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Ocean Convective Available Potential Energy. Part II: Energetics of Thermobaric

Convection and Thermobaric Cabbeling

Zhan Su ∗ and Andrew P. Ingersoll
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Andrew L. Stewart
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California

Andrew F. Thompson
Environmental Science and Engineering, California Institute of Technology, Pasadena, California

ABSTRACT

We investigate the energetics of thermobaricity- and cabbeling-powered deep convection occurring
in oceans with cold fresh water overlying warm salty water. These quasi-two-layer profiles are widely
observed in wintertime polar oceans. Our key diagnostic is Ocean Convective Available Potential
Energy (OCAPE), a concept introduced in Su et al. (2015). For an isolated ocean column, OCAPE
arises from thermobaricity and is the maximum potential energy (PE) that can be converted into
kinetic energy (KE) under adiabatic vertical parcel rearrangements. We explore the KE budget
of convection using two-dimensional numerical simulations and analytical estimates. We find that
OCAPE is a principal source for KE. However, the complete conversion of OCAPE to KE is
inhibited by diabatic processes. Further, we find that diabatic processes produce three other distinct
contributions to the KE budget: (i) A sink of KE due to the reduction of stratification by vertical
mixing, which raises water column’s center of mass and thus converts KE to PE; (ii) A source of
KE due to cabbeling-induced shrinking of water column’s volume when water masses with different
temperatures are mixed, which lowers the water column’s center of mass and thus converts PE
into KE; (iii) a reduced production of KE due to diabatic energy conversion of the KE-convertible
part of the PE to the KE-inconvertible part of the PE. Under some simplifying assumptions, we
propose a strategy to estimate the maximum depth of convection from an energetic perspective.
This study provides a potential basis for improving the convection parameterization in ocean models.

1. Introduction

Akitomo (1999a) classified ocean deep convection into
two types: Type I is the deepening of the mixed layer in
a relatively homogeneous ocean driven mainly by the loss
of surface buoyancy. Type II is thermobaric convection, in
which plumes of cold fresh water (CFW) sink into warm
salty water (WSW) with significant modulation from ther-
mobaricity and cabbeling (Garwood Jr et al. 1994; Akit-
omo 1999a,b; McPhee 2000; Ingersoll 2005; Adkins et al.
2005; Akitomo 2007). Harcourt (2005) was the first to sim-
ulate Type III convection, also called thermobaric cabbel-
ing, in which convective plumes of CFW/WSW mixture
sink into WSW due to cabbeling instability, and later accel-
erate further due to thermobaricity and cabbeling (see also
the associated observation of Type III convection in an un-
published manuscript by Padman et al. 1998). Cabbeling
instability is a convective phenomenon that occurs when
water masses with different temperatures are mixed dia-

batically to produce a denser water mass than the parent
waters (Carmack 1979). “Cabbeling” in this manuscript
always means the quadratic dependency of water density
on potential temperature (McDougall 1987).

In this paper, we focus on the energetics of Type II
and Type III convection. But we do not distinguish be-
tween them: Their dynamics are both strongly influenced
by thermobaricity and cabbeling (discussed more in sec-
tion 6b) and they both occur in oceans with CFW overly-
ing WSW. These quasi-two-layer stratifications are widely
observed in winter-time polar oceans (Gordon and Hu-
ber 1990; Garwood Jr et al. 1994; McPhee 2000). These
convection events rapidly transport heat vertically and
may make substantial contributions to local vertical mix-
ing, deep-water production, and open-ocean polynyas in
polar regions (Akitomo 1999b; McPhee 2003; Harcourt
2005). However, these contributions are poorly under-
stood due to the paucity of observations and the inability
of large-scale ocean models to resolve convection (Denbo
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and Skyllingstad 1996). In this paper and its companion
(manuscript submitted to J. Phys. Oceanogr., hereinafter
Part I; Su et al. 2015), we introduce a new diagnostic for
thermobaricity, the Ocean Convective Available Potential
Energy (OCAPE), to facilitate the analysis of these con-
vection events.

OCAPE is conceptually important (Part I): it par-
allels atmospheric Convective Available Potential Energy
(CAPE), a key energy source in atmospheric moist con-
vection that has long been used to forecast moist convec-
tion (Arakawa and Schubert 1974; Emanuel et al. 1994;
Trenberth 2005). Both OCAPE and CAPE measure the
potential energy (PE) of a fluid column minus the PE of
its reference (global minimum-PE) state that is achievable
under adiabatic vertical parcel rearrangements. Here PE is
the sum of the gravitational and internal energies. OCAPE
arises from thermobaricity and it is computable following
the algorithm in Part I. In principle, OCAPE can be en-
tirely released into kinetic energy (KE) if the ocean column
evolves adiabatically from the current state to the refer-
ence state (Part I). In this paper we simulate the release of
OCAPE and find that diabatic processes inhibit this com-
plete conversion of OCAPE to KE. We generalize the part
of OCAPE that can be released to KE (Stb below).

A central diagnostic quantity in our analysis is the cu-
mulative KE production in a convection event, denoted as
KEcum, which measures the accumulated intensity of con-
vective motions. At any instant, KEcum is equal to the
current KE plus the time-integrated viscous dissipation of
KE up to that time (denoted as Heatvis). In this study
we pose a conceptual decomposition of KEcum into four
different contributions

KEcum = KE + Heatvis = Stb − Sstrat + Scab − CHDtoHP .
(1)

Equation (1) gives a conceptual overview of the physics
before getting into the details in the following sections.
The physical nature of each term in (1) is explained by
bullet points below, while its mathematical derivation is
provided in Appendix A. This decomposition is derived for
simplified equation of state (EOS) and initial stratification
(CFW overlying WSW, as widely observed in winter-time
polar oceans; see, e.g., Gordon and Huber 1990), but for
more general initial stratifications it does not hold exactly.
The effectiveness of this decomposition is verified by its
prediction of KEcum and the maximum depth of convec-
tion that are in close agreement with numerical simulations
presented in sections 3–5.

The energy terms/relations in (1), as introduced below,
are summarized schematically in Figure 1. For an isolated
system, KE+PE is constant by energy conservation. Thus
the KE production is converted from PE. The PE of a
system can be divided into two parts: dynamic enthalpy,
HD, and potential enthalpy, HP (Young 2010; McDougall

2003); only PE stored in HD is convertible to KE. We con-
sider below conceptually how the four terms in Equation
(1) are related to three energy reservoirs: KE, HD and
HP .

• CHDtoHP , as detailed in section 4c and (15b), repre-
sents the time-integrated conversion of HD to HP

due to diabatic processes. Thus the time-integrated
conversion of HD to KE, which is KEcum, is equal
to the state change of HD (compared to the initial
state) minus CHDtoHP . We derive in Appendix A that
three sources/sinks contribute to the state change of
HD (= KEcum + CHDtoHP) as follows.

• Stb, as detailed in section 3a–3b and (21c), is a source
of HD that extracts energy from OCAPE.

• −Sstrat is a sink of HD as detailed in section 3c and
(20a). For an initially stably stratified ocean column
(N2 > 0), vertical mixing during convection reduces
the stratification, which raises the water column’s
center of mass and thus converts KE into PE (HD).

• Scab is a source of HD as detailed in section 4b and
(25). When water masses with different temperatures
(i.e. CFW and WSW) are mixed during convection,
cabbeling reduces the water column’s volume, which
lowers the water column’s center of mass and thus
converts PE (HD) into KE.

These four terms are not coupled but are independent of
each other (see (A1) and (A10)-(A11) in Appendix A).
CHDtoHP is the process-based conversion between the en-
ergy reservoirs of HD and HP (Figure 1), totally deter-
mined by the full diabatic processes governed by the equa-
tion of motion (see (15b)). In other words, knowing only
the initial (pre-convection) and the final (post-convection)
states, but without knowing the processes for the transi-
tion, one cannot quantify CHDtoHP . In contrast, HD is
a thermodynamic function of the system: The change of
HD (and its three components: Stb, −Sstrat and Scab; see
(A11) and Figure 1) due to convection are totally deter-
mined from the initial and the final states, despite the (un-
predictable turbulent) diabatic processes that transform
the initial state to the final state1. We also show that
the final state can be determined a priori given the ini-
tial quasi-two-layer state (section 4e). Sstrat and Scab are
also independent from each other: the latter is determined
by the reduction of system’s temperature variance during
convection and is independent of N2; the former is deter-
mined from the reduction of N2. Note that Sstrat, Scab

and CHDtoHP will only be non-zero if diabatic processes oc-
cur. Adiabatic processes, which define OCAPE, affects Stb

1Similarly, the change of gravitational potential energy of an ob-
ject only depends on its initial and final heights, despite the numerous
pathways (processes) that connect the initial and the final position.
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(see (21b)). However, Stb is also influenced by the diabatic
processes since it is state-based.

In section 2 we derive the fundamentals of energy con-
servation and describe the numerical model. It would be
very helpful for the reader to go through the fundamen-
tals of thermodynamics in section 2 to better capture the
main points of this study. In section 3, we isolate and
explain Stb and Sstrat using simplified simulations (exclud-
ing cabbeling in the EOS). In section 4 we increase the
complexity of our simulation (using the full EOS) to eval-
uate and explain Scab and CHDtoHP . We further propose
a strategy to predict the maximum depth of convection.
In section 5, we apply this strategy and (1) to a convec-
tion event initially based on a realistic profile from Weddell
Sea. Section 6 comprises our discussion and conclusions.
Numerical experiments (Tables 1-5; Figures 2, 4, 5, 6, 7)
in this manuscript is organized following step-by-step di-
agnosis for our energy decomposition, as stated by their
titles.

2. Fundamentals for the energetics of Type II and
Type III convection

a. Energy conservation, potential/dynamic enthalpy and model
description

We introduce a Boussinesq model that conserves energy
for an isolated system, which is key for our energy analy-
sis. For computational efficiency the model is restricted to
two dimensions: horizontal y and vertical z, with vertical
velocity w = −∂ψ/∂y and horizontal velocity v = ∂ψ/∂z
defined via a streamfunction ψ. We neglect Coriolis ac-
celerations (see section 6b for associated discussion). By
taking the curl of the momentum equation, we obtain the
vorticity equation

D∇2ψ

Dt
= − ∂b

∂y
+ ν∇2∇2ψ, (2)

where ν is the kinematic viscosity. More sophisticated
schemes for turbulent viscosity (e.g., Harcourt et al. 2002;
Harcourt and D’Asaro 2008) could better parameterize
subgrid turbulence. Here we adopt a Laplacian viscosity
because it is convenient for enforcing energy conservation.
In equation (2) we use the modified buoyancy of Young
(2010):

b = b(θ, S, P ) ≡ b(θ, S, z) = −g(ρ− ρ0)/ρ, (3)

where θ, S, P and ρ0 are potential temperature, salin-
ity, pressure and constant reference density, respectively.
Here we replace P with z following the hydrostatic relation
under Boussinesq approximation (Young 2010). Following
Equations (57.3) and (57.6) of Landau and Lifshitz (1959),

we have the salinity and thermodynamic equations

DS

Dt
= − 1

ρ0
∇ · i, (4a)

T
Dη

Dt
=

1

ρ0

[
−∇ · (q− µi)− i · ∇µ+ ρ0ν(∇2ψ)2

]
, (4b)

where η is specific entropy, T is temperature, i is diffusive
salt flux, q is diffusive energy flux, µ is the relative chemi-
cal potential of salt in seawater, and ρ0ν(∇2ψ)2 is viscous
heating. Following η = η(θ, S) we rewrite (4b) as

T
Dη

Dt
= Cp

Dθ

Dt
− Tµθ

DS

Dt
, (5a)

Cp = T
∂η

∂θ

∣∣∣∣
S

, −µθ = − ∂µ
∂T

∣∣∣∣
S,Pr

=
∂η

∂S

∣∣∣∣
θ

, (5b)

following Maxwell’s relations. Here Pr is the reference pres-
sure at sea level. Substituting (4a) into (5a) and using (4b),
we obtain the evolution equation for θ

Dθ

Dt
= −∇ · [q− (µ− Tµθ)i]

Cpρ0
− i · ∇(µ− Tµθ)

Cpρ0
+
ν(∇2ψ)2

Cp
.

(6)
Note that Cp is proportional to T and is not a constant,
as shown in (5b). Therefore viscous heating and diffusion
lead to the non-conservation of θ, according to (6).

We demonstrate that equations (2), (3), (4a) and (6)
(following Ingersoll 2005; Young 2010; Landau and Lif-
shitz 1959) compose a non-hydrostatic energy-conserving
(NHEC) model. From Part I, PE can be represented by
the system’s enthalpy (the energy in this paper, if not oth-
erwise stated, is always column-averaged and in units of
J/kg):

PE = H =
1∫∫
ρ0dydz

∫∫
h ρ0dydz , (7)

where h is specific enthalpy and has the following thermo-
dynamic potential

∂h

∂θ

∣∣∣∣
S,P

= Cp,
∂h

∂S

∣∣∣∣
θ,P

=
∂h

∂S

∣∣∣∣
η,P

+
∂h

∂η

∣∣∣∣
S,P

∂η

∂S

∣∣∣∣
θ

= µ−Tµθ.

(8)
where we have applied ∂h/∂S|η,P = µ, ∂h/∂η|S,P = T and
(5b). One derives the energy conservation by multiplying
(2) by −ρ0ψ, multiplying (6) by ρ0∂h/∂θ as expressed in
(8), multiplying (4a) by ρ0∂h/∂S as expressed in (8), and
then adding the result and integrating:

∂

∂t
(KE +H) =

1∫∫
ρ0dydz

∫∫ {
ρ0ψJ(ψ,∇2ψ)− ρ0J(ψ, h)−∇ · q

+ ρ0∇ ·
[
ν∇2ψ∇ψ − νψ∇∇2ψ

]}
dydz = 0,

(9)

3



C
conversion of HD to HP

        diabatically

HD HP

KE

dynamic part 

of PE

heat content 

part of PE

Energy transfer State change of HD

= HD         −    HD


Stb
thermobaricity

 (OCAPE)

cabbeling-induced 

volume reduction

during mixing

(descent of the  

center of mass )

mixing-induced

stratification 

reduction 

(rise of the 

center of mass)

initial state! final state

ΔHD!!

Scab ! -Sstrat

so
u
rc

eHDtoHP!

Fig. 1. Schematic of the proposed energetics for Type II and Type III convection. Definitions and denotations here
follow section 2a. (left panel) Potential energy (PE) can be represented by the system’s enthalpy H, which includes the
dynamic part HD and the heat content part HP (defined in (11a)–(11d)). CHDtoHP is the time-integrated energy transfer
from the HD reservoir to the HP reservoir diabatically (defined in (15b)). Heatvis is the time-integrated viscous heating
(defined in (15a)), which transfers energy from the KE reservoir to the HP reservoir. KEcum is the time-integrated work
done by vertical buoyancy flux (defined in (14b)), which transfers energy from the HD reservoir to the KE reservoir. Thus
KEcum equals the current KE plus Heatvis, as well as equaling the state change of HD minus CHDtoHP (see (13b)). (right
panel) The state change of HD is due to three distinct sources/sinks: Stb, Scab, and −Sstrat (defined in (21b),(25),(20a),
respectively). Therefore, KEcum has four contributions: −CHDtoHP , Stb, Scab, and −Sstrat (i.e. (1)). The mathematical
derivation of Equation (1) is provided in Appendix A.

where J is the Jacobian. All terms on the right-hand side of
(9) vanish provided there is no viscous stress, no normal ve-
locity, and no diffusion of energy at/across the boundaries.
In deriving the second term on the right-hand side of (9)
we have applied ∂h/∂z|S,θ = −b, J(ψ, z) = w = −∂ψ/∂y
and integration by parts. Therefore the energy conserva-
tion of (9) is independent of the form of q, i, and the EOS
of (3).

To close the NHEC model we follow equations (58.11)
and (58.12) of Landau and Lifshitz (1959) and adopt the
parameterization

i = −ρ0κs∇S, q− (µ− Tµθ)i = −ρ0Cp0κθ∇θ, (10)

where Cp0 is a constant equal to 4000 J kg−1 oC−1 and κs
and κθ are the kinematic diffusivities of salt and heat, re-
spectively. Equation (10) acts to parameterize the unre-
solved grid-scale turbulent diffusion that tends to bring the
fluid closer to an isohaline and isentropic state.

Only part ofH (PE), called dynamic enthalpyHD, con-
tributes to the dynamics; the remaining part of H, called
potential enthalpy HP , represents the heat content of the
system (Young 2010; McDougall 2003). In analogy to θ,
HP is simply the system’s enthalpy when all parcels are
displaced adiabatically to the reference pressure. HP and

HD are defined as

H = HP +HD, HP =

∫∫
hP ρ0 dydz∫∫
ρ0dydz

, HD =

∫∫
hDρ0 dydz∫∫
ρ0dydz

,

(11a)

hP (θ, S) = h(θ, S, Pr), (11b)

hD(θ, S, P ) = h(θ, S, P )− hP (θ, S) =

∫ P

Pr

∂h

∂P ′

∣∣∣∣
θ,S

dP ′ =

∫ P

Pr

dP ′

ρ(θ, S, P ′)

(11c)

= (P − Pr)/ρ0 +

∫ 0

z

b(θ, S, z′)dz′. (11d)

Again P is the hydrostatic pressure by using Boussinesq
approximation (Young 2010). The domain integral of
(P − Pr)/ρ0 in (11d) is approximately constant and does
not contribute to the evolution of HD (Young 2010). The
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thermodynamic potentials of hP and hD are

CPp =
∂hP

∂θ

∣∣∣∣
S

, CDp =
∂hD

∂θ

∣∣∣∣
S,z

=

∫ 0

z

∂b

∂θ

∣∣∣∣
S,z′

dz′,

(12a)

µP =
∂hP

∂S

∣∣∣∣
θ

, µD =
∂hD

∂S

∣∣∣∣
θ,z

=

∫ 0

z

∂b

∂S

∣∣∣∣
θ,z′

dz′,

(12b)

CPp + CDp = Cp =
T

θ
CPp , µP + µD = µ− Tµθ. (12c)

Equation (12c) follows from (5b) and (8), and uses
T∂η/∂θ|S = (T/θ)CPp (McDougall 2003).

By definition HP can only be modified diabatically. By
contrast, HD relies on the vertical distribution of fluid and
represents the gravitational PE (GPE), which is required
to generate KE (see (14b) below). Similar to the derivation
of (9), we evaluate ∂hD/∂t and ∂hP /∂t in terms of ∂θ/∂t
and ∂S/∂t (through thermodynamic potentials) and derive

∂HD

∂t
+
∂HP

∂t
= −∂KE

∂t
, (13a)

∂HD

∂t
=

1∫∫
ρ0dydz

∫∫
∂hD

∂t
ρ0dydz = −∂KEcum

∂t
− ∂CHDtoHP

∂t
,

(13b)

∂HP

∂t
=

1∫∫
ρ0dydz

∫∫
∂hP

∂t
ρ0dydz =

∂Heatvis
∂t

+
∂CHDtoHP

∂t
,

(14a)

KEcum = KE + Heatvis =
1∫∫
ρ0dydz

∫ t

0

∫∫
(wb) ρ0dydz dt,

(14b)

Heatvis =
1∫∫
ρ0dydz

∫ t

0

∫∫
ν(∇2ψ)2ρ0dydz dt, (15a)

CHDtoHP = − 1∫∫
ρ0dydz

∫ t

0

∫∫ [
CDp ∇ · (Cp0κθ∇θ)

Cp
+
CDp ν(∇2ψ)2

Cp

+ µD∇ · (κs∇S) +
CDp κs∇S · ∇(µP + µD)

Cp

]
ρ0dydz dt.

(15b)

Heatvis is the cumulative viscous dissipation of KE (Fig-
ure 1). KEcum is the cumulative KE production by vertical
buoyancy flux (derived from ψ× (2)). CHDtoHP is the time-
integral of the rate of energy conversion of HD to HP (ex-
pressed using (10)), which depends on the unpredictable
turbulent diabatic processes and can not be determined a
priori (section 4c).

In contrast to HP , HD contributes little to the system’s
heat content, because

∂hD/∂θ

∂hP /∂θ
=
CDp
CPp

=
T − θ
θ

< 0.3%, (16)

following (12a) and (12c). Thus the HD variation is insen-
sitive to the nonconservation of θ.

b. Numerical scheme

Equations (2), (3), (4a), (6), (10) define a closed system
for numerical integration. Throughout this paper, except
section 3, we use the full nonlinear EOS (Jackett et al.
2006). We compute hP , hD and their derivatives (µP , CPp ,

µD and CDp ) using the state functions of Jackett et al.
(2006). We use periodic boundaries in y and stress-free,
zero-flux boundaries at the top/bottom. We discretize
Laplacians using second-order-centered finite differences.
We compute Jacobians following Arakawa (1997). We use
the Adams-Bashforth scheme (Press 2007) for time inte-
gration. To resolve cabbeling instability, our default grid
resolution is 0.83 m × 0.83 m. To ensure numerical sta-
bility while minimally affecting the turbulence, our default
vertical and horizontal viscosity and tracer diffusivity are
3× 10−4 m2/s. This model conserves salinity to within the
round-off error of the computer, and conserves energy to
within 5% of the KE (PE+KE deviates by <5% of KE) in
almost all simulations.

3. KE contributions from OCAPE and the reduc-
tion of stratification

In this section we temporarily exclude cabbeling to iso-
late and explain the contributions of Stb (section 3a–3b)
and −Sstrat (section 3c). This also helps to illustrate the ef-
fects of cabbeling when it is included later (section 4a). We
use the following EOS for (3) that includes thermobaric-
ity but excludes cabbeling (see Equation (29) of Ingersoll
2005),

b(θ, S, z) = −g(ρ− ρ0)/ρ = [αθ(z)δθ − β(z)δS] g. (17)

Here δθ, δS are departures of θ and S, respectively, from
the basic state (θ0, S0). This basic state is the mean of
the CFW and the WSW in the initial profile. The ther-
mal expansion coefficient (αθ) and the saline contraction
coefficient (β) are functions of pressure with respect to θ0
and S0, and are computed from the full EOS (Jackett et al.
2006).

a. Unstratified simulation without cabbeling

We start with the a simple case: excluding cabbeling
by using (17), and excluding stratification by employing
an idealized initial two-layer unstratified profile: a CFW
layer (0–0.5 km, -1.6 oC, 34.47 psu) overlying a WSW layer
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Fig. 2. Unstratified simulation without cabbeling in the EOS, as discussed in section 3a. z and y are the vertical and
horizontal coordinates, respectively. (a) The initial θ/S profile. Snapshots of the θ (oC) field are shown (b) at t=1.18
days, (c) at t=1.56 days, (d) at t=2.01 days, and (e) at t=4.54 days (the quasi-steady state after convection). (f) The
reference (minimum PE) state for the initial profile. (g) Time series of the energy budget (curves). We also show values of
the four KE contributions (Stb, Scab, −Sstrat and −CHDtoHP) based on the whole convection (Equation (1)). See Figure 1
for the detailed energy relations. Scab, Sstrat and CHDtoHP are all about zero here since the simulation excludes cabbeling
and has a zero initial stratification (CHDtoHP also relies on cabbeling, see section 4c). OCAPE is equal to PE minus PEref

(the PE of the reference state). Both PE and PEref are computed relative to the initial PEref . The sinks of OCAPE
include Stb and Sinkdiab: Stb is the cumulative contribution of OCAPE to KE (Figure 1), while Sinkdiab is the cumulative
dissipation of OCAPE by diabatic processes (defined in (18b)).

(0.5–1 km, 0.9 oC, 34.67 psu) (Figure 2(a)). From Part
I we analytically determine its reference (minimum PE)
state (Figure 2(f)). The column-averaged OCAPE is 1.1×
10−2 J/kg. In this configuration the release of OCAPE can
be triggered by infinitesimal vertical perturbations of the
CFW into the WSW. Our domain size is L × L where L
equals 1 km. To trigger the release of OCAPE we impose a
uniform surface cooling of 100 W m−2 for 0.1 days between
y = L/12 and L/6. The KE produced by this cooling is
negligible. Ekman pumping caused by wind forcing could
also trigger the convection (e.g., Weiss et al. 1991; Schmid
et al. 2008).

Figure 2(b)–(e) shows a series of simulated convection
snapshots. The imposed surface cooling induces small ve-
locities at the CFW/WSW interface and perturbs the ini-
tial plume of CFW into the WSW (Figure 2(b)). The
plume gains negative buoyancy by thermobaricity as it de-
scends. The velocity shear at the margins of the plume
induces secondary Kelvin-Helmholtz instabilities. This
generates local turbulent stirrings at smaller and smaller
length scales. Our 2D system does not conserve vortic-

ity and thus does not develop an inverse cascade of en-
ergy. The turbulence perturbs the CFW/WSW interface
and induces a succession of descending CFW plumes that
convert OCAPE into KE. Thus convection becomes a self-
sustaining process and the interface rises accordingly until
the new interface is no longer unstable to turbulent per-
turbations. The convective motions are largely dissipated
by t = 2.3 days (Figure 2(e)).

Figure 2(g) shows the time evolution of energy diagnos-
tics. According to (13b)–(14a), HD (dashed green curve)
is converted to KE (solid red curve) via KEcum (solid blue
curve), and to HP (solid magenta curve) via CHDtoHP

(dashed magenta curve). HP also gains energy from vis-
cous dissipation (Heatvis, dashed blue curve) (Figure 1).
Here CHDtoHP is negligible due to the absence of cabbeling
(section 4c). Scab and Sstrat are zero due to the absence
of cabbeling and initial stratification. Therefore, accord-
ing to (1), the only contribution to KEcum is Stb due to
thermobaricity (OCAPE). OCAPE is defined as the PE
minus the reference-state PE (PEref). As our isolated sys-
tem conserves (KE+PE) and has no KE initially, it follows
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that PE(0) = PE(t) + KE(t). Thus the cumulative loss of
OCAPE is

OCAPE(0)−OCAPE(t) = KE(t) + PEref(t)− PEref(0) = KEcum(t) + Sinkdiab(t) ,
(18a)

Sinkdiab(t) = [PEref(t)− PEref(0)]−Heatvis(t) . (18b)

Therefore, OCAPE has two sinks: KEcum (equal to Stb for
this scenario) and Sinkdiab. Here Sinkdiab is due to diabatic
modification of the reference state (since PEref is constant
for adiabatic processes; see Part I), and the viscous heating
(Heatvis).

As shown in Figure 2(g), for the initial OCAPE,
∼31.9% is released to KEcum and ∼31.1% is removed dia-
batically via Sinkdiab (solid yellow curve), leaving ∼34.7%
unreleased. This ∼1/3 conversion ratio of OCAPE to
KEcum is essentially independent of the initial trigger (as
long as its direct contribution to KE is small). This ratio is
also insensitive to the viscosity/grid resolution (Table 1):
As viscosity tends to zero, the dissipation scale becomes
smaller such that the energy dissipation equals the cascade
rate of turbulent energy (e.g., Vallis 2006).

b. Contribution of thermobaricity (OCAPE) to KE: Stb

We demonstrate that Stb is ∼1/3 of OCAPE for any
two-layer unstratified profile. For stratified profiles, a sim-
ilar 1/3 ratio still holds (section 3c; (21b)-(21c)). This
ratio holds in the presence of cabbeling since thermobaric-
ity and cabbeling contribute independently to KEcum (sec-
tion 1). Table 2 details four simulations without cabbel-
ing (cases 2.1-2.4): their profiles are all initially unstrat-
ified and two-layer, with the CFW/WSW interface lying
at different depths. In all simulations, ∼1/3 of the initial
OCAPE is consistently converted to KEcum (i.e. Stb here).
Further, CHDtoHP is negligible (see section 4c).

We now derive the 1/3 OCAPE-to-KEcum conversion
ratio analytically. Only the HD part of PE contributes
to OCAPE (since HP is constant for adiabatic processes).
Further, CHDtoHP is negligible in the absence of cabbeling.
From (13b) we derive

KEcum

OCAPE
=
HD
i −HD

f − CHDtoHP

PEi − PEref
≈

HD
i −HD

f

HD
i −HD

ref

. (19)

Here the subscripts i, f and ref denote the initial, the fi-
nal, and the initial reference states. The initial reference
state is determined following Part I. (HD

i − HD
ref ) is ex-

pressed following (11a), (11d) and (17). (HD
i − HD

f ) is
expressed by (A10), with an unknown Df (the depth of
the upper boundary of CFW/WSW mixture in the final
state; Figure 3(c)). Here we determine the value of Df

that maximizes2 (HD
i −HD

f ), which predicts a Df that is
in agreement with the simulations mentioned above. This

2In (A10), γθθ, N2
WSW and δρ are zero since we exclude cabbel-

z = −(1− λ)D

z = −D

z

ρ

WSW,

Nwsw
2

> 0

CFW

N
2
= 0

∆ρ > 0

z = −D f

z = 0

WSW,

Nwsw
2

= 0

CFW/WSW
mixture,

Nwsw
2

= 0

z z

ρ ρ

CFW

N
2
= 0

CFW

N
2
= 0

(a) (b) (c)

The Initial State

GPE i

A Hypothesized State
GPEh

The Final State

GPE f

δρ > 0

Fig. 3. Schematic of three states for illustrating the reduc-
tion of stratification (N2) during convection, which leads
to a KE sink: −Sstrat, as discussed in section 3c. (a)
The initial state. It has a stable density jump ∆ρ at
the CFW/WSW interface and a stratified WSW (N2 =
N2

WSW). ρ is the density variation associated with N2:
ρ =

∫ z
−D(−ρ0/g)N2(z)dz. (b) A hypothesized state, same

as the initial state except taking the mean property of
WSW from the initial state (i.e. from the dash to the
solid line). δρ is the change of ρ from the bottom of CFW
to the middle depth of WSW, defined in (20b) (states in (a)
and (b) have the same δρ). (c) The final quasi-steady state
after convection, with a interface at depth z = −Df . The
gravitational potential energy (GPE) of these three states
are GPEi, GPEh and GPEf , respectively. Then −Sstrat is
equal to (GPEi −GPEh) + (GPEh −GPEf).

.

strategy of solving the final state (Df ) is consistent with
the principle that a system tends to deform to a final state
that minimizes PE (i.e. HD

f here) (Reddy 2002). Using a
linearly depth-dependent αθ profile and a constant β, the
predicted KEcum/OCAPE by (19) is exactly 1/3 (with de-
viation ≤ 6% if using realistic αθ and β profiles). This 1/3
ratio reveals the fundamental relation between the PE re-
leased by adiabatic movement of CFW (OCAPE) vs. the
PE released by mixing of CFW into WSW (KEcum).

c. Contribution of reduced stratification to KE: −Sstrat

Conceptually, mixing out the stratification of an ocean
column during convection raises the water column’s center
of mass. This would convert KE to GPE by an amount
Sstrat as quantified below. We again exclude cabbeling.
We only modify our previous two-layer initial profiles by
adding the stratification: a stable density gap ∆ρ across
the CFW/WSW interface and a uniform positive stratifi-

ing and stratification here. D is a constant. Thus we determine
Df that maximizes (HD

i − HD
f ) by solving d(A10)/dDf=0 and

d2(A10)/dD2
f <0. In this scenario, the analytical expression for Df

is zero when λ > 2/3 and is (1 − 3/2 × λ)D when λ ≤ 2/3.
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ν

KEcum dz No cabbeling, in §3a Full EOS, in §4a Full EOS, case 4.4 in §4d

1.67m 1.11m 0.83m 0.67m 1.67m 1.11m 0.83m 0.67m 1.67m 1.11m 0.83m 0.67m

3× 10−4m2/s x x 30.1% 31.5% x x 64.6% 64.7% x x 89.7% 90.2%

1× 10−3m2/s 33.6% 32.4% 31.8% 31.6% 65.6% 68.2% 67.2% 65.0% 94.5% 91.0% 89.5% 90.5%

3× 10−3m2/s 32.1% 32.6% 31.4% 34.5% 67.4% 66.4% 66.8% 69.0% 92.8% 94.1% 94.4% 89.7%

Table 1. Sensitivity of KEcum, as a fraction of the initial OCAPE, to viscosity ν (same value as diffusivity) and grid
resolution (dz=dy). The first reference simulation (in §3a) has thermobaricity but no cabbeling and stratification, with
initial OCAPE=1.1× 10−2 J/kg; The second (in §4a) has thermobaricity and cabbeling but no stratification, with initial
OCAPE=1.1× 10−2 J/kg; The third (case 4.4 in §4d) has all three effects, with initial OCAPE=3.9× 10−3 J/kg. Their
model domain dimensions are 1000 m × 1000 m, 1000 m × 1000 m and 700 m × 700 m, respectively. In all simulations
except the ones denoted as “x”, the flow is resolved without unphysical KE accumulation at the grid scale. The results
indicate that KEcum are insensitive (variation < 5%) to ν and dz (as long as they are small enough to enable cabbeling
instability if cabbeling is allowed; see section 6.1 of Harcourt 2005).

cation in the WSW layer (N2 = N2
WSW=constant). We

consider scenarios in which the initial WSW is stratified in
salinity only.

Figure 3 shows schematics of the initial and the final
states of convection: D is the water column’s depth and
λ is the initial fraction of WSW of the whole column. We
also consider a hypothesized state (Figure 3(b)), the same
as the initial state except that the stratified WSW is re-
placed by the mean WSW. The GPEs of these three states
(Figure 3(a)–(c)) are denoted as GPEi, GPEh, and GPEf ,
respectively. Excluding thermobaricity and cabbeling, we
derive (GPEi − GPEh) and (GPEh − GPEf) by multiply-
ing gravity g by the change of depth of the water column’s
center of mass in either case. They are expressed by the
first and the second brace term in (20a) below, respec-
tively. Their sum is (GPEi −GPEf) due to the reduction
of stratification, i.e., equal to

−Sstrat =

{
− 1

12
N2

WSWλ
3D2

}
+

{
−1

2
λ [(1− λ)D −Df ]

δρ

ρ0
g

}
,

(20a)

δρ = ∆ρ+
ρ0N

2
WSWλD

2g
. (20b)

Equation (20a) is consistent with a more rigorous deriva-
tion from Appendix A ((A10)-(A11)).

Therefore, in the absence of cabbeling, we derive KEcum

following (A1) and (A10):

KEcum = HD
i −HD

f = Stb − Sstrat, (21a)

Stb =
1

3
OCAPEc(δρ = 0) (21b)

=
1

3

{
−gαz∆θD2

[
λ(λ− 1)(1− 2λ) + (2λ− 3λ2)

Df

D
− λ

D2
f

D2

]}
.

(21c)

Denotations follow Appendix A. Here OCAPEc is the
initial-state OCAPE for the part of water column where

convection occurs3. For unstratified profiles, this solution
simply reduces to Stb = (1/3)OCAPE, as in section 3b.
Following section 3b, we predict the final state a priori by
determining a Df that maximizes (HD

i − HD
f ). At any

instant during convection, the associated state cannot be
determined a priori from initial conditions, and thus Stb

and Sstrat (and also Scab) at that instant cannot be deter-
mined analytically. In table 3, we detail eight numerical
test simulations with different stratifications. In all cases
KEcum and Df are well predicted by (21a) and the strategy
above, respectively.

4. KE contributions from cabbeling-induced vol-
ume reduction and the conversion of HD to HP

In this section, we illustrate that cabbeling alone in-
duces two KE components: Scab and −CHDtoHP . Harcourt
(2005) notes that the CFW/WSW transition is of finite
vertical extent due to mixed layer entrainment or shear,
which is key to inducing the cabbeling instability. Har-
court (2005) discussed the model capabilities needed to
resolve cabbeling instability (see section 6.1 there). Fol-
lowing these requirements, our simulation adopts the full
nonlinear EOS (Jackett et al. 2006) and prescribes a initial
CFW/WSW interface of finite thickness (∼20 m; section
4d), with numerical grid sizes of 0.83 m and a viscosity of
3× 10−4m2/s.

a. Unstratified simulation with cabbeling

We reproduce the same simulation in section 3a (Figure
2) but now using the full EOS (Figure 4). This comparison
identifies significant differences introduced by cabbeling:

(i) The initialization of convection is more rapid (∼0.22

3Since convection only occurs from z = −Df to −D, when ex-
pressing OCAPEc using the OCAPE equation ((17c) of Part I), we
should replace D, λ and ∆ρ by (D − Df ), λD/(D − Df ) and δρ,
respectively, and finally multiply by a factor (D−Df )/D. This gives
(21c), as consistent with (A10) and (A11).

8



Case 2.1 Case 2.2 Case 2.3 Case 2.4
Interface depth of initial

state (CFW above WSW)
100 m 300 m 500 m 700 m

Initial reference state
(by depths)

WSW, 0-900 m
CFW, 900-1000 m

WSW, 0-700 m
CFW, 700-1000 m

CFW, 0-250 m
WSW, 250-750 m
CFW, 750-1000 m

CFW, 0-550 m
WSW, 550-850 m
CFW, 850-1000 m

Depth of the upper boundary
of CFW/WSW mixture at
the final quasi-steady state

∼ 0 m ∼ 0 m ∼ 250 m ∼ 550 m

Initial OCAPE 2.7× 10−2 J/kg 3.1× 10−2J/kg 1.1× 10−2 J/kg 2.0× 10−3 J/kg
KEcum

(% of initial OCAPE)
32.9% 34.5% 31.9% 31.1%

Sinkdiab

(% of initial OCAPE)
66.9% 64.1% 31.1% 24.9%

Remaining OCAPE
(% of initial OCAPE)

0.5% 0.8% 34.7% 43.0%

CHDtoHP

(% of initial OCAPE)
0.15% 0.06% 0.04% 0.11%

Table 2. Characterization of unstratified simulations without cabbeling in the EOS, as discussed in section 3b. We
show the initial OCAPE, its two sinks: KEcum and Sinkdiab (see (18a)), and the remaining OCAPE after convection.
All simulations have a 1000 m × 1000 m modeling domain. They all have the CFW (θ=-1.6 oC, S=34.47 psu) overlying
the WSW (θ=0.9 oC) initially but with different CFW/WSW interface depths. The S of the initial WSW is 34.63
psu, 34.65 psu, 34.67 psu, 34.69 psu, respectively, for Cases 2.1–2.4 to ensure a zero stratification (N2 = 0). Their
experimental configurations are otherwise identical to the reference simulation in Figure 2 (Case 2.3). About 1/3 of
OCAPE is consistently released to KEcum for all these simulations. CHDtoHP is the energy conversion of dynamic enthalpy
to potential enthalpy (see (15b)), which is consistently negligible for no-cabbeling simulation (see explanation in section
4c).
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KE
PE
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OCAPE

 

 

   Sinkdiab
− [HD(t) − HD(0)]
    HP(t) − HP(0)
    C

    Heatvis

S (psu)(a) (b)

(d) (e) (f)

(g)(c) e (oC) (×10−2 J kg−1)
Stb=0.3

Scab=4.8

Sstrat=0

C      =4.3
HDtoHP

HDtoHP

(b)−(e)

θ=-1.6 oC"

θ=0.9 oC"

θ=-1.6 oC"

Fig. 4. As Figure 2 but for an unstratified simulation with cabbeling included in the EOS, discussed in section 4a. It is
the same simulation as that in Figure 2 but uses the full nonlinear EOS of seawater (Jackett et al. 2006). Snapshots of
the model’s θ (oC) are shown (b) at t=0.22 day, (c) at t=0.38 day, (d) at t=0.53 day, and (e) at t=2.71 days. For (g),
see Figure 1 for the detailed energy relations.

day vs 1.18 day) since cabbeling-involved entrain-
ment/mixing at the initial interface generates neg-

ative buoyancy and entrains CFW plumes into WSW
more rapidly (Harcourt 2005). Additional accelera-
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Case 3.1 Case 3.2 Case 3.3 Case 3.4 Case 3.5 Case 3.6 Case 3.7 Case 3.8

λ 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.7

∆ρ (kg/m3) 0 8× 10−3 2× 10−3 4× 10−3 12× 10−3 0 1× 10−3 6× 10−3

N2
wsw (s−2) 0.6× 10−7 0 0.2× 10−7 0.4× 10−7 0 1.0× 10−7 0.8× 10−7 0.4× 10−7

δρ(kg/m3) 2.8× 10−3 8.0× 10−3 3.0× 10−3 5.9× 10−3 12× 10−3 3.7× 10−3 3.9× 10−3 7.5× 10−3

OCAPE (J/kg) 2.39× 10−2 1.92× 10−2 2.37× 10−2 2.10× 10−2 0.89× 10−2 2.32× 10−2 2.30× 10−2 1.61× 10−2

Stb

(J/kg) by (21b)
8.8× 10−3 8.8× 10−3 8.8× 10−3 8.8× 10−3 5.8× 10−3 10.0× 10−3 9.9× 10−3 8.6× 10−3

−Sstrat

(J/kg) by (20a)
-4.9× 10−3 -3.4× 10−3 -2.5× 10−3 -5.0× 10−3 -4.7× 10−3 -6.3× 10−3 -5.9× 10−3 -6.3× 10−3

KEcum (J/kg)
by (21a)

3.9× 10−3 5.4× 10−3 6.3× 10−3 3.8× 10−3 1.1× 10−3 3.7× 10−3 4.0× 10−3 2.3× 10−3

KEcum (J/kg)
by simulation

4.1× 10−3 5.3× 10−3 6.5× 10−3 3.7× 10−3 1.2× 10−3 3.6× 10−3 4.3× 10−3 2.6× 10−3

Df (m)
by theory

0 0 0 0 185 22 27 96

Df (m)
by simulation

0 0 0 0 ∼ 190 ∼ 30 ∼ 30 ∼ 110

Table 3. Characterization of stratified simulations without cabbeling in the EOS, as discussed in section 3c. All
simulations have a 1000 m × 1000 m modeling domain. They all have the same configurations (e.g. the θ and S
of the initial CFW, the θ of the initial WSW, and the initial cooling) as the reference simulation in Figure 2 except
the following parameters: λ, ∆ρ, N2

wsw and δρ (see the text for their definitions). The S of the initial WSW in each
case can be determined by ∆ρ and N2

wsw. OCAPE also differs from one case to another. Stb and (−Sstrat) are the KE
contributions from thermobaricity and the reduction of stratification, respectively. Df is the depth of the upper boundary
of CFW/WSW mixture at the final state. “Df by theory” maximizes HD

i −HD
f as given by (21a) along with (21c) and

(20a). In all simulations KEcum and Df are both well predicted by (21a) and the strategy above, respectively.

tion of plumes by cabbeling also shortens the whole
convective period (∼2.5 day vs 3.5 day; see Figures
4(f) and 2(f)).

(ii) The interface depth of the final state (Df ) is shallower
in the presence of cabbeling (∼ 130 m vs 250 m). This
is because a transient state with interface at 250 m
depth is still susceptible to cabbeling instability that
drags more CFW downward. This modification to
the final state also leads to a smaller Stb (0.0029 vs
0.0037 J/kg) following (21c).

(iii) Cabbeling contributes ∼0.005 J/kg to the fi-
nal KEcum by producing two additional terms:
Scab =0.0481 J/kg and −CHDtoHP = −0.0432 J/kg.
The resulting KEcum is more than doubled. KEcum is
insensitive to grid resolution and viscosity (Table 1).
Therefore, in the presence of cabbeling, the energy
budget should be updated from (21a) to

HD
i −HD

f = Stb − Sstrat + Scab, (22)

and Equation (1). These two equations are derived
mathematically in Appendix A and are verified nu-
merically in section 4d (Figure 7(a)–7(b)).

b. KE contribution from cabbeling-induced volume reduction:
Scab

Cabbeling shrinks the water column’s volume when the
initial CFW and WSW are mixed by convection. This acts

to lower the water column’s center of mass and thus releases
GPE to KE by an amount Scab. Again we consider initial
states (Figure 3(a)) with WSW stratified in salinity only.
Using the second-order Taylor series of potential density,
the initial CFW and WSW both have a cabbeling term of
density (see Equation (10) of Harcourt 2005):

ρci = −ρ0γθθ(∆θ)2, γθθ(θ, P, S) = − 1

2ρ0

∂2ρ

∂θ2

∣∣∣∣
P,S

, (23)

where ∆θ is the departure of the initial WSW from ba-
sic state θ0, the mean θ of the initial CFW and WSW.
Here γθθ is the coefficient of cabbeling (Harcourt 2005).
We neglect other cabbeling terms related to ∂2ρ/∂θ∂S
and ∂2ρ/∂S2 since γθθ dominates over them (Harcourt
2005). For wintertime polar seawater at sea level (e.g.,
30 psu< S <40 psu and −2 oC < θ < 4 oC), γθθ is roughly
constant: (6.5 ± 0.6) × 10−6 oC−2 (Figure 3(a) of Huang
2014). γθθ varies by < 10% from sea level pressure to
1500 m depth (IOC et al. 2010). Thus we approximate
γθθ ≡ 6.5× 10−6 oC−2 throughout for simplicity.

The CFW/WSW mixture of the final state, which has
a thickness of (D−Df ), assumes complete mixing (Figure
3(c); see simulations in Figures 2(e), 4(e), 5(e) and 7(e)).
In contrast to (23), this final CFW/WSW mixture has a
cabbeling density term:

ρcf = −ρ0γθθ(∆θf )2, ∆θf =

[
2λ

D

D −Df
− 1

]
∆θ, (24)
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Fig. 5. As Figure 2, except panel (f), for a stratified simulation with cabbeling included in the EOS. This is case 4.4 of
Table 4 discussed in section 4d. It adopts the full nonlinear EOS of seawater (Jackett et al. 2006) and a detailed model
configuration is described in Table 4. Snapshots of the model’s θ (oC) are shown (b) at t=0.26 day, (c) at t=0.59 day, (d)
at t=1.49 days, and (e) at t=2.8 days. Panel (f) follows Figure 9(b) of Harcourt (2005): it shows the buoyancy force on
parcel P using the full nonlinear EOS when it is displaced vertically and adiabatically across the initial profile. Parcel P
is originally located at the depth of 115 m within the initial interface (100-120 m depths). Panel (f) suggests a cabbeling
instability when moving parcel P downward, since it becomes negatively buoyant. For (g), see Figure 1 for the detailed
energy relations.

where ∆θf is the CFW/WSW mixture’s departure4 from
the basic state θ0. Therefore, in a compressible fluid,
cabbeling shrinks the CFW/WSW mixture’s thickness by
(D−Df )(ρcf−ρci )/ρ0. Thus the center of mass of the whole
column is lowered by [(D−Df )(ρcf−ρci )/ρ0](D+Df )/(2D).
Multiplying this by gravity g gives the release of GPE to
KE by

Scab =

[
(D −Df )

ρcf − ρci
ρ0

D +Df

2D

]
× g

= 2g[γθθ(∆θ)
2](D +Df )

(
λ− λ2 D

D −Df

)
.

(25)

This expression agrees with a more rigorous derivation from
Appendix A ((A10)-(A11)).

4For the expression of ∆θf in (24), we neglect the nonconservation

of θ during mixing because HD (and thus Scab) is insensitive to this
nonconservation according to (16).

c. KE contribution from energy conversion of HD to HP :
−CHDtoHP

CHDtoHP , as expressed in (15b), is the irreversible dia-
batic energy conversion of HD to HP , which reduces the
KE production from HD ((13b); Figure 1). We address
the following question: why is −CHDtoHP only significant
in the presence of cabbeling (section 4a)?

We diagnose (15b) numerically and find that the first
term dominates CHDtoHP :

CHDtoHP ≈ 1∫∫
ρ0dydz

∫ t

0

∫∫
−
CDp ∇ · (Cp0κθ∇θ)

Cp
ρ0dydz dt,

(26)

Including cabbeling, the leading-order buoyancy expression
is updated from (17) to be

b(θ, S, z) =
[
αθ(z)δθ − β(z)δS + γθθ(δθ)

2
]
g. (27)
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Thus CDp , according to (12a), can be decomposed as fol-
lows:

CDp =

∫ 0

z

∂b

∂θ

∣∣∣∣
S,z′

dz′ = Cαp + Ccabp , (28a)

Cαp =

∫ 0

z

αθgdz′; Ccabp =

∫ 0

z

2γθθδθgdz′ = (−z)2γθθδθg,

(28b)

We diagnose numerically that the effect of Ccabp dominates

the factor CDp in (26), where Cp is approximately Cp0 =
4000 J kg−1 oC−1. Thus we update (26) to

CHDtoHP ≈ 1∫∫
ρ0dydz

∫ t

0

∫∫
−Ccabp ∇ · (κθ∇θ)dydz dt

(29a)

=
−2γθθg∫∫
ρ0dydz

∫ t

0

∫∫
∇(δθz) · (κθ∇θ)dydz dt

(29b)

≈ 2γθθg∫∫
ρ0dydz

∫ t

0

∫∫
(−z)κθ(∇θ)2dydz dt > 0,

(29c)

using (28b), the no-flux boundary condition and ∇(δθ) =
∇θ, and neglecting a small term proportional to ∂(δθ)2/∂z.
In (29c), (−z) is always positive. Equation (29c) is verified
numerically.

In summary, cabbeling contributes to heat capacity by
a factor of (γθθδθ) as in (28b). This factor couples with
the heat diffusion ∇ · (κθ∇θ) as in (29a) and generates
a positive-definite contribution (∝ (∇θ)2) to CHDtoHP as
in (29c), which accumulates over time. Thus CHDtoHP is
only significant in the presence of cabbeling. From (29c),
CHDtoHP is proportional to κθ as well as (∇θ)2, while the
mean (∇θ)2 decreases with κθ. Thus these two factors act
to compensate each other and induces the insensitivity of
CHDtoHP to diffusivity κθ, as diagnosed numerically. Due
to the process-dependent nature, CHDtoHP , a component
of KEcum in (1), cannot be predicted a priori, but rather
must be diagnosed numerically.

d. Stratified simulations with cabbeling

We conduct eight numerical experiments (Table 4).
Since our energy decomposition (A10) relies on the ocean
column depth D, we perform cases with various sizes of D
to test the sensitivity. They initially all have a linear vari-
ation of θ and S across the CFW/WSW interface (100–120
m depths). But they have differing initial stratifications.
The initial cooling applied to the simulation in Figure 2 is
also applied to all simulations here, which triggers convec-
tion along with the cabbeling instability. For all simula-
tions, Hi −Hf and KEcum are well predicted by (22) and
(1) (Figure 6(a)–6(b)). As in Table 4, Stb is larger than

Scab for cases 4.7–4.8 (column depth= 2 km), while smaller
than Scab for cases 4.1–4.6 (column depth= 0.7 km). This
is because Stb and Scab have a quadratic (see (21c)) and
a near-linear (see (25)) dependence on column depth, re-
spectively. We analyze case 4.4 in detail (Figure 5). The
snapshots of convection resemble the simulation of Har-
court (2005) (see Figure 14(a) and 14(b) there). Following
Harcourt (2005), Figure 5(f) suggests a cabbeling instabil-
ity for the initial interface. Cabbeling contributes to the
final KEcum by Scab − CHDtoHP = 0.01 J/kg, which is com-
parable to Stb = 0.0051 J/kg and −Sstrat = −0.0116 J/kg.
KEcum here is again insensitive to grid size and viscosity
(Table 1).

e. A strategy to estimate the maximum depth of convection

Previous studies predict the maximum depth that con-
vective plumes can reach using a Lagrangian approach: this
approach follows an individual plume and estimates its ac-
celeration based on entrainment assumptions (e.g., Turner
1979; Akitomo 2007). Here we propose to estimate the
maximum depth of convection from an energetic perspec-
tive by the followings steps.

(i) Begin with the initial θ and S profiles that have CFW
overlying WSW with a column depth of Dmax. We
assume the final state of convection comprises a CFW
layer on top for −Df ≤ z ≤ 0, a CFW/WSW mixture
at the middle for −D ≤ z ≤ −Df , and a WSW layer
below for −Dmax ≤ z ≤ −D. Here D always denotes
the maximum depth of convection, which also equals
the ocean-column depth in previous sections.

(ii) The θ/S profile of the final state is a known func-
tion of the variables Df and D: we assume that fluid
in the regions −Df ≤ z ≤ 0 and −Dmax ≤ z ≤
−D remain unmodified from the initial state. For
−D ≤ z ≤ −Df , θ and S are assumed to be homo-
geneous due to a complete mixing of the initial state
within the corresponding depths (see, e.g., Figures
2(e), 4(e) and 5(e))). Given the θ/S profiles above,
the HD difference between the initial and the final
states, (HD

i −HD
f ), is given by (A10) in terms of Df

and D (or given by (11a) and (11d) using the full
EOS).

(iii) We assume that the final state is the one that has the
minimum PE, which is consistent with simulations
(see below) and the principle of minimum total po-
tential energy (Reddy 2002). While PE is defined as
HD+HP according to (7) and (11a), we use PE≈HD

because HP does not contribute to KE (see Figure 1).
Here we only discuss the cases with Df = 0 in the fi-
nal state, which have realistic applications such as for
Weddell Polynya (McPhee 2003; Harcourt 2005) (see
also Figures 5(e) and 7(e)). Discussing nonzero Df
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Case 4.1 Case 4.2 Case 4.3 Case 4.4 Case 4.5 Case 4.6 Case 4.7 Case 4.8

D (m) 700 700 700 700 700 700 2000 2000

∆ρ (kg/m3) 1× 10−3 1× 10−3 5× 10−3 5× 10−3 9× 10−3 9× 10−3 5× 10−3 5× 10−3

N2
wsw (s−2) 0.5× 10−7 2.5× 10−7 0.5× 10−7 2.5× 10−7 0.5× 10−7 2.5× 10−7 0.2× 10−7 0.8× 10−7

δρ (kg/m3) 2.6× 10−3 8.8× 10−3 6.6× 10−3 12.8× 10−3 10.6× 10−3 16.8× 10−3 7.0× 10−3 12.9× 10−3

OCAPE
(J/kg)

1.33× 10−2 0.78× 10−2 0.98× 10−2 0.43× 10−2 0.62× 10−2 0.10× 10−2 5.77× 10−2 4.98× 10−2

Stb (J/kg)
by (21b)

5.1× 10−3 5.1× 10−3 5.1× 10−3 5.1× 10−3 5.1× 10−3 5.1× 10−3 20.9× 10−3 20.9× 10−3

−Sstrat(J/kg)
by (20a)

-2.3× 10−3 -1.0× 10−2 -4.1× 10−3 -1.16× 10−2 -5.6× 10−3 -1.33× 10−2 -8.9× 10−3 -2.87× 10−2

Scab(J/kg)
by (25)

15.6× 10−3 15.6× 10−3 15.6× 10−3 15.6× 10−3 15.6× 10−3 15.6× 10−3 17.5× 10−3 17.5× 10−3

−CHDtoHP (J/kg)
by simulation

-7.0× 10−3 -6.2× 10−3 -7.4× 10−3 -5.6× 10−3 -6.6× 10−3 -4.6× 10−3 -4.5× 10−3 -4.1× 10−3

Table 4. Characterization of stratified simulations with cabbeling (using the full EOS), as discussed in section 4d.
Denotations follow Table 3. In all simulations the horizontal size of the modeling domain is the same as its vertical size
(i.e. D). All simulations initially have the same CFW (θ =-1.6oC, S=34.51 psu) at 0–100 m depths, a linear variation of
θ and S across 100–120 m depths, and a WSW layer beneath (θ =0.7oC). The S of the initial WSW in each case can be
determined by ∆ρ and N2

wsw. The initial cooling applied to the simulation in Figure 2 is also applied to all simulations
here. These perturbations, along with the cabbeling instability, trigger convection in the simulations. All simulations
have a final state of total column mixing. See (Hi −Hf ) and KEcum diagnosed from simulations here vs. the predictions
by (22) and (1) in Figure 6(a)–6(b).

Case 5.1 Case 5.2 Case 5.3 Case 5.4 Case 5.5 Case 5.6 Case 5.7 Case 5.8 Case 5.9

∆ρ (kg/m3) 1× 10−3 1× 10−3 1× 10−3 5× 10−3 5× 10−3 5× 10−3 9× 10−3 9× 10−3 9× 10−3

N2
wsw (s−2) 1× 10−7 2× 10−7 4× 10−7 1× 10−7 2× 10−7 4× 10−7 1× 10−7 2× 10−7 4× 10−7

Table 5. Characterization of stratified simulations with cabbeling (using the full EOS), focusing on the convection
depth, as discussed in section 4e. Unlike Table 4, all simulations here do not have a convection depth that reaches the
bottom of the 2000 m × 2000 m modeling domain. They all initially have a CFW (θ =-1.6oC, S=34.51 psu) at 0–100
m depths, a linear variation of θ and S across 100–120 m depths, and a WSW layer (θ =0.7oC) beneath. The S of the
initial WSW in each case can be determined by ∆ρ and N2

wsw. The initial cooling applied to the simulation in Figure 2
is also applied to all simulations here. All simulations have a final state where all CFW sinks into WSW (i.e. Df=0).
See the convection depths diagnosed from simulations here vs. our predictions in Figure 6(c).
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Fig. 6. (a) Prediction of Hi − Hf by (22), (b) prediction of KEcum by (1) vs. numerical simulations for cases 4.1–4.8
described in Table 4. Here the prediction of KEcum adopts the value of CHDtoHP diagnosed from simulation since CHDtoHP

has no analytical solution. Panels (a) and (b) share the same colorbar. (c) Prediction of the maximum depth of convection
by our strategy in section 4e vs. numerical simulations for cases 5.1–5.9 described in Table 5. As shown in panels (a)-(c),
these predictions agree closely with numerical simulations. All simulations here have a final state where all CFW sinks
into WSW.
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Fig. 7. As Figure 5 but for a stratified simulation with cabbeling based on realistic initial profiles, discussed in section 5.
The model configuration is the same as that in Figure 5, except with a uniform surface salinity flux enforced from t=0
to t=4.2 days, equivalent to an ice formation rate of 1.5 cm/day. (a) The initial profile, from Maud Rise (65.4605oS,
2.4007oE) on August 2, 1994, station 48 of ANZFLUX CTD profile (courtesy of Bruce Huber; McPhee et al. 1996). 1000
m is about the maximum depth of convection in our simulation. Snapshots of the model’s θ field are shown (b) at t=0.65
day, (c) at t=3.1 days, (d) at t=4.7 days, and (e) at t=7.5 days. Panel (f) is similar to Figure 5(f) but with a additional
magenta curve computed from a hypothesized profile. It is the same as initial profile except with a saltier mixed layer
(at 0–180 m depths) due to 6.3 cm of ice formation (i.e. 1.5 cm/day×4.2 days). It has a linear variation of θ and S
across the CFW/WSW interface at 180–200 m depths. This magenta curve suggests that brine rejection may generate a
cabbeling instability for parcel P at the interface (i.e. become negatively buoyant when it is moved downward). For (g),
see Figure 1 for the detailed energy relations.

would also have important applications but is out of
this manuscript’s scope. Thus we determine the final
state by solving for the value of D that maximizes5

(HD
i − HD

f ). This solution for D is treated as the
maximum depth of convection.

The assumption PE ≈ HD above should be treated
with caution: HD is not converted completely to KE due
to CHDtoHP , i.e. ∆HD = KEcum + CHDtoHP (Figure 1 and
(13b)). Further, CHDtoHP is process-dependent and can-
not be determined a priori given the initial and the final

5We should maximize (HD
i −HD

f ) in units of J, as expressed by

((A10)×D× ρ0 × 1m2) ((A10) has a unit of J/kg). In (A10), we use
Df = 0 and λ = (1 − Di/D) by definition (i.e., λ varies with D),
where Di is the fixed initial depth of CFW. Thus we determine D by
solving d[(A10)×D]/dD=0 and d2[(A10)×D]/dD2 <0.

states (section 4c). The uncertainty by neglecting CHDtoHP

above in predicting the final state remains the focus of fu-
ture studies. We test nine simulations with different initial
stratifications (Table 5). Our predictions of the convection
depth by the strategy above agree closely with those diag-
nosed from the numerical simulations (Figure 6(c)), which
are diagnosed based on the maximum depth that convec-
tive plumes and the subsequent mixing can reach. This
strategy may be useful in improving the parameterizations
of deep convection in ocean models.

5. Application to observed profiles

We apply our analysis of energy and maximum depth
of convection to an example with the initial profile (Figure
7(a)) obtained from the Weddell Sea. It has CFW over-
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lying WSW, with a interface at about 180–200 m depths.
It has an OCAPE of 1.1 × 10−3 J/kg. Figure 7(f) (blue
curve) suggests that the initial profile is not susceptible to
cabbeling instability. To trigger convection in simulation,
we impose a uniform surface salinity flux equivalent to an
ice formation rate of 1.5 cm/day (e.g., Figures 11(c) of Har-
court 2005) since the initial mixed layer is at the freezing
point. This idealized configuration ignores the ice-ocean
dynamic interaction (e.g., see an associated parameteriza-
tion in Harcourt 2005). The salinity flux is enforced for
the first 4.2 days, which induces cabbeling instability at
the interface (magenta curve in Figure 7(f)). Our simu-
lation shows convective plumes continuously sinking from
the interface (Figures 7(b)–7(d)), similar to the findings
of Harcourt (2005). The surface flux introduces additional
complications to the energetics (e.g., for HP ) and we focus
on some key energy quantities (Figure 7(g)). HD is still
partitioned into KEcum and CHDtoHP ((13b) and Figure 1).
OCAPE is generated and partially released simultaneously
for the first 4.2 days due to the surface forcing. Evalua-
tion of Stb by (21b), Scab by (25) and Sstrat by (20a) give
0.0104, 0.0244 and 0.0210 J/kg, respectively, using the ini-
tial profile except with a saltier mixed layer by the 4.2 days’
surface salt input6. CHDtoHP is 0.0081 J/kg as diagnosed
from simulation. These lead to HD

i − HD
f = 0.0138 J/kg

by (22) and KEcum= 0.0057 J/kg by (1); both agree with
the simulation (Figure 7(g)). The strategy in section 4e
predicts the maximum depth of convection ∼910 m, con-
sistent with simulation (∼1000 m in our test simulation,
whose domain depth is 1500 m).

6. Discussion and Conclusion

a. Key results

We summarize our key results as follows:

(i) Dynamic enthalpy HD is insensitive to the noncon-
servation of potential temperature (see (16)), allow-
ing us to predict the change of HD due to convection
(Figure 6(a)).

(ii) The KE budget of Type II and Type III convection
may be decomposed into four components (Equation
(1) and Figure 1): (1) A source of KE due to thermo-
baricity/OCAPE; (2) A sink of KE due to the reduc-
tion of stratification by vertical mixing, which raises
the water column’s center of mass and converts KE
to PE; (3) A source of KE due to cabbeling-induced
shrinking of the water column’s volume when water
masses with different temperatures are mixed, which
lowers the water column’s center of mass and releases
PE to KE; (4) A reduced production of KE due to

6Parameters are: ∆θ ∼ 1.115oC, H = 1000 m, λ ∼ 0.81, δρ ∼
0.0101kg/m3 , N2

wsw ∼ 3.06 × 10−7S−2.

cabbeling-related diabatic energy conversion of dy-
namic enthalpy to potential enthalpy7. Our analy-
sis is based on the initial profiles with CFW over-
lying WSW as widely observed in winter-time polar
oceans. We assume that the initial WSW is stratified
in salinity only. We derived analytical expressions to
predict the first three components (Appendix A). The
fourth component is diagnosed numerically (Table 4
and Figure 6(b)).

(iii) Thermobaricity (the first KE component above) dom-
inates over cabbeling (the third KE component
above) for deeper convection depths, while the latter
dominates over the former for shallower convection
depths (Table 4, cases 4.1–4.6 vs cases 4.7–4.8).

(iv) We develop a strategy to predict the maximum depth
of convection from the initial profile, which is repro-
duced by the numerical simulations (Figure 6(c)).

b. Model limitations

Our simulations were designed to build up a concep-
tual understanding for the energy partitioning during con-
vection. As a result, numerous physical processes that
could affect convection have not been included. For exam-
ple, abrupt vertical mixing during convection might couple
with baroclinic instability (Akitomo 2005, 2006). Earth’s
rotation might impact the OCAPE/cabbeling dynamics
directly via the Coriolis force (Harcourt 1999) and indi-
rectly via the background geostrophic circulation/eddies.
Double diffusive convection also occurs in two-layer strat-
ifications (Radko et al. 2014) and may couple with ther-
mobaric/cabbeling dynamics (e.g., Carmack et al. 2012).
Other factors such as surface wind stress, topography and
horizontal buoyancy gradient may also impact convection.

Our choice to use 2D simulations reduces the compu-
tational burden and permits a greater exploration of the
parameter space. These 2D simulations fail to resolve 3D
instabilities that may occur following deep convection and
laterally mix the sinking water (Jones and Marshall 1997).
However, the 2D and 3D associated simulations in Akit-
omo (2006) result in small differences. Our simulations use
a constant viscosity, which may induce unrealistic effects
(Harcourt 2005).

Type II and Type III convection may or may not be
distinguished uniquely. It is difficult to distinguish them
from the energetic perspective discussed in this study. It
is possible that a more dynamical difference between these
convection types may be identified from a buoyancy per-
spective (see Harcourt 2005) and should be investigated in
a future study.

7See Figure 1 (left) and section 2. There are only three energy
reservoirs here: HD, HP and KE.
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c. Implications

Our simulation includes viscous heating in the thermo-
dynamic equation, which converts KE to PE. This is key
for energy conservation (Landau and Lifshitz 1959) as well
as for characterizing the dynamics (Figure 1). However, in-
clusion of viscous heating is not necessary for an accurate
prediction of the convective dynamics. All viscous heating
is converted to HP (Figure 1), but only HD contributes
to the KE (Young 2010). Further, viscous heating causes
negligible changes to the temperature field as well as to
the buoyancy force, due to the large specific heat capacity
of water. In this study we also account for the changes
in thermodynamic potentials (e.g. chemical potential; see
(12a)-(12c)). While these terms are not necessary for an
accurate prediction of the convective evolution (recall that
only (2), (3), (4a), (6), (10) define the closed model for
numerical integration), they remain important for charac-
terizing the dynamics.

The mixing parameterizations in current ocean general
circulation models (GCMs) typically apply strong local di-
apycnal mixing in the vertical wherever the water column is
statically unstable (e.g., the KPP parameterization, Large
et al. 1994). A parameterization for Type II and Type III
convection, however, should include the vertical movement
of ocean parcels to large depths without substantial mix-
ing at intermediate depths. This paper may help improve
this parameterization (e.g., parameterize tracer diffusiv-
ities from the estimated KE and the convection depth).
This may resemble the parameterizations of moist convec-
tion in atmospheric GCMs using CAPE (Gregory et al.
2000; Zhang 2009).
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Appendix: Mathematical derivation of Equation
(1)

Equation (1) summarizes our energy decomposition of
the KE budget for Type II and Type III convection. In
this appendix we derive (1) based on the whole convection.
Following definitions and denotations in section 2a, from
(13b) we derive

KEcum = −CHDtoHP + (HD
i −HD

f ), (A1)

where the subscripts ‘i ’ and ‘f ’ denote the initial and fi-
nal states, respectively. Now we derive the expression of
(HD

i − HD
f ) based on idealized initial/final states shown

schematically in Figure 3. The initial state approximates
widely observed quasi-two-layer stratification in winter-
time polar oceans (Gordon and Huber 1990): it has a ho-
mogeneous CFW (constant θCFW and SWSW) at depths
−(1 − λ)D < z < 0, overlying a constant-stratified WSW
(θWSW and SWSW, constant N2 = N2

WSW) at depths
−D < z < −(1 − λ)D (Figure 3a). We only consider
WSW stratified in salinity, i.e., with θWSW=constant and
SWSW linear with depth:

dSWSW(z)

dz
= −N

2
WSW

βg
, (A2)

following the definition ofN2 (Gill 1982). We use simplified
Taylor series of buoyancy

b = g[(α0 + αzz)δθ − βδS + γθθδθ
2], (A3)

where α0, αz and β are treated constant following the de-
notations of Part I (αz = −3× 10−8 oC−1m−1). γθθ is the
constant cabbeling coefficient defined in section 4b. δθ and
δS are the anomalies from the mean of the initial CFW
and WSW properties

δθ(z) = θ(z)− 0.5(θCFW + θWSW), δS(z) = S(z)− 0.5(SCFW + SWSW),
(A4)

where SWSW is the vertical mean of SWSW in the WSW
layer following (A2). We define

∆θ = 0.5(θWSW − θCFW), ∆S = 0.5(SWSW − SWSW).
(A5)

Then δρ, the density difference between the CFW and the
mean WSW at the level of the CFW/WSW interface ini-
tially, has an expression

δρ = ρ0 [−(α0 − αz(1− λ)D)× 2∆θ − β × 2∆S] . (A6)

Further, from (A4)-(A5) we get the vertical profiles of δθ
and δS for the initial state δθi = −∆θ, δSi = −∆S, for− (1− λ)D < z < 0,

δθi = ∆θ, δSi = ∆S − N2
WSW

βg
(z + (1− 0.5λ)D), for−D < z < −(1− λ)D,

(A7)

where the upper and the lower describe the initial CFW
and WSW, respectively. Similarly, we derive the final state:
we assume that the CFW is unmodified for −Df < z < 0
and the fluid column becomes completely mixed for −D <
z < −Df (Figure 3c; based on numerical simulations such
as Figures 2(e), 4(e) and 5(e)), i.e., δθf = −∆θ, δSf = −∆S, for−Df < z < 0,

δθf =
(2λ− 1)D +Df

D −Df
∆θ, δSf =

(2λ− 1)D +Df

D −Df
∆S, for−D < z < −Df ,

(A8)
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where for the expression of δθf , we neglect the nonconser-
vation of θ during mixing because HD is insensitive to this
nonconservation according to (16).

Following the definition of HD ((11a) and (11d)), and
using (A3), (A6)–(A8), we derive

HD
i −HD

f =
1

D

∫ 0

−D
(δθi − δθf )(−gα0z − 0.5gαzz

2)dz +
1

D

∫ 0

−D
(δSi − δSf )(gβz)dz

+
1

D

∫ 0

−D
(δθ2i − δθ2f )(−gγθθz)dz, (A9)

=

{
−1

3
gαz∆θD

2

[
λ(λ− 1)(1− 2λ) + (2λ− 3λ2)

Df

D
− λ

D2
f

D2

]}

+

{
− 1

12
N2

WSWλ
3D2 − 1

2
λ[(1− λ)D −Df ]

δρ

ρ0
g

}
+

{
2gγθθ∆θ

2(D +Df )(λ− λ2D

D −Df
)

}
(A10)

= Stb − Sstrat + Scab. (A11)

In (A10), the three brace terms are proportional to ther-
mobaricity (αz), stratification factors (N2

WSW, δρ), and
cabbeling coefficient (γθθ), respectively. We denote them
in (A11) as Stb, −Sstrat and Scab, respectively, representing
the sinks/sources of HD related to thermobaricity, strat-
ification and cabbeling. These expressions are consistent
with (20a), (21b) and (25) that are based on more physi-
cally intuitive derivation. By combining (A11) and (A1),
we finally derive (1). Note that (HD

i −HD
f ) expressed by

(A10) is in units of J/kg.
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