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ON G-EFFICIENCY CALCULATION FOR
POLYNOMIAL MODELS

BY HOLGER DETTE 1 AND WENG KEE WONG

Technische Universitat Dresden and University of California,¨
Los Angeles

We study properties of the variance function of the least squares
estimator for the response surface. For polynomial models, we identify a
class of approximate designs for which their variance functions are maxi-
mized at the extreme points of the design space. As an application, we
examine robustness properties of D-optimal designs and D -optimalny r
designs under various polynomial model assumptions. Analytic formulas
for the G-efficiencies of these designs are derived, along with their D-ef-
ficiencies.

1. Introduction. This work examines a practical issue that sometimes
arises in designing an experiment: what types of designs have their variance
function maximized at the extreme points of the design space? Many allu-
sions to this question have been raised informally in the literature, often
expressed in statements like ‘‘the model is most strained near the extreme
points of the design space.’’ The implication is that model-based inference on
the relationship between the covariates and the response variable becomes
less reliable near the extreme points of the design space. One of our goals
here is to identify a large class of designs for which their variance functions
are maximized at the extreme points of the design space, and we show that
many of the commonly used designs have this property. We do this for the
case when we have a polynomial model with a single covariate and the design
space V is assumed to be a given compact space. Generalizations to the case
when there are several covariates are straightforward, especially if one
considers product models.

The statistical model of interest is

y s f T x b q e, x g V ,Ž .j

T Ž . Ž 2 j.where y is the response, the regression function is f x s 1, x, x , . . . , x ,j
T Ž .b s b , b , . . . , b is the vector of model parameters and e is a random0 1 j

error with mean zero and constant variance, independent of x. Following
Ž .Kiefer and Wolfowitz 1960 , all designs considered in this paper are approxi-

mate or continuous, and so they are probability measures defined on V. This
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means if a given number n of uncorrelated observations are to be taken from
the experiment, and a design j with mass m at x g V, 1, 2, . . . , t, is used,i i
then approximately nm observations are taken at x , i s 1, 2, . . . , t. The seti i

Ž .of all approximate designs on V is denoted by J. For a given f x and aj
given j g J, the information contained in j is measured by its information
matrix:

M j s f x f T x dj x .Ž . Ž . Ž . Ž .Hj j j
V

Here and throughout, we focus attention only on designs whose information
matrices are nonsingular. Such designs are called nonsingular.

For estimating model parameters, a popular criterion is D-optimality.
Ž .Given f x , this criterion seeks a design j so that the determinant of thej j

information matrix is maximized over J, that is,

< <j s arg max M j .Ž .j j
jgJ

Under the assumptions of homoscedasticity, the D-optimal design j isj
w Ž . xalso G-optimal Kiefer and Wolfowitz 1960 , theorem . This means j mini-j

mizes the maximum variance of the estimated response surface across V.
Since the variance of the estimated response at the point x using design j is

Ž . T Ž . Ž .y1 Ž .proportional to d x, j s f x M j f x , this is equivalent to the asser-j j j j
tion

j s arg min max d x , j .Ž .j j
jgJ xgV

G-optimality is particularly appealing when it is desired to estimate the
entire response surface, as it provides global protection against unreliable
estimates at points in V after the experiment is run.

Following standard convention, we compare the worth of a nonsingular
design j by its efficiency. If j is an arbitrary nonsingular design j , the G-
and D-efficiency of j are, respectively, given by

1rjq1
< <j q 1 M jŽ .j

G j s and D j s .Ž . Ž .j j ½ 5< <max d x , j M jŽ . Ž .x g V j j j

All subsequent comparisons of design are based on either one of these
measures.

There is a vast amount of work on D-optimal designs; the analytical
formula of the D-optimal design j for the homoscedastic model is known,j

w Ž .and properties of these designs are well studied see Fedorov 1972 , Kiefer
Ž . x1985 and the references therein . In particular, it is known that j has aj

minimal number of j q 1 support points so that the design j cannot be usedj

to test if there is a lack of fit in the model. This drawback, however, may be
overcome by using the optimal design for an expanded model if the resulting

w Ž . Ž .loss in efficiencies is not severe Kendall and Stuart 1968 , Kussmaul 1969
Ž .xand Atkinson and Fedorov 1975a, b . The work here examines this issue

under the G-optimality criterion for a class of designs.
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w Ž . Ž .xNumerical work see, e.g., Thibodeau 1977 and Wong 1994 suggests
that many popular designs have the property that their variance functions
are maximized at the extreme points of the design space. The implication is

Ž .that the G-efficiencies of these nonsingular designs can be readily deter-
mined. In this work, we formalize a method for identifying such designs and
prove that these designs include the frequently used D-optimal designs and
the D -optimal designs. The latter class of designs is introduced by Stud-nyr

Ž .den 1980, 1982 and is useful for estimating a subset of the parameters in a
Ž .polynomial model. As an application, we examine how G- and D- efficiencies

of these designs change with the degree of the polynomial. This is an
important consideration since in practice the true model is often unknown
and polynomial approximations are often used. In the process, we generalize

w Ž .xKussmaul’s results Kussmaul 1969 and also prove Thibodeau’s conjecture
w Ž .xThibodeau 1977 concerning the G-efficiency of j when the regressionn

Ž .function is f x , n ) j.j
Our analysis relies heavily on the theory of canonical moments, which is a

w Ž .common tool for studying D-optimal designs Lau and Studden 1985 and
Ž .xStudden 1980, 1982, 1989 . Because canonical moments do not change when

the designs are linearly transformed, we may, without loss of generality,
w xassume the design space V to be y1, 1 . Consequently, the D- and G-ef-

ficiency results here remain the same when V is any other compact interval.
The rest of the paper is organized as follows. Section 2 contains our main

results. In Theorem 2.6, we illustrate how our results could be useful for
heteroscedastic models as well. In Section 3, we apply our results to answer
some of the issues raised earlier. This is followed by a brief discussion on
applications to other fields in Section 4 and a summary in Section 5. Auxil-
iary results on canonical moments and proofs of the main results are given in
the Appendix.

2. Main results. To our knowledge, the question of when a design has
its variance function maximized at the extreme points of the design space has
not been adequately addressed in the literature. The sufficient conditions
stated in Theorems 2.1 and 2.2 provide partial answers that enable us to
show that many popular designs have this property. Consequently, their
G-efficiencies under various polynomial assumptions can be easily assessed.

w x 1 j Ž .Let j be a design defined on V s y1, 1 , and let c s H x dj x ,j y1
Ž . qj s 1, 2, . . . , denote the jth ordinary moment of j . Define c to be thei

maximum value of the ith moment for fixed c , c , c , . . . , c , and similarly0 1 2 iy1
define cy to be the corresponding minimum. The canonical moments of j arei
defined by

c y cq
i i

p s , i s 1, 2, . . . .i q yc y ci i

Note that 0 F p F 1. Whenever cqs cy, the canonical moments are lefti i i
wundefined for j ) i, and the sequence is terminated. It is well known Skibin-

Ž .x w xsky 1986 that every probability measure on the interval y1, 1 is uniquely
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determined by its corresponding sequence of canonical moments. In what
follows, it is helpful to define q s 1 y p , i s 1, 2, . . . .i i

w xTHEOREM 2.1. Let j be a given design on V s y1, 1 .

Ž .a If j is symmetric with canonical moments
12.0 0 - p F , j s 1, 2, . . . , k ,Ž . 2 j 2

then

max d x , j s d 1, j s d y1, j , j s 1, 2, . . . , k .Ž . Ž . Ž .j j j
xgV

Ž . Ž .b If j is not symmetric but satisfies 2.0 and
10 - p F , j s 1, 2, . . . , k ,2 jy1 2

then

max d x , j s d 1, j , j s 1, 2, . . . , k .Ž . Ž .j j
xgV

Ž . Ž .c If j is not symmetric but satisfies 2.0 and
11 ) p G , j s 1, 2, . . . , k ,2 jy1 2

then

max d x , j s d y1, j , j s 1, 2, . . . , k .Ž . Ž .j j
xgV

w xTHEOREM 2.2. Let j be a given design on V s y1, 1 with canonical
Ž . Ž xmoments p g 0, 1 , j s 1, 2, . . . , 2k y 1, and p g 0, 1 . If k s 1, definej 2 k

p s 0.0

Ž .a If j is symmetric and its canonical moments satisfy

1 y p2 j
2.1 0 - F p j s 1, 2, . . . , k y 2,Ž . 2 jq23 y 4 p2 j

and
2 p y 12 ky2

2.2 F p ,Ž . 2 k1 y p2 ky2

then

max d x , j s d y1, j s d 1, j , j s 1, 2, . . . , k .Ž . Ž . Ž .j j j
xgV

Ž .b If the canonical moments of j satisfy

2 p y 1 1 y p 2 p y 12 j 2 jq1 2 jq2
2.3 F , j s 1, 2, . . . , k y 2,Ž .

1 y p p p2 j 2 jq1 2 jq2

2 p y 1 1 y p2 ky2 2 ky1
2.4 F pŽ . 2 k1 y p p2 ky2 2 ky1
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and
12.5 p F , j s 1, 2, . . . , kŽ . 2 jy1 2

then
max d x , j s d 1, x , j s 1, 2, . . . , k .Ž . Ž .j j
xgV

Ž .c If the canonical moments of j satisfy

2 p y 1 p 2 p y 12 j 2 jq1 2 jq2
2.6 F , j s 1, 2, . . . , k y 2,Ž .

1 y p 1 y p p2 j 2 jq1 2 jq2

2 p y 1 p2 ky2 2 ky1
2.7 F pŽ . 2 k1 y p 1 y p2 ky2 2 ky1

and
12.8 p G , j s 1, 2, . . . , k ,Ž . 2 jy1 2

then
max d x , j s d y1, j , j s 1, 2, . . . , k .Ž . Ž .j j
xgV

REMARK 2.0. It is worth mentioning that in general the bounds in Theo-
rems 2.1 and 2.2 cannot be improved in the following sense. For every positive
integer k, there exists a design with canonical moments satisfying all condi-

Ž .tions of Theorem 2.1 or Theorem 2.2 except one condition such that the
variance function is not maximized at the extreme points of the interval
w xy1, 1 . As an illustration, consider the case k s 3 and a symmetric design

4 3 1Ž .with canonical moments p s , p s , and p g 0, which satisfies2 4 67 5 2
Ž . Ž .condition 2.1 but not 2.2 . Straightforward calculation shows the quantities

1Ž .in A.1 in the Appendix are a s a s , b s 2rp , c s q r2, f s f s f1 2 3 6 3 6 0 1 24
Ž .s 0 and the orthonormal polynomials with respect to the measures dj x

Ž 2 . Ž .and 1 y x dj x are given by

x x 2 y p x 2 y p q2 2 4
P x s , P x s and Q x sŽ . Ž . Ž .1 2 2p p q p q p q p q' ' '2 2 2 4 2 2 4 4 6

w Ž .x Ž .see Lau 1983 . Thus we obtain, from A.0 and Lemma A.3,
25 1 7 245 4

2 2d x , j s q 1 y 1 q x q x yŽ .3 ½ 5ž /ž /2 p 2 p 4 36 76 6

249 25 8
2 2y 1 y x x y .Ž . ž /72 p 356

It is now straightforward to verify that this function attains its maximum at
1w xan interior point of the interval y1, 1 whenever p - .6 2

Note that, in practice, conditions in Theorems 2.1 and 2.2 are verified by
first calculating the ordinary moments of the design and subsequently canon-
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w Ž .ical moments are found in a standard way see Karlin and Shapely 1953 ,
xpage 59 . We now apply the above results to establish results for G-ef-

ficiencies of D-optimal designs and D -optimal designs under variousnyr
polynomial model assumptions.

Ž .THEOREM 2.3. Let j denote a design such that p g 0, 1 , j s 1, . . . , 2k yj
Ž x1, and p g 0, 1 . Then, for j s 1, 2, . . . , k,2 k

j i iy1q q 12 my1 2 m
d 1, j s 1 qŽ . Ý Ł Łj ž /p p pms1 ms12 my1 2 m 2 iis1

and
j i iy1p q 12 my1 2 m

d y1, j s 1 q .Ž . Ý Ł Łj ž /q p pms1 ms12 my1 2 m 2 iis1

w xIf j is symmetric and r denotes the largest integer less than or equal to r,
w xjr2 i iy1p q 14 my2 4 m

d 0, j s 1 q , j s 1, 2, . . . , k .Ž . Ý Ł Łj ž /q p pms1 ms14 my2 4 m 4 iis1

Ž .REMARK 2.1. If the regression function is f x , Theorem 2.3 provides anj
upper bound for the G-efficiency of a nonsingular design j in terms of its
canonical moments:

j q 1
G j F .Ž .j max d 1, j , d y1, jŽ . Ž .Ž .j j

Ž .THEOREM 2.4. Assume the regression function f x is a polynomial ofn
degree n.

Ž . Ž .a Let j denote the D-optimal design for f x . The G-efficiency of j forn n n
Ž .f x isj

n j q 1Ž .
G j s , j s 1, 2, . . . , n.Ž .j n 2n q 2nj y j

Ž . nb Let j denote the optimal design for estimating the coefficient of xn, D1

Ž . Ž .for f x . The G-efficiency of j for f x isn n, D j1

j q 1¡
, if 1 F j F n y 1,

2 j q 1~G j sŽ .j n , D1 n q 1
, if j s n.¢ 2n

Ž . Ž . Ž .REMARK 2.2. Note that, from theorem 2.4 a , G j s 2nr 3n y 1 if1 n
Ž . Ž .n G 1, and G j s 3nr 5n y 4 if n G 2, which coincide with the results of2 n

Ž .Kussmaul 1969 .
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REMARK 2.3. In a numerical study of properties of robust designs,
Ž .Thibodeau 1977 conjectured that

2n y jŽ .
max d x , j s d 1, j s d y1, j s n q 1 y .Ž . Ž . Ž .j n j n j n nxgV

Ž .Our proof of Theorem 2.4 a in the Appendix will prove Thibodeau’s conjec-
ture as a by-product.

REMARK 2.4. It is interesting to note that both the D-optimal designs and
the D -optimal designs are extreme cases in that their canonical moments1
satisfy the inequalities of Theorems 2.1 and 2.2 with equalities.

Next, we consider the class of D -optimal designs proposed by Studdennyr
Ž . Ž .1980 . For the regression function f x , he defined a D -optimal design asn nyr
one which minimizes the determinant of the covariance matrix of the least
squares estimates of the ‘‘highest’’ n y r parameters, b , b , . . . , b . Noterq1 rq2 n

Ž .that i when r s 0, the design j becomes j , which coincides withn, D n, Dny r n

Ž . Ž . w Ž .x Ž .the D-optimal design j for f x in Theorem 2.4 a Studden 1980 and iin n
Ž .when r s n y 1, j reduces to j in Theorem 2.4 b . The next resultn, D n, Dny r 1

generalizes the case to any values of r between 0 and n y 1.

THEOREM 2.5. Let 0 F r F n y 1 and let j denote the D -optimaln, D nyrny r
Ž .design for the polynomial regression function f x of degree n. The G-ef-n

Ž .ficiency of j for f x isn, D yr jn

j q 1¡
, if 1 F j F r ,

2 j q 1~G j sŽ .j n , D yrn j q 1
, if r q 1 F j F n.2¢n q 1 q r y n y j r n y rŽ . Ž .

From the proof of this theorem in the Appendix, it will be apparent that
the conclusions in Theorems 2.1 and 2.2 hold as long as each of the first 2k
canonical moments of the design satisfies either one of the conditions in
Theorem 2.1 or Theorem 2.2. Thus, the conditions in these two theorems are
not as stringent as they appear to be.

Our next result may be used to assess the loss in G-efficiency when we
erroneously assume heteroscedasticity is present in the model. Following

wŽ . xFedorov 1972 , page 39 , we represent the heteroscedasticity by an efficiency
Ž .function l x . This function is positive and its value at the point x is

inversely proportional to the variance of the response at the point x. The
interest here is the loss in efficiency if we determine the D-optimal design

Ž . Ž .aq1Ž . bq1assuming the efficiency function is l x s 1 q x 1 y x , a ) y1 and
w xb ) y1, when in reality the efficiency function is constant across V s y1, 1 .

Ž . Ža , b .The G-efficiency of the heteroscedastic D-optimal design j under an
homoscedastic model is now given. A numerical example is worked out in
Section 3.
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w x Ž .THEOREM 2.6. Suppose V s y1, 1 , the regression function f x is aj
Ž .polynomial of degree j and the efficiency function l x is constant across V.

Ža , b . Ž . Ž .Let j denote the heteroscedastic D-optimal design for f x assumingn n
Ž . Ž .aq1Ž . bq1l x s 1 q x 1 y x , a ) y1 and b ) y1. Then the variance func-

tion for j Ža , b . satisfiesn

max d x , j Ža , b . s d y1, j Ža , b . if a F b ,Ž . Ž .j n j n
xgV

and

max d x , j Ža , b . s d y1, j Ža , b . if a G b .Ž . Ž .j n j n
xgV

Furthermore, for j s 1, 2, . . . , n,
j b q n q 2 y i a q b q 3 q n y iŽ . Ž .i iy1Ža , b .d 1, j s 1 qŽ . Ýj n a q n q 2 y i n y i q 1Ž . Ž .i iis1

=� 4a q b q 3 q 2n y 2 i
and

j a q n q 2 y i a q b q 3 q n y iŽ . Ž .i iy1Ža , b .d y1, j s 1 yŽ . Ýj n b q n q 2 y i n y i q 1Ž . Ž .i iis1

=� 4a q b q 3 q 2n y 2 i ,

Ž . Ž . Ž . Ž .where we have used the notation a s 1 and a s a a q 1 ??? a q k y 1 .0 k

REMARK 2.5. The heteroscedastic D-optimal design j Ža , b . is well knownn
w Ž . xFedorov 1972 , page 89 .

For the sake of comparison, we now state the D-efficiencies of j andn
Ž .j for the regression function f x , n G j G 1. The proof of these resultsn, D jny r

Ž . Ž .are omitted since they can be deduced from Studden 1980 or Lau 1983 .

Ž .THEOREM 2.7. Let f x denote the polynomial regression function of de-j
gree j. For n G j G 1, we have the following:

Ž . Ž .a The D-efficiency of j for f x is given byn j

jyiq12j n y i q 1 2 j y 2 i q 1 2 j y 2 i q 3Ž . Ž .jq1D j sŽ . Łj n ½ 5ž /j y i q 1 2n y 2 i q 1 2n y 2 i q 3Ž . Ž .is2

=

jn 2 j y 1
.ž /j 2n y 1

Ž . Ž .b The D-efficiency of j for f x is given byn, D jny r

jyiq1j j2 j y 1 2 j y 2 i q 1 2 j y 2 i q 3Ž . Ž .2jq1 yjD j s 2Ž . Łj n , D 2ny r ½ 5ž /j j y i q 1is2 Ž .
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if j F r; otherwise, the right-hand side expression is replaced by
jjyrn y r 2 j y 12y2 jrqr2 ž / ž /2n y 2r y 1 j

jyiq1rq1 2 j y 2 i q 1 2 j y 2 i q 3Ž . Ž .
= Ł 2½ 5j y i q 1is2 Ž .

jyiq12j n y i q 1 2 j y 2 i q 1 2 j y 2 i q 3Ž . Ž .
= .Ł ½ 5ž /j y i q 1 2n y 2 i q 1 2n y 2 i q 3Ž . Ž .isrq2

Ž .Theorem 2.7 a yields, for example, for j s 1, 2 and 3,
1r3221r2n 3 n n y 1Ž .

2.9 D j s , D j sŽ . Ž . Ž .1 n 2 n½ 5 ½ 52n y 1 2n y 1 8n y 12

and
1r435n1r2D j s 2.5 n y 1 n y 2 .Ž . Ž . Ž .3 n 3 5½ 52n y 5 2n y 3 2n y 1Ž . Ž . Ž .

wLetting j denote the limiting design of j which exists by Kiefer and` n
Ž .xStudden 1976 , we have

j q 1
2.10 G j sŽ . Ž .j ` 1 q 2 j

and
2 jy2 iq1j1 2 j y 2 i q 12jq1 yj j2.11 D j s 2 j .Ž . Ž . Łj ` ž /j! j y i q 1is1

The G-efficiency follows directly from Theorem 2.4, and its D-efficiency
Ž .follows from Theorem 2.7 a after some algebra. Theorem 2.3 of Kiefer and

Ž .Studden 1976 , which is expressed in terms of partial sums of the zeta
Ž . Ž .function, is a complicated version of 2.11 . The expression in 2.11 has the

advantage that it is more compactly written and is numerically more efficient
to compute.

3. Examples and applications. We discuss some practical implications
of the results in the previous section in designing an experiment. Suppose the
relationship between the true expected response and a covariate x is a
polynomial. Since the degree of the polynomial is often not known, it is
prudent to choose a design which is robust to polynomial assumptions.
Ideally, we would like to have a design that remains efficient for moderate
changes in the assumed degree of the polynomial.

Ž . Ž .For G-efficiency, it is clear from Theorem 2.4 a that, for fixed n G j is aj n
monotonic increasing function of j, provided j2 q 2 j G n G j, which is true
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for most practical cases. Furthermore, if the true regression function is a
Ž .polynomial of degree j, the G-efficiency of using j instead of j is at leastjqh j

g provided

1 y g j2 q jŽ . Ž . 23.0 0 F h F , j G 1, F g F 1.Ž . 32 j q 1 g y 1 y jŽ .
2The constraint g G ensures the denominator is positive for all j G 1; this3

restriction is reasonable since designs with high efficiency are sought. When
Ž .g s 1 in 3.0 , h is 0, confirming the uniqueness of the G-optimal design. By

w Ž .xAtwood’s inequality Atwood 1969 , j has a D-efficiency of at least gjqh
Ž . Ž .when the regression function is f x and h satisfies 3.0 .j

Further implications in terms of the loss in G- and D-efficiencies of using
Ž .j when the regression function is f x , n ) j, can be evaluated by applyingn j

Theorems 2.4 and 2.7. Since the practical cases of interest are typically when
Žn s j q 1, j q 2 and possibly j q 3 moderate changes in the assumed degree

.of the polynomial model , we evaluate these cases by substituting n for one of
these values in Theorem 2.7. The resulting expressions are all monotonic

Ž . Ž . Ž .functions of j: D j G 0.8165, D j G 0.7746 and D j G 0.7559j jq1 j jq2 j jq3
Ž .for all j G 1 with equality at j s 1. When j G 20, D j G 0.9666 forj jqk

1 F k F 3. The practical implication here is that the D-optimal design jn
Ž .remains relatively efficient for the model f x as long as 1 F j F n F j q 3.j

Ž .Similar conclusions are obtained for the G-efficiency: G j G 0.8100,j jq1
Ž . Ž .G j G 0.7500 and G j G 0.7273 for all j G 1 with equality at j s 1.j jq2 j jq3

Ž .When j G 20, G j G 0.8895 for 1 F k F 3. As in the case of D-efficiency,j jqk
these calculations suggest that correct model specification becomes increas-
ingly less important if one uses any j ’s, as long as n G j and j is sufficientlyn
large.

Ž . Ž . Ž .Atwood 1969 , Thibodeau 1977 and, recently, Wong 1994 tabulated the
D- and G-efficiencies for selected cases studied here. Theorems 2.4 and 2.7
generalize their numerical results and also may be combined to express the

Ž .D-efficiency of j for f x in terms of its G-efficiency and vice versa. Forn j
Ž .instance, if n G j s 1, 2.9 yields

1r23n y 1 n
D j s G j .Ž . Ž .1 n 1 n½ 52n 2n y 1

Ž . Ž .For the design j , it can be verified that both yD j and G j are` j ` j `

Ž .monotonically decreasing functions in j. A direct calculation shows G j sj `

0.67, 0.60 and 0.57 for j s 1, 2 and 3, respectively, and decreases in the limit
to 0.5. Also, if n G j ª ` in such a way that 0 - jrn s r F 1, the limiting

Ž . Ž . Ž . Ž .value of G j is 1r 2 y r . In contrast, 2.10 yields D j s 0.71, 0.75 andj n j `

0.79 for j s 1, 2 and 3, respectively, and equals 1 in the limit. Thus, if the
Ž .true regression function is a polynomial of degree 3, say, then the D G -ef-

Ž .ficiency of j is at least 0.79 0.50 as long as n G 3.n
Similar deductions can be made for the D -optimal designs but, for spacenyr

Ž .consideration, their D- and G-efficiencies for the regression function f x arej
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displayed in Table 1 for selected values of j, r and n. Since j and j aren D nw Ž .xthe same design Studden 1980 , this table includes results for the D-opti-
mal design for all the parameters as well. It is clear from Table 1 that, for
fixed n and j, the G- and D-efficiencies of the design j increase as rD ny r

Ž .decreases. However, for fixed j and r F n , both the G- and D-efficiencies of
j do not change if n is sufficiently large. Other properties of theseD ny r

efficiencies can be deduced from the table. Again, by Atwood’s inequality
w Ž .xAtwood 1969 , note that the D-efficiencies always exceed the G-efficiencies.

We now give an example to illustrate the use of Theorem 2.6 in practice.
w xConsider, for example, the case when V s y1, 1 , the regression function is

Ž . Ž . Ž .aq1Ž . bq1f x and the D-optimal design for the efficiency l x s 1 q x 1 y x ,n
a ) y1, b ) y1, is used in the homoscedastic model. To see how the

1Ž .G-efficiency is affected, we discuss two special cases: i a s b s y , with2
12 1r2 2 3r2Ž . Ž . Ž . Ž . Ž .l x s 1 y x ; and ii a s b s , with l x s 1 y x . Other situa-2

tions can be treated similarly. A straightforward calculation shows, for case
Ž .i ,

j q 1
Žy1r2, y1r2.G j s , j s 1, 2, . . . , n ,Ž .j n 2 j q 1

TABLE 1
Ž . Ž .G D -efficiencies of the optimal designs, j for f x , 2 F j F 6, 1 F r F j, 2 F n F 7n, D jnyr

n

j n I r 2 3 4 5 6 7

Ž . Ž . Ž . Ž . Ž . Ž .2 1 0.750 0.750 0.600 0.750 0.600 0.750 0.600 0.750 0.600 0.750 0.600 0.750
Ž . Ž . Ž . Ž . Ž . Ž .2 1.000 1.000 0.667 0.826 0.600 0.750 0.600 0.750 0.600 0.750 0.600 0.750

Ž . Ž . Ž . Ž . Ž .3 1 0 0.667 0.786 0.571 0.786 0.571 0.786 0.571 0.786 0.571 0.786
Ž . Ž . Ž . Ž . Ž .2 0 0.800 0.975 0.615 0.845 0.571 0.786 0.571 0.786 0.571 0.786
Ž . Ž . Ž . Ž . Ž .3 0 1.000 1.000 0.706 0.875 0.600 0.823 0.571 0.786 0.571 0.786

Ž . Ž . Ž . Ž .4 1 0 0 0.625 0.934 0.556 0.813 0.556 0.813 0.556 0.813
Ž . Ž . Ž . Ž .2 0 0 0.714 0.966 0.588 0.861 0.556 0.813 0.556 0.813
Ž . Ž . Ž . Ž .3 0 0 0.833 0.986 0.652 0.886 0.517 0.843 0.556 0.813
Ž . Ž . Ž . Ž .4 0 0 1.000 1.000 0.741 0.902 0.625 0.862 0.571 0.835

Ž . Ž . Ž .5 1 0 0 0 0.600 0.936 0.546 0.834 0.546 0.834
Ž . Ž . Ž .2 0 0 0 0.667 0.963 0.571 0.875 0.546 0.834
Ž . Ž . Ž .3 0 0 0 0.750 0.979 0.621 0.896 0.563 0.834
Ž . Ž . Ž .4 0 0 0 0.857 0.991 0.706 0.909 0.600 0.876
Ž . Ž . Ž .5 0 0 0 1.000 1.000 0.857 0.920 0.652 0.888

Ž . Ž .6 1 0 0 0 0 0.583 0.939 0.539 0.850
Ž . Ž .2 0 0 0 0 0.636 0.962 0.560 0.886
Ž . Ž .3 0 0 0 0 0.700 0.976 0.600 0.904
Ž . Ž .4 0 0 0 0 0.778 0.986 0.651 0.916
Ž . Ž .5 0 0 0 0 0.875 0.994 0.714 0.925
Ž . Ž .6 0 0 0 0 1.000 1.000 0.793 0.932
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Ž .which is the same as the D -optimal design except when j s n. For case ii ,1

n y j q 1 n y j q 2 j q 1Ž . Ž . Ž .
Ž1r2, 1r2.G j s ,Ž .j n 2 n y j j y 1 n q 1 q 3n q 5 n q 2Ž . Ž . Ž . Ž .

j s 1, 2, . . . , n.

If we specialize to the cases when j s 1 and n,

2n 2
Ž1r2, 1r2. Ž1r2, 1r2.G j s and G j s .Ž . Ž .1 n n n3n q 2 3n q 2

Observe now the high cost in terms of G-efficiency of the erroneous
Ž Ž1r2, 1r2..assumption of heteroscedasticity. If n s 2, G j s 0.25 and if n s 3,2 2

Ž Ž1r2, 1r2..G j s 0.182. The implication is that one should be very careful3 3
about the heteroscedastic assumption since use of the heteroscedastic optimal
design for the homoscedastic model can result in very severe loss in G-ef-
ficiency.

4. Further applications. The results stated in Section 2 are closely
related to some problems associated with the Gauss]Jacobi quadrature and
we will indicate some of these relations very briefly here. The interested

Ž .reader is referred to the paper by Nevai 1986 , which provides an excellent
Ž . Ž .overview on this topic. See also Freud 1972 and Nevai 1986 for important

applications of the Gauss]Jacobi quadrature in numerical integration and
approximation theory.

w xOn the compact interval y1, 1 , the Christoffel function of order n, with
Ž .respect to a given measure dj x , is defined by

1 2< <l dj , x s min p t dj t p t is a polynomial of degreeŽ . Ž . Ž . Ž .Hn ½ y1

less than or equal to n y 1 and p x s 1 .Ž . 5
Ž .If P x denotes the nth orthonormal polynomial with respect to then

Ž . Ž .measure dj x and x , x , . . . , x are the zeros of P x , then1 2 n n

n
1

l dj , x p x s p x dj xŽ . Ž . Ž . Ž .Ý Hn i i
y1is1

Žfor all polynomials of degree 2n y 1 i.e., the Gauss}Jacobi quadrature with
Ž .knot at x and weight l dj , x , i s 1, 2, . . . , n, integrates these polynomi-i n i i

.als exactly . It is well known that

ny1
y1 2l dj , x s P x s d x , j ,� 4Ž . Ž . Ž .Ýn i ny1

is0
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and, consequently, the results of Section 2 state sufficient conditions under
which the Christoffel function is minimized at the extreme points of the

w xinterval y1, 1 . There are several results in the literature addressing this
issue, but all of them are motivated primarily from the monotonic properties
of the Christoffel functions. The approach of this paper in addressing this
question is new and has the advantages that it avoids the common assump-

Ž .tion that dj x has to be an absolute continuous measure. Consequently, our
results are applicable to discrete measures as well.

5. Summary. We gave sufficient conditions where the variance function
of a continuous design is maximized at the extreme points of the design
space. These results are applied to study the D- and G-efficiencies of D- and
D -optimal designs when there is uncertainty in the degree of the polyno-nyr
mial model. Applications of our results to numerical analysis and approxima-
tion theory are also briefly noted.

In this paper, our attention has been confined to D- and G-efficiencies.
Other measures of efficiencies, such as A- and E-efficiencies, could also be
studied. However, it appears difficult to obtain analogous analytical results
for the A- and E-efficiencies. A reason for this is that A- and E-optimal
designs cannot be described in a nice closed form like those of D- and

Ž .G-optimal designs. See Wong 1994 for numerical results for A- and E-ef-
ficiencies in selected cases under the setting considered here.

APPENDIX

Auxiliary results and proofs. Here we state several auxiliary results
< U Ž . < Ž .on canonical moments. Let M j denote the determinant of an m q 1 =

Ž .m q 1 information matrix

1 TM* j s l x f x f x dj xŽ . Ž . Ž . Ž . Ž .H n n
y1

Ž .in a weighted polynomial regression with efficiency function l x . Note that
Ž .the choice l x s 1 gives the homoscedastic case considered in Sections 1]4.

Recalling that c denotes the ith moment of a design j , it is easy to see thati

< < < <D j s c , D j s c y c ,Ž . Ž .0 F i , jF m 0 F i , jF my12 m iqj 2 m iqj iqjq2

< < < <D j s c q c , D j s c y cŽ . Ž .0 F i , jF m 0 F i , jF m2 mq1 iqj iqjq1 2 mq1 iqj iqjq1

are the determinants of the information matrices for weighted polynomial
Ž . Ž . 2 Ž .regression with efficiency functions l x s 1, l x s 1 y x , l x s 1 q x

Ž .and l x s 1 y x, respectively. In terms of the canonical moments, they are
given by the following lemma.
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w Ž .xLEMMA A.1 Lau and Studden 1985 . We have
m

mq 1yimŽmq1.D j s 2 z z ,Ž . Ž .Ł2 m 2 iy1 2 i
is1
m

mq 1yimŽmq1.D j s 2 g g ,Ž . Ž .Ł2 m 2 iy1 2 i
is1
m

2 mq 1yiŽmq1.D j s 2 z z ,Ž . Ž .Ł2 mq1 2 i 2 iq1
is0
m

2 mq 1yiŽmq1.D j s 2 g g ,Ž . Ž .Ł2 mq1 2 i 2 iq1
is0

where z s 1, z s p , g s 1, g s q , z s q p , g s p q , j G 2, q s 10 1 1 0 1 1 j jy1 j j jy1 j j
� 4y p and p are the canonical moments of j .j j jG1

There are two results that will be used repeatedly.

Ž .1. If j has canonical moments p g 0, 1 , j s 1, 2, . . . , 2k, then j has atj
w Ž .least k q 1 support points see Karlin and Shapely 1953 or Karlin and

Ž .x Ž .Studden 1966 . Consequently, M j is nonsingular for j s 1, 2, . . . , k.j
Ž . Ž .2. Let P x , . . . , P x denote the orthonormal polynomials with respect to0 k

ˆ TŽ . Ž . Ž Ž . Ž ..the measure dj x , let P x s P x , . . . , P x and let A be a non-0k k
ˆŽ . Ž .singular matrix such that f x s AP x . Then the variance function ofk k

j is given by

y1
1 TT Tˆ ˆd x , j s f x A P x P x dj x A f xŽ . Ž . Ž . Ž . Ž . Ž .Hk k k k K½ 5

y1
A.0Ž .

k
T 2ˆ ˆs P x P x s P x .Ž . Ž . Ž .Ýk k i

is0

Therefore the discussion of variance functions is intimately related to the
Ž .properties of the orthonormal polynomials P x ’s with respect to the mea-i

Ž .sure dj x . The proof of the next lemma is straightforward and therefore
omitted.

� 4 � Ž .4LEMMA A.2. Let s be real numbers, and let P x denotej 1F jF k j 1F jF k
Ž .the orthornormal polynomials with respect to the probability measure dj x .

Ž . Ž .Then the variance functions d x, j , . . . , d x, j satisfy1 k

my1 my2
2s P x s ys q s y s d x , j q s d x , j ,Ž . Ž . Ž . Ž .Ý Ýj j 1 j jq1 j my1 my1

js1 js1

2 F m F k q 1.

One of the key steps for obtaining conditions for which the maximum of the
variance function is attained at the extreme points of the design space is
described in the next lemma.
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w xLEMMA A.3. Let j denote a probability measure on the interval y1, 1
Ž . Ž xwith canonical moments p g 0, 1 , j s 1, 2, . . . , 2k y 1, p g 0, 1 . Then thej 2 k

Ž . Ž . Ž .variance functions d x, j , d x, j , . . . , d x, j satisfy the recursive rela-1 2 k
tion

d x , j s 1 q a b q 1 y a b d x , jŽ . Ž . Ž . Ž .mq 1 1 mq1 m mq1 m

y 1 y x 2 b c Q2 xŽ . Ž .mq 1 mq1 m

my1 m
2q b a y a d x , j y 1 y x b f S x ,Ž . Ž . Ž . Ž .Ý Ýmq 1 jq1 j j mq1 j j

js1 js0

m s 1, 2, . . . , k y 1,

� Ž .4 � Ž .4where S x and Q x are the orthonormal polynomialsj 0 F jF ky1 j 1F jF ky1
Ž . Ž . Ž 2 . Ž .with respect to the measures 1 y x dj x and 1 y x dj x , respectively.

Here,

my1p p q q2 my1 2 jy1 2 j 2 m
a s 1 y , m s 1, 2, . . . , k y 1,Łm ½ 5½ 5q q p pjs12 my1 2 jy1 2 j 2 m

my11 q q p2 my1 2 jy1 2 j
b s , m s 1, 2, . . . , k ,Łm ½ 5p p p qjs12 m 2 my1 2 jy1 2 j

A.1Ž .

my1p p q2 my1 2 jy1 2 j
c s q , m s 1, 2, . . . , k ,Łm 2 m ½ 5q q pjs12 my1 2 jy1 2 j

m p q p2 jy1 2 j 2 mq1
and f s 1 y , m s 0, 1, . . . , k y 1.Łm ½ 5q p qjs1 2 jy1 2 j 2 mq1

Ž . Ž .PROOF. Using Theorem 4.1 a in Dette 1993 , it follows that the orthonor-
Ž . Ž . Ž . Ž .mal polynomials P x , Q x and S x with respect to the measures dj x ,j j j

Ž 2 . Ž . Ž . Ž .1 y x dj x and 1 y x dj x satisfy the following identities, m s
1, 2, . . . , k:

my1 D j D j D jŽ . Ž . Ž .2 jy1 2 jy2 2 j 2y P xŽ .Ý j½ 5D j D jŽ . Ž .D jŽ . 2 jy2 2 j2 jy1js1

D j D j D jŽ . Ž . Ž .2 my2 2 m 2 my1 2q P xŽ .mqD j D jŽ . Ž . D jŽ .2 my2 2 m 2 my1
A.2Ž .

my1 D j D j D jŽ . Ž . Ž .2 j 2 jy1 2 jq1 2q 1 y x y S xŽ . Ž .Ý j½ 5D jŽ . D j D jŽ . Ž .2 j 2 jy1 2 jq1js0

D j D jŽ . Ž .2 my1 2 m2 2s 1 q x y 1 Q x .Ž . Ž .my 1qD jŽ .D jŽ . 2 m2 my1
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q Ž . Ž . w Ž . Ž .x Ž . wwhere D j s D j q D j rD j D j Karlin and2 m 2 m 2 my2 2 my2 2 m
Ž . x Ž .Shapely 1953 , page 59 . By Lemmas A.1 and A.2, A.2 can be rewritten as

P 2 x s b 1 y 1 y x 2 c Q2 xŽ . Ž . Ž .m m m my1½
my1 my1

2 2y a P x y 1 y x f S xŽ . Ž . Ž .Ý Ýj j j j 5
js1 js0

my2

s b 1 q a q a y a d x , j y a d x , jŽ . Ž . Ž .Ým 1 jq1 j j my1 my1½
js1

my1
2 2 2y 1 y x c Q x y 1 y x f S x ,Ž . Ž . Ž . Ž .Ým my1 j j 5

js0

Ž .where the quantities a , b , c and f are defined in A.1 . Using Lemma A.2j j j j
Ž .and A.0 , we obtain the following relationship for the variance functions:

mq1
2 2d x , j s P x s d x , j q P xŽ . Ž . Ž . Ž .Ýmq 1 j m mq1

js0

s 1 y a b d x , jŽ . Ž .m mq1 m

my1

q b a y a d x , j q 1 q a bŽ . Ž . Ž .Ýmq 1 jq1 j j 1 mq1
js1

m
2 2 2y b c 1 y x Q x y b 1 y x f S x ,Ž . Ž . Ž . Ž .Ýmq 1 mq1 m mq1 j j

js0

m s 1, 2, . . . , k y 1.
This proves Lemma A.3. I

Ž . � Ž .4PROOF OF THEOREM 2.1. Consider case b and let S x ,j 0 F jF ky1
� Ž .4 � Ž .4Q x and P x denote the orthonormal polynomials withj 0 F jF ky1 j 0 F jF k

Ž . Ž . Ž 2 . Ž . Ž .respect to the measures 1 y x dj x , 1 y x dj x , and dj x , respec-
Ž . Ž .tively. By Theorem 4.1 c of Dette 1993 , these polynomials satisfy for

j s 0, 1, . . . , k y 1, the identity
jy1 D j D j D jŽ . Ž . Ž .2 mq1 2 m 2 mq22 21 y x y Q xŽ . Ž .Ý m½ 5D x D j D jŽ . Ž . Ž .2 mq1 2 m 2 mq2ms0

D j D j D j D jŽ . Ž . Ž . Ž .2 j 2 jq1 2 jq2 2 jq22 2q 1 y x Q xŽ . Ž .jy yD j D j D j D jŽ . Ž . Ž . Ž .2 j 2 jq1 2 jq2 2 jq2
A.3Ž .

j D j D j D jŽ . Ž . Ž .2 m 2 my1 2 mq1 2q 1 y x y S xŽ . Ž .Ý m½ 5D j D j D jŽ . Ž . Ž .2 m 2 my1 2 mq1ms0

D j D jŽ . Ž .2 jq1 2 jq2 2s 1 y P xŽ .jq1yD j D jŽ . Ž .2 jq1 2 jq2
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and

D jŽ .2 jq2yA.4 D j s D j q D jŽ . Ž . Ž . Ž .2 jq2 2 jq2 2 jD jŽ .2 j

w Ž . xsee Karlin and Shapely 1953 , page 59 . By an application of Lemma A.1
Ž .and assumption 2.0 , we obtain, for m s 1, 2, . . . , k y 1,

D j D j D jŽ . Ž . Ž .2 mq1 2 m 2 mq2y½ 5D j D j D jŽ . Ž . Ž .2 mq1 2 m 2 mq2

mp p p p2 mq1 2 jy1 2 j 2 mq2s 1 q G 0.Ł ž /q q q qjs12 mq1 2 jy1 2 j 2 mq2

Ž .Similarly, using the condition on p in Theorem 2.1 b , it can be shown2 jy1
2Ž .that all the ‘‘coefficients’’ of the polynomials S x are nonnegative. Thus wej

Ž . w xhave from A.3 , for all x g y1, 1 ,

D j D jŽ . Ž .2 jq1 2 jq2 2A.5 0 F 1 y P x , j s 0, . . . , k y 1.Ž . Ž .jq1yD j D jŽ . Ž .2 jq1 2 jq2

w xIt follows that, for any x g y1, 1 , we have

yD j D jŽ . Ž .2 jq1 2 jq22 2A.6 P x F s P 1 ,Ž . Ž . Ž .jq1 jq1D j D jŽ . Ž .2 jq1 2 jq2

Ž . Ž .where the last equality is obtained from A.3 for x s 1. The assertion b of
the theorem now follows from the representation of the variance function in
Ž . Ž . UA.0 . To prove c , let j denote the reflection of j at the origin so that
Ž U . Ž . Ud x, j s d yx, j , j s 1, . . . , k. Since the canonical moments of j and jj j

are related by

pU s p and pU s q , j s 1, . . . , k2 j 2 j 2 jy1 2 jy1

w Ž .x ULau and Studden 1985 , it follows that j satisfies the assumptions of
Ž .Theorem 2.1 b . Thus we obtain, for j s 1, 2, . . . , k,

max d x , j s max d yx , j s max d x , j U s d 1, j U s d y1, j ,Ž . Ž . Ž . Ž . Ž .j j j j j
xgV xgV xgV

Ž . Ž . Ž . Ž .proving c . Finally, part a follows from b or c since the symmetry of j
1 w Ž .ximplies all canonical moments of odd order are Lau 1983 . I2

Ž .PROOF OF THEOREM 2.2. First, we prove part b of the theorem by
induction. For j s 1, we calculate the first orthonormal polynomial with

Ž . Ž . Ž . Žrespect to the measure dj x as in Lau 1983 to get P x s x q 1 y1
. Ž .1r2 Ž . Ž2z r 4z z and, consequently, the variance function is d x, j s 1 q x1 1 2 1

12. Ž .q 1 y 2 p r 4 p q p . Because p F by assumption, this function at-1 1 1 2 1 2
w xtains its maximum in the interval y1, 1 at the point 1, which proves the

assertion for j s 1. For the step j to j q 1 F k, we assume that the variance
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Ž .functions d x, j , i s 1, 2, . . . , j, all attain their maximum in the intervali
w xy1, 1 at the point 1. By Lemma A.3, we have

d x , j s 1 q a b q 1 y a b d x , jŽ . Ž . Ž .Ž .jq1 1 jq1 j jq1 j

y 1 y x 2 b c Q2 xŽ . Ž .jq1 jq1 j

jy1

qb a y a d x , jŽ . Ž .Ýjq1 iq1 i i
is1

A.7Ž .

j
2y 1 y x b f S x , j s 1, . . . , k y 1,Ž . Ž .Ýjq1 i i

is0

Ž .where the quantities a , b , c and f are defined in A.1 . In terms of thei i i i
canonical moments, the difference a y a , can be written asiq1 i

i iy1p q q p q q2 jy1 2 j 2 i 2 iq1 2 i 2 iq2
a y a s y1 q q 1 y ,Ł Łiq1 i ½ 5ž /q p p q p pjs1 js12 jy1 2 j 2 i 2 iq1 2 i 2 iq2

and it is straightforward to show that the nonnegativity of this term is
Ž . Ž .equivalent to 2.3 . Similarly, it follows that 2.5 is equivalent to the asser-

Ž .tion that f G 0, for i s 0, . . . , k y 1. From 2.3 , we obtaini

2 p y 1 1 y p2 j 2 jq1 F p , j s 1, . . . , k y 2,2 jq21 y p p2 j 2 jq1

which is equivalent to the inequality 1 y a b G 0, j s 1, 2, . . . , k y 2. Inj jq1
the remaining case, j s k y 1, this inequality follows directly from assump-

Ž .tion 2.4 and, consequently, the terms 1 y a b , b c , b , f andj jq1 jq1 jq1 jq1 i
Ž .a y a , i s 1, . . . , j y 1, in A.7 are all nonnegative. By the inductioniq1 i

hypotheses and Lemma A.3, we have

d x , j F 1 q a b q 1 y a b d 1, jŽ . Ž . Ž .Ž .jq1 1 jq1 j jq1 j

jy1

q b a y a d 1, jŽ . Ž .Ýjq1 iq1 i i
is1

w xs d 1, j for all x g y1, 1 .Ž .jq1

Ž .This is the assertion for j q 1 F k and hence proves part b of the theorem.
Ž .Part c is obtained by the same ‘‘reflection’’ argument as in the proof of

Ž . Ž . Ž .Theorem 2.1 c . Finally, part a follows from part b because the symmetry
1 w Ž .xof the design yields p s for all j, Lau 1983 . I2 jy1 2

Ž .PROOF OF THEOREM 2.3. From A.3 , we have

yD j D jŽ . Ž .2 jy1 2 j2P 1 s , j s 1, 2, . . . , k ,Ž .j D j D jŽ . Ž .2 jy1 2 j
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where
jD j qŽ .2 jy1 2 iy1s by Lemma A.1Ž .ŁD j pŽ . is12 jy1 2 iy1

and

y jy1 jy1D j q q q 1Ž .2 j 2 m 2 j 2 ms q 1 s by A.4 and Lemma A.1 .Ž .Ł Łž /D j p p p pŽ . ms1 ms12 j 2 m 2 j 2 m 2 j

Ž . Ž .The assertion for d 1, j can now be obtained from A.0 . The representationj
Ž .for d y1, j follows by similar arguments as in the second part of the proofj

of Theorem 2.1. Finally, if j is symmetric, then the monic orthogonal polyno-
Ž . U Ž . U Ž .mials with respect to dj x satisfy the recursive relation P x s 1, P x0 y1

s 0, and

PU x s xPU x y q p PU x for j G 0,Ž . Ž . Ž .jq1 j 2 jy2 2 j jy1

2 1 U Ž .2 Ž . j w Ž .xwith L -norm given by d s H P x dj x s Ł q p Lau 1983 .2 j y1 j is1 2 iy2 2 i
A straightforward calculation now yields for the orthonormal polynomials
Ž . U Ž . Ž .P x s P x rd , with respect to the measure dj x ,j j j

i iy1p q 14 my2 4 m2P 0 sŽ . Ł Ł2 i q p pms1 ms14 my2 4 m 4 i

Ž . Ž .and P 0 s 0. The assertion now follows from A.0 . I2 iy1

Ž . Ž .PROOF OF THEOREM 2.4. a From Studden 1980 , the canonical moments
of j are given byn

n y j q 1 1
A.8 p s and p s , j s 1, 2, . . . , n.Ž . 2 j 2 jy12n y 2 j q 1 2

Ž . Ž .It is easy to see that, for j s k y 1, 2.1 implies 2.2 and, consequently,
the first part of Theorem 2.2 is applicable, where the special choice of

Ž . Ž .canonical moments in A.8 yields equality in 2.1 , for all j s 1, 2, . . . , k y 1.
Together with Theorems 2.2 and 2.3, this yields

j 2 n y i q 1Ž .
max d x , j s d 1, j s 1 qŽ . Ž . Ýj n j n nxgV is1

2n y jŽ .
s n q 1 y , j s 1, 2, . . . , n.

n

Ž .This proves part a of the theorem by the definition of G-efficiency.
Ž .b This is proved similarly by an application of Theorem 2.1 and Lemma

A.3 and by noting that the canonical moments of the D -optimal design for1
1Ž . w Ž .xf x are given by p s , j s 1, 2, . . . , 2n y 1, and p s 1 Studden 1982 .n j 2 n2

I
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wPROOF OF THEOREM 2.5. We assume that r G 1 the case r s 0 is treated
Ž .x Ž .in Theorem 2.4 a . By Theorem 3.1 of Studden 1980 , j has all oddn, D ny r1canonical moments equal to and even canonical moments given by2

1¡
, if 1 F j F r ,

2~A.9 p sŽ . 2 j n y j q 1
, if r q 1 F j F n.¢2n y 2 j q 1

For j s 1, 2, . . . , r, the assertion follows directly from Theorem 2.1. For
j G r q 1, we apply Lemma A.3 and obtain the recursive relation, for m s r,
r q 1, . . . , n y 1,

d x , j s b q 1 y a b d x , jŽ .Ž . Ž .mq 1 n , D mq1 m mq1 m n , Dny r nyr

y 1 y x 2 b c Q2 xŽ . Ž .mq 1 mq1 mA.10Ž .
my1

q b a y a d x , j .Ž . Ž .Ýmq 1 jq1 j j n , D ny r
jsr

1Note that a s a s ??? s a s 0 because p s , m s 1, 2, . . . , r. By the1 2 r 2 m 2
Ž . Ž .definition of a in A.1 and the representation A.9 of the canonicalm

moments of the D -optimal designs, we obtain a s a s ??? s a snyr rq1 rq2 n
Ž . Ž .1r n y r and, consequently, A.10 simplifies to

d x , j s b q 1 y a b d x , jŽ .Ž . Ž .mq 1 n , D mq1 m mq1 m n , Dny r nyr

bmq 1q d x , jŽ .r n , D ny rn y rA.11Ž .
y 1 y x 2 b c Q2 x ,Ž . Ž .mq 1 mq1 m

m s r , r q 1, . . . , n y 1.
Ž .It is easy to see that, for the canonical moments in A.9 , 1 y a b G 0 andm mq1

Ž .the assertion for j s r, . . . , n follows from A.11 by a similar induction
argument as in the proof of Theorem 2.2. I

Ž .PROOF OF THEOREM 2.6. From Studden 1982 , we have, for the canonical
moments of j Ža , b .,n

a q n q 1 y i
p s , i s 0, 1, . . . , n ,2 iq1 a q b q 2n q 2 y 2 i

and
n q 1 y i

p s , i s 1, 2, . . . , n q 1.2 i a q b q 3 q 2n y 2 i

If a q b G y1, the assertion follows from Theorems 2.1 and 2.3 and if
y2 - a q b - y1, the result follows from Theorems 2.2 and 2.3. I
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