the presence
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of the osmotic gradient. Thus, alrrost simultaneously with the initial

cellular enclosure, evolved semi.-penreable rrembranes and, secondly, salt

pumps. These are functions whose rrolecular rrechanism we do not yet knaN.

We do not knaN the rrechanisms of semi-pemeability or selectivity with

respect to salt, nor do we knaN the rrechanisms of the pumping apparatus,

that is, the rrechanism of pumping salt, or rretabolites, fran the ION con­

centration back up to the high concentration which is needed inside the

organism. A typical salt concentration .inside the organism is of the

order of 500 millirrolar of NaCl. If you take the cell into fresh water

there has to be a rrechanism, first of all, for preventing imrediately

leakage of the NaCI out and, secondly, a rrechanism for pumping back that

material which does leak out, since no pemeability barrier is perfect.

These rrechanisms were evolved even for the single-celled organisms.

What is needed nON is the evolution of a device for transmitting the

chemically or physically sensed environmental change along some direction

without decrerrent. You might speculate that all that is necessary would

be a confining tubule with the concentration gradient going dONn that tu­

bule. HaNever, you can see that a concentration gradient dONn a tubule,

even though it is contained in a narrON passageway, transmits information

content with a logarithmic decrerrent as it goes dONn the tubule. This 1S

not a very satisfactory way of transmitting information. This is the crux

of the next step in the evolution of the ability to transmit information.

Obviously, the next stage is to put repeating stations into the rrechan­

ism, with an energy input every so often, and thus rebuilding the signal

back up over the noise as you go dONn the tubule. The electrically active

asyrmetric rrerrbrane was used by the living cell in just this fashion.
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The essence of the idea is as follows: The nerve cell does not generally

transmit an impulse by a gradient transmission but by a frequency code.

Before examining the nechanism of transmission, let us have a look at

the physical apParatus which the specialized information transferring cell

has becme, Le., the neuron. FIGJRE 23 is a drawing (by Valverde) of

a highly developed neuron, showing the apparatus whose function we are

going to examine, and I think the rrolecular nechanism of the evolution of

the apparatus will becorre apparent only from any rrolecular knowledge we

have, or may gather, as to how it works. You can see the cell body, ori­

ginally a little "blob" surrounded by a rrembrane; but now the rrembrane

has extended processes in many directions, and rrost of these processes

(dendrites) are those which are taking nessages from other cells. There

is one that is sending its awn rressage (the axon). The small numbers on

the processes count the endings of other cells which end on this particular

one. This shows how complex the transmission system is for even this

single cell; the single cell is receiving sorrething from at least 500

other cells, and the rressage it sends out is synthesized from all the

nessages it receives. So, this single cell, for exarrple g shows sane of

the complexity of a cortical cell and the system of which it is a part.

FIGURE 24 shows what one of the interactions is like in detail, the trans­

mitting end of one cell and the receiving end of another cell, a synapse.

The rressage cones dawn the presynaptic tube and there is a gap between

the two cells. The little circles are presurred to contain a chemical,

and as the electrical nessage cares dawn the cell wall sorrething hapPenS

at the gap (and I rrean just sorrething; we don't know exactly what) f

which lets a few of these vesicles loose into the gap between the two



23

cells. The chemical contained in the vesicles is released and it travels

across the gap and does sonething to the J;Dst-synaptic surface which starts

the rressage dONl1 the next cell. These are the two important canponents of

nerve transmission: The axomc transmission, or, I should say, the nerve

inpulse itself, and the synaptic transmission fran one nerve to the other.

We must find ways and rreans of understanding these two essential features

in molecular tenns in order to devise evolutionary scherres for them. FI-

GORE 25 sheMS an elecmn microgr~ of part of a nerve cell, and the

vesicles in the presynaptic button are ShONl1 quite clearly; you can see

the gap between the two cells, and the arrew points to the place in which

it was believed a discharge took place The energy producing apparatus,

the mitochondria, for remaking all the material which is discharged, is

clear, and the post-synaptic cell which picks up the rressage and starts

it teward the cell body is easily visible.

with that as the apparatus with which we must deal we can see in

FIGURE 26 the frequency code which I rrentioned a few minutes ago. The

mmbers represent relative intensities of light on Limulus eyes and
of

the pulses are the signals which cone out/the nerve attached to the

crab's eye. At very lew intensity there are very few signals, and as the

intensity is increased the frequency increases but the signal which

passes dONl1 the nerve is always the sarre signal in size -- all you get

is a frequency change and not a size change. This is the result of the

rrechanism by which the information is transferred which is a repeating

station, so there is always the sane signal strength. But there are

rrore signals for higher intensity on the transducer. FIGURE 27 shews at

a higher magnification one of the signals shewn on FIGURE 26, just to 00-
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serve it In tenns of the voltage changes involved; shewing the volrrJ.ge

pulse as it passes a particular point on the nerve.

The question is: What causes that voltage pulse in the nerve and

hew is it controlled? It seems to be due to a salt concentration change

of sarre sort, and this notion has already been introduced by virtue of

the general nature of rrerrbranes. I am going to try to briefly outline

the Hodgkin-Huxley theory of the nerve impulse conduction, one pulse of

which is shewn in FIGURE 27. FIGURE 28 depicts what occurs at a given

point to the current flewing across the rrembrane as a pulse passes that

point. At a particular point the current flows inward and then outward

(curve A, FIGURE 28). By controlling the polarization of the rrerrbrane

and the ions both on the inside and outside of the rrerrbrane it was pos­

sible to show that the current was made up of two carqx:ments, sodium

ions flowing inwards and potassium ions flewing outwards. Notice that

for a particular potential difference imposed the sodium ion current

going inwards grows rapidly and then decays, and the potassium ion cur­

rent going outwards starts rrore slowly and then remains constant for

that particular polarization (+ 56 mv). These currents are interpreted

in terms of changes in the selective conductivity of the nerrbranes for

Na and K ions which can be rreasured separately, as shewn in FIGURE 29.

When a voltage is irnpressed from the outside, you can see what happens to

the sodium ion conductivity. It rises very rapidly as the sodium leaks

into the nerrbrane, t1;us reducing the negative potential on the inside.

The potassium then gradually begins to leak out. The sodium conductivity

increases rapidly and then decreases again; the potassium conductivity

increases rrore slowly and stays rrore constant, until the impressed vol­

tage is reduced. You can see that there is a selective change in the
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oonductivity, the scx:litm1 ion conductivity increasing at first and then

decreasing. This soditm1 ion decrease sets in rrore rapidly than the po­

tassitm1 ion increase and is thus not solely the result of a repolariza­

tion due to potassiun leakage. The dotted lines in FIGURE 29 shON what

happens to the oonductivity if the voltage clamp is released; the scx:litm1

oonductivity drops very rapidly and the potassium ion oonductivity drops

rrore slONly.

If you take these two oonductivity changes and put them into a suit­

able equation for oorresponding voltage changes, the voltage being deter­

mined first electrochemically by the potassium and then by the sodium,

you can get the passage of the nerve impulse pretty much as it was seen

in FIGURE 28; this is sho.vn in rrore detail in FIGURE 30. What is involved

here is the requirerrent that sorrething hapPen to the rrerrbrane when the

potential across it is changed to make it quickly pe:rrreable to sodium

with a quick reoovery of sodium resistance and slONly pe:rrreable to po­

tassiun. As the potassium ion leaks out, that voltage is then returned

to its original value, and as the polarization of the membrane is returned

to its original value the potassiun current is gradually shut off. NON,

this voltage signal travels dONn the nerve by the rrechanism sho.vn in FI­

GURE 31. You start with the voltage negative on the inside of the nerve

CEll and positive on the outside. Then a reverse voltage is inpressed at

sorre point. Sodium ions flON fran the outside in, thus pulling sodium

ions fran the neighboring part of the rrerrbrane; potassitm1 ions flON' from

the inside out, but rrore slONly. The sodium ion flONS over fran B to A

to close up the gap, depolarizing at B, which then becorres pe:rrreable to

scx1ium ion. Sorre macrorrolecular change occurs in the polyrrer rrenbrane
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itself so that it becares conducting to sodium ion imrediately which is

the cause of the migration of the depolarization wave dONn the nerve.

Where is the energy for this depolarization coming from? It is corn­

ing from the salt concentrations on the two sides of the celL Inside the

rrenbrane there is a concentration of sodium of 50 millirrolar and a concen­

tration of potassium of about 400 millirrolar; outside the rrembrane the

situation is reversed, with 20 millirrolar for potassium and 400 millirrolar

for sodium. It is that electrochemical concentration cell which stores

the energy for driving and regenerating the deoplarization wave as it

travels dONn the nerve. The arrount of sodium and potassium which exchanges

per square centirreter of rrerrbrane is very small (about 4 picOlTDles per

pulse). Rerrarbering that this is per square centirreter of nerve rrembrane

and remembering that the concentration is of the order of millirrolar

(20 - 400 on both sides of the rrerrbrane) it can be seen that many pulses

can be passed before the arrount of sodium and potassium on either side of

the rrembrane is appreciably changed. But a pump is required which gra­

dually pumps the potassium back in from the outside, and pushes the sodium

fran the inside out, and that pump is a rretabolic pump coupled to rretabolic

energy which, in Sate way p burning sugar eventually pumps ions against

their gradient.

There is at least one place where electrochemistry and polyrrer chem­

istry can care together and that is to seek an answer to the prine ques­

tions: What conceivably could be the rrechanism of th~rrreability change

induced by changing the rrembrane pblarization from -50 mv to +50 mv?

HON in this wayan sarething be suddenly done to the perrreability of so­

dium and potassium, which is gradually reversed by the leaking of the po-
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tassium out of the cell and the sodium into the cell, thus returning the

perrreability and polarization to its original values? The polarization

change across the rrembrane required to trigger the event is about 50 mv.

Keep in mind that kT is about 25 rnv. Ho.v big a dipole would be necessary

to permit it to turn ln this field gradient against the 25 rnv of thenml

energy? A dipole of 50 Debyes will turn completely in a 50 mv field over

100 R, the approximate thickness of the cell rrerrbrane. By ITBking that

sirrple kind of energy calculation you can see that the protein rrolecules,

for example, which have unsymretrical charge distributions could very eas­

ily be involved in a switch opening or closing the rrerrbrane to sodium or

potassium ion.

We SCM earlier ho.v we could generate the protein rrolecules, with their

various side groups with various kinds of charges (both plus and minus) ,

and ho.v the protein rrolecules would pack generally under thenrodynallic

exmtrol. What appears to be happening here is this: The polarization is

maintained by the salts (the K ion concentration), the resting potential

of the nerve rrembrane being maintained primarily by a potassium ion elec­

trochemical concentration cell. This, in turn, keeps that protein-lipid

dipie, whatever it is, oriented in such a way that sodium (and to a lesser

extent, potassium) cannot go through. The rroment that the potential acros

the rrembrane is reduced, there is a relaxation of t..'1e protein-lipid-carbo­

hydrate complex, and the sodium-potassium can go through. As the potassiu m

builds back up again to the ten-fold concentration difference, the potentlll

is gradually restored, protein configuration is turned back, and the per­

rreability of sodium and potassium is cut off.

It is quite astonishing that one should corre up with the right SlZe

of dipolar separation corresponding roUJhly to the dirrensions of the rrem­

brane, of the order of 100 R, for the critical voltage which switches it
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open and closed. This is a rather significant fact, which suggests that

this is the kind of rrechanism that is occurring; that it is probably not

sarething rrore erudite than that. Be that as it may, it provides a nodel

which we can perhaps seek to reconstruct by synthetic systems.

The other essential ccrnponent of the information transferring system,

synaptic transmission, can nOv'! be conceived as a further develOpn2nt

of rrembrane sensitivity. It is no far cry from the turning dipole to

its possible susceptibility to ions [acetylcholine, catechol amines, Ca++,

and other neurologically active ions (curare)] or potential ions (LSD)

as well as the dipolar ions, gamma-aminobutyric acid, phosphocholine, etc.

The interaction energy of what appears to be a necessarily highly polar

perrreability determining center in the membrane with such highly charged

materials may be expected to be large. The evolution of a degree of

specificity in these transmitter substances may be expected. Finally,

a variability (plasticity) of rrembrane structure can be visualized in

response to the electrical input to a cell or groups of cells rrediated

through changes in secondary, and even prima.ry, protein structure ( in

turn under RNA and OOA control.

The organization of such a total system for higher animals is shCNm

in FIGURE 32. There is a receptor cell, sorrething which detects the

environrrental change and starts the signal. Various neurological levels

of a higher organism are ShOvVD, and you can also see the signal traveling

from cell to cell, with various kinds of circuits at different levels.

At the botton is a direct input-output system, on the muscle fibers, with
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no processmg. You can also see, hcwever, that there are all kinds of

levels of processing -- in the spinal cord (with feedback), in the cere-

bellum, the red nucleus, and, finally, up into the cerebral cortex, with

all stages of filtration and procesing in between. At this point I can

go no further except to suppose that it is in sore way the facilitation,

or inhibition, of these various transmissions that is the information

processing and storage device, keeping in mind that these "facilitations"

and "inhibitions" are ultimately recorded in rrolecular structure.

CONCLUSION

We thus see cellular aggregation and specialization arising from

the selection pressure of efficiency in the use of available raw materials

in the environlrent. Such aggregation, in turn, demands the develorment

of devices for transmitting and processing information about the environ-

rrent fran sites where it can be detected to sites that can appropriately

respond to it l lest the aggregate system (sensibility) disappear. Such

devices are seen, insofar as we understand them, as extensions and rami-

fications of the rrolecular organizations evalved in the initial response

of the priIreval atans of the earth's atrrosphere to the succession of ener-

91 fluxes which are still continuing.
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A common form of synapse in the mammalian
brain, according tc. de Robertis (1962). The axonal
(presynaptic) side above; the dendritic (postsynaptic)
side below. g. glia; if, intersynaptic filaments; mi,
mitochondria; sc, synaptic cleft; ssw, subsynaptic web;
sv, synaptic vesicles; v. vesiculate body.
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