
Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Techniques for Supporting Dynamic and
Adaptive Workflow

Peter J. Kammer

Gregory Alan Bolcer
Richard N. Taylor

Mark Bergman

Department of Information and Computer Science
University of Califomia, Irvine, CA 92697-3425

Technical Report 99-03

January 14, 1999

Abstract

The unpredictability of business processes requires that workflow systems support
exception handling with the ability to dynamically adapt to the changing environment.
Traditional approaches to handling this problem have fallen short, providing little support
for change, particularly once the process has begun execution. Further, exceptions vary
widely in their character and significance, challenging the application of any single
approach to handling them. We briefly discuss the classification of exceptions,
highlighting differing impacts on the workflow model. Based on this discussion we
suggest principal goals to address in the development of adaptive workflow support,
including strategies for avoiding exceptions, detecting them when they occur, and
handling them at various levels of impact. We then identify a number of specific
approaches to supporting these goals within the design of a workflow system
infrastructure. Finally, we describe the implementation of many of these approaches in the
Endeavors workflow support system.

/

z
74^

>n ^
L' rs

ru).

Techniques for Supporting Dynamic and Adaptive Workflow

Peter J. Kammer

Gregory Alan Bolcer
Richard N. Taylor

Mark Bergman

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+1949 824 8438

{pkammer,taylor,mbergman}@ics.uci.edu, gbolcer@endtech.com
bttp://www.ics.uci.edu/pub/endeavors/

Ejfort sponsored by the Defense Advanced Research Projects Agency, and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-97-2-0021. The U.S. Government is authorized to reproduce
and distribute reprintsfor Governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the ojficial policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency, Air Force Research Laboratory or the U.S. Government.
Approvedfor Public Release - Distribution Unlimited.

Abstract

The unpredictability of business processes requires that workflow systems support exception handling
with the ability to dynamically adapt to the changing environment. Traditional approaches to handling
this problem have fallen short, providing little support for change, particularly once the process has
begun execution. Further, exceptions vary widely in their character and significance, challenging the
application of any single approach to handling them. We briefly discuss the classification of exceptions,
highlighting differing impacts on the workflow model. Based on this discussion we suggest principal
goals to address in the development of adaptive workflow support, including strategies for avoiding
exceptions, detecting them when they occur, and handling them at various levels of impact. We then
identify a number of specific approaches to supporting these goals within the design of a workflow
system infrastructure. Finally, we describe the implementation of many of these approaches in the
Endeavors workflow support system.

1 Introduction

The occurrence of exceptions is a fundamental part of organizational processes (Suchman, 1983). In
order for workflow system to support these processes they must be able to support the handling of these
inconsistencies and adapt to changes over time. Exceptions can result from such sources as inconsistent
data (Cugola et al., 1996), divergence of tasks from the underlying workflow model (Bolcer, 1998),
unexpected contingencies (Saastamoinen, 1994), and unmodeled changes in the environment (Tolone,
1996). Efforts to evolve, expand, and optimize the workflow process may also be sources of change that
must be accommodated by the workflow system (Abbot and Sarin, 1994),(Nutt, 1996). Traditional
approaches have utilized inflexible control policies that make reactive control and graceful exception
handling difficult, if not impossible, tasks.

Exceptions impact a workflow model at varying levels of significance. Some exceptions cause only

minor perturbations to the work process. Others may affect only the current running instance of the
workflow. The most significant require the process model itself to evolve to accommodate changes that
haveoccurred in the environment. These different classes of exception require different approaches to
support their handling and recovery as well as evolution within the workflow system.

Also of importance to exception management, however, is the ability to detect exceptions, or the
possibilityof an exception quickly as it occurs, improving the ability of participants to react and recover,
minimizing lost time and wastedeffort. In addition, somebasic design approaches may help prevent
exceptions, particularly those causedby incompatibility with elements of the work environment, poorly
informed participants, or conflicts between workgroups.

Our research and development of the Endeavors dynamic web-based workflow system (Bolcer and
Taylor, 1996), and its predecessor system (Young, 1991) havesuggested a number of approaches to
support these various goals.

In Section 2, wewill provide some background andcontext forthis work, briefly examining some ways
of classifying exceptions andtheir impact. In Section 3 wediscuss traditional approaches to adaptive
workflowacross several communities. Section 4 identifies and describes our principal goals in the
support of adaptive workflow. Specific approaches to supporting those goals are identified in Section 5
and the implementation of many of those approaches in the Endeavors system is discussed in Section 6.
Section 7 presents conclusions and future work.

2 Background and Context

In order to inform and motivate our discussion of workflow system design and functionality, we
consider some of the work in studying and categorizingexceptions in organizational workflows. The
term "exception" itself is used somewhat differently by different authors, with divergent emphases on
organizational or system views. A number of authors express it as something that is undefined within
the system model. For example,Auram^ and Leppanen (1989) describe an exception in terms of
whether a complete set of rules is available to handle a condition. Strong and Miller (1995) use a similar
concept, indicating exceptions are "cases that computer systems cannot process correctly without
manual intervention."

Barthemess and Wainer (1995) define exceptions more organizationally, in terms of what is normal for
particularprocess, as "departures of the history of a workcasefrom its prescribed (or normal) flow."
This definition is somewhatmore inclusive. In addition to events not modeled by the system, it also
accounts for deviations from the normal flow for which models and behavior are defined, sometimes
called expectedexceptions (unmodeled events are unexpected exceptions.)Saastamoinen(1995) instead
describes expected occurrences as variationsand exceptions as events that cannotbe handled by the
main process flow or the procedures that handle variations.

For the purposes of our discussion, we are primarily concemed withthe narrower classof "unexpected"
exceptions. We are, of course,interested in mechanisms that assist in migratingsome of these
unexpected occurrences into expected variations, evolving the workflow model.

2.1 Perspectives on Sources of Exceptions

Strong and Miller (1995) identify a number of differentperspectives on exceptions in information

processes. The random event perspective suggests that exceptions are random and uncommon
occurrences. This perspective is, according to the authors, commonly assumed by managers and
researchers. It is not, however, bom out by research studies (e.g. Suchman, 1983).

The error perspective is that exceptions are errors to a normally executing process that may be targeted
and eliminated. These can be further distinguished into subcategories describing the source of the error.
Operation errors are those that result from mistakes in the execution of the process. Design errors
result from problems in designing and implementing the system. Finally, dynamic organizations may
also be a source of error, as the organization changes, becoming inconsistent with the system model.
The solution approach associated with this perspective is Total Quality Management (TQM) which
attempts to make continuous improvements in the process to eliminate these errors.

The political system perspective (see also Kling and lacono, 1984) views workflow in terms of subunits
in an organization with potentially conflicting goals. The need of varying organizational entities to
accomplish their own goals, along with differences in influence over the specification of work processes,
can generate exceptions in the workflow enaction. This perspective views exceptions as a normal part
of organizational processes. The associated solution approach for this perspective lies in human
centered system design that considers human as well as technological participation in the process.

These divisions provide insight into the general sources that might generate exceptions. Other views on
the sources of exceptions may be found in (Saastamoinen, 1995) (more specific causes) and
(Barthelmess and Wainer, 1995) (oriented toward the software system).

2.2 Scope of Exceptions

Of particular concem in handling the result of an exception is limiting its impact on the progression of
the workflow and the organization. Saastamoinen, (1995) provides an extensive taxonomy of exceptions
and divides potential impact into three levels:

• Employee level: Impact is limited to a single individual.
• Group level: Impact stretches across a group working on the same project, process, etc.
• Organization level: Impact is organization wide, covering more than one group.

The potential impact goes even beyond the organizational level described by Saastamoinen. Workflow
is increasingly distributed and may not only represent operations within a single organization, but across
boundaries between such entities, specifying such things as hand-off relationships and artifacts to be
exchanged, (see, for example, Ben-Shaul and Kaiser (1994)). An exception in this scenario could
easily have an impact stretching beyond a single organization. Recovery is a particular challenge across
organizations as there is less constiatent control over work policies, products and procedures. In
addition, existing intemet protocols to not address these issues beyond disseminating information. For
one effort to address the problem of coordinating distributed worMow systems see (Bolcer and Kaiser,
1999).

2.3 Consequences of Exceptions to the Work Model

The ramifications of an exceptioncan be describednot only in terms of how they impact the
organization, but also how they impact the work model. We distinguish exceptions into three classes.
Exceptions that can be tolerated by the process or safely ignored and still produce a satisfactory result

we refer to as noise. Someexceptions are relatively unique to a specific workinstance or set of work
instances yet still require changes be made to the process for those instances. These can be described as
idiosyncratic. Finally, evolutionary exceptions require changes in the overarching workflow model
(resulting, for example, from changes within organizational procedure). It is these exceptions that
produce evolution overtime, driving longtermchange in the work process. This classification
corresponds closely to affects on office rules (the work model) described in (Auramaki and Leppanen,
1989). We summarize this relationship in the table below.

Table 1: Relationship Between Types of Exception and Changes to Workflow Model

Exception Type Change in Workflow Model

Noise None

Idiosyncratic Exceptions
Changes to specific instance of workflow, but the
workflow type (the general model) remains the
same

Evolutionary Exceptions
• •

Evolution of general workflow model, affecting
future instances of work process as well

The type ofexception impacts the kind ofsupport that should be provided by the underlying system.
Depending on theclassification, the needed functionality willvary. Wewill referbackto this
classification when we discuss the goals of our work in Section 4.

3 Traditional Approaches

Traditional work solutions arise from anumber ofdifferent areas ofresearch. They possess overlapping
constraints which limit theirsupport for dynamic adaptation to change as well as theeaseof their
integration and adaptation to existing work environments. Even though the trend is toward convergence
(Ellis and Nutt, 1996) we address issues of individual approaches here, highlighting obstacles to
supporting exception handling and flexible process execution.

3.1 Process Technology

Process technologies typically assume closed world data consistency (Osterweil, 1998), This isusually
enforced by limiting the actions ofthe user oragent to those only pre-specified by the process designer.
Ina dynamic, evolving real world environment, sometimes it is necessary tojump out ofthe process or
out of the system to adhere to the specified process model. Process models that are over-specified are
difficult to follow because their requirements for completion are too rigid. Process technologies that
support evolution as a mechanism to address this problem require thatchanges be monotonic, i.e. each
successive change to the workflow model is additive, incremental and always strongly dependent upon
previous models for data integrity and consistency. Consistency sometimes must beviolated to meet
both functional and non-functional requirements ofthe process being followed or the product being
produced. Coordination between dispersed process participants is sometimes difficult because a uniform
representation ofactivities, artifactSj and resources may differ among people, groups, and organizations.
Adding thecomplication thatvarious participants possess differing skills, different levels of
understanding of their obligations, and may require domain and context specific views,
misrepresentation and miscommunication is often the result.

3.2 Workflow Technology

Traditional workflow technologies have achievedrelative success in the workplace through
simplification. These systems have been applied to problems of limited scope and scale. Workflow
specifications may be ambiguous or contain inflexible semantics. Visual workflow programming;
languages sometimes lackrepresentations for timing andexecution constraints as well as complex
relationship specification and management between process objects and people. Lack of relationship
management can precipitatepoor exceptionhandling. Workflowprocesses that diverge from the
intended series ofplanned activities or require some midstream changes may result in exceptions.
Workflow technologies typically lack the infrastructure to query statusand change valuesof their own
processes, correct midstream deviations, or locate and reserve needed resources and artifacts. Often
exceptions, whether requiring minorautomated intervention or human participation to correct, require
the reset andrestart of a workflow process. Generally, workflow processes once they are deployed into
theirexecution context arenotchanged. Significant changes may be difficult to accomplish in this
environment as the workflow process model, theexecution infrastructure, and theprocess presentation
are likely to be tightly coupled.

3.3 Groupware and CSCW Technology

Groupware andCSCW arebroadlabels that describe a gamut of synchronous and asynchronous
technologies including email, shared whiteboards, meeting schedulers, collaborative desktops, video
conferencing, and other shared electronic media. While these technologies are useful for overcoming
communication problems over time and collaboration problems overdistance, theylack the guidance
andautomation mechanisms forperforming stractured tasks. While using these tools to accomplish
unstmctured tasks mimics some real world workenvironments, theydo not guarantee consistency of
results, maintain a standard of practiceand procedure, nor lend themselves to optimization,
improvement, and training. There is no explicit work model other than ad hoc utilization of the
components at hand. There is no measurable statusfor determining completion, progress of a task, or
even mechanisms for describing what workneeds to be done other than capturing communication and
collaboration relationships between participants. Adding a work model and management capabilities to a
groupware or CSCW technology oftenleads to additional workon the part of the participant withno
direct benefits such as guidance or automation. Synchronization between theproposed work and the
actual work is often doneby hand. This overhead of model maintenance may lead to the demotivation of
the participants whichis crucial to the success of an activity.

4 General Goals for an Adaptive Workflow System

In Section2.3 we described a delineation of exceptions based on their impacton a workflow model.
This categorization provides a guide for classes of functionality thatshould be provided by software
systems supporting workflow. Further, we suggest two otherneeded emphases, detecting when a
problem occurs and designing to avoid some of thecauses of exceptions. While webriefly mention
some here, we will discuss specific approaches to these goals in the next section.

4.1 Detecting Exceptions

Thediscussion of handling exceptions tends to proceed with theassumption thattheanomaly has
already been detected andfully described. A workflow system needs to support thediscovery of

exceptions in a timely and useful manner. While some exceptions will be obvious to users, others will
be more subtle. The initial error may not be the one that eventuallyderails the workflow. Data
constraints or general rules about workflow progress may be usedto provide forewaming of problems
occuring, giving clearer indications of the source of the exception. Active data stores and event driven
architectures mayprovide alerts when constraints areviolated or inconsistencies arise. Multiple
appropriate views of workflowexecution can provide visualizations of where problemsmay be
occurring. Reflexive process agents can provide analysis and feedback on workflow execution as it
progresses.

4.2 Avoiding Exceptions

A workflow support system, integrated into an existing work environment, may itself be the cause of
exceptionalconditions. If a system is rigid in its use, involves significant adoption cost, or integrates
poorly with existing tools and approaches, participants are likely to operate outside the system.
Ownership of work procedures may be divided among subunits (or even across organizations). Open
systems, support for incremental adoption, flexible execution approaches, reusable processcomponents,
and integrated support for communication between participants, may all help avoid conflicts that create
exceptions.

Customizedagents and event monitoringinfrastructure are useful for gauging the effectiveness of these
workflow components. Further, when a new process is introduced to a work environment and culture,
there is oftensomepushback to its adoption. It is important for the process to be able to adaptin
response to this pushback. In addition, process discovery tools are useful for comparing and validating
the workflow model with the actual work being accomplished. Wide divergences can indicate
technology mismatches or inapplicability and thus the need for evolution and optimization of the
process.

4.3 Handling Exceptions

4.3.1 Tolerating Minor Deviations "Noise" in workflow execution describes minor deviations from
the normalprocess that are not significant enough to require changes in the execution processmodel.
Noise may be either accommodated within the tolerance of the model, or may produce consequences
which may be ignored without unacceptable harm to the continuedexecution of the process.

An overly rigid workflow description, or one that requires overspecification of work activities results in
workflow specifications that may be fragile, not accommodating reasonable minor deviations from the
"ideal" process. Even requiring complete specification of process and resourcedependencies prior to
execution may contribute to this problem. While, the exact character of deviations from the main
process maynot be known, it maybe possible to determine locations where added flexibility is required
and permissible. Appropriate support for abstraction, flexibility in degree of specification, and a flexible
execution model can provide some tolerance for minor deviations.

4.3.2Handling Changes to the Process Instance Idiosyncratic exceptions areparticular to a workflow
instance or collection of instances. For example, if a regular participant is unavailable (e.g. sickor on
vacation) then changes might be required to accommodate the absence. These would not be reflected in
the model process however because the individual would resume the samerole uponreturning. This
sort of change requires the ability to modify individual instances of the executionprocesswithout
altering the overarching process type. A dynamic instance model of the workflow, created or modified

"on-the-fly" at run-time helps accommodate this sort of change (see, for example, Cugola (1998)).

An alternative approach to addressing this issue is not to specify a model with precise ordering of
activities, but rather to provide constraints and present the user with multiple available tasks to perform.
Freeflow (Dourish et al., 1996), for example, uses this approach.

4.3.3 Evolution and Optimization of the Process Model Evolution of process objects and workflows
occurs over time as a result of changing tasks, priorities, responsibilities, and even people. Optimization
occurs when the improvement of a previous work model results in a better way of doing things by
adding, removing, or redefining process activities and their constraints. As a workflow process is
repeatedly executed small changes may be made each time through. Evenmally, a process may converge
on a common practice and become institutionalized.

Unfortunately, a common practice and a best practice may not be the same thing. In order to determine
this, metrics must be kept to evaluate one execution from another. This evaluation is subjective because
the criteria underlying the metrics changes the same way the workflow does. Successful workflows, like
successful software, will be applied in new situations that may have been unanticipated by the original
creator, and unsuccessful workflows will be abandoned or changed. It is important in the workflow
infrastructure to allow the change to occur both before and after deployment of the workflow, by both
technical and non-technical participants. Some optimizations may even be performed by the system
itself through agents, validation tools, or optimizers.

5 Functionality for Adaptive Workflow

Keeping in mind the principal goals we described in Section 4, we identify a number of functionalities to
support managing exceptions and adaptation in workflow. These specific mechanisms arise from our
experience in the research and development of the Endeavors workflow support system. Most of the
techniques are implemented within the existing research system, with the remainder prototyped or
targeted for future work. We provide an overview of Endeavors and a breakdown of implemented
features in Section 6.

5.1 Dynamic Change and Composition

The ability to dynamically modify a process definition, the associated data, behaviors associated with
objects, and the set of views into the process, at the time it is in progress, is crucial for workflow process
execution and evolution over time. This allows the workflow to better fit changing requirements,
availability of resources, and the applicability to the current work context.

While introduction of dynamic change to a process and its representation may require additional
infrastructure to recognize and enforce consistency, limit access to change mechanisms as appropriate,
or correct problems that impact other parts of the process, the ability to dynamically evolve in
conjunction with the work environment, culture, and context is important to keeping the online
description of work consistent with the actual work being performed. Long running, distributed
processes involving multiple stakeholders will encounter a multitude of situations demanding change,
escalation, and reorganization. A number of authors have addressed process dynamism as a
fundamental component of handling exceptions. See, for example, (Ellis and Rozenberg, 1995) and
(Cugola, 1998).

Latebinding of resources in a workflow allows completion of activities using theresources at hand at
the specific point in time the work is actually done. Planning and scheduling components should
complement late binding to ensure that the required resources are available at theappropriate times to
complete the tasks athand. An example oflate binding that provides a good mechanism for supporting
dynamism inprocess object management is the separation an object's data from itsbehaviors. Object
behaviors can bedynamically loaded and resolved as they are invoked. Object behaviors may be
updated independent of the object's attributes.

5.1.1 On-the-fly Workflow Composition Forsome projects, even the principal workflow path cannot
be completely specified prior to the start of execution. This occurs when downstream details are
dependent onupstream results notavailable when the execution begins. Processes are dynamically
composed as execution progresses. In this approach, sometimes referred to as "justin time" execution,
thedefinition of theworkflow is notcreated until needed. Examples of this sort of application include
bug-tracking/resolution and experimental or exploratory workflow solutions.

5.2 Configurable Execution Models

A good recovery mechanism should permit execution of a disrupted workflowto resume, start at an
arbitrary midpoint, or rollback to a previous point in the process using computer or human execution of
reset, restart, undo, complete, abort, recover, ignore, or jump operations on theprocess interpreter
(Kaiseret al., 1998). This allowsparticipants or managers with appropriate authority to tailor invocation
of workinstances as needed for a particular occasion. Thisnot only assists in recovering from
exceptions, but also in avoiding them if they are anticipated ahead of time.

5.2.1 Partial Execution Partial execution supports dynamic composition by allowing the execution of
fragments of anincomplete process. This approach is analogous toa cat's cradle, a child's game in
which anintricately looped string is transferred from the hands of one player to the next, resulting in a
succession of different loop patterns. It should be possible to pickup theexecution of a process and
continue it from any point specified including the dynamic reorganization of local relationships and
constraints to fit the new work context. Partial execution supports multiple iterations of a process
fragment or multiple alternate iterations of the same process fragment changing order, priority, focus, or
completion criteria of the fragment. Support for resolving andintegrating processes via
pipe-Mid-filtering, re-stringing, rework, and amalgamation of diverse processes which include possibly
competing priorities should be included into the workflow execution infrastructure. Thismay include
temporal and spatial contextawareness in addition to the possible execution space and control,
coordination, and collaboration policies. Forindividuals or groups, this may include several partial
executions, repeated until the artifact is good enough to postor hand-off to thenext participant. While
partial execution techniques may create ambiguity and diminish the ability to do global optimizations
across all activities before execution, work specifications are generated on-the-fly andon-demand
allowing many local optimizations based on discriminates available at execution time.

5.2.2 Guidance versus Enforcement Atailorable execution model also allows an appropriate level of
process enforcement. Varying levels ofprescriptiveness may berequired atdifferent points within the
process. While it is often desirable togive participants a high degree offlexibility, standards ofpractice
within an industry orpolicies withiii an organization may require that a series ofactivities are conducted
without deviation in order for work toproceed. This may betrue, for example, for reasons ofsecurity or
safety. On other occasions, the workflow model ayserve only as a guide and assistant for participants
who have a great deal of autonomy in their choice ofactivities. Aworkflow system should provide the

mechanisms to allow varying and appropriate controls throughout the workflow process.

5.3 Typed modeling of Activities, Artifacts, Resources, and Agents

By modeling entities in the process as typed objects, not only is information about the component
availableto the workflowmodel, equivalentclasses of elementscan be determined. An appropriate one
may be selected based on information available at run time. For example, if any one of a number of
meeting rooms may be appropriate for a review meeting, one of the appropriate type may selected based
on information at run-time and associated with the activity.

Suitable typing of resourcesprovides flexibility within a process. It allows users to select from a range
of tools of the same class to perform an activity. The model of the given tool within the process can
perform necessarymanipulations of the result to incorporateit within the work model. Typed modeling
allows choices to be made at run time with some assurance of minimal impact on the overdl consistency
of the work in progress. Descriptionand modelingof equivalentcomponents must be done carefully, of
course, to assure that they will genuinely provide comparable behavior.

5.4 Reflexivity

Dynamic behavior in workflow execution is facilitated by a reflexive workflow process. A workflow
process is reflexive if during execution it has the ability to remodel itself, either automatically by an
agent or through the intervention of a human stakeholder, in response to status and feedback information
about how the process is perceivedto be progressing. A workflowprocess or infrastructure component
should have the ability at any time to construct, query, and manipulate its own process fragments based
on the running state and the target environment.

Based on information about the environment a process component may be able to integrate with new
elements in the environment, optimize scheduling and constraints, and improve the organization of
relationships and dependencies. Specific rules or strategies may provide a path for a reflexive workflow
component to evolve. Such a component might be able to improve efficiency in systematic ways in
response to quantitative measures collected over time.

Supporting reflexivity in a workflow infrastructure allows knowledge about a workflow's applicability
to thecontext andtheeffectiveness of its deployment to be evaluated. Keeping track of a change history
in addition to being able tO derive change trees and programmatically form queries about them provides
a mechanism for revisiting evolutionary branches. Catalysts for change, whether for better or for worse,
are easier to isolate and recognize. In this way, reflexivity provides the foundation for continuous, at
leastpartially automated, processmonitoring and optimization. This activity mightbe hierarchically
distributedthroughout the workflowto provide for both localized and generalizedoptimization.

In addition to monitoring and manipulating existing processes, reflexivity is also useful for generative
processes where, during the execution of the process, new process elements are created. This is
applicable not onlyto the processes that arebuilt as theyexecute (thedynamically composed workflows
we describedabove),but also to workflows whose purpose is to create another process tailored to a
specific application.

5.5 Logically Decomposable Process Models

The ability todecompose process models into components fragments provides a number ofadvantages
in avoiding, containing, and recovering from exceptions. Abstractions, for example hierarchical
decomposition, in workflow canenhance understandability and specify points of interaction between
sub-processes. Process fragments maybe assigned to activities dynamically at run-time.

Workflows often stretch across workgroups and even organizations, potentially creating conflicts in
workflow specification and enaction (again, see(Kling andlacono, 1984)). By decomposing the
process into constituent fragments, process ownership, coordination, and hand-offs can beexplicitly
specified. Subprocesses associated with activities may be controlled by the appropriate subunits,
diminishingconflict and separating responsibility. As with modularizationin software,workflow
abstractions canalso be used to scope the appropriate detection andhandling of exceptions.

5.6 Evolving Process Models

In Section 5.1, wediscussed the on-the-fly composition of processes, letting the workflow model be
built as needed to accommodate less defined work areas. Once composed, this instance may serve as the
guide model for the next instanceof the process. Process instances shouldbe reusable, divisible, and
synthesizable into overarching models. Combined with reflexive analysis and hiiman assistance
multiple iterations of process enactment can guide the refinement of the process model over time,
highlight areas needing less stringent modeling or increased flexibility, and guide optimization.

5.7 Reusable Process Fragments and Component Libraries

To better support process evolution andoptimization, process fragments should be easily reusable,
divisible, understandable, and capable ofbeing evaluated against some measurable criteria with respect
to expected execution or anticipated behavior. A fragment that is successful in one context is likely tobe
applicable to another similar context. For instance, ina software testing process, the tester may require
that the same outcome bereached over repeated executions. Different outcomes imply different qualities
of the software. Similarly, a process can beused todevelop the skill ofa particular student ina training
domain where the end-user's path through the process is dependent upon theirskill. The inculcation
results in thegoal of visiting every activity or series of activities through repeated executions and
increased skills. The process may change based on feedback, usage, level of interaction, and number of
times executed. As with all changing components, change management techniques such as version
control and transactions should be integrated with the system.

Guided by work such as thatofMalone et al. (1997), which is oriented toward creating a handbook of
organizational processes, it is possible to build libraries of reusable process components. Ofparticular
interest are process fragments, sequences of activities with associated artifacts and resources, that can
provide a standardized approach toa complex task. These could include configurable boilerplates of
common processes, as well as standards of practice that specify a particular process to follow to assure
the integrity of the result.

At a more general level, process workflow "patterns" would represent approaches that may betailored to
a particular application. Further,"templates" collect the various process components described into a
toolkit oriented toward a particular application area. '

5.8 Access to Organizational Work History and Expertise

By their nature, exceptions represent circumstances where information about appropriate practice or
solutions is not close at hand. Handling exceptions may require a particular knowledge or historical
perspective not immediately available to the workflow participant. Approaches to similar situations or
expertise with a particular activity may inform an exceptional situation and speed recovery.

This sort of information and perspective may be integrated within the workflow system to provide
appropriate information to assist in the recovery of exceptional cases. Historical information about
previous instances of the workflow may provide insight including participants with applicableexpertise.
Locating expertise within the organization is itself a complex issue (see McDonald (1998) for one
study), but may be augmented through integration with tools designed for storing and locating such
information (e.g. Ackerman and McDonald, 1998).

5.9 Event Monitoring Architectures

Within an executing workflow instance, exceptions may manifest themselves through obvious
occurrences (such as the appearance of error messages) or obvious inconsistencies with the actual work
environment. Problems may be more subtle, however, and either not manifest themselves until
significant progress has been made through the workflow, or until an unsatisfactory result is obtained.

Event driven architectures provide means for monitoring events as they take place within the workflow
system and the executing workflow itself. An active object-store, i.e. one that reports on changes to
process data as it occurs, can activate routines to monitor data and provide warnings when constraints
are violated, inconsistencies arise, or time limits are exceeded. Reflexive components can monitor the
performance of processes and provide information to autonomous agents or human-readable
visualizations to locate potential problems before the workflow is derailed. For more on event driven
architectures see, for example, (Taylor et al., 1996). Further, event monitoring on an internet scale can
provide mechanisms for remote monitoring and analysis, (see Rosenblum and Wolf, 1997).

5.10 Integrated Support for Participant Communication

Managing work processes involves not only managing the people, products, activities and resources, but
also the network of discussions that maintain coordinationbetweenparticipants. This is a particular
issue when workflow is widely distributed geographically or organizationdly. Often communication
within the workflow centers around elements represented in the system, for example activities being
performed or artifacts being acted upon. Associations between conversation and these entities can
provide not only a focus for discussion, but may also capture historical information about rationale and
provide insight into how the work process may be improved in the future.

Communication, and its relationship to other elements in the workflow, is particularly important when
the unexpected happens. When the process encounters an exception, participants must work together to
take corrective actions and resume the normal process. Close integration of tools for informal
communication with a workflow support system not only expands the capability to model the process
being enacted, but increases the ability of participants to recoverfrom unexpectedoccurrences without
having to "break out" of the workflow system to make corrections.

5.11 Partial Adoption and Integration

Many conflicts in workflow systems can result from the system being poorly integrated within existing

work tools and practices. Many systems require an "all-or-nothing" buy-in tomake using the system
worthwhile. Some of the practices we have already described, for example composing processes
on-the-fly, evolving process models, and process component libraries, siipport this sortof incremental
adoption. Further, a highly componentized system, one that allows users to adopt the system apiece at a
time, canease integration intoexisting environments, allowing functionality to be tailored to user needs.
Inaddtion, support for multiple stakeholders, providing customized views into the work being
performed, limits confusion, providing only appropriate and necessary information to participants.

InSection 5.3 we discussed modeling ofexternal tools independently. The ability tointegrate flexibly
with existing resources also is an important factor in avoiding inconsistencies and conflicts in the
workflow model. This flexibility allows a system to be integrated into already existing work practices
without forcing participants to adopt new technologies. In addition to manipulating external tools, an
openworkflow system provides a mechanism for complete integration, allowing reflexive access to
workflow components by theextemal systems. These sorts of integrations smooth adoption of a
workflow system: andprovide mechanisms for adapting to changes in the environment over time. For
full discussion of various kinds of tool integration (in the Endeavors system) see (Kammer, et al
(1998)).

5.12 Supporting the Goals of Adaptive Workflow

Table 2provides an overview ofhow the approaches we have discussed in this section may beapplied to
the various goals we putforth inSection 4. While some approaches are targeted toward specific goals,
others provide mechanisms to support several. Approaches that strengthen the ability tomanipulate
workflow tend to support both the handling of exceptions on an instance level and also the evolution of
the process model over time. Many approaches that provide information orcapability for recovering
from exceptions can also help avoid them if taken advantage ofprior to the exception occurring.

Table 2: Relating Functionalities to Supporting Adaptive Workflow Goals

Tolerating
Minor

Deviations

Instance

Level

Exceptions

Evolving
Process

Models

Detecting
Exceptions

Avoiding
Exceptions

Run-time Dynamism (Data, Behavior,
Process)

X X X

Configurable / Partial Execution X X X

Typed Modeling of Artifacts, Activities,
Resources

X X X

Reflexivity X X X X

Logically Decomposable Process Models X X X X

Evolutionary Process Models X

Reusable Process Fragments and
Component Libraries X X

Access to Organizational Work History /
Expertise

X X X

Event Monitoring Architectures X

Integrated Support for Participant
Communication

X X X

Partial Adoption / Integration 1 X

6 Dynamic Adaptive Workflow Support in Endeavors

Endeavors is an open, distributed, extensible workflow support environment. It improves coordination
and management by allowing flexible definition, modeling, and execution of workflowapplications.
Endeavors combines a sophisticated process modeling language with features designed for easy
customization by both technical and non-technical users.

6.1 Dynamic Process Object Model

Endeavors uses a layered object model to provide for the object-oriented definition and specification of
process artifacts, activities, and resources. Behavior of process objects is specified through the use of
handlers: code invoked by the object in response to events received. Stored locally or loaded from a
remote source, handlers are loaded and bound to objects at runtime, allowing them be changed
dynamically in the course of process execution. Handlers themselves may reflexively access the state of
the workflow through Endeavors interfaces, allowing for analysis and optimization by components of
the process itself.

Activity networks associate activities by control-flow, data-flow, and resource-flow relationships. These
objects and relationships may be changeddynamically to accommodate changes in the workflow and its
environment. Abstraction and decomposition is achieved through hierarchically associating
sub-networks with activities (see Figure 1 for an example). Process fragments from one networkmaybe
used in anotherthrough "cut-and-paste" styleoperations. Workflow components and processes may be
extended and specialized through the usual object-oriented approaches.

6.2 Flexible Interpretation

Networks are executed byinterpreters that traverse the network and send appropriate events to objects to
invoke theobjects' behaviors. A richuserinterface provides for the dynamic specification of
interpreters and control of their execution. Interpreters may be visually manipulated as they traverse
activities, allowing them tobe started, stopped, and redirected as needed. Byaltering the configuration
of the interpreter or substituting analtemate interpreter component within theEndeavors system, the
execution model may be tailored to theneeds of a particular environment providing, for example, the
appropriate level of guidance versus prescriptiveness at different points in the workflow.

Figure 1shows one example view ofan Endeavors activity network. The largest window shows the top
level process. The "palette" on the leftprovides access to the basic language constructs andan
extensible collection of activities. These activities arecomposed intotheworkflow process and tailored
to specific needs.

Theactivity Dept. Approval is expanded intothe sub-network shown below the larger network. Also
visible is the main control panel and a dialog for editing the individual attributes ofan activity.

Palette

Top Level Process

NMn Control Panel

Siart I ibagj, FiiitiFoffiT PK

AOSMB^n ! extii)

iniv Aiwtrdedy

&p»ean<:aet6n; i ronn(>roft€Sfi

Activity

fir C. ,-s p..

Fitiss;

bl>SC^£.Tt«1
Clk'ddlRdjtlMI

si.fiMTjen if

Start D?di Acroar^a

Det^ c^fi

Activity Editor
Sub-process (Dqpt. Approval) '

Figure 1: One view of Endeavors activitynetworks

6.3 Open Architecture

Figure 2 shows a high level view of the system architecture and functional breakdown. Endeavors has a
three-tiered architecture. Each layer has its own object model and responsibilities. The user layer
provides the interface for human interaction with the underlying system and processes. It monitors
events from the underlying layers and maintains a coordinated view of the system and the processes
specified. Beneath the user level, the system level provides the domain object model. At this layer,
artifacts, activities, and resources may be programmatically created, manipulated, associated in
networks, and executed by an interpreter. The foundation layer implements the class-metaclass model
(Young, 1991), managing the loading of objects and handlers as well as their persistent storage. This
layer triggers objects' handlers in response to received events.

External
Software
Package

♦1
\! External tools
i «

I *maniimlate
• •

J Endeavors
I t

* I Objects throng

; •open APIs

L)s«rs iTUer^rwitli Endeavors thrcHigh
User Level andAirenemai tool interfaces

User Level

Invokes ^..w

Artist

Manager

Useracttons trigger !
System Level ;

tnrthodinwicafiaBS ^

UI Artists — Process

Visualization f Editing Tools

User ievrt nodliaifiori of

ckanpa in undrrlvii^

object Jiere

Level

domain object nodel ailtnrs

jNOsrarajmatic manipuiatipn ofpnocas cotulrucU

Category r 1inteip^vc 1
Artlfiici Activity Resource

InferfKrdls /&ecutesNe(wtK'ks

Sending Events

Sjfstem level events and iDethod
I

calls are translated to |

Foundation calls ^

Notffication of Fcaiiuiatkui

Level Changis as Events

p

«•'

U'

*•

P

It:

Foundatioii Level
Evenm sent to ol>feeis-.

^invoke handlers

Handlers interact

with external tools

Handter

Object

Dynamic Class /

Instance Object

Model

Mrthod InvQcatiosis

Eient NotUQcations

Object

Figure 2: Endeavors layered systemarchitecture

Endeavors provides anopen architecture that simplifies integration with external tools, providing for
two-way communication, and simplifying incorporation into preexisting work environments. Handlers
may activate and manipulate extemal tools through existing or custom APIs. In a manner similar to
reflexive workflow components, extemal entities may access Endeavors through its open interfaces

provided at each layer of the system's virtual machine architecture, manipulating process state or the
processes themselves (subject, of course, to authorization controls).

Endeavors leverages off the capabilities of the Java Programming Language (Gosling, 1996) in which it
is entirely written. The system is highly componentized to facilitate incremental adoption and reuse.
System functionality may be downloaded to process execution sites as required without the need for
explicit installation processes.

Leveraging off of standard protocols. Endeavors components may be distributed across multiple sites to
allow shared access to resources and services. This extends capabilities for supporting participants
across organizations, supports remote participation and management of workflow, and extends
possibilities for integration. For a full discussion of these issues see (Kammer et al., 1998).

6.4 Summary of Functionalities Implemented in Endeavors

Development of Endeavors informed the identification of the approaches discussed in Section 5. Most
are already implemented within the system. Others are prototyped or a focus of ongoing research. In
brief. Endeavors improves on the current generation of workflow technologies by:

• using a dynamic extensible typing model,
• providing rich execution level semantics facilitating analysis and optimization,
• supporting incremental adoption and use,
• including configurable control policies for flexible approaches to workflow execution,
• providing a broadly applicable approach, rather than a point solution,

leveraging off intemet protocols to provide lightweight distribution.

Table 3 summarizes the level of implementation of these features in Endeavors, and areas of future
research emphases. Additional detail about Endeavors may be found in (Bolcer, 1998) and (Bolcer and
Taylor, 1996).

Table 3: Implementation of Adaptive Workflow Approaches in Endeavors

Approach Endeavors Implementation

Run-time Dynamism (Data, Behavior,
Process)

Implemented: Data model supports binding of data,
behaviors and process elements at runtime, allowing
on-the-fly composition and change of workflows.

Configurable / Partial Execution
Implemented: Execution model may be tailored to individual
workflow needs. Execution may be refiexively controlled by
workflow agents or authorized human participants

Typed Modeling of Artifacts, Activities,
Resources

Implemented: Process entities are modeled with a layered
object-oriented mechanism, supporting typing, generalization,
and specialization of object categories.

Reflexivity

Implemented: Process components as well as authorized
external tools may use Endeavors interfaces to access and
manipulate workflow definitions and the current state of
execution.

Logically Decomposable Process
Models

Implemented: Process may be hierarchically decomposed
into sub-processes, providing abstraction and separations of
responsibilities and ownership. Process fragments may be
manipulated and reused in other processes.

Evolutionary Process Models Implemented: Using a layered object model, workflow
instanees may be evolved into models for later executions

Reusable Process Fragments and
Component Libraries

Supported: Endeavors provides an infrastructure for libraries
of components and process fragments.
Future Work: Development of domain specific and
generalized workflow components, standardized processes,
and process fragments

Access to Organizational Work History
/ Expertise

Future Work: Provideintegrated access to appropriate work
history and expertise, most likely through rich integration
with third-party tools.

Event Monitoring Architectures

Implemented: Endeavors is based on an event driven
architecture.

Future Work: Improved ability to distribute observable
events to integrate with external tools. Improved support for
event driven processes.

Integrated Support for Participant
Communication

Prototyped: Close integration with a third-party
conversation (chat) tool-kit.
Future Work: Integration of additional CMC tools,
incorporating communication artifacts within the workflow
model.

Partial Adoption / Integration

Implemented: Highly componentized open system,
supporting adoption in pieces and integration with tools in
existing environments. Multiple views may be tailored to
individualparticipants. Integration with standardprotocols
and tools for distribution limits buy-in cost.

7 Conclusion and Future Work

Process workflow systems are often called upon to adapt to a changing environment. Exceptions arising
fromsuchcauses as inconsistencies withthe actual process or unexpected occurrences often drive the
need to adapt. Alternatively, the need to evolve or optimize theprocess may drive thechanges in the
process model. Traditional approaches to handling dynamism in workflow have generally fallen short.
Some attempts have proven too rigid, noteasily tolerating dynamic change once a process starts
executing. Others lack the structure toprovide a coherent process model, identify exceptions, guide
responses, or manage evolution of processes over time.

Exeeptions varyin their impact on the workflow model. This variance suggests the need for different
approaches tosupport different ways ofhandling exceptions. Overall flexibility, integrated support for
dynamic change, and appropriate information allcontribute to the ability to handle unexpected
occurrences as they develop. Systematic support for evolution canreduce (though not likely eliminate)
unexpected exceptions over time.

No single approach will be applicable in all cases. Building on basic goals, we have highlighted a
number of mechanisms that provide a range of information and capabilities to help build flexible
solutions. In our work with Endeavors, we have attempted to provide an underlying infrastructure to
support a breadth of alternative approaches, providing workflow designers and participants the
mechanisms to tailor solutions to individual cases. Our work with (Fielding, 1998) has suggested these
are important elements in future workflow systems.

We will be exploring a number of avenues of fertile research to further implement these mechanisms
and explore additional capabilities to assist adaptation in workflow. Endeavors event-driven
architecture may be further extended to provide richer integration with extemal tools through
bi-directional event interactions. This will allow more reactive work activities and greater support for
extemal monitoring of executing processes.

Rich integration with extemal tools also provides a number of possibilities for adding valuable
functionalities to Endeavors. Integrating with tools for computer-mediated-communication (CMC) will
allow the workflow system to coordinate informal communication between participants, improving their
ability to handle problems that may arise or avoid problems that could derail process execution.
Modeling communication artifacts and their relationships with other workflow elements may provide
rich history that can inform evolution and capture rationale associated with exception handling and
evolution. Integration with mechanisms for locating expertise and providing access to organizational
history can inform workflow activities and reduce time required to find solutions when exceptions
occur.

The development of libraries of reusable workflow components, process fragments, and standard
approaches will expand the capability of workflow developers to quickly constmct processes and tailor
them as needed. Collections of components and approaches, tailored to a specific domain, may provide
a rich way of codifying commonly used artifacts, standards of practice, and traditional problems solving
approaches for a particular community.

Acknowledgments

The authors would like to recognize the hard work and effort in the design and implementation of
Endeavors by Patrick Young, Clay Cover, Arthur S. Hitomi, Ed Kraemer, and Peyman Oreizy. In
addition we would like to acknowledge the members of the C2, Chimera, and WebSoftprojects at UCI
for their exchange of ideas during the development of this system.

References

Abbott, K. and Sarin, S. (1994): "Experiences with Workflow Management: Issues for the Next
Generation" Proceedings of the Conference on CSCW, Chapel Hill, NC, pp. 113-120, 1994.

Ackerman,M. and McDonald, D. (1996): "AnswerGarden 2: Merging Organizational Memorywith
Collaborative Help", Proceedings of 1996 Conference on Computer Supported Cooperative Work
(CSCW96), Cambridge, MA. November, 1996.

Auramaki, E. and Leppanen, M. (1988): Exceptions and office information systems. In Barbara Pemici
and Alex Verrijn-Stuart, editors. Office InformationSystems: TheDesign Process, pages 167-182, Linz,
Austria, August 1988. IFIP, Elsevier Science Publishing Co. Inc.

Barthelmess, P. andWainer, J. (1995): "Workflow systems: A few definitions and a few suggestions." In
Proceedings of Conference on Organizational Computing Systems, pp. 138-147, Milipitas, CA, August
1995. ACM SIGOIS.

Ben-Shaul, I. and Kaiser, G. (1994): "A Paradigm for Decentralized Process Modeling and its
Realization in the Oz Environment", Proceedings of the 16th Intemational Conference on Software
Engineering, pp. 179-188, 1994

Bolcer, G. and Kaiser, G. (1999): "Simple Workflow Access Protocol: An Introduction", Technical
Report, Informationand ComputerScience, University of Califomia, Irvine, January, 1999.

Bolcer, G. (1998): Flexible and Customizable Worlflow Execution on the WWW, PhD Thesis,
University of Califomia, Irvine. September, 1998.

Bolcer, G. and Taylor, R. (1996): "Endeavors: A Process System Integration Infrastructure", 4th
Intemational Conference on Software Process, Brighton, UK, December, 1996.

Cugola, G. (1998): "Tolerating Deviations in Process Support Systems via Flexible Enactment of
Process Models" IEEE Transactions on Software Engineering, vo. 24, no. 11, November, 1998.

Cugola, G., Di Nitto,E., Fuggetta, A., and Ghezzi, C. (1996): "AFramework for Formalizing
Inconsistencies and Deviations in Human-Centered Systems" ACM Transactions on Software
Engineering and Methodology (TOSEM), 5(3), ;pp.l91-230, 1996.

Dourish,P. (1995): "Developing a ReflectiveModel of Collaborative Systems", ACM Transactions on
Computer-Human Interactions, vo.2, no.l, pp.40-63, March, 1995.

Dourish, P. et al. (1996): "Freeflow: Mediating Between Representation and Action in Workflow
Systems", Proceedings of 1996 Conference on Computer Supported Cooperative Work (CSCW96),
Cambridge, MA. November, 1996.

Ellis, C. and Nutt, G. (1996): "Workflow: The Process Spectrum", NSFWorkshop on Workflow and
Process Automation in Information Systems: State-of-the-Art andFuture Directions", Athens, Georgia,
pp. 140-145, May, 1996.

Ellis, C. andRozenberg, G. (1995): "Dynamic Change Within Workflow Systems", n Proceedings of
Conference on Organizational Computing Systems, pp. 10-21, Milipitas, CA, August 1995. ACM
SIGOIS.

Fielding,R. et al. (1998): "Web-Based Developmentof ComplexInformationProducts",
Communications of the ACM, vol. 41, no. 8, August, 1998.

Gosling, J. et al. (1996): The Java Language Specification. Addison-Wesley. August 1996.
http://java.sun.com/docs/books/jls/html/ ^

Kaiser, G. et al. (1998): "WWW-based Collaboration Environments with Distributed Tool Services",
World Wide Web Journal, Baltzer Science Publishers, January, 1998.

Kammer, P. et al. (1998): "Supporting Distributed Workflow Using HTTP", 5th International
Conference on Software Process, Chicago, June, 1998.

Kling, R. and lacono S. (1984): "The Control of Information Systems Developments After
Implementation", Communications of the ACM, vol. 27, no. 12, December, 1984.

Malone, T. et al. (1997): "Tools for Inventing Organizations: Toward a Handbook of Organizational
Processes", Working Paper, Center for Coordination Science, MIT, 1997.
http://ccs.mit.edu/CCSWP198/

McDonald, D. and Ackerman, M. (1998): "Just Talk to Me: A Field Study of Expertise Location",
Proceedings of 1998 Conference on Computer Supported Cooperative Work (CSCW98), Seattle, WA.

I*- November, 1998.

Miller, J. et al. (1997): "TheFuture of Web-basedWorkflows" LDIS Departmentof ComputerScience,
University of Georgia, Athens, Research Directions in Process Technology Workshop, Nancy, France,
July, 1997.

Nutt, G. (1996); "The Evolutions Toward Flexible Workflow Systems" Distributed Systems
Engineering, vol. 3, no. 4, pp. 276-294, December, 1996.

Osterweil, L. (1998) "Software Processes are SoftwareToo, Revisited", In Proceedings of the
International Conference on Software Engineering, Boston, MA., pp. 540-548, May, 1998.

Rosenblum, D. and Wolf, A. (1997): "A Design Framework for Internet-Scale Event Observation and
Notification", Proc. Sixth European Software Engineering Conf./ACM SIGSOFT Fifth Symposium on
the Foundations of SoftwareEngineering, Zurich, Switzerland, Sep. 1997, pp. 344-360.

Saastamoinen, H. et al. (1994): "Survey on Exceptions in Office Information Systems" Technical Report
CU-CS-712-95, Department of Computer Science, University of Colorado, Boulder, 1994.

Saastamoinen, H. (1995): On theHandling ofExceptions in Information Systems. PhD thesis. University
of Jyvaskyla, 1995.

Strong, D. and Miller, S. (1995): "Exceptions and exception handling in computerized information
processes." ACM Transactions on Information Systems, 13(2):206-233,April 1995.

Suchman,L. (1983): "OfficeProcedure as PracticalAction: Models of Work and System Design." ACM
. Transactions on Information Systems, 1(4), October 1983.

Taylor,R. (1997): "Dynamic, Invisible, and on the Web",Research Direction in Process Technology
Workshop, Nancy, France, July, 1997.

Taylor,R. et al. (1996): "A Component- and Message-Based Architectural Style for GUI Software",
IEEE Transactions on Software Engineering, June 1996. '

Tolone,W. (1996): "Introspect: a Meta-Level Specification Framework for Dynamic Evolvable
Collaboration Support", PhD Thesis. University of Illinois at Urbana-Champaign, 1996.

Young, P. (1991): Customizable Process Specificationfor Technical and Non-technical Users. Ph.D.
thesis. University of California, Irvine. August, 1991.

UC IRVINE LIBRARIES

970 02(155 4843

