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HIGH HETEROZYGOSITY IS A CHALLENGE FOR GRAPE
GENOME ASSEMBLY

Domesticated grapevines (Vitis vinifera) have relatively small genomes of about 500Mb (Lodhi and
Reisch, 1995; Jaillon et al., 2007; Velasco et al., 2007), which is similar to other small-genomes
species like rice (430Mb; Goff et al., 2002), medicago (500Mb; Tang et al., 2014), and poplar
(465Mb; Tuskan et al., 2006). Despite their small genome size, the sequencing and assembling of
grapevine genomes is difficult because of high levels of heterozygosity. The high heterozygosity in
domesticated grapes may be due, in part, to their domestication from an obligately outcrossing,
dioecious wild progenitor. Domesticated grapes can be selfed, in theory, because their mating
system transitioned to hermaphroditic, self-fertile flowers during domestication. In practice,
however, selfed progeny tend to be non-viable, presumably due to a high deleterious recessive load
and resulting inbreeding depression. As a consequence of these fitness effects, most grape cultivars
are crosses between distantly related parents (Strefeler et al., 1992; Ohmi et al., 1993; Bowers and
Meredith, 1997; Sefc et al., 1998; Lopes et al., 1999; Di Gaspero et al., 2005; Tapia et al., 2007; Ibáñez
et al., 2009; Cipriani et al., 2010; Myles et al., 2011; Lacombe et al., 2013).

One such cultivar is Cabernet Sauvignon, one of the most widely cultivated wine grape cultivars.
Cabernet Sauvignon was produced from a cross between Sauvignon Blanc and Cabernet Franc
sometime before the seventeenth century in the Aquitaine region of France (Bowers and Meredith,
1997). Whether a spontaneous hybrid or a product of human breeding, all of the Cabernet
Sauvignon grown around the world is thought to have resulted from this single hybridization
event. Just as the parents of Cabernet Sauvignon have been identified, the genetic origin of many
other important wine grape cultivars is known, and they often originate from the direct crossing of
common, distantly-related cultivars (Strefeler et al., 1992; Ohmi et al., 1993; Qu et al., 1996; Bowers
and Meredith, 1997; Sefc et al., 1998; Lopes et al., 1999; Crespan and Milani, 2001; Vouillamoz
et al., 2003, 2004; Di Gaspero et al., 2005; Vouillamoz and Grando, 2006; Lacombe et al., 2007, 2013;
Tapia et al., 2007; Boursiquot et al., 2009; Ibáñez et al., 2009; Cipriani et al., 2010; Myles et al., 2011;
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García-Muñoz et al., 2012). Due to this intraspecific
hybridization process, levels of heterozygosity in grape cultivars
can easily exceed 11% (Jaillon et al., 2007).

High heterozygosity is challenging for genome assembly,
because heterozygous genomes typically produce more
fragmented sequences than haploid or homozygous genomes
of similar size and complexity (Yu et al., 2005; Argout et al.,
2011; The Tomato Genome Consortium, 2012). The goal of
standard assembly approaches is to collapse homologous regions
with sufficient similarity into haploid consensus sequences, but
divergent haplotypes in heterozygous regions typically result in
multiple, difficult to resolve assembly paths which must then
be assembled separately. Additionally, the boundaries between
haploid consensus contigs and heterozygous regions cannot be
resolved with a unique path; as a result they are left unlinked,
which breaks assembly contiguity (Figure 1A). Altogether,
elevated heterozygosity increases fragmentation and inflates the
size of the total assembly, potentially doubling the genome size
if the majority of the two homologous genomes are assembled
separately (Huang et al., 2012; Li et al., 2012; Safonova et al.,
2015). Fragmentation and retention of redundant regions can
also lead to inaccurate gene models, apparent paralogous genes
and duplicated blocks, incorrect gene copy number, and synteny
breaks.

INITIAL ATTEMPTS TO SEQUENCE THE
GRAPE GENOME

Despite the challenges in assembling heterozygous genomes, the
commercial and cultural importance of the grapevine has led
to several sequencing attempts. Two genome reference drafts
for the common grapevine were released in 2007 (Jaillon et al.,
2007; Velasco et al., 2007). Remarkably, these were the first
genomes of any fruiting crop to be sequenced and only the
fourth for flowering plants. These reference genomes, both of
which utilized the Pinot Noir cultivar, were assembled using
different approaches to address heterozygosity. The first genome
by Jaillon et al. reduced heterozygosity by inbreeding a line of
Pinot Noir (var. PN40024) to ∼7% heterozygosity (Jaillon et al.,
2007). To produce the second genome, Velasco et al. sequenced
a Pinot Noir clone (ENTAV115) directly then assembled contigs
that represented separate homologous chromosomes (Velasco
et al., 2007). Unsurprisingly, these early efforts are poor by
current standards. The PN40024 genome had∼8.4-fold coverage
and was assembled into 19,577 contigs with a contig N50 of
only 65.9 kbp. Later sequencing increased coverage to up to
12x and the contig N50 of the PN40024 genome to 102.7 kb
(Figure 1B). The ENTAV115 genome used both Sanger paired-
reads and 454 sequencing to achieve a total coverage of ∼4.2x.
Although riddled with gaps and potentially omitting large
regions of repetitive sequences where genes could be located,
the two genomes provided valuable insights into grape genomes.
Together they revealed that the Pinot Noir genome features:
(i)∼30,000 protein-coding genes, comparable to Arabidopsis but
about 75% of rice and poplar; (ii) a high proportion of repetitive
elements comprising an estimated ∼40% of the genome; (iii)

complex patterns of gene duplications consistent with one or
more paleopolypoidy events; (iv) expansion of gene families that
influence the organoleptic properties of the berry; (v) a typical
number (∼200) of NBS-LRR genes, which often function in
disease resistance, and (vi) a standard complement of genes
involved in disease signaling pathways. Despite its limitations,
the PN40024 genome assembly has proven to be invaluable
to the grape research community. Cited in over 2,000 articles,
it has served as a reference in more than 3,000 genome-wide
transcriptional analyses.

Following the publication of the PN40024 genome in 2007,
no genome reference of equivalent or greater quality has been
released for V. vinifera. Only a handful of studies have attempted
to use bona fide genome-wide approaches to measure diversity
within the species (Giannuzzi et al., 2011; Da Silva et al.,
2013; Di Genova et al., 2014; Cardone et al., 2016). With the
advent of second generation short read sequencing, attempts
were made to perform de novo assembly and reference based
resequencing of grape cultivars. These attempts failed to provide
a high quality representation of the sequenced grape genotypes.
A de novo approach was adopted to assemble the genome
sequence of Thompson Seedless, a ubiquitous multipurpose
cultivar. Despite an enormous sequencing depth (327x), the short
fragment size did not permit resolution of repetitive regions,
resulting in an extremely fragmented assembly (Di Genova et al.,
2014; Figure 1B). For the wine grape cultivar Tannat (Da Silva
et al., 2013), the authors applied a reference based assembly
approach, which had proved to be effective in assembling
multiple Arabidopsis genotypes (Gan et al., 2011). However,
reference-based assembly failed to reconstruct genotype specific
sequences with Tannat data, demonstrating that large scale
resequencing initiatives like the 1,000 Human Genome project
(Auton et al., 2015) and the 1,001 Arabidopsis Genomes project
(Alonso-Blanco et al., 2016) would not succeed for Vitis. In
fact, while the approach supported variant calling with de novo
assembly to resolve regions highly divergent in sequence between
Tannat and PN40024, it was unable to recover regions absent in
the reference but present in Tannat. Consequently, over 10% of
the gene space was not represented in the assembly, illustrating
that the genomic sequence of one cultivar is insufficient for
representing the total variability of the species. To improve
representation of the V. vinifera pan-genome and encompass the
variability of the species, we need the complete de novo assembled
genomes of additional genotypes. Moreover, as grape cultivars
are intraspecific hybrids of different genotypes, assembly of each
genome should include a diploid representation of the genome to
preserve information about the characteristics of each haplotype.

RECENT DEVELOPMENTS IN GRAPE
GENOME SEQUENCING

Single Molecule Real Time (SMRT) DNA sequencing
(Pacific Biosciences) has emerged as a leading technology
for characterizing complex structural variations, supporting and
refining the assembly of complex genomes in hybrid fashion or
alone for reconstructing highly continuous assemblies of both
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FIGURE 1 | Comparison of conventional assemblers and their application to the grapevine genome using FALCON-Unzip and its results on Cabernet

Sauvignon. (A) A diagram comparing how conventional assemblers and FALCON-Unzip resolve homozygous and heterozygous regions of diploid genomes.

(B) Comparison of sequence length distribution between the primary contigs of Cabernet Sauvignon assembled with FALCON-Unzip and other Vitis vinifera genome

contig and scaffold assemblies. (C) Distribution of sequence identity between RNAseq reads and reference when mapping is done only on primary contigs or on a

combination of primary contigs and haplotigs. (D) Shared coding genes sequences between Cabernet Sauvignon haplotypes and PN40024. Predicted coding

(Continued)
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FIGURE 1 | Continued

sequences from the Cabernet Sauvignon primary contigs were aligned using GMAP (Wu and Watanabe, 2005) to the Cabernet Sauvignon haplotigs and the

PN40024 chromosomes to identify the shared part of the represented gene space. Only alignments with identity ≥80% and coverage ≥66% were considered. In

similar fashion, coding sequences from the Cabernet Sauvignon haplotigs were aligned against the primary contigs and the PN40024 chromosomes, and coding

sequences from PN40024 were aligned against both primary contigs and haplotigs of Cabernet Sauvignon.

small and highly repetitive genomes (Chin et al., 2013; Doi et al.,
2014; Huddleston et al., 2014, 2016; Gordon et al., 2016; Ricker
et al., 2016; Seo et al., 2016; Vij et al., 2016). The advantage
of SMRT technology arises from the delivery of long reads,
currently averaging over 30 kbp and potentially approaching
100 kbp. In addition to facilitating assembly of more contiguous
genomes, long reads carry the necessary information to phase
haplotypes over multiple kilobase distances. The open-source
software, FALCON-unzip (Chin et al., 2016), was developed
specifically to utilize the long reads generated using SMRT
sequencing technology and assemble diploid genomes into
highly contiguous and correctly phased diploid genomes. The
algorithm first constructs a string graph composed of “haploid
consensus” contigs together with bubbles representing structural
variant sites between homologous loci. Sequenced reads are
then phased and separated for each haplotype on the basis of
heterozygous positions. Phased reads are finally used to assemble
the backbone sequence (primary contigs) and the alternative
haplotype sequences (haplotigs) (Figure 1A). The combination
of primary contigs and haplotigs constitute the final diploid
assembly with phased single-nucleotide polymorphisms and
structural variants between the two haplotypes.

We have recently reported the assembly using SMRT
technology and FALCON-unzip of the highly heterozygous
diploid genome of Cabernet Sauvignon (Chin et al., 2016), one
of the most widely cultivated wine grape cultivars. As it is the
progeny of Cabernet Franc and Sauvignon Blanc, two cultivars
with extremely divergent phenotypical traits, reconstructing
the diploid structure of Cabernet Sauvignon is necessary for
identifying the alleles inherited from the parent cultivars. We
sequenced the Cabernet Sauvignon genome with a coverage
depth of∼140x using SMRT sequencing technology. Sequencing
reads were then assembled using FALCON-unzip into a
highly contiguous genome that integrated phased haplotype
information. FALCON-unzip generated a set of primary contigs
(591.4Mbp in 718 contigs with N50 = 2.17Mbp, Figure 1B)
that covers one of the two haplotypes, and a set of correlated
haplotigs (367.8Mbp in 2,037 contigs with N50 = 0.80Mbp). The
assembled sequences exceed PN40024 contigs and Thompson
Seedless scaffolds by nearly two orders of magnitude in size
(Figure 1B), ranking this assembly not only as the bestV. vinifera
genome assembly but also among the highest quality plant
genomes published to date, including other genomes sequenced
with SMRT technology (Sakai et al., 2015; VanBuren et al.,
2015; Jiao et al., 2016; The UC Davis Coffee Genome Project,
2017). Symptomatic of the extreme divergence in allele sequences
in Vitis, the length of the primary assembly was inflated with
respect to the expected genome size, illustrating one of the
challenges of sequencing highly heterozygous genomes (Chin

et al., 2016). After manual removal of un-phased haplotigs, the
primary assembly is an ideal candidate for scaffolding or hybrid
assembly with optical maps to produce a genome assembly of
even higher quality.

Preliminary gene model prediction identified over 34,000
protein coding sequences on the primary assembly of the
Cabernet Sauvignon genome and nearly 24,000 on the haplotigs
(Chin et al., 2016). Just a few hundred of PN40024 annotated
coding genes did not find any suitable alignment on the Cabernet
Sauvignon assembly (411 genes; identity ≥80% and coverage
≥66%), but nearly 4,900 Cabernet Sauvignon loci could not be
found on the PN40024 genome (Figure 1D). These results are
in accordance with other studies that reported presence/absence
polymorphisms of gene models between wine grape cultivars (Da
Silva et al., 2013; Venturini et al., 2013; Jiao et al., 2015), but
the high number of genes not found in PN40024 likely reflects
its incompleteness. Moreover, nearly 2,100 coding sequences
identified in the Cabernet Sauvignon haplotigs were not found
on the primary assembly (Figure 1D). While limited by the
preliminary status of the annotation, these observations point
to a high degree of structural variation between homologous
chromosomes. Moreover, these structural variations are likely
to have functional consequences since they encompass coding
sequences. The variability between haplotypes may also impact
and potentially confound the analysis of RNAseq data. In the
worst case, the expression of haplotype-specific loci that are
not represented on the reference genome would be assigned
to the most similar genomic region of the reference, which is
likely to generate expressionmismeasurement artifacts. As shown
in Figure 1C, in the presence of a diploid reference (primary
contigs plus haplotigs), about 10% more RNAseq reads map at
≥99% identity. This observation suggests that when both alleles
are represented in the reference reads align to their respective
haplotype; RNAseq can therefore be used to determine allelic
specific gene expression.

CONCLUSIONS

Genome resequencing projects of both prokaryotic and
eukaryotic organisms have clearly shown that one genome
sequence is insufficient to properly describe the genetic
characteristics of a species (Tettelin et al., 2005; Donati et al.,
2010). In order to grasp comprehensive genetic variability and
complete gene pools in outcrossing species, such as grape, we
also need to go beyond the generation of haploid consensus
sequences and focus our efforts to begin assembling diploid
genome sequences with phased haplotypes. As discussed in
this article, long read sequences and bioinformatic tools that
take advantage of them have solved a critical bottleneck in
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grape genomics. As long-range scaffolding technologies, such
as those based on proximity ligation–based methods like Hi-C
(Putnam et al., 2016) or optical maps (Hastie et al., 2013;
Yoon et al., 2016) are optimized for highly heterozygous plant
genomes, we expect that reference-grade genome references will
quickly become available for many grape species and cultivars of
interest. This genomic information will allow us to identify core
sequences that are common to all cultivars, as well as dispensable
sequences comprising partially shared and non-shared genes that
contribute to inter-cultivar phenotypic variation. This genomic
information will also enable the identification of the genetic
bases of economically important traits to accelerate the breeding
of new cultivars and rootstocks.
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