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Abstract

Objective—Our primary objective was to compare the performance of unaccelerated vs. 

accelerated structural MRI for measuring disease progression using serial scans in Alzheimer’s 

disease (AD).

Methods—We identified cognitively normal (CN), early mild cognitive impairment (EMCI), late 

mild cognitive impairment (LMCI) and AD subjects from all available Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) subjects with usable pairs of accelerated and unaccelerated scans. 

There were a total of 696 subjects with baseline and 3 month scans, 628 subjects with baseline and 

6 month scans and 464 subjects with baseline and 12 month scans available. We employed the 

Symmetric Diffeomorphic Image Normalization method (SyN) for normalization of the serial 

scans to obtain Tensor Based Morphometry (TBM) maps which indicate the structural changes 

between pairs of scans. We computed a TBM-SyN summary score of annualized structural 
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changes over 31 regions of interest (ROIs) that are characteristically affected in AD. TBM-SyN 

scores were computed using accelerated and unaccelerated scan pairs and compared in terms of 

agreement, group-wise discrimination, and sample size estimates for a hypothetical therapeutic 

trial.

Results—We observed a number of systematic differences between TBM-SyN scores computed 

from accelerated and unaccelerated pairs of scans. TBM-SyN scores computed from accelerated 

scans tended to have overall higher estimated values than those from unaccelerated scans. 

However, the performance of accelerated scans was comparable to unaccelerated scans in terms of 

discrimination between clinical groups and sample sizes required in each clinical group for a 

therapeutic trial. We also found that the quality of both accelerated vs. unaccelerated scans were 

similar.

Conclusions—Accelerated scanning protocols reduce scan time considerably. Their group-wise 

discrimination and sample size estimates were comparable to those obtained with unaccelerated 

scans. The two protocols did not produce interchangeable TBM-SyN estimates, so it is arguably 

important to use either accelerated pairs of scans or unaccelerated pairs of scans throughout the 

study duration.

INTRODUCTION

Of all currently available disease biomarkers, atrophy of brain structures has been found to 

track best with change in cognitive impairment in Alzheimer’s disease (AD) (Fox et al., 

1999; Frisoni et al., 2013; Frisoni et al., 2010; Jack et al., 2013; Mormino et al., 2009; Savva 

et al., 2009). Structural changes measured on MRI therefore may be a useful outcome 

measures in therapeutic clinical trials (Leow et al., 2009; Leung et al., 2010a; Risacher et al., 

2010; Schott et al., 2010; Vemuri et al., 2010). MRI image acquisition and data processing 

are the two main components when considering MRI as an outcome measure in clinical 

trials.

Structural MRI (sMRI) scanning has greatly advanced in the last couple of decades. Current 

sMRI protocols yield high-resolution brain images with approximately 1 mm3 resolution 

with excellent gray- white matter contrast. The stability and reproducibility of sMRI 

acquisitions in large multi-center trials such as Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) (Jack et al., 2008), implemented across multiple different vendors and scanners, 

provide evidence that large scale therapeutic trials are feasible using sMRI as outcome 

measures (Cover et al., 2011; Fleisher et al., 2009; Kruggel et al., 2010). A recent 

improvement to MRI acquisition protocols has been the implementation of parallel imaging 

typically reducing MRI acquisition times by half or more (Blaimer et al., 2004; Griswold et 

al., 2002; Griswold et al., 2000; Pruessmann et al., 1999; Sodickson and Manning, 1997). 

The acceleration of scans due to parallel imaging leads to more time- and cost-efficient 

acquisitions and therefore greater patient acceptance and fewer motion artifacts which is of 

particular importance with more cognitively impaired patients. However, these benefits 

come at the cost of decreased signal to noise ratio, and potentially increased image artifacts 

due to the reconstruction of images using data acquired in less time. The primary objective 
of this paper is to compare the performance of unaccelerated versus accelerated sMRI for 

measuring disease progression using serial scans. The images used for the comparison were 
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the pairs of accelerated and unaccelerated 3 Tesla sMRI images acquired in ADNI-GO and 

ADNI-2 which included cognitively normal (CN), early mild cognitive impairment (EMCI), 

late MCI (LMCI) and AD subjects.

AD-related MRI processing of images has traditionally focused on regions of interest (ROIs) 

that are preferentially affected by the disease process, e.g. hippocampus. Cross-sectional 

methods can generate a summary measure or region of interest measure from sMRI at every 

time point. These measures have unnecessary variability due to differences in the ROI 

definition on each image. Specific longitudinal techniques can extract tissue loss 

information from serial sMRI scans (e.g. Boundary shift integral (BSI) (Freeborough and 

Fox, 1997) and tensor based morphometry (TBM) (Hua et al., 2013; Hua et al., 2008)).

In these techniques all pairs of sMRI scans are registered or warped to each other and brain 

loss between scans is quantified which reduces measurement variability. High accuracy is 

the metric that is often considered in the selection of the warping algorithms between serial 

scans; however recently it has been shown that symmetric registration between serial scans 

is crucial for obtaining bias-free longitudinal measurements (Fox et al., 2011; Holland et al., 

2012). Specifically, it was shown that asymmetric warping can cause biologically 

implausible deceleration of atrophy and introduces bias into longitudinal measurements 

(Thompson and Holland, 2011). Symmetric Normalization algorithm (SyN) developed by 

Avants et al. (Avants et al., 2008) provides symmetric diffeomorphic normalization between 

serial scans and also has a high degree of accuracy when compared to manual 

measurements, and in comparison to other nonlinear deformation algorithms (Klein et al., 

2009). This warping methodology is an ideal solution for bias-free warping and tracking 

disease progression in AD and other neurodegenerative diseases, so we used a TBM-SyN 

based methodology to evaluate the primary objective of this study.

METHODS

Selection of Participants and Image Acquisition

Two groups of subjects were analyzed in this study. The first group of subjects, selected 

from the Mayo Clinic Study of Aging (MCSA) and Mayo Alzheimer’s Disease Research 

Center (ADRC), were used as a training dataset to determine which ROIs to include in the 

TBM-SyN summary score. The second group of subjects was the ADNI data set, identified 

from ADNI-GO and ADNI-2 (details below), to compare accelerated and unaccelerated 

sMRI scans in terms of TBM-SyN. All ADNI images were acquired on 3T scanners using 

both accelerated (2x acceleration resulting in roughly half the scan time) and unaccelerated 

sMRI T1-weighted images as described elsewhere (Jack et al., 2010); detailed protocol 

parameters are available at http://adni.loni.usc.edu/methods/documents/mri-protocols/. The 

protocols on GE scanners were acquired using IR-FSPGR and other vendors using 

MPRAGE. In particular, the accelerated images used a slightly larger field of view (270 mm 

vs. 260 mm) to compensate for the SNR loss due to parallel imaging. Acquisition time 

varied slightly among vendors and across software releases, but typical values were 9:14 

minutes for the unaccelerated acquisition, and 5:12 minutes with acceleration. Mayo images 

were acquired on 3T scanners using an unaccelerated MPRAGE protocol similar to that used 

in ADNI.
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The ADNI data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative 

is Michael W. Weiner, MD, VA Medical Center and University of California – San 

Francisco. ADNI is the result of efforts of many co-investigators from a broad range of 

academic institutions and private corporations, and subjects have been recruited from over 

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but 

ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols have 

recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of 

cognitively normal older individuals, people with early or late MCI, and people with early 

AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 

and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to 

be followed in ADNI-2. For up-to-date information, see www.adni-info.org.

Mayo Training Dataset—In the development of longitudinal measurements, statistically 

significant ROIs are often determined by analyzing a training set consisting of both patients 

and matched controls. For detecting AD specific changes, we identified an independent 

training set of AD and CN subjects with longitudinal MRI scans, drawn from the Mayo 

ADRC and MCSA. In total, there were 51 AD subjects, and 51 CN subjects (50 who were 

amyloid negative as measured by Pittsburgh compound B, PiB-PET imaging and one 

matched CN was APOE4 negative because PIB scan was not available). The PiB-negative 

status of the CN subjects was defined as global PiB SUVR<1.4. The AD and CN subjects 

were matched on age, sex and education. The criterion for selection for AD dementia was 

based on the 1984 clinical criteria for probable AD which is virtually identical to the new 

criteria (McKhann et al., 1984; McKhann et al., 2011). Each subject had two serial usable 

(passed quality control) unaccelerated sMRI scans that were used to develop the TBM-SyN 

summary score. To maintain a clean training dataset, we took the following additional steps: 

all subjects were required to maintain the same clinical primary diagnosis at both the serial 

scans; and the baseline age of all subjects was restricted to ≥ 63 years. The subject 

characteristics are described in Table 1.

ADNI Dataset—We identified all CN, EMCI, LMCI and AD subjects from ADNI-GO/2 

with usable pairs of accelerated and unaccelerated scans. We identified all subjects with 

preprocessed accelerated and unaccelerated MRI data available on LONI that had passed 

quality control. This included 703 subjects with baseline and 3 month scans, 643 subjects 

with baseline and 6 month scans, and 478 subjects with baseline and 12 month scans. We 
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excluded 36 pairs of scans because of within-subject differences in model and/or 

manufacturer of the MRI scanner used for the serial acquisitions. The final ADNI dataset 

used for this paper therefore included 696 subjects with baseline and 3 month scans, 628 

subjects with baseline and 6 month scans, and 464 subjects with baseline and 12 month 

scans. Subject demographics are described in Table 2. We have provided the entire list of 

patients that were used in this study in supplemental material.

Image Preprocessing for Each Individual Image

The software packages used to develop the TBM-SyN scores were MATLAB R2013a 

(Mathworks, Natwick, MA), ANTs 1.9.x (Penn Image Computing and Science Lab, 

University of Pennsylvania, PA), SPM5 (Wellcome Trust Center for Neuroimaging, UCL, 

UK). For each subject in this study, we began with the “N3m” preprocessed datasets that are 

“N3” intensity homogeneity corrected (Boyes et al., 2008) and corrected for gradient field 

non-linearity images (Gunter et al., 2009) that were additionally run through SPM5 bias 

correction (indicated by the suffix “m”).

For each original T1 image both in the Mayo and ADNI dataset, we ran it through our 

standard preprocessing pipeline. Briefly, this pipeline first applies gradient unwarping to 

correct for gradient distortions, followed by spm5 unified segmentation using custom tissue 

priors in a custom template space (as defined in STAND400 (Vemuri et al., 2008)). The 

initial gray matter (GM) and white matter (WM) masks from the spm5 unified segmentation 

are then combined and binarized to form an initial brain mask. This brain mask is then 

dilated and hole filled, and used for the next step, N3 correction. The N3 correction is 

computed over those voxels in the dilated mask. Next, the N3 corrected image is segmented 

once again using spm5 unified segmentation. The native-space segmentations from this step 

are combined and binarized, to form a more accurate brain mask. Additionally, a mask the 

third and lateral ventricles are propagated from custom template space to subject native 

space, using the spatial normalization parameters from SPM5 unified segmentation, 

followed by a sequence of morphological operations to clean up the masks. The final pass of 

spm5 unified segmentation also produces a bias corrected version of the input image, which 

we call the “N3m” image. This sequence of pre-processing is applied to all ADNI and Mayo 

scans in our lab.

Within subject initial co-registration

After the initial pre-processing was completed, we formed an initial mean image of each 

subject’s preprocessed “N3m” images. Using SPM5-based mutual information co-

registration without reslicing, we iteratively registered each individual time-point N3m 

image to the mean, applying the transformations to the corresponding brain and ventricle 

masks, forming a new mean after each iteration, allowing it to continue until the mean image 

did not change from one iteration to the next, or until a preset maximum of 10 iterations was 

reached. After the final iteration, the set of all images were co-registered one last time to the 

first time-point image, to ensure no registration failures.
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Within subject intensity balancing

After the initial registration completed, we dilated and hole-filled the brainmask from the 

first time point adding dominantly CSF voxels to the mask, and fit a Gaussian distribution to 

the histogram of these voxels. In a separate procedure we eroded the brain mask to obtain a 

collection of voxels dominated by white matter, and fit a separate Gaussian distribution to 

their intensity. In both cases the fitting was done iteratively, excluding intensities more than 

two sigma from the mean. We then scaled image intensities, mapping the WM and CSF 

spectrum peaks (that were estimated as described in (Gunter et al., 2003)) to constant 

arbitrary values of 20,000 and 5,000, respectively.

Within subject secondary co-registration

Next, although the images had been previously co-registered, in order to ensure robust 

performance under fully automated conditions, we implemented another rigid registration 

routine into the algorithm. Using Aladin (http://sourceforge.net/projects/niftyreg/), we rigid-

body (6DOF) co-registered each image to the subject’s baseline image, restricting the cost 

function with an intracranial mask to eliminate variability in neck positioning. We computed 

the mean within-subject transformation by averaging the quaternion representations of the 

transformations and resampled the gray scale image and masks into this mean space with 

1mm isotropic resolution using cubic spline, and linear interpolation, respectively. We next 

formed a new registration target by re-computing the mean grey scale image from the 

resampled images, and forming a new intracranial mask by applying dilation and hole filling 

to the union of the resampled brain and ventricle masks. We then performed affine (9DOF) 

registration of each time point image to the mean image, and finally resampled all images 

and masks into the target space at 1mm isotropic resolution.

Within subject intensity re-balancing and Differential bias correction (DBC)

We next balanced intensities and performed differential bias correction (DBC). As before 

we determined the WM and CSF spectrum peak intensities. Next we formed the collection 

of voxels that were spatially located between those selected for the CSF and WM samples, 

forming a collection of mostly GM with a “contamination” of WM voxels. We then fit the 

histogram of these voxels with the sum of two Gaussians; one Gaussian having center and 

width fixed at the values determined by the WM fit with arbitrary amplitude, and the 

parameters for the other Gaussian distribution being fitted. In contrast to the linear intensity 

remapping previously employed, we used a spline-based intensity re-mapping to bring each 

image’s GM, WM and CSF peak intensity into agreement with those of the mean image.

The DBC was carried out using the collection of voxels that was consistently near CSF peak 

intensity or consistently near WM peak intensity, and inside a hole-filled brain mask. Using 

only points inside the collection, we created a log transformed ratio image of each time point 

image to the mean image. Since the point collection is sparse in space, we used a tri-linear 

3D interpolation to create a dense field, requiring it go to zero at the edges of the image. We 

then smoothed the dense field with a 20mm isotropic Gaussian kernel, exponentiated the 

resulting field and finally applied the result to arrive at the final preprocessed image series 

for each subject.
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TBM-SyN Image Processing

Starting with the preprocessed scans for each subject as described above, we computed the 

SyN deformations between each pair of images (Avants et al., 2008), in both directions 

explicitly, saving an image of the log transformed Jacobian determinants for each. We 

formed an “annualized” log Jacobian map by dividing each log Jacobian voxel by the 

intrascan time interval, measured in years. We then applied each deformation to the 

corresponding moving image, and create a “soft-mean” of the “fixed” and the “moved” 

image. We then applied SPM5 unified segmentation to each soft-mean image, and 

propagated ROI masks from the template space to the soft-mean space, to obtain mean 

annualized log Jacobian measurements in the various ROIs in the in-house modified AAL 

custom template.

TBM-SyN Summary Score

For selection of ROIs to be included in the TBM-SyN summary score, we used a two-

sample T-test to select the top ROIs (with right and left ROIs combined) that were 

significantly different between the CN and AD from the Mayo Dataset as described later in 

this paragraph. We used an in-house modified atlas of 119 GM regions and one ventricular 

region. Cross-sectional GM volumes of each GM ROI in the atlas computed from the 

baseline image, as well as the longitudinal mean annualized log Jacobian from each ROI in 

the atlas between the two serial scans, were compared between the AD and CN subjects in 

the Mayo Training set. We used both cross-sectional GM volumes as well as longitudinal 

log Jacobians for selection of the ROIs because some ROIs such as the parahippocampal 

gyrus atrophy early in the disease process and do not show highly significant annual change 

between AD and CN but are important to retain because MCI and preclinical CN subjects 

will show early serial changes in those regions. For selection of the ROIs – we first ranked 

all the ROIs by the strength of the T-tests of all cross-sectional GM density and longitudinal 

mean annualized Jacobians. Next, we determined the number of ROIs that, when averaged 

together, would give the highest degree of AD-CN separation accuracy in the training data 

set. The ROIs that were selected based on this criterion are shown in Figure 1. The union of 

ROIs selected from both the longitudinal and cross-sectional data included 15 bilateral GM 

ROIs [or 30 left and right ROIs] and one ventricular ROI. Since 15 of the ROIs were GM 

ROIs from the atlas, which show volume shrinkage, and one of the ROIs is the ventricle, 

which shows expansion, we inverted the sign of the ventricle log Jacobian determinant 

before combining it with the values from the cortical GM ROIs. The 15 bilateral GM ROIs 

included were: medial temporal lobes (consisting of amygdala, hippocampal, 

parahippocampal and entorhinal cortices), angular, precuneus, temporal lobes (fusiform, 

superior, mid and inferior temporal gyri and superior and mid temporal poles), and occipital 

lobes (superior, mid and inferior ROIs). For each image, a TBM-SyN score was created as a 

sum of the median annualized log Jacobian determinant in these 15 bilateral GM ROIs, and 

the negative median annualized log Jacobian determinant of the ventricles.

Comparison of accelerated and unaccelerated scans

We performed two main analyses to compare the accelerated and unaccelerated scans. The 

purpose of the first set of analyses was to test the interchangeability of TBM-SyN scores 
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from accelerated and unaccelerated scans. We tested for differences between accelerated and 

unaccelerated TBM-SyN values within each diagnostic group using paired t-tests. Linear 

regression was used to evaluate the relationship between accelerated (y) versus 

unaccelerated (x) TBM-SyN values separately for each scan interval. To evaluate agreement 

between the two techniques we included Bland-Altman plots. The purpose of the second set 

of analyses was to compare the performance of accelerated and unaccelerated scans in terms 

of group-wise discrimination. We calculated the area under the receiver operating 

characteristic curve (AUROC) as a nonparametric measure of effect size (Acion et al., 2006) 

and calculated 95% confidence intervals for each AUROC estimate (Newcombe, 2006). We 

tested group-wise differences in TBM-SyN using the Wilcoxon rank sum test, equivalent to 

evaluating whether the AUROC was different from 0.5. We also directly tested group-wise 

discrimination as summarized by the AUROC for accelerated versus unaccelerated scans 

(DeLong et al., 1988). Finally, we estimated sample sizes for a hypothetical trial in which 

the intervention resulted in a 25% improvement over the placebo TBM-SyN rate via the 

standard t-test based sample size formula: n = 2σ2(z1-α/2 + zβ)2/Δ2. These sample sizes 

refer to a 25% reduction in absolute atrophy rate and assume as is normally the case that the 

hypothetical treatment does not alter the variance in the rate. Here σ2 is estimated by the 

sample variance, z1-α/2 = z1-0.05/2 ≈ 1.960, zβ = z0.80 ≈ 0.842, and Δ represents the 

minimum detectible difference in means (Rosner, 2011). We used bootstrap resampling with 

3000 replicates to get 95% CIs for the sample size estimates. We also used the bootstrap 

with 3000 replicates to obtain interval estimates of the difference in sample sizes required 

for the two methods.

We performed additional analyses 1) to compare the quality control of all the subjects 

scanned in ADNI2 and ADNI GO (before the selection of usable scans for the comparison 

analyses); and 2) to compare the overall tissue segmentations behavior differences using 

SPM based paired t-test between baseline accelerated and baseline unaccelerated scans of 

cognitively normal individuals.

Results

Figure 2 shows box plots comparing the distribution of TBM-SyN summary scores, 

computed from accelerated versus unaccelerated scan pairs within each clinical group. In the 

baseline to 3-month comparisons, none of the clinical groups had significantly different 

TBM-SyN scores generated from accelerated versus unaccelerated scan pairs (p>0.05), 

possibly because there are minimal sMRI based differences detectable in a 3 month interval. 

In the baseline to 6-month comparisons, the TBM-SyN scores from accelerated scans were 

significantly greater than unaccelerated scans in both the CN and AD groups (p=0.03), with 

a trend in the LMCI and EMCI groups (p<0.1). In the baseline to 12-month comparisons, the 

TBM-SyN scores from accelerated scans were significantly greater from unaccelerated 

scans in both the EMCI and AD groups (p<0.01).

For further clarity on the subject of equivalency of the two scan types, we show scatter plots 

by scan interval in Figure 3 and Bland-Altman plots in Figure 4. Our first observations from 

the scatter plots was that for each interval the regression line does not pass through the 

origin (p<0.01) and its slope is less than unity (p<0.01) indicating that the two protocols do 
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not produce equivalent results. However, the coefficient of determination, R2, increased with 

the interscan duration indicating that the scans with larger intervals (possibly 2 years) are 

likely to be equivalent because the sMRI changes over longer periods of time are much 

greater compared to the variability due to the MRI acquisition differences. This decreasing 

variability and decreasing difference between the accelerated versus unaccelerated TBM-

SyN scores can also be confirmed from the Bland-Altman plots. Again, with increasing scan 

interval the TBM-SyN scores from accelerated and unaccelerated scans show increasing 

agreement. However, with the intervals used in this study the values are not interchangeable.

The estimated AUROC and confidence intervals for distinguishing different clinical groups 

for each scan type are shown in Figure 5. The p-values indicate if the performance of 

accelerated or unaccelerated scans was significantly different in terms of ability to 

distinguish the two clinical groups. The AUROC point estimates and corresponding p-values 

comparing accelerated versus unaccelerated are shown in Table 3. Though the AUROC 

point estimates for the unaccelerated scans appeared to be a little better overall than those 

for accelerated scans, the performance was not statistically different, except for the CN vs. 

EMCI discrimination for the change in 0-12 months.

Sample size estimates with bootstrap 95% CIs to detect a 25% reduction in atrophy with 

80% power and two-sided α = 0.05 are shown in Table 4. Sample sizes vary in the expected 

way with smaller samples needed for longer interscan durations and with more impaired 

clinical groups. The columns labeled “Accelerated” and “Unaccelerated” indicate the sample 

size and 95% CI for each of the scan types, and the column labeled “Difference” indicates 

the estimated sample size difference and 95% CI. Positive numbers in this column indicate 

that the sample sizes with unaccelerated scans are lower. In order for the differences to be 

statistically significant at p<0.05 level, the confidence intervals cannot include zero. Using 

this criterion, the differences were only significant in the case of EMCI measurements 

between baseline and 12-month intervals, where the sample sizes necessary to detect 25% 

reduction in the TBM-SyN using accelerated scans was 361 compared to a much lower 272 

required using unaccelerated scans. There were similar indications favoring unaccelerated 

scans in this group with six-month interval, although sample sizes were very large for both 

methods.

Here we present the quality control comparison results. For both accelerated and 

unaccelerated scans, there were only a very small proportion of scans that were considered 

unusable (i.e., failed quality control). Comparing accelerated to unaccelerated scans, the 

failure rates were 0.6% (n=5) versus 0.7% (n=6) at baseline, 0% (n=0) versus 0% (n=0) at 

three months, 0.5 (n=3) vs. 0% (n=0) at six months, and 0.2% (n=1) vs. 0.4% (n=2) at 12 

months. Based on McNemar’s test of correlated proportions, we found no significant 

differences in failure rates (p>0.99 for baseline; p=0.24 for 6 months; p>0.99 for 12 

months). Since the failure rates were zero for both accelerated and unaccelerated scans at 3 

months, McNemar’s test could not be performed. Scans were also graded on a numeric scale 

and based on paired signed rank tests, we found no evidence that accelerated scans received 

lower quality scores than unaccelerated (p=0.5 for baseline; p=0.4 for 3 months; p=0.7 for 6 

months; p=0.7 for 12 months). Additionally, we compared the failure rate for accelerated 

and unaccelerated scans by diagnosis and found that both AD and non-AD cases had similar 
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failure rates between unaccelerated and accelerated scans for all the scans (p>0.1 for 

Wilcoxon signed rank test for baseline, 3 month, 6 month and 12 month scans).

When we compared the overall tissue segmentations behavior by computing the paired t-test 

between baseline accelerated and baseline unaccelerated scans of cognitively normal 

individuals (supplemental figure 1). We found that there were no fundamental differences 

between tissue segmentation properties of both types of scans in the areas of the regions that 

were used for computing the TBM-SyN Scores.

Discussion

In this study we applied a SyN based TBM methodology to measure structural changes 

between pairs of MRI scans for the comparison of accelerated scans with unaccelerated 

scans. TBM-SyN scores from both sets of scans are not equivalent but the overall 

performance of both types of scans for clinical discrimination and clinical trials was similar. 

Additionally, one scan type does not significantly outperform another scan type. We 

therefore conclude that, for longitudinal studies involving sMRI as an outcome measure, it is 

important to maintain either accelerated or unaccelerated MRI scanning protocols for all 

subjects throughout the study. Potentially important scan-time reductions may be obtained 

with accelerated protocols without unduly sacrificing group-wise discrimination or clinical 

trial efficiency.

The results from this paper are encouraging because the performance from accelerated scans 

which were acquired in roughly half the scan time was comparable to the performance from 

unaccelerated scans for both clinical discrimination and sample size estimates. The slight 

reduction in the signal to noise ratio and contrast to noise did not significantly reduce the 

performance of the accelerated scans. We also presented the data on scan quality ratings on 

visual inspection given by trained analysts, which were not significantly different between 

the two scan types supporting the use of accelerated scans for more cost and time efficient 

AD therapeutic trials. It is important to note that the comparison of accelerated to 

unaccelerated scans based on performance is specific to the results from TBM-SyN and 

other studies have investigated the differences between the scan types using different 

methodologies for computing change between serial scans and have found similar results 

(Ching et al., In Press; Krueger et al., 2012).

The most surprising result from this study was the non-equivalent nature (i.e. significant 

differences) of the TBM-SyN scores computed from accelerated and unaccelerated scans. 

We hypothesize that two noise components may significantly contribute to the non-

equivalence of the TBM-SyN scores from the two scan types: 1) the noise of the 

measurement itself, i.e. higher noise in measurements from shorter inter-scan intervals 

versus longer intervals; and 2) differences due to systematically different acquisition and 

reconstruction schemes used in accelerated scans compared to sMRI unaccelerated scans. 

The differences due to the second component are attributable to the subtle differences in the 

contrast between gray and WM (though not visible to the naked eye) as well as 

reconstruction approximation assumptions made in parallel imaging acquisitions where 

reconstruction of the entire image is done with half the amount of data needed for 
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reconstruction of an unaccelerated image. Though these two noise components may not be 

completely independent, figures 3 and 4 illustrate that the effect of the first component gets 

comparably lower with increasing time and the regression line approaches the identity line. 

Additionally, we can ascertain that the noise from the second component is probably smaller 

than the first component because if it were not, then the regression would not approach the 

identity line with increasing inter-scan time intervals. These results suggest that with larger 

time intervals between scans (perhaps 2 years or more), it may be possible to mix data from 

accelerated and unaccelerated scans; however with the typical scan durations of one year or 

less, as used in this study, our data suggests that any given study should be performed either 

with all scans accelerated or all scans unaccelerated.

In the methods, we noted that the accelerated protocols used a slightly increased field of 

view (270 mm vs. 260 mm) to compensate for the SNR loss due to parallel imaging. That 

increase was needed because many of the sites did not have access to a 32-channel head coil, 

but instead were using 8- or 12-channel models. As 32-channel head coils become more 

prevalent, we expect the slight increase in FoV will become unnecessary for protocols 

accelerated by a factor of two (Krueger et al., 2012).

A primary motivation behind the development of TBM-SyN based methodology was to 

avoid bias seen in longitudinal measurements due to asymmetric warping (Thompson and 

Holland, 2011). Additionally we used a strategy to select ROIs that are specific to AD 

pathology by comparing AD subjects to a group of CN who were amyloid negative or at 

least not APOE4 carriers. The ROIs selected correspond well with the well-known Braak 

staging of neurofibrillary tangles in AD (Braak and Braak, 1997). We believe that 

employing both these strategies enabled us to establish a method that performs very well in 

comparison to the existing methodologies for longitudinal measurements using sMRI 

(Holland et al., 2012; Hua et al., 2013; Leung et al., 2010b; Vemuri et al., 2010), and the 

sample size estimates show that TBM-SyN scores would be a reasonable metric to use in 

therapeutic trials.

There are two limitations of this study. First, we did not conduct the experiment where two 

different scan types were used in the pair of serial scans while computing the TBM-SyN 

scores (i.e. Accelerated first scan and unaccelerated second scan and vice versa). Second, we 

did not take into account the type of parallel imaging acquisition and reconstruction strategy 

used by the different MRI vendors. These analyses will be the subject of future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The region of interest selected based on t-test differences between the 51 AD and 51 PiB 

negative CN subjects to compute the TBM-SyN Score.
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Figure 2. 
Box plots of accelerated and unaccelerated TBM-SyN values by disease group and scan 

interval. P-values are from a paired t-test comparing accelerated to unaccelerated values.
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Figure 3. 
Scatter plots of accelerated vs unaccelerated TBM-SyN with regression lines in red. The 

equations and the coefficient of determination, R2, are at the top of each panel. The dotted 

line represents the identity line and the dashed line represents the fit.
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Figure 4. 
Bland-Altman agreement plots to assess interchangeability. The x-axis indicates the mean of 

the accelerated and unaccelerated TBM-SyN values while the y-axis indicates their 

difference.
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Figure 5. 
Estimated AUROC and confidence intervals summarizing group-wise discrimination. P-

values are from a chi-squared test of whether accelerated or unaccelerated TBM-SyN 

estimates provide better group-wise discrimination.
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Table 1

Mayo training dataset demographics

CN (n = 51) AD (n = 51) P-value*

Men, n (%) 23 (45.1) 23 (45.1) 0.84

Age at baseline, years 81 (66, 88) 81 (64, 92) 1.00

Education, years 15 (8, 20) 14 (7, 20) 1.00

CDR Sum of Boxes 0.0 (0.0, 0.5) 4.5 (0.5, 9.0) 0.001

MMSE 28 (24, 30) 21 (13, 28) 0.001

APOE ε4 carrier, n (%) 6 (11.8) 35 (68.6) <0.001

Scan interval, years 1.3 (1.1, 2.0) 1.1 (0.9, 2.0) 1.00

*
From two-sided Wilcoxon rank-sum tests or chi-squared tests

Note. Unless otherwise indicated, values shown are median (minimum, maximum).

Abbreviations: CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Exam.
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Table 2

ADNI dataset subject demographics. All subjects had a pair of accelerated and unaccelerated scans.

CN EMCI LMCI AD

Baseline to 3 months

 Subjects, n 173 278 147 98

 Men, n (%) 89 (51%) 157 (56%) 79 (54%) 60 (61%)

 Age at scan, years 72 (56, 88) 70 (55, 88) 72 (55, 91) 75 (55, 90)

 Education, years 16 (12, 20) 16 (11, 20) 16 (11, 20) 16 (9, 20)

 CDR Sum of Boxes 0 (0, 1) 1.0 (0.5, 4.0) 1.5 (0.5, 5.5) 4.5 (1, 10)

 MMSE 29 (24, 30) 29 (23, 30) 28 (24, 30) 23 (19, 26)

 APOE ε4 carrier, n (%) 48 (29%) 119 (43%) 80 (55%) 64 (74%)

Baseline to 6 months

 Subjects, n 164 250 138 76

 Men, n (%) 80 (49%) 139 (56%) 74 (54%) 45 (59%)

 Age at scan, years 72 (56, 88) 70 (55, 88) 72 (55, 91) 75 (55, 90)

 Education, years 16 (12, 20) 16 (10, 20) 16 (11, 20) 16 (9, 20)

 CDR Sum of Boxes 0 (0, 1) 1.0 (0.5, 4.0) 1.5 (0.5, 5.5) 4.5 (2, 10)

 MMSE 29 (25, 30) 29 (23, 30) 28 (24, 30) 23 (19, 26)

 APOE ε4 carrier, n (%) 50 (31%) 109 (44%) 76 (56%) 53 (74%)

Baseline to 12 months

 Subjects, n 132 211 89 32

 Men, n (%) 67 (51%) 113 (54%) 49 (55%) 22 (69%)

 Age at scan, years 72 (62, 88) 70 (55, 88) 72 (55, 91) 78 (55, 90)

 Education, years 16 (12, 20) 16 (10, 20) 17 (12, 20) 16 (12, 20)

 CDR Sum of Boxes 0 (0, 1) 1.0 (0.5, 4.0) 1.5 (0.5, 5.5) 4.5 (2, 10)

 MMSE 29 (24, 30) 29 (23, 30) 28 (24, 30) 22 (19, 26)

 APOE ε4 carrier, n (%) 36 (28%) 86 (41%) 50 (57%) 22 (71%)

Note. Unless otherwise indicated, values shown are median (minimum, maximum).

Abbreviations: CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Exam.
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Table 3

AUROC point estimates and p-value for a test of whether accelerated or unaccelerated TBM-SyN estimates 

provide better group-wise discrimination.

Groups compared

AUROC

Scan interval, months Accelerated Unaccelerated P-value

CN vs EMCI 0 – 3 0.51 0.50 0.63

0 – 6 0.52 0.51 0.65

0 – 12 0.54 0.57 0.03

CN vs LMCI 0 – 3 0.58 0.57 0.54

0 – 6 0.65 0.66 0.53

0 – 12 0.72 0.72 0.76

CN vs AD 0 – 3 0.63 0.65 0.52

0 – 6 0.82 0.82 0.96

0 – 12 0.89 0.93 0.06

EMCI vs LMCI 0 – 3 0.57 0.56 0.74

0 – 6 0.62 0.64 0.33

0 – 12 0.67 0.66 0.66

EMCI vs AD 0 – 3 0.62 0.63 0.56

0 – 6 0.78 0.8 0.49

0 – 12 0.84 0.89 0.07

LMCI vs AD 0 – 3 0.56 0.58 0.53

0 – 6 0.66 0.68 0.47

0 – 12 0.67 0.73 0.12
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Table 4

Estimated sample sizes with bootstrap 95% CIs to detect a 25% reduction in TBM-SyN with 80% power and 

two-sided α = 0.05

Accelerated n (95% CI) Unaccelerated n (95% CI) Difference* n (95% CI)

Baseline to 3 months

 CN 2238 (1089, 8984) 1729 (897, 4596) 509 (−751, 5349)

 EMCI 2850 (1507, 7799) 2673 (1409, 7865) 177 (−3641, 2687)

 LMCI 1015 (584, 2303) 841 (499, 1754) 174 (−373, 1068)

 AD 593 (328, 1332) 438 (254, 1009) 155 (−103, 761)

Baseline to 6 months

 CN 749 (446, 1524) 667 (421, 1332) 82 (−152, 446)

 EMCI 1213 (728, 2532) 898 (580, 1605) 315 (−7, 1297)

 LMCI 297 (213, 451) 286 (202, 428) 11 (−95, 132)

 AD 133 (74, 271) 107 (70, 192) 26 (−50, 138)

Baseline to 12 months

 CN 259 (181, 412) 276 (200, 404) −17 (−84, 46)

 EMCI 361 (265, 523) 272 (205, 375) 89 (35, 182)

 LMCI 157 (113, 219) 154 (108, 230) 3 (−39, 36)

 AD 56 (33, 97) 51 (30, 93) 5 (−25, 32)

*
Difference defined as the accelerated sample size minus the unaccelerated sample size.

Confidence intervals that exclude zero may be considered significant at α = 0.05.

Neuroimage. Author manuscript; available in PMC 2015 June 05.




