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Abstract

What does a social learner learn? Research has explored
imitation-based social learning strategies as well as inverse re-
inforcement algorithms that estimate others’ true reward func-
tion. In the current study, we propose that social learning may
be more elaborate and develop a model of social learning us-
ing Bayesian inference that seeks to understand both the task
an observed demonstrator is performing and the demonstrator
itself. Using simulations, we show that the model is able to
learn about the demonstrator when provided with full and par-
tial information. We strengthen this point by asking the model
to make inferences about missing choice and reward informa-
tion. Last, we show that the model is able to represent one set
of beliefs about the environment while attributing a distinct set
of beliefs to the demonstrator. Thus, we move away from sim-
ple models of social learning, investigating inference-making
as a core mechanism of social learning.
Keywords: social learning; (inverse) reinforcement learning;
Bayesian learner

The act of learning based on the actions of others—also
referred to as social learning (e.g., Bandura, 1971; McEl-
reath et al., 2005; Rendell et al., 2010, 2011; Whalen, Grif-
fiths, & Buchsbaum, 2018)—has been identified as a dis-
tinct mechanism that has the potential to offer advantages
over individual learning (Henrich & McElreath, 2003; Boyd,
Richerson, & Henrich, 2011). Compared to individual learn-
ing, social learning is generally considered to be less costly.
For example, social learning can speed up the learning pro-
cess and can allow social learners to avoid severe, poten-
tially fatal, outcomes (Rendell et al., 2011; Boyd et al.,
2011). The adaptive potential of social learning has been
studied and discussed in a variety of contexts ranging from
child development (for reviews see Harris, 2012; Koenig &
Sabbagh, 2013) to cultural evolution (e.g., McElreath et al.,
2005), measuring individual- (e.g., Najar, Bonnet, Bahrami,
& Palminteri, 2020; Toyokawa, Saito, & Kameda, 2017;
Toyokawa, Whalen, & Laland, 2019) and group-level out-
comes (e.g., Boyd & Richerson, 2009; Rendell et al., 2011).
This widespread applicability has led to comprehensive in-
vestigations across various disciplines, including evolution-
ary anthropology and biology, behavioral economics, com-
puter science, psychology, and sociology, highlighting its rel-
evance in numerous fields. This work assumes that the goal
of social learning is to better understand one’s environment
or a given task. In the current paper, we instead propose and
evaluate a model of an observational social learner that seeks
to use another agent’s behavior to understand an environment

as well as understand the agent itself. Before doing so, we
first review past work on social learning.

What is Social Learning
Social Learning Strategies
Many models of social learning are heuristic in nature. For
example, the literature on social learning often discusses the
concept of social learning strategies (Laland, 2004; McEl-
reath et al., 2005; Gigerenzer & Todd, 1999; Rendell et al.,
2010). These social learning strategies determine what be-
havior to copy when from whom. Consequently, these learn-
ing strategies simplify social learning into an act of imitation,
proposing a pivotal role for the logic of selecting an appropri-
ate social learning strategy.

Formal Models of Social Learning
There has been considerable research about what social learn-
ing strategies should be used and what social learning strate-
gies are actually used. To determine what specific social
learning strategy people should and do employ, strategies
have been translated into a broad range of formal, largely
heuristic, models often based on a foundation of imitation.

The seminal work of Rogers (1988) kicked of an extensive
debate about the adaptability of social learning, demonstrat-
ing that social learning does not always enhance a group’s
fitness—a finding later called Roger’s paradox. This finding
spurred extensive theoretical research into identifying which
social learning strategies increase human fitness and which
do not. In decades of subsequent research, researchers such
as Boyd and Richerson have developed a range of mathemat-
ical models that evaluate the adaptability of social learning—
defined as copying behavior—and its impact on cultural evo-
lution (e.g., Boyd & Richerson, 1985, 1988).

Likewise, social learning strategies have been much stud-
ied in a behavioral context. For example, McElreath et al.
(2005) explored whether people copy the behavior of one
other person (linear imitation), stick to their selected choice
when another person previously made the same choice (con-
firmation), or whether people adopt the behavior exhibited
by a majority of others (conformity), all while weighing how
much impact social information has in contrast to one’s own
information. Najar et al. (2020) investigated three different
ways imitation could be included in a reinforcement learning
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model. Typically, reinforcement learning models include at
least two components: an update function representing learn-
ing and a choice function. Najar et al. concluded that social
information augmented the perceived value of options dur-
ing learning (a value shaping model) rather than directly aug-
menting the choice selection process or via a standard inverse
reinforcement learning (IRL) process (IRL is discussed fur-
ther below). In these behavioral studies social learners do
not have access to others’ rewards but do have access to oth-
ers’ choices. However, Nedic, Tomlin, Holmes, Prentice, and
Cohen (2011) explored situations in which either rewards,
choices or some combination of both were missing. They de-
veloped heuristic models tailored to each situation and used
weights in the choice function to bias action selection.

More recently, inference abilities have been proposed as a
potential social learning mechanism. Gweon (2021) outlined
how inference-making allows to interpret and learn from evi-
dence generated by others through a process they call inferen-
tial social learning. Vélez and Gweon (2021) further support
the idea that social learning can be formalized as a probabilis-
tic inference process and call to combine RL and Bayesian
approaches. Hawkins et al. (2023) developed a mathemati-
cal, yet still heuristic-based model that interprets choice pat-
terns in relation to reward magnitude. Specifically, repeated
choices (exploitation) imply high rewards and varied choices
(exploration) imply low rewards. Hawkins et al. (2023) argue
that humans rely on the just described inference process to
learn from their partner’s choice information.

Inverse Reinforcement Learning (IRL)
Machine learning researchers have also studied algorithms
designed to learn from the experiences of others. These al-
gorithms, often referred to as inverse reinforcement learning
(Arora & Doshi, 2021), assume that observers are seeking to
estimate the agent’s reward function; the relationship between
the reinforcement provided by the environment and actions
taken by an agent (and the states in which those actions are
taken in the case of a Markov decision process). Other than
the to-be-inferred reward function, IRL algorithms are con-
ventionally assumed to have omniscient access to all other
relevant information. This includes task parameters such as
the transition matrix describing how the agent’s actions in
state, St , result in a transition to a new state, St+1 as well
as the policy that is optimal for the task. Having access to the
optimal policy is equivalent to assuming that the agent is op-
timal and that the algorithm has access to the agent’s policy
(the mapping from states to actions).

Early work (Ng, Russell, et al., 2000) focused on the core
problem of estimating the reward function while avoiding
trivial solutions. Since then, work has largely focused on re-
laxing the assumptions described above. For example, algo-
rithms that use behavioral demonstrations of an optimal agent
instead of the optimal policy (Abbeel & Ng, 2004). Others
have loosened the assumption that the observed agent is be-
having optimally (Jacq, Geist, Paiva, & Pietquin, 2019; Ram-
poni, Drappo, & Restelli, 2020). Research on IRL has also

considered scenarios involving even greater uncertainty, such
as those involving partially observable Markov decision pro-
cesses (POMDPs), settings in which the agent cannot know
its current state with certainty (Choi & Kim, 2011; Djeumou,
Cubuktepe, Lennon, & Topcu, 2022). Other work has inves-
tigating learning when only given partial access to the agent’s
behavior, sometimes referred to as “occlusion”. Bogert and
Doshi (2018) acknowledge the realism and the utility of re-
laxing the full-information assumptions, studying such sce-
narios in a multi-robot application.

IRL researchers have also considered situations involving
humans. Some have investigated scenarios in which an IRL
algorithm is tasked with learned from a human rather than
from an optimal agent (Hadfield-Menell, Russell, Abbeel, &
Dragan, 2016; Pan et al., 2018), developing algorithms that
fall into the emerging field of “socially-aware artificial intel-
ligence” (Krishna, Lee, Fei-Fei, & Bernstein, 2022; Lukow-
icz, Pentland, & Ferscha, 2011). These approaches are far
more likely to consider interactive dynamics between the ob-
server and learner rather than a simple one-way observational
learning. Other work has investigated scenarios in which it
is a human observes the behavior of a computational agent
(e.g., a robot) and must use this behavior to learn a task (Lee,
Admoni, & Simmons, 2022a, 2022b).

Bridging the gap between technical approaches and psy-
chological theory, it has been argued that IRL can be used to
formalize what has been termed “Theory of Mind” (Premack
& Woodruff, 1978), the ability to infer and reason about other
peoples’ hidden mental states (Jara-Ettinger, 2019). Specifi-
cally, IRL could be used to infer mental states, and RL could
be used to predict other’s actions.

Summary
To briefly summarize, there have been a variety of approaches
to social learning, though there are some notable themes that
pervade this work. Social learning research in the social sci-
ences focused on strategies that are heuristic in nature and
essentially assumes that the core mechanism of social learn-
ing is the mimicry of others’ behavior. The research objective
is then to characterize how such mimicry is deployed. IRL, in
contrast, takes a strongly principled approach, but in doing so
requires tremendous amount of precise knowledge to provide
any guarantees. Furthermore, the objectives of IRL are quite
modest; algorithms are simply trying to estimate agents’ re-
ward function. Finally, the formal models of social learning
developed within the social sciences are still based on heuris-
tic strategies and largely adopt the modest objectives of IRL
(e.g., learn about unobserved rewards while having access to
nearly all other relevant information).

The Current Study: An Optimal Model of
Social Learning

In the current study, we move away from a simple model of
social learning, beyond mere imitation, and beyond the ob-
jective of learning the true reward function. Our approach
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expands upon earlier work that has either taken a heuristic-
approach using social learning strategies or focused on dif-
ferent problem formulations such as those typically assumed
in IRL. We develop a Bayesian model of social learning that
seeks to understand both the task an observed agent is per-
forming and the agent itself.

In what follows, we first describe the context in which this
social learner operates, outlining the environment and task in
the problem statement. We then formally define a Bayesian
inference model. Then, the capabilities of the model are
thoroughly tested using a variety of different scenarios. We
demonstrate that the model is able to learn from other agents
as it develops a reasonable representation of the learning en-
vironment and the agents themselves. Moreover, our eval-
uation extends to scenarios involving missing information,
highlighting the model’s ability to “fill in” such gaps via infer-
ence. Finally, we illustrate how our model can learn about the
environment and the other agent, even when the beliefs of the
two diverge (cf., IRL). These examinations underscore the in-
ferential power of our model, ultimately prompting questions
as to whether human social learning may be a more complex
process than previously assumed.

Problem Statement
We use a classical two-armed bandit environment. An agent
is asked to repeatedly make a choice, c, between two options,
A and B. When selected, each arm generates a reward, r, that
is drawn from a normal distribution N (µc, σ2) . The agent’s
goal is to maximize their cumulative reward over a sequence
of T trials requiring the agent to learn about the underlying
reward function. We assume that these choices and rewards
are observed by a second agent. We refer to the agent making
choices and receiving rewards as the demonstrator and the
agent observing the demonstrator as the observer. Consistent
with many real-world situations, the observer may have in-
complete information about the demonstrator’s choices and
rewards. For example, on a given trial, the observer may have
access to the demonstrator’s choice but not the associated re-
ward, or to the reward but not the choice. Each of these cases
requires a specific treatment.

Our Approach: Social Bayesian RL Model
Using the set of choices, ct , and the set of observed rewards,
rt , we ultimately wish to infer two sets of quantities. The first
is the expected reward of each arm, µ, which is similar to the
conventional objective of IRL. The second, however, is the
set of parameter values, α and β, that underlie the demonstra-
tor’s behavior. These parameter values, combined with the
observed information about choices and rewards, allows the
observer to infer the demonstrator’s beliefs at any given point
in the trial sequence.

Inference is characterized as in Equation 1. The payoff
function described above specifies p(rt |µ,ct). We assume that
the demonstrator begins the task with no information about
the reward function (i.e., µ) at all, and thus initial Q-values,

Q1, are assumed to be zero. This contrasts with the standard
IRL approach of assuming an optimal demonstrator.

p(α,β,µ|C,R) ∝

T

∏
t=2

p(rt |µ,ct)p(ct |Qt)p(Qt |rt−1,ct−1,Qt−1,α,β)

× p(r1|µ,c1)p(c1|Q1))

× p(α,β,µ)
(1)

We assume that the demonstrator is a simple Q-learner.
The demonstrator’s choice function, which specifies p(ct |Qt),
is assumed to be a standard softmax

p(cA|Q) = 1− p(cB|Q) =
eβQA

eβQA + eβQB
(2)

which depends on a determinism parameter, β. The update
rule, which specifies p(Qt |rt−1,ct−1,Qt−1,α,β), is the stan-
dard Q-learning update

Qc,t = α(rt−1 −Qc,t−1) (3)

which depends on a learning rate, α. We consider the sit-
uation in which the observer has access to some choices and
rewards, but others, c̃t and r̃t , are unobserved. In this case,
we simply marginalize over the unobserved quantities. In-
ferred values of α, β, and µ permit the model to make on-
line predictions and inferences about individual unobserved
choices or rewards. On a trial in which the demonstra-
tor’s choice is observed, the reward (whether unobserved or
yet-to-be-observed) can be predicted as p(rt |µ,ct). Choices
(whether unobserved or yet-to-be-observed) can be predicted
as p(ct |Qt). On a trial in which the reward is observed but the
choice is unobserved, the unobserved choice can be inferred
conditional on the observed reward

p(cA,t |rt) =
p(rt |cA,t)p(cA,t)

p(rt |cA,t)p(cA,t)+ p(rt |cB,t)p(cB,t)
(4)

where p(cA,t) = p(cA,t |Qt−1). If the reward is unobserved
on trial t, but the choice is observed on trial t + 1, the unob-
served reward can be inferred conditional on the immediately
succeeding choice

p(rt |ct+1) =
p(cA,t+1|rt)

p(cA,t+1|rt)+ p(cB,t+1|rt)
(5)

where p(cA,t+1|rt) = p(cA,t+1|Qt+1)p(Qt+1|rt).
These inferences were implemented as a probabilistic pro-

gram, written in PyMC (Abril-Pla et al., 2023). The inferred
parameters were given weakly informative priors, largely to
confine their values to valid ranges (Eq. 6). Qc=A,t=0 and
Qc=B,t=0 were assumed to be 0.

α ∼ U(0,1)
β ∼ |N (0,1)|
µ ∼ U(−10,10)

(6)
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(a) (b)

Figure 1: (a) Difference between the difference of observer’s estimated Q-values of the demonstrator at the end of the trial
sequence and the actual difference between demonstrator’s Q-values at the end of the trial sequence for three demonstrators
ranging from more (β = .025) to less (β = .125) stochastic choice behavior, summarizing over 50 choice sequences for each
β. (b) Same difference as in (a) for a demonstrator with α = .1, and β = .1, with either no, choice and/or reward information
missing. Lines represent 50 trial sequences. Dots represent means.

The posterior distribution (e.g., Eq. 1) was approximated
via PyMC’s slice sampling MCMC algorithm. In each sce-
nario (or replicate of a scenario), we ran four chains. A total
of 1000 samples were used in each chain for tuning (and dis-
carded) and an additional 1000 samples were drawn, for a
total of 4000 posterior samples. Sampling diagnostics were
inspected manually and were satisfactory in all instances.

Results
As a first step, it is essential to verify that the model forms
a reasonable representation of the demonstrator. Here, we
specifically investigate whether the model develops precise
estimates of the demonstrator’s Q-values after observing a se-
quence of trials (i.e., choices and rewards). Furthermore, we
investigate these estimates as a function of the amount of de-
cision noise (i.e., β) reflected in the demonstrator’s behavior.

Result 1: The model learns about the demonstrator
when given full information
We generated 150 choice sequences using an algorithmic
demonstrator characterized by the update and choice function
defined in Equations 2 and 3, with a learning rate of α = .1.
If Qc=A = −10,Qc=B = 10 and β = .025, the demonstrator
exhibits more stochastic behavior, choosing the higher- and
lower-reward arms with p = .62 and p = .38 respectively.
When β = .075, the demonstrator chooses the higher- and
lower-reward arms with p = .82 and p = .18 respectively.
Lastly, when β = .125, the demonstrator exhibits more de-
terministic behavior, choosing the higher- and lower-reward
arms with p = .92 and p = .08 respectively. The task was

parameterized such that µA = −10, µB = 10, and σ = 1. The
sequence consisted of 40 trials.

Figure 1a shows that the observer’s estimates of the demon-
strator’s Q-values are, on average, quite accurate, irrespec-
tive of the level of stochasticity in the demonstrator’s choices.
The difference between the difference of the observer’s esti-
mated Q-values of the demonstrator and demonstrator’s ac-
tual difference of their Q-values is near 0 across all levels
of β. The variability in the data is primarily driven by the
model’s uncertainty about the parameters that govern demon-
strators’ learning. This uncertainty is influenced by the pri-
ors. Overall, we can conclude that the observer’s estimates
of the demonstrator’s beliefs about the arms’ values are rela-
tively robust and not significantly affected by increased deci-
sion noise on the part of the demonstrator. The model forms
accurate beliefs about the demonstrator when given full infor-
mation.

Result 2: The model learns about the demonstrator
when given partial information

Next, we investigated whether the model forms a reasonable
representation of the demonstrator even when some informa-
tion about the demonstrator is missing. To do so, we strate-
gically removed information about what choices the demon-
strator made or rewards the demonstrator received.

We generated 50 trial sequences using a similar algorithmic
demonstrator, with a learning rate of α = .1 and a stochas-
ticity parameter of β = .1. From these sequences, we ran-
domly selected 10 trials on which information was censored.
On these 10 trials, we either censored information about the
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Scenario Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 HDI Mean

Arm Rew. Arm Rew. Arm Rew. Arm Rew. Arm Rew. 3% 97%

1 B 10 A -10 B 10 A -10 Infer 10 1.0 1.0 1.0
2 B 10 NA -10 B NA A -10 Infer 10 1.0 1.0 1.0
3 B 10 A -10 B 10 A Infer B -9.99 -8.12 -9.19
4 B 10 NA -10 B NA A Infer B -9.97 -7.05 -8.86

Note. Choice and reward sequence for four exemplary scenarios. Scenarios 1 & 2 show model results when inferring
demonstrator’s choice. Scenarios 3 & 4 show model results when inferring demonstrator’s reward. Scenarios 1 & 3 show
sequences with complete knowledge about demonstrator’s choices and rewards. Scenarios 2 & 4 show sequences with missing
information about demonstrator’s choices and rewards. “NA” represents missing information. “Infer” shows the quantity to be
inferred. Mean and HDIs for choice inferences shows probability that arm B was selected. Mean and HDIs for reward
inferences show the grand mean (i.e., potential rewards weighted by their associated probabilities) of the reward value.

Table 1: Scenarios Showcasing Inference Ability

demonstrator’s choice, demonstrator’s rewards, or we cen-
sored choice information on five of the ten trials and cen-
sored reward information on the other five trials. In total, this
yielded 50 sets of trial sequences each represented by one line
in Figure 1b.

Figure 1b shows that the observer’s representation of the
demonstrator’s Q-values was, on average, quite accurate and
did not exhibit any obvious relationship to the type of infor-
mation that was omitted. This indicates that the model is ro-
bust, functioning effectively whether it has access to all of the
demonstrator’s information or only some. Visual inspection
of Figure 1bb suggests that accuracy did vary across condition
in a small number of sequences. It is possible that these se-
quences had particularly relevant information censored (e.g.,
trials early in the sequence). Future work is needed to investi-
gate such possibilities. Overall, however, accuracy was quite
uniform and we can conclude that the model successfully
forms accurate beliefs about the demonstrator even when con-
fronted with partially censored information.

Result 3: The model makes reasonable inferences
when given partial information

We next investigated whether the model is able to make rea-
sonable inferences about missing information. The inferences
of most interest are those in which the model uses observa-
tions to draw conclusions about information missing earlier
in the trial sequence. For example, if the observer did not ob-
serve a demonstrator’s choice on trial t, but did observe the
reward obtained on trial t, the observer can infer the choice
made, (e.g., p(cA,t |rt)). This analysis underscores the model’s
ability to “fill in” incomplete information.

To illustrate the model’s proficiency, we examine four qual-
itative scenarios detailed in Table 1. Each scenario presents
a sequence of five trials involving two arms which yield de-
terministic rewards of -10 and 10. In the first scenario, a rea-
sonable observer would infer that Arm A is associated with a
reward of -10 and Arm B with a reward of 10. Therefore, a
straightforward test of the model’s capability is to ask which

arm was selected on trial five, conditional on the observation
of a reward of 10. The model is certain that the demonstrator
selected Arm B in this scenario. To increase the complex-
ity, we then tested the model’s response to a choice inference
in Scenario 2. We use a similar sequence as before but with
missing information. Despite the missing information, the
model is still certain that the demonstrator selected Arm B.

Scenarios 3 and 4 mirror scenarios 1 and 2, except that
instead of a choice inference we have the model generate in-
ferences about unobserved rewards. Hence, instead of the
arm on trial five, we now ask about the reward on trial four,
conditional the choice on trial five. In a scenario with com-
plete information through the first three trials, the model es-
timates the missing reward on trial four to be approximately
-9.29, with a 94% Highest Density Interval (HDI) suggest-
ing the most credible reward estimates range between -9.99
and -8.12. When faced with a similar query under conditions
of missing information (Scenario 4), the model’s inference
closely aligns with that of the fully informed scenario, offer-
ing a mean reward estimate of -9.97 and an HDI spanning
from -9.97 to -7.05. Overall, these results confirm that the
model is able to make accurate inferences about unobserved
choice and rewards. The model can learn even from scenarios
involving missing information and can make valid inferences
so as to fill in such missing information.

Result 4: The model learns about the environment
when the demonstrator is unreasonable

The previous results have shown that the model is able to
learn about reasonable demonstrators given either full- and
partial-information. In our final investigation, we wished to
investigate how the model is able to learn about the envi-
ronment while simultaneously representing the demonstra-
tor’s beliefs (potentially very different beliefs) about the envi-
ronment. This capability represents a fundamental departure
from prior research which has traditionally relied on social
learning strategies and IRL. To distinguish the demonstrator’s
and the observer’s understandings of the environment, we in-
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(a) (b)

Figure 2: Demonstrator makes 10 alternating choices of arm A and arm B. The associated reward is always -10 for arm A and
10 for arm B. (a) Observer’s expected rewards for each arm. (b) Observer’s estimation of the demonstrator’s parameters.

troduce a scenario with an unreasonable demonstrator.
The demonstrator used here alternates between the two

arms despite a clear difference in the rewards each yields.
Specifically, the demonstrator first selects Arm B, receives a
reward of 10, then selects Arm A and receives a reward of
-10, repeated for a total of 10 trials (a reasonable demonstra-
tor would be expected to show a preference for the higher-
paying Arm B). If the observer’s understanding of the envi-
ronment exclusively relied on the demonstrator’s actions, the
observer’s understanding would be similarly unreasonable.

Figure 2a shows the model’s posterior distribution for each
arm’s expected value. The true reward for Arm B is 10 and the
model’s estimates closely aligns with this. Similarly, the true
reward for Arm A is −10 and the model’s estimates closely
aligns with this true reward. This demonstrates that the model
is able to build a reasonable representation of the environment
despite unreasonable behavior of the demonstrator.

Figure 2b shows the model’s posterior distribution of α and
β, the beliefs about the nature of the demonstrator. The model
tries to make sense of the demonstrator’s behavior, but ulti-
mately learns little about either α or β. The demonstrator’s
“nonsensical” behavior could reflect a very low learning rate,
very high decision noise, or some combination of both. Thus,
it is unclear what, exactly, the demonstrator believes about
the two arms. Despite this, the model learns about the envi-
ronment in the expected manner.

Discussion
In this paper, we have developed a model of social learning
that seeks to understand both the task an observed agent is
performing and the agent itself. We demonstrate that this
model effectively learns in environments with incomplete in-
formation. The model forms own beliefs by inferring missing
choice and reward information, constructing expectations and

forming a representation of the demonstrator.

Although we have tested a range of scenarios, future re-
search should validate the model across a more diverse set
of conditions. For example, a broader range of environments
with more arms, or other reward structures should be investi-
gated. Additionally, a broader range of demonstrator param-
eter values and more variety in how much information is cen-
sored could also be investigated. Another area for exploration
is the role of initial Q-values. In the current study, we set ini-
tial Q-values of each arm to 0. However, one could allow for
both arms to be different, and allow for different priors.

The current study allows for a thorough investigation of
social learning by providing a comprehensive framework that
mirrors the complexities of everyday learning and that inte-
grates different theoretical approaches. Our model acknowl-
edges that in many real-life situations, individuals may not
have access to all information about others. Further, the
model reflects insights from research on Theory of Mind
(e.g., Schenkel, Marlow-O’Connor, Moss, Sweeney, & Pavu-
luri, 2008; McKinnon & Moscovitch, 2007) in that it forms
a representation about what others potentially think about the
environment. This feature allows the model to be used in in-
creasingly complex scenarios. For example, in environments
in which multiple agents interact, it may be advantageous to
not only learn about the environment but also have an idea
about what others believe. The model can make predictions
about others’ actions, which allows for strategic behavior.

Overall, by accurately filling in the gaps of missing infor-
mation, the model enhances our understanding of learning
processes in social contexts. It opens up new possibilities for
exploring the complexities inherent in social learning and of-
fers inference-making as one potential social learning mech-
anism.
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