
UC Irvine
Working Paper Series

Title
A Simulation Framework and Environment for Activity-Based Transportation Modeling

Permalink
https://escholarship.org/uc/item/3d13d9ss

Authors
Marca, James E.
Rindt, Craig R.
McNally, Michael G.

Publication Date
1999-11-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3d13d9ss
https://escholarship.org
http://www.cdlib.org/

A SimulaUon Framework and
Environment for Activity Based

Transportation Modeling

UCI-ITS-AS-WP-99-2

James E. Marca
Craig R. Rindt

Michael G. McNally

Department of Civil and Environmental Engineering and
Institute of Transportation Studies

University of California, Irvine
jmarca@uci.edu, crindt@uci.edu, mmcnally@uci.edu

November t 999

Institute of Transportation Studies
University of California, Irvine

Irvine, CA 92697-3600, U.S.A.
http://www.its.uci.edu

UCI-ITS-AS-WP-99-2

A Simulation Framework and Environment for Activity
Based Transportation Modeling

James E. Marca Craig R. Rindt

November 19, 1999

Abstract

Michael G. McNally *

This paper presents an event-based simulation framework designed specifically for ap
plying activity-based transportation models to a variety of problems. General concepts
of activity-based travel modeling are discussed followed by a specification of abstract con
cepts common to most activity modeling approaches. A simulation framework is developed
and implemented in two examples to demonstrate the feasibility of the concepts presented.
Keywords: Activity-based modeling, travel behavior, computer simulation 5600

1 Introduction

This paper presents an event-based simulation framework designed specifically for applying
activity-based transportation models to a variety of problems. The result is a simulation environ
ment which is focused towards research. This environment is a starting point for development of
a tool which will address real-world problems. Therefore, although this paper is directed towards
researchers, it will be of interest to practitioners.

By way of introduction, we briefly discuss in section 2 some basic ideas of activity-based
transportation analysis. Next, section 3 introduces three different approaches to activity simula
tion. These three approaches illustrate the breadth of variation in the possible details of activity
based simulations. These differences in the details have so far hindered the development of a
unified simulation framework. We circumvent this problem by identifying the abstract concepts
that are common to any kind of activity-based simulation.

Section 4 describes the basic ideas of event-based simulation. This section also describes the
necessary capabilities of the abstract activity simulation environment. Section 5 describes how the
abstract framework can be applied in practice. Two simple activity simulations are presented, one
implemented in C++, and the other using the Swarm simulation libraries (Langton, Burkhart,
Daniels, Jojic and Lancaster, 1999) in Objective C.

This paper concludes with a summary of the major points, a discussion of how this work can
be applied in the field of transportation engineering, and the directions it may take in the years
ahead.

2 Applying activity-based transportation modeling concepts

The fundamental premise behind all activity-based transportation modeling is that people travel
in order to do something at a place other than where they are, and that understanding the

*Institute of Transportation Studies; University of California, Irvine; Irvine, CA 92075; 949-824-6571;
jmarca@translab.its.uci.edu

1

Marca et al. 2

motivations behind various activities should improve our understanding of travel behavior. From
(Hagerstrand, 1970) to the present, the focus of activity-based models has been on the people
who are performing the activities which create the need for travel.

Stepping beyond the trip-based travel model paradigm into the activity-based one opens up
layer after layer of potential abstraction. In order to gain insight into the fundamental properties
and relationships of activities and activity sequences, one can study the factors motivating and
limiting those activities. And those factors have further layers of abstraction, right down to the
basic human needs for food, shelter, and companionship. The one trait all of these layers have
in common is the focus on the individual, rather than aggregated populations.

It is our belief that any comprehensive application of activity-based concepts to travel model
ing will require a simulation approach. The focus on the individual inherent in activity analysis
naturally leads to a simulation. A more detailed discussion of this point is given in section 4.1.

3 Alternate approaches to activity-based simulations

This section describes three distinctly different activity-based simulation models. Each modeling
approach is geared towards different kinds of questions that one might wish to answer. The
reason we do this is to ensure that we develop a sufficiently general environment, so that it will
be widely useful to the activity analysis research community. The focus of each of the following
subsections will be on the generalities of each implementation, rather than worrying about the
details or the correctness of the underlying activity paradigm. The commonalities between the
different simulations are summarized in section 3.4, and form the basis of the general simulation
environment presented in section 4.

3.1 Representative activity patterns

The first simulation model presented is the well documented representative activity pattern
concept that has its roots in Recker, McNally and Root (1986) and is most recently described in
McNally (1990) and McNally (1998). This approach first classifies activity patterns of surveyed
individuals into representative patterns. A synthetic population is generated, and then the
characteristics of the population are matched with the characteristics of surveyed individuals,
which in turn are matched to the classified activity patterns. This matching is probabilistic
rather than one-to-one, as explained in McNally (1990). This matching enables each person to
be assigned a daily set of activities.

Since the activities on any given day are randomly assigned, and since the locations for the
activities are also randomly assigned, the execution of those activities creates random travel
movements. This randomness is grounded to observed activity patterns, and so the resulting
travel patterns are likely to be much closer to real movements than those deriving from a uniform
distribution of activities and locations.

The elements required for this kind of an activity simulation are shown in table 1. The contents
of the object column shown in table 1 are also those required by most other typical activity based
simulations published in the literature. Most simulations have actors and locations. However,
the various simulations differ in the contents of the behavior and source columns.

3.2 Intelligent actors

A long-standing hypothesis in travel demand analysis is that people choose the travel modes
that maximize utility. Analyzing activity sequences allows one to examine what it might mean
for people to maximize the utility of their activities. Travel choices then become just another
part of the choices the person makes in building a day's activities. Even more interesting, one

Marca et al.

Table 1: The elements required for an activity simulation using the activity pattern approach
object behavior source
actors create activities activity survey data

choose locations activity survey data, land use data
locations provide site for acts land use data

provide travel times land use data, travel survey data

Table 2: The elements required for a simulation of the activities of "intelligent" agents
object behavior source
actors create activities activity survey data

locations

evaluate activities survey data, multi-attribute decision
theory, conjecture

provide site for acts
provide travel times
capacity limits
provide act quality info

land use data
land use data, travel survey data
land use data, survey data, conjecture
survey data, conjecture

3

can explore in a simulation what happens when different kinds of value functions are given to
individual actors.

A simulation of intelligent actors would require the following elements. First, there would
need to be actors, and they would need to be assigned an initial set of activities to perform,
using some accepted method. Second, those activities would have to take place somewhere in the
simulated city. To add realism (without losing generality), suppose further that some locations,
such as home and work site, are fixed for the duration of the simulation, while others are flexible.

Initially, one would expect that the first simulated day would produce lots of patterns of
movement that we would consider strange, since the locations and activities are drawn randomly.
The next step is to hypothesize a mechanism for evaluating a day's activities-in other words,
hypothesize intelligence using techniques such as multiattribute decision theory (Saaty, 1994;
Goicoechea, Hansen and Duckstein, 1982). One decision criteria is to trade off the quality of the
activity performed at a location with the level of congestion and delay experienced. The actors
try to maximize the quality of their activities, while minimizing the delays that they face.

At the end of the day, each person would be randomly assigned a new sequence of activities
for the next day. However, unlike the first day, the random assignment of characteristics (such
as location) to each activity would be tempered by the "knowledge" that the actors collected by
performing past activity sequences. The way the collected knowledge is incorporated is through
the application of some hypothesized decision algorithms.

The elements of this simulation are summarized in table 2.

3.3 The interaction of cooperating actors

The third and most complicated example activity simulation presented examines cooperation
and interpersonal constraints. Instead of performing activities that satisfy individual constraints,
each individual interacts with others, and belongs to one or more groups which add additional
constraints to the activity process.

Perhaps due to the difficulty of the problem, no one has yet developed a general cooperative
actor simulation. Most research to date has focused on household groups (Borgers, Hofman,
Ponje and Timmermans, 1998; Recker, 1995), but this research has not been extended to tasks
and constraints required by other groups, such as work colleagues or social circles. Since there
are no accepted models of general interactions between actors, we propose a new simulation

Marca et al. 4

Table 3: The elements required for a simulation of the activities of cooperating and interacting
agents

object
actors

groups

locations

behavior
create activities
join groups

communicate with other actors
arbitrate between the dictates of
different groups
dictate activities to members

interact with locations
provide site for acts
provide travel times
capacity limits
provide seeds for formation of
groups

source
activity survey data
survey data, sociology literature,
jecture
survey data, conjecture
sociology literature, conjecture

con-

survey data, sociology literature, con
jecture
conjecture
land use data
land use data, travel survey data
land use data, survey data, conjecture
conjecture, sociology literature

model structure. If the simulation framework we develop is to be widely useful, it must also be
applicable to new and experimental models such as this one.

A simulation incorporating interaction and cooperation between actors is as follows. The
first step is to generate the actors and the locations. Then the actors need to be assigned to
groups. At a minimum, each actor should be assigned to a household, with each set of household
members forming a single group. Other groups might be formed as the simulation progresses.
Next the group "rules" should be specified. For example, one household might place constraints
over the time and place of meals.

The next step for the simulation is to generate activities for each individual which conform
to the requirements of the person's member groups. But instead of forcing actors to check with
all of their groups when scheduling activities, a modeling structure that seems to work well on
paper is to transfer control of scheduling activities to the group construct, which becomes a type
of super-actor. For example, a household group can schedule in-home meals for each household
member. The actor would then schedule his or her other activities, with or without knowledge of
the scheduled constraint. At some point the "eat at home" event would pop up, forcing the actor
to respond to the constraint. An ephemeral group might schedule activities that are ignored by
actors who are serving the constraints of a more important group.

All that is left is to devise different constraint structures for the groups. Since this is an
experimental simulation, the results of any study are likely to be statements about likely kinds of
group interactions. Therefore it is important that the simulation environment allow for different
types of groups to be specified, with different types of rules and levels of enforcement for those
rules.

Once each person's activity sequence is set, the activities can be executed. As the day
progresses, circumstances such as unexpected queuing may force changes in what the actor intends
to do. The level of the conflict depends on the strength of the constraints. The features of the
conflicting activities may have to be revised based on the level of conformity to the imposed
group constraints. For example, if there is a traffic delay, then it may happen that a social group
requirement for entertainment activities after work is modified to eliminate a conflict with the
household group's dinner activity.

The elements required to build a simulation of interacting and cooperating actors are shown
in table 3.

Marca et al. 5

3.4 The common elements from each of the preceding activity-based
simulations

The goal of this project is to develop a common, abstract simulation interface. This will serve
as the foundation for a simulation environment that can handle a wide variety of activity-based
travel simulations. This subsection will reexamine the needs of each of the example simulations
to extract a common set of features. These features will then be used to express an abstract
basis for generic activity-based simulations.

In terms of objects, it is clear that activity simulations require actors and locations. In what
follows, these concepts are generalized as agents and locales, respectively.

On the functional side, activity simulations require the generation of activities, and com
munication between the simulation objects. These functions can be wrapped up into a third
abstraction called an activity manager.

3.4.1 Agent

An actor and a group are different implementations of the generic concept of an agent. An agent
does things, communicates with other agents, and communicates with locations. The details of
these actions are left to the analyst who applies the agent concept.

An actor, meaning the abstraction of a person, extends an agent by adding the feature that
the actor is a single person, which implies different things to different simulations. A person in
one simulation might have a fixed home and work location, and a preferred travel mode. Another
simulation might not care about fixing locations. The actor inherits from the agent the ability
to communicate with other actors, with other agents, and with locations.

The group concept described in section 3.3 also extends the capabilities of an agent, this time
to include the ability to exert control over other agents. The full set of abilities of the agent
are passed on to the group, with the addition of the ability to dictate activities for the group's
members. This which allows the group to schedule activities for its members as if it were a bunch
of simple agents acting in concert.

3.4.2 Locale

The location concept presented in each of the different activity simulation applications is roughly
consistent. However, the location sometimes needs to communicate more than just (x, y) coor
dinates to the agent who is performing an activity there. We have chosen to call the abstraction
of the location concept a locale. A locale at a minimum provides a site where an activity may
take place. As such, a locale must communicate with agents in order to negotiate and properly
schedule the use of resources. Other details are left to specific extensions of the locale concept.

A location is an extension of a locale that implements the details of resource allocation, com
munication, and so on, and adds other details such as latitude and longitude or operating hours.
One might implement transportation as a specialized locale extending over space, providing the
ability to change coordinates (see the example described in section 5.2). As another example, one
might decide to connect aggregate data to disaggregate data by defining land-use-zone objects
containing many specific locales, just as groups contain specific agents.

3.4.3 Activity manager

The third abstract concept that is common to all activity simulations is the activity. While the
details are always different, an activity requires a series of events and messages in a simulation.
We have decided to encapsulate these events and messages, whatever they may be, into an
activity manager class. For simple simulations, it is probably sufficient to ignore the activity
manager and just send messages between agents and locales directly (see section 5.1). However,

Marca et al. 6

the negotiations between even a single agent and a single locale can become difficult to follow.
It is more convenient to describe a third party that manages the communications necessary
for the instantiation of an activity. The benefits of using the activity manager object become
critical when the simulation allows agents to cooperate and coordinate with other agents and
with groups. The activity manager class must contain the ability to communicate with an agent
and a locale. The activity manager can also be extended to provide the specific details necessary
for the performance of a specific kind of activity.

4 Simulation modeling as applied to activity analysis

4.1 Event-based simulation

Simulation is appropriate for examining systems whose complex interactions resist direct analysis.
The system under study here is the urban transportation system, but with the focus placed on
the activities behind the trips. A closed-form expression describing the interactions of the many
kinds of locations, people, and activities would be very difficult to develop. Much easier is the
problem of describing parts of the system, then describing how the parts interact, and finally
running a simulation to examine the system. Depending on the purpose of the research, one
can examine the statistical impact of either variations in the specification of the interactions,
variations in the descriptions of the individual elements, or both.

In an event-based simulation, discrete events happen at discrete times, with nothing of interest
occurring in the interim. For example, the real world activity of eating lunch is modeled as two
successive events: engaging in a meal activity at 12:00 noon, and completing the meal activity
at 1:00 p.m. In between the two events, if no other event occurs, all system variables remain
constant. When the first event occurs, some variables are changed to represent the commencement
of the lunch in question. When the concluding event occurs, some variables are changed to reflect
the fact that lunch has ended.

In an object oriented environment, each event contains its own time of execution. The simu
lation schedule is a list of events sorted in increasing order. To add an event, it must be inserted
into the appropriate spot on the list. The execution of an event defines the current time for the
entire simulation. Again using the lunch example, if nothing happens between the beginning and
the end of lunch, then the global simulation clock will jump from 12:00 noon to 1:00 p.m.

The alternative way to view a simulation is to take a continuous time approach. Returning
to the lunch example, one might define a continuous variable for the desire to end lunch. This
desire would start out very low at 12:00 noon when lunch begins. The simulation would tick off
very small clock increments, and there would be a growing desire to end lunch. Finally, at some
point in time, the desire to leave lunch would rise high enough to fire off a change in state and
end lunch.

The continuous approach has many strengths. The most attractive feature of the continu
ous simulation model of activities is the ability to describe events and motivations in terms of
competing demands that rise and fall with the passage of time and with the influence of other
system variables. For example, with each delectable mouthful of seared tuna with rice and grilled
vegetables, a person gets less hungry, but at the same time less food is left on the plate. If the
plate is empty before the person is satisfied, then the waiter must be called to order creme brulee.

The weakness of the continuous approach is the need to update every variable with each small
increment of a simulation clock. An event-based simulation can be seen as a way to reduce the
number of calculations in a continuous simulation. Instead of "continuously" updating variables,
the event-based simulation assumes that all variables remain constant until the next relevant
event, and so the rate of change of all variables is also constant over the interval. Even as more
and more details are added to an event-based simulation, it still tends to be more efficient than a

Marca et al. 7

continuous simulation since only the variables affected by a particular event need to be checked
and updated.

4.2 The specification of an event-based simulation environment for ac-
tivity modeling

A starting point for designing a general system for activity simulations is to examine existing
simulation packages. One such program, Arena (Kelton, Sadowski and Sadowski, 1998), provides
an excellent environment for designing industrial simulations. However it is not so easy to
program an activity simulator. In testing this product, we concluded that in order to build a
satisfactory activity simulation, it is necessary to write custom code, using C, C++ or SIMAN
(Arena's underlying simulation language (Kelton et al., 1998)), tasks which defeat the purpose
of using a high-level tool like Arena. Although we did not do extensive testing, we expect that
other integrated simulation packages also face the same constraints.

The alternative to using an integrated environment is to build a related library of routines.
This paper explores the use of one such library, called Swarm (Langton et al., 1999), and the
potential for programming a completely new environment in C++. The details of both of these
approaches are covered in section 5.

The next step in designing a general simulation environment is to specify a set of related
abstractions. This was done in section 3. That section concluded with a discussion of the
common elements of the agent, the locale, and the activity manager objects, as well as the need
to communicate between these objects.

An activity manager can be viewed as an object that governs all of the individual, discrete
events that constitute an activity in the usual sense. One possible breakdown of the events
comprising an activity is shown in figure l. Note that the necessary storage details for the
activity manager object are not shown in the figure.

An agent is something or someone who performs activities. In order to get the ball rolling,
one (temporary) axiom in this simulation environment is that the motivation for activities comes
from the agent. This implies that the code that implements the analyst's model of how activities
are generated should be built into the various implementations of the agent class.

A locale is primarily a provider of the resources necessary for an agent to engage in an
activity. Resource limitations are implemented through different types of locales being available
for different types of activities at different times of the day.

Binding together the interaction of the activity manager, the agent, and the locale are events
and messages. Events are used to properly sequence everything that happens in a simulation.
Events are characterized by a timestamp, and are loaded onto an external schedule for execution
in order of their timestamp. Messages are instantaneous communications between objects.

The details governing all of these abstractions are the responsibility of the analyst creating the
simulation. The events must be relevant to the implementations of the activity managers, agents,
and locales that are in use, and the messages must be logically consistent. For example, if one an
agent's methods, say agent.EndActivity(timestamp), is expecting to receive only a times
tamp code as a message from an event, say event: :beginActivity, then event: :endActivity
should send only a message containing a timestamp to agent.EndActivity(timestamp).

One example of an activity simulation (based in part on the implementation of section 5.1)
is shown in figure 2. The logic diagrammed in this figure makes some basic implementation
assumptions about the behavior of agents and locations. First an activity manager is created
by an agent engaging in a new activity (message 2). The activity is started when and if the
locale has the resources to serve the request for service (messages 3 and 5). This will happen
when another event ends (message 11), or if the locale has capacity when the request is received
(message 4). Another assumption is that both the locale (message 5) and the agent (messages 6
and 7) have some input into the determination of the duration of the activity in question. An

Marca et al.

Activity
manager

Initiation
events

Agent
events

Location
events

Perform
events {

:v~:~:
Location
events

{
~~:~:

Completion
events

Location
events

initiate activity at location by
requesting service

{

check if request can be served

serve request

--- schedule ending time

--- schedule ending time

{

initiate next activity

or stop acting

--- account for departing agent

Figure 1: One set of discrete events governed by a generic activity manager

8

Marca et al. 9

alert event is placed on the simulation schedule (message 8), which will end the activity at the
correct time (messages 9, 10a, and 10b). Other message and event logic will work equally well
within this framework.

So far we have not mentioned travel. Under the abstract paradigm presented, travel can be
represented as a type of activity. The locale providing the resource is the transportation system
that exists for the mode chosen by the agent. One straightforward implementation of this is
given in the example described in section 5.2.

One final point to make is that there are events that may happen outside of the simulated
world. The analyst obviously is interested in examining the progress of the simulation. One
way to do that is to schedule events that probe particular features of the agents, activities, and
locales that are of interest. The results of these probes can then be stored to cumulative statistics
objects or dumped to some graphical interface. For example, if one is interested in the average
queuing delay at a particular locale, then one would implement an average queue-length method
for the locale, and schedule an event that sampled that method at the end of each day.

5 Two examples

This section demonstrates how one can use the abstract simulation framework to implement an
activity simulation. As we've tried to stress repeatedly, simply declaring the existence of events,
activities, agents, and locations does not produce a simulation. Instead, the analyst is responsible
for implementing what he or she means by these terms. This is where the object-oriented features
of C++ and Swarm come in handy. We have constructed an abstract framework that specifies
the minimum interfaces that events, agents, activities, and locales must have in order to function.
In addition, we have created basic simulation tools that expect these minimum sets of functions
for each of these objects.

The following two subsections present specific applications of the simulation environment.
Section 5.1 is an early implementation designed more to exercise the simulation concepts than
to prove any profound result. This simulation does not implement the activity manager class.
Rather it relies on a more complicated system of messages passed between agents and locales.
This simulation is programmed in C++. Section 5.2 is a more evolved simulation, one which
builds upon the lessons learned in early efforts to design a standard simulation interface. This
simulation does implement the activity manager class, and is written using the Swarm simulation
library.

5.1 Simulating the travel patterns to and from a restaurant area

The first example application is to simulate the impact of indirectly improving access to a restau
rant district by submerging an elevated expressway that separates the neighborhood from the
downtown area. This example is entirely fictional, and any results obtained should not be applied
to any real world problems. The intent of this simulation was to exercise the abstract simulation
concepts only.

In the base case, access to the neighborhood is difficult. There is a large area available for
parking underneath the expressway. Parking patrons access the restaurants in the neighborhood
by walking underneath the expressway. Patrons who drive directly into the neighborhood are
required to use valet parking at the destination restaurant. In the after case, driving access to
the neighborhood will improve, while parking availability will drop as a result of the loss of the
parking lot under the expressway. Some very simple assumptions were made about the shifts in
mode, requiring that the delays on each access method in the after case should be roughly equal.

The restaurants in the neighborhood are busy, with queues forming on Friday night in the
before case. To simplify matters, the restaurants were lumped into two different locales. The

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

Marca et al. 10

Simulation Schedule Agent
EndAct(Time)

Event::StartSim(SimStartTime)
{ start the sim going }

-::::--
-----;✓

{ new Activity Time, Agent*, Locale*) }

Event::Alert(EndTime)
{ Activity----+ Alert(EndTime) }

I
I
I
I
I
I

I
I

I
I
I
I
I
I

I

Activity Manager 1

......-------"--------.'--,fi\
creation(Time, Agent*, Locale*) 1 \V

Locale

{ Locale--+ RequestService(Time, Activity*) j

StartAct(StartTime, EstDuration)
{ TrueDuration = 1

Agent-+ BeginAct(StartTime, EstDuration /
new Alert(StartTime+TrueDuration) } /

.... ..._ RequestService(Time, Activity*)
........ - { if(capacity) Serve(Time)

else place Activity* on queue }

~..._ I
,;-

6 / 1 ' _ Serve(StTime)
..,, / (';\ { Activity----+ StartAct(StTime, Dur) } ..,, \.V \ 8 / \ 10a /

\ -----------~ I ..,. Alert(EndTime) ,,, ✓ EndAct(EndTime)

@,✓✓

{ Agent-+ EndAct(EndTime) ,_ '"':::: - - - - - - - - - - - - - ➔ { FreeResources()
Locale--+ EndAct(EndTime) } 8 if(queue) Serve(EndTime) }

Figure 2: An example set of messages and events to initiate, perform, and complete an activity

Marca et al. 11

first represented cheap restaurants, and the second represented fancy restaurants. The two types
of restaurants differ in their capacity, with the cheap restaurants having almost twice the total
capacity of the fancy restaurants.

The simulation was implemented in a manner very similar to figure 2, although without an
explicit activity manager class. The base case simulated 1,800 customers on Thursday, and 2,100
customers on Friday. The after case assumed that the improved access would increase both
days by 200 customers. All of these customers were randomly assigned a start time, and then
randomly assigned to one of the four activity sequences: (Parkin, FancyMeal, ParkOut), (Parkin,
CheapMeal, ParkOut), (Valetin, FancyMeal, ValetOut), or (Valetin, CheapMeal, ValetOut).
Each activity was served by a unique locale. Queues resulted if the customers exceeded the
capacity of the locale. Customers were not allowed to balk from a queue. Finally, the duration
of each activity was generated randomly for each simulated customer.

Figure 3 and figure 4 show the progression of patrons through the simulated neighborhood.
In the base case (figure 3), the restaurants are operating at full capacity on Fridays. For the
after case, shown in figure 4, the Thursday peaks look like the Friday peaks from figure 3, while
the Friday after crowds are even worse. The waiting time for a table climbs from 12 minutes
maximum in the base case, to almost 30 minutes after. This leads to a spread of the peak period,
even though the starting times for the for each of the four different kinds of activity sequences
are drawn from the same set of distributions both before and after.

The purpose of this implementation was to test the ideas about specifying an abstract simula
tion framework. Coding up this simulation in C++ showed that it was possible to create random
durations for activities which required some back-and-forth communication between agents and
locales. Further, it showed that transportation facilities could be included within the concept of
a locale, and that doing so resulted in a fairly natural simulation.

The primary lesson learned was that the logic coordinating the communication between ob
jects could be simplified tremendously by defining an activity manager class. This capability is
indispensable in any sort of simulation of group cooperation or constraints, since the coordination
of messages between the many parties involved in an activity becomes very complex. The other
lesson learned was that the graphical interfaces and statistical manipulation tools provided by
published tools are difficult to reproduce. This is why we decided to explore using the Swarm
simulation library.

5.2 Simulating evolutionary adaptation of activity schedules

This example explores the use of an activity manager class to implement a generalized model
of activity engagement using the negotiation paradigm discussed in section 3.4. The purpose
of this simulation is to lay the groundwork for the implementation of more advanced simula
tions including the representative activity pattern and intelligent actor approaches discussed in
sections 3.1-3.3.

This example application was programmed using the Swarm simulation libraries (Langton
et al., 1999). Swarm was developed by researchers at the Santa Fe Institute to facilitate pro
gramming concurrent simulations in an explicitly repeatable manner. A Swarm application
requires the programmer to embed the objects of the simulation within a swarm. The objects of
the swarm simultaneously interact with each other and with their environment in a controlled,
repeatable way. Aside from the convenience of using pre-programmed elements such as plotters
and data collectors, the primary advantage of using the Swarm libraries is that the resulting
simulation makes correct assumptions about how to handle time.

For this example, we have implemented our generic activity simulation framework using the
Swarm libraries. The specific activity-based details fleshing out the generic simulation are that
a person generally follows a schedule of activities each day, but must also be able to adapt to
an unpredictable environment. The schedule specifies the starting times, expected durations,

Marca et al.

600

550

500

450

400

r/J
;..,

<l.l 350 s
0

-1-"
r/J

B 300
;..,
(l.)

,..0

S 250
;:j
~

200

150

100

50

{\
J \

r l
I 1
j I
I

I
I
\

r1I
I \ l

! I \ \

I I I\

I 1 t
I \
I I

park in

valet in

rest.au rant

park out

valet out

12

0
161718192021222324252627282930313233343536373839404142434445464748

Thursday
time

Friday

Figure 3: Customer loadings at each of the simulation locations, base case.

Marca et al. 13

600 ~-~~---------------------,-----,.------,

u::,
;...

550

500

450

400

(l) 350 s
0

..µ
u::,

S 300
;...
(l)

,..0

S 250
:::l
i:::

200

150

100

50 park in

valet in

park out:

valet out
0

161718192021222324252627282930313233343536373839404142434445464748
Thursday

time
Friday

Figure 4: Customer loadings at each of the simulation locations after removal of the expressway,
with parking delays and a shift to valet parking services.

Marca et al. 14

minimum durations, and locale requirements for each activity the person should ideally perform
throughout the day. Details such as travel times and locale capacity limitations which might
cause queuing delays are not known to the person in advance, and therefore the scheduled times
are only ideal times, not the actual times that will happen as the simulation unfolds. The locale
requirements are sometimes very specific, e.g., specifying a home or work locale that may be used
several times in the schedule. Other activities in the schedule require a locale that meets only
generic restrictions, such as a any restaurant or grocery store.

The person-agents are randomly assigned one of three generic schedules weakly representing
workers, primary care givers, and students, and drive the simulation by selecting activities from
their schedule and attempting to perform them. The activity selection rule is straightforward.
The person simply looks to see what activity on the schedule has the next starting time. The
agent then tries to find a locale in the environment that can service the activity. Locales are
chosen myopically, without explicitly considering how the choices will effect later activities. This
shortcoming is partially overcome by an adaptation procedure we will discuss in a moment.

To speed the implementation, we generated a random locale environment, based on a uniform
potential distribution of locations over a square simulation city. Each locale is given a time
dependent resource set that specifies its serving capacity for five types of activities: in-home, work,
meal, maintenance, and discretionary. Travel is a special type of activity that is only serviced
by a capacity-sensitive "transportation system" locale. The randomly generated city is stored in
a standard database format, and is accessed via interfaces that can easily be implemented by a
real land-use database or geographic information system.

The randomness of the environment means that an agent's abstract schedule may not be
implementable. A person will omit an activity when the present locale does not service the
activity, and there is no locale close enough to travel to and still meet the minimum duration
requirement. In this case, the agent will start planning travel for the next activity in the schedule.

We implemented the simple activity-behavior hypothesis that missing scheduled activities is
undesirable. In this example, agents adapt their schedules using simple evolutionary rules to
adjust the desired start time and duration of the activities in their schedule after each day. The
rules maintained the sequencing of the schedule. However, the locations and timings were allowed
to vary. Agents revised their daily schedules based on selecting the past scheduled that produced
the highest "activity success ratio," the ratio of time actually spent in each activity to the time
in the schedule. This is a proxy for goodness of fit between the behavior and the schedule.

Figure 5 shows the evolution of schedule fit versus time in the simulation using this simple
evolutionary behavior. The agents were rapidly successful in adapting their schedules to fit
their particular environmental constraints. The example, however, imposed only location-based
constraints on behavior. The addition of more complex interpersonal coupling and resource
constraints will require a more complex evolution strategy.

This implementation benefited greatly from the knowledge gained from the earlier example
discussed in section 5.1. In particular, an activity class was used to negotiate activity engage
ment between individuals and locales. This simplified inter-object communication by centralizing
management of the activity. In addition, travel was simulated explicitly as activities negotiated
with a transportation system locale. This advance, coupled with the activity class will lead to
easier implementation of travel resource sharing in future simulations. It is easy to envision an
activity that negotiates not only between a single agent on the transportation system locale, but
also with other agents who may share resources to engage in the travel activity.

The Swarm simulation library proved to be a flexible tool for implementing the simulation.
In addition to neatly encapsulating event-based simulation concepts, the library provides a sig
nificant set of utilities for supplemental analysis of simulation data both during and after the
simulation. When combined with the important advantage of temporal correctness, the Swarm
simulation library was deemed far superior to implementing the simulation environment from
scratch in C++.

Marca et al.

0_8
0 = ~ 0_6
(t.l
(t.l
(L'I

0 .. 4 (.)
(.)

= (t.l
0.2

0 J

0

ratio of activity success vs. time

10000 20000

time

30000

---- success

Figure 5: Evolution of population schedule completion success

15

6 Conclusion, applications, and directions for future research

The goal of this research has been to define general concepts for operationalizing activity-based
transportation models. The complexity inherent in modeling human behavior makes comprehen
sive analytical analysis difficult. As a result, we see simulation strategies as central to further
research efforts. Toward this end, we have outlined an event-based simulation abstraction cen
tered around the concept that activities are negotiated between agents and locales. We have
shown this to be a flexible concept that can accommodate several distinct types of activity anal
ysis, and have operationalized it in two separate domains.

The work presented here has many possible practical and research applications. The most
important point is that we have shown that our abstraction is flexible enough to handle a wide
variety of different approaches to activity simulation. In other words, the details of a particular
researcher's or practitioner's approach, while very important in and of themselves, do not place a
significant strain on the core abstractions presented here. This means that software tools may be
developed which support the abstract activity modeling concepts, and which can be applied to
the specific details of any particular approach. The availability of a high quality set of simulation
and modeling tools will speed up advances in the state of the art, and make activity based travel
analysis more accessible to practitioners.

References

Borgers, A., Hofman, F., Ponje, M. and Timmermans, H. J.P. (1998). Towards a conjoint-based,
context-dependent model of task allocation in activity settings: some numerical experiments,
77th annual meeting of the Transportation Research Board, TRB, Washington, D. C.

Marca et al. 16

Goicoechea, A., Hansen, D. R. and Duckstein, L. (1982). Multiobjective Decision Analysis with
Engineering and Business Applications, John Wiley.

Hagerstrand, T. (1970). What about people in regional science?, Papers of the Regional Science
Association 24: 7-21.

Kelton, W. D., Sadowski, R. P. and Sadowski, D. A. (1998). Simulation with Arena,
WCB/McGraw-hill, Boston, Massachusetts.

Langton, C., Burkhart, R., Daniels, M., Jojic, V. and Lancaster, A. (1999). The Swarm simulation
system. http:/ /www.santafe.edu/projects/swarm/.

McNally, M. G. (1990). An activity-based microsimulation model for travel demand forecasting,
in D. F. Ettema and H.J. P. Timmermans (eds), Activity-based approaches to travel analysis,
Pergamon, Elsevier Science, Oxford, U.K., chapter 2.

McNally, M. G. (1998). Activity-based forecasting models integrating gis, Geographical Systems
5: 163-187.

Recker, W. W. (1995). The household activity pattern problem: General formulation and solu
tion, Transportation Research B 29B(l): 61-77.

Recker, W. W., McNally, M. G. and Root, G. S. (1986). A model of complex travel behavior:
Part I-Theoretical development, Transportation Research A 20A(4): 307-318.

Saaty, T. L. (1994). Highlights and critical points in the theory and application of the Analytic
Hierarchy Process, European Journal of Operational Research 74: 426-447.

