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Abstract
The practice of using recycled wastewater (RWW) has been successfully adopted to address the growing demand for clean 
water. However, chemicals of emerging concern (CECs) including pharmaceutical products remain in the RWW even after 
additional cleaning. When RWW is used to irrigate crops or landscapes, these chemicals can enter these and adjacent environ-
ments. Unfortunately, the overall composition and concentrations of CECs found in different RWW sources vary, and even 
the same source can vary over time. Therefore, we selected one compound that is found frequently and in high concentra-
tions in many RWW sources, acetaminophen (APAP), to use for our study. Using greenhouse grown eggplants treated with 
APAP concentrations within the ranges found in RWW effluents, we investigated the short-term impacts of APAP on the 
soil bacterial population under agricultural settings. Using Illumina sequencing-based approaches, we showed that APAP 
has the potential to cause shifts in the microbial community most likely by positively selecting for bacteria that are capable 
of metabolizing the breakdown products of APAP such as glycosides and carboxylic acids. Community-level physiological 
profiles of carbon metabolism were evaluated using Biolog EcoPlate as a proxy for community functions. The Biolog plates 
indicated that the metabolism of amines, amino acids, carbohydrates, carboxylic acids, and polymers was significantly higher 
in the presence of APAP. Abundance of microorganisms of importance to plant health and productivity was altered by APAP. 
Our results indicate that the soil microbial community and functions could be altered by APAP at concentrations found in 
RWW. Our findings contribute to the knowledge base needed to guide policies regulating RWW reuse in agriculture and also 
highlight the need to further investigate the effects of CECs found in RWW on soil microbiomes.

Keywords  Contaminants of emerging concern · Treated wastewater · Soil bacterial community · Soil microbiome

Introduction

Potable water supplies are becoming scarce with the increas-
ing world population. Changing climate factors such as ris-
ing temperatures and altered precipitation patterns limit 
the regeneration of these supplies [1–3]. Conservation can 
only stretch water supplies so far and may not be enough 
to address the growing demands for clean water [2]. Alter-
native ways to generate usable water, such as recycling 
wastewater, are essential to help meet the rising demand 
[2, 4]. Efforts to solve water shortage problems by import-
ing water can impact non-arid regions and can cause the 
environment to suffer through reduction of habitat area and 

water availability for the biota [5]. In addition, importing 
water can be costly and it is not an ideal long-term solu-
tion [6, 7]. Therefore, alternative methods for generating 
potable water are becoming a necessity to meet rising water 
demands [3, 8].

Use of recycled wastewater (RWW) to supplement pota-
ble water supplies has been very successful [7–9] in arid 
regions, such as southern California. RWW is primarily 
used for agriculture and landscape irrigation [8–11], allow-
ing farmers in arid regions to maintain high agricultural 
outputs with less dependence on the potable water supply 
or having to increase water withdrawal from natural aqui-
fers [7, 11]. Using RWW has been so successful that many 
water districts in California are planning on increasing their 
capacity for capturing and treating larger volumes of their 
wastewater [12]. Despite the large conservation success of 
RWW, this water may pose risks to natural and agricultural 
environments. The wastewater treatment process is efficient 
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at removing potentially disease-causing biological contami-
nants, but is less effective at removing chemical contami-
nants [13–16]. These contaminants include pharmaceuticals, 
personal care products, detergents, and nanoparticles that are 
collectively referred to as chemicals of emerging concern 
(CECs) [14, 16, 17]. Processing of wastewater can reduce 
the levels of CECs by major proportions depending upon 
the RWW plant (for example: 74%, 71%, 67%, 91%, 99% for 
sulfamethoxazole, tetracycline, gemfibrozil, ibuprofen, and 
APAP respectively) [14, 16, 17]. It was originally believed 
that the final CEC concentrations in RWW effluent (typi-
cally in the μg to mg/L range) were too low to be biologi-
cally relevant [18–20]. However, recent evidence suggests 
that the concentrations of CECs in RWW can impact micro-
organisms, insects, and plants [21–26]. CECs accumulate 
in soils irrigated with RWW [14], and they are taken up 
by plants inevitably accumulating in their tissues [18, 19, 
27]. Therefore, CECs pose a risk in the agricultural settings 
where RWW is primarily used, and RWW should be evalu-
ated extensively to manage or reduce any potential hazards.

RWW sources vary in the concentration and composition 
of CECs temporally and spatially, which may be related to 
the sources and human activities that generate the wastewa-
ter [28]. Additionally, it is more than likely that the different 
CECs will interact with each other and affect the behavior 
of different CECs that are present, possibly ameliorating 
or intensifying their effects. For example, gemfibrozil can 
increase the potency of the antifungal compound flucona-
zole [29], sulfamethoxazole can increase the antimicrobial 
effects of rifampicin [30], and APAP can induce β-lactamase 
activity and decrease the susceptibility of bacteria to cer-
tain antibiotics [20]. Aspirin and ciprofloxacin can have 
antagonistic drug interactions, reducing their potency [31]. 
These combinations of factors make it difficult to distin-
guish the impacts of individual CECs in RWW on the plant 
associated microbial communities. Therefore, we decided 
to examine the effects of one of the most prevalent CEC on 
soil microbes. APAP is consistently found in RWW efflu-
ent in many regions and at higher concentrations than other 
CECs [13, 16, 28, 32, 33]. At the upper ranges, APAP has 
been found to reach max concentrations of 24.53 to 112.78 
ug/L [34, 35]. Average concentrations of APAP in RWW 
effluent have been found between 0.0081 ug/L [14] to 11.73 
ug/L [35]. APAP has also been observed to accumulate in 
soils from 10 to 4860% above the concentration found in the 
applied effluent [14].

APAP can act as an anthropogenic factor and disrupt 
microbial functions essential to plant health such as nitrogen 
cycling [22]. Soil microbiomes that are altered by anthropo-
genic factors can exhibit the loss or reduction of key func-
tions, such as nutrient cycling [36–38]. While most studies 
to date on the hazards of CECs in the soil have focused on 
accumulation, transformation, or effects on soil fertility, [3, 

14, 34, 39], few if any have investigated their impacts on 
plant–microbe interactions. In this study, we investigated 
how APAP can alter the soil microbiome and consequently 
impact plant health which is correlated to productivity 
[40–42]. Since CECs accumulate in soils irrigated with 
RWW, they can alter the plant associated soil microbiome 
[22]. The addition of CECs into a given soil environment has 
the potential to select for a specific group of organisms, pos-
sibly ones that can benefit directly from the compound [43]. 
Since high usage of APAP is likely to continue, and it has 
been found to impact soil microorganisms and their func-
tions, we decided to evaluate the short-term (3 and 7 weeks 
post application) impacts directly on the soil microbial com-
munity of an important agricultural crop. We hypothesized 
that APAP at levels found in RWW will alter the soil bacte-
rial community structure and function within a single grow-
ing season.

Materials and Methods

Eggplant Cultivation and Soil Collection

Solanum melongena (eggplants, variety Patio Baby) were 
cultivated as described in supplementary material and 
methods (SI-1) and our previous study [26]. Treatments 
were applied by irrigating with water containing 10 μg/L or 
5 μg/L of APAP (APAP-10 and APAP-5 respectively), and 
control plants (no CEC) with tap water [44, 45]. Tap water 
sources are independent to the RWW system and previous 
observations have indicated that tap water contains a negli-
gible amount of CECs [46]. Given that the composition of 
RWW is very variable [14, 16, 17] and that RWW contains 
a plethora of compounds that may impact the plants or soil 
microbes directly [14, 16, 17], we decided to dilute APAP 
in tap water to reduce the number of factors that could con-
tribute to the results obtained. Soil samples were collected 
before treatments (T0 time point), 3 and 7 weeks after begin-
ning of treatments (T1 and T2 respectively). Push cores of 
1-cm diameter and 3 cm deep of soil were collected at least 
3 cm from the eggplant stem and 3 cm from the wall of the 
pot containing the soil. Please see the Supplementary Meth-
ods for more details.

DNA Extractions and Illumina Sequencing Library 
Preparation

Total environmental DNA was extracted from 0.25 g of 
soil samples described above using the DNeasy Powersoil 
kit (Qiagen, Valencia, CA, USA), following manufacturer 
instructions, except 50 µL of solution C6 was used. DNA 
quality was checked using an Implen NanoPhotometer 
(Implen, Westlake Village, CA, USA). Amplicon libraries 
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of the bacterial 16S rRNA gene were generated from the 
extracted DNA to characterize the bacterial community. 
A two-step PCR dual indexing inline barcoding procedure 
and primers were used to generate amplicons for Illumina 
sequencing [23, 47, 48]. Phusion high-fidelity PCR master 
mix with HF buffer (Thermo Scientific) and 0.2-µM primers 
were used as PCR reagents with 1 µL of extracted DNA for 
the template. PCRs were carried out on the BioRad T100 
thermal cycler as described by Kembel and colleagues [23, 
48] except we used 56.5 annealing temperature, 24 cycles, 
and final elongation time of 5 min. PCRs were screened 
for quality and fragment size using gel electrophoresis with 
a 1% agarose gel. Amplicons from successful PCRs were 
purified using the Agencourt AMPure xp beads protocol 
(Beckman Coulter, Brea, CA, USA), except that SPRI beads 
(Beckman Coulter, Brea, CA, USA) were used and all etha-
nol washes were done using 80% ethanol. Cleaned DNA 
products were used as a template in a second PCR under 
similar conditions as described above except 0.3 µM HPLC-
purified PCR2F and PCR2R primers were used [23, 48] and 
7 cycles were used with an annealing temperature of 65 °C. 
PCRs were screened as described for the initial PCR. DNA 
concentrations were measured using the nanodrop spec-
trophotometer, and amplicons were pooled in equal molar 
concentrations of 5 nM for sequencing. The samples were 
submitted to the UCR genomics core facility where library 
quality was assessed using a 2100 Bioanalyzer (Agilent) 
and the libraries were sequenced using a MiSeq sequencer 
(Illumina) and Miseq Reagent kit version 3 (Illumina) with 
2 × 150 cycles. The Raw sequences were submitted to NCBI 
and are under the accession numbers PRJNA808107.

Data Analysis—Processing and Quality filtering

The forward and reverse Illumina sequencing reads were 
joined together and quality filtered using default settings in 
QIIME1 [49]. Joined sequences were demultiplexed using 
their unique barcode pairs in QIIME1. Demultiplexed sam-
ples were uploaded into QIIME2 with their associated qual-
ity scores [50]. Sequences were quality filtered further using 
the deblur method in QIIME2 [50–52]. Samples that con-
tained less than 9000 sequences were removed. The num-
ber of sequences per sample were rarefied down to match 
the sample with the lowest amount, 10,300 sequences [50]. 
Deblur classified these sequences into amplicon sequence 
variants (ASVs) that were taxonomically identified to the 
lowest possible level by matching to the Greengenes data-
base (v 13.8) using QIIME2 default parameters [53]. Nega-
tive controls were sequenced in parallel, any ASVs detected 
were filtered out from the data using QIIME2 before down-
stream analyses. Community α-diversity was measured 
using the Shannon-Wiener index in QIIME2 and statistically 
compared using the best fitting generalized linear model 

(GLiM) (normal distribution and identity link function) as 
determined by the model with the lowest Akaike’s Informa-
tion Criterion (AIC) in SPSS (IBM, V. 27.0). Box plots of 
α-diversity metrics were generated in QIIME2. Community 
differences among all time points (β-diversity) were evalu-
ated using PERMANOVA [54, 55] on Bray–Curtis distance 
matrices in QIIME2 [56, 57]. Boxplots of the β-diversity 
were plotted in QIIME2. Community data from QIIME2 was 
used in Paleontological Statistics (PAST) [58] to generate 
PCA graphs showing the taxa that contributed to the most 
differences among communities. The group significance test 
in QIIME1, which uses pairwise Kruskal–Wallis tests, was 
used to statistically compare the abundance of ASVs [49]. 
Taxa were considered to be significantly different in relative 
abundance if P < 0.05, with an FDR value lower than 0.2. 
A conservative FDR value of less than 0.2, as described by 
Efron [59], was used in order to obtain a more inclusive 
set of microbes that are potentially impacted by APAP so 
that more bacterial taxa could be considered for additional 
study. A similar logic was used by Go et al. [60] to screen 
for candidate metabolites, and the study Kong et al. [61] 
used FDR < 0.2 to determine which microbes were signifi-
cantly differentially abundant in the oral and gut microbi-
ome of humans. Community data generated in QIIME2 was 
imported into PICRUSt2 [62] to predict the potential bacte-
rial metagenome present in the soil communities. The data 
was normalized by copy number and predictions were based 
on the Kyoto Encyclopedia of Genes and Genomes (KEGG 
orthologs) database. STAMP [63] was used to do initial 
ANOVAs on each predicted gene to screen for ones that 
were differentially abundant among all treatments. Genes 
that were found to be significantly differentially abundant 
(P < 0.05) with a high effect size (measured as eta-squared 
(ƞ2)), ƞ2 > 0.40, were kept for additional pairwise analyses 
described below to ensure that the differences were biologi-
cally relevant [64]. Welch’s t-test, in STAMP, was used for 
pairwise comparisons among all treatments for genes that 
passed this screening.

Evaluating Changes in Microbial Functional 
Diversity

In order to verify PICRUSt2 predictions and determine 
changes in functional diversity, the utilization of differ-
ent carbon sources for microbes in APAP-10-treated and 
untreated soils was evaluated using the Biolog EcoPlate [65, 
66]. The Biolog EcoPlate contains 31 ecologically relevant 
carbon sources and water (control) in triplicates within a 
96 well plate (Supplementary Table 1). The same soil sam-
ples collected at 7 weeks after treatment with APAP-10 
(T2), described above, were used in the Biolog procedure 
described by Liu et al. [65] with a few exceptions. To make 
soil suspensions, 1 g soil was added to 10 mL of dH2O, 
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shaken at room temperature, added to the Biolog plates 
that were incubated for 6 days at 25 °C, and the absorbance 
at 590 nm was read at 12, 24, 48, 72, 96, and 120 h post 
inoculation (hpi) using a Promega GloMax-Multi Detection 
System.

The absorbance of each well was standardized by sub-
tracting the absorbance for the water control. Average well 
color development (AWCD) was used as a measure utili-
zation of the carbon source in each well by the microbial 
community. The formula used to calculate AWCD was as 
follows:

A 3-way best fitting generalized linear model (GLiM) 
(gamma distribution with log link function) as determined 
by the model with the lowest AIC was used to determine 
the interaction effect of APAP treatment and their respec-
tive impacts on AWCD. One-way GLiMs were used to com-
pare the effects of soil treatment among time points. GLiM, 
post hoc pairwise comparisons were done using the least 
significant difference (LSD) to evaluate treatment effects 
within each time point. Biolog plate and community data 
from QIIME2 were imported into PAST to conduct canoni-
cal correspondence analysis (CCA).

AWCD =
∑ (Optical Density in Carbon Source Well − Optical Density of Control)

31

Hydrolysis of fluorescein diacetate (FDA) was used as 
a proxy to measure microbial activity in soils treated with 
APAP-10 and without APAP. Soil similar to that used to 
grow eggplants as described above was irrigated with APAP-
10 in the greenhouse for 3 weeks, with no plants grown in it. 
Each treatment was replicated 4 times. The FDA assay and 
standard curve were carried out as described in [67], with 
the exception that 6.0 g of wet weight soil were incubated for 
15 h at 30 ℃. For the standard curve, 50 mL acetone solu-
tions containing 0 to 800 ug of FDA, in increments of 200 
ug, were measured using spectrophotometry.

Results

Bacterial Community

Illumina sequencing data indicated that APAP did not have 
an effect on community ⍺-diversity. APAP-10 at T2 had 
the highest Shannon–Wiener index value of 10.18, while 
the no CEC treatment at T2 had the lowest at 9.63 (Fig. 1). 
The initial diversity present in the soil community at T0 
was 10.04. These differences in diversity were not impactful, 
as no significant interactions nor differences were detected 
among treatments and time points (2-way GLiM:x2

2
= 0.744 , 

P = 0.679 ; x2
2
= 1.874 , P = 0.392 ; x2

2
= 0.078 , P = 0.780 ; 

respectively).
However, the community structure was altered by the 

addition of APAP. The initial overall PERMANOVA com-
parison did not detect significant differences among treat-
ments (PERMANOVA pseudo-F = 1.85, pseudo-P = 0.149), 

Fig. 1   Box plots comparing 
the Shannon-Wiener index of 
samples treated with 10 μg/L 
(APAP 10) or 5 μg/L of 
acetaminophen (APAP 5) and 
the untreated control (no CEC) 
collected at the beginning of the 
experiment, 3 and 7 weeks after 
start of treatment (T0, T1, and 
T2 respectively)
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while pairwise analyses did. APAP-10-T1 soil community 
structure was significantly different from the T0 soil commu-
nity (PERMANOVA pseudo-F = 1.743, pseudo-P = 0.047) 
(Fig. 2). At T2, the soil community structures treated with 
APAP-10 and APAP-5 were significantly different from 
the T0 soil community (PERMANOVA pseudo-F = 2.100, 
pseudo-P = 0.026; pseudo-F = 1.749, pseudo-P = 0.016; 
respectively). At T1 and T2, the untreated soil community 
structure was not significantly different from the T0 commu-
nity (PERMANOVA all P’s > 0.05). The relative abundance 
of different bacterial groups was impacted by the addition 
of APAP. A total of 748 ASVs were identified among all 
samples, and 247 of them were found to be significantly 
differentially abundant between T0 and the APAP-10 T2 
communities (QIIME1 group significance Kruiskal-Wallis 
test; all P’s < 0.05, All FDR < 0.17). In all treatments, Pro-
teobacteria were the most abundant in the soil with a rela-
tive abundance between 40 and 60% (Fig. 3). The relative 
abundance of the Chloroflexi phylum more than doubled in 
any soils treated with APAP, but decreased in the untreated 
soils between T1 and T2 (Fig. 3). The relative abundance 
of the Actinobacteria class increased from 6.3% and 8.6% 
at T1 to 9.8% and 11.0% at T2 for APAP-10 and APAP-
5, respectively. This was lower than in the untreated soil 
that had relative abundance of 9.4% at T1 and 17.8% at T2 
(Table 1). Bacteroidetes phylum abundance was lower in 
APAP-treated soil than untreated soils by time point T2 
with only 11.9% and 13.2% relative abundance for APAP-
10 and -5 respectively, compared to 15.2% for the untreated 
soil community. Indicating an inverse relationship between 

abundance of the Bacteroidetes phylum and APAP concen-
tration. At T2, the Gemmatimonadetes class had higher rela-
tive abundance in the APAP-10- and APAP-5-treated soil 
(8.3% and 6.5%, respectively) compared to the untreated soil 
(4.4%) (Table 1). The relative abundance of Firmicutes did 
not change significantly with time or APAP treatment, and 
remained between 2.3 and 3.6%. However, the relative abun-
dance of Acidobacteria decreased in all treatments compared 
to the original soil and the largest decrease was observed 
in the untreated soil (3.3 to 1.3%; T0 to T2 respectively) 
(Table 1).

The PCA plot of the sequencing data revealed 5 taxo-
nomic groups that had a strong impact on causing commu-
nity differences among the treatments (Fig. 4). The Act-
inobacteria class contained numerous lower divisions of 
microbial taxa, with the majority of their abundance being 
significantly lower in APAP-10-treated soils than the initial 
soil T0 (QIIME1 group significance Kruskal–Wallis; all 
P’s < 0.05). There were two distinct groups of microbes in 
the Gemmatimonadetes phylum that decreased significantly 
in abundance from T0 to T2 in the APAP-10-treated soils 
(QIIME1 group significance Kruskal–Wallis; all P’s < 0.05, 
all FDR < 0.13). The Pseudomonadaceae family makes up a 
large component of the vector representing the Gammapro-
teobacteria class (denoted with * in Fig. 4), and this family 
significantly decreased in abundance between T0 and T2 
in APAP-10 (QIIME1 group significance Kruskal–Wallis; 
all P’s < 0.05). The decrease in abundance of Xanthomon-
adaceae family within the Gammaproteobacteria class 
(denoted with ** in Fig. 4) after APAP-10 treatment was 

Fig. 2   Box plot of Bray Curtis 
distance samples untreated and 
treated with 10 μg/L or 5 μg/L 
of acetaminophen (APAP 10 or 
APAP 5 respectively) and the 
untreated control (no CEC), and 
collected at the beginning of the 
experiment, 3 and 7 weeks after 
start of treatment (T0, T1, and 
T2 respectively). Star denotes 
samples that were significantly 
different from diversity values 
compared to the initial, T0, 
samples. Pairwise Permanova 
all P’s < 0.05
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not significant (QIIME1 group significance Kruskal–Wallis; 
P > 0.05, FDR > 0.13; Fig. 4). However, a few individual 
organisms of agricultural importance in Xanthomonadaceae 
and Pseudomonadaceae families increased with the addition 
of APAP, namely Lysobacter spp. and Pseudomonas viridi-
flava, respectively, whose relative abundance was 0.064% 
and 0.26% higher in APAP-10-treated soil compared to the 
untreated control by T2.

Metagenome Prediction

Interestingly, the PICRUSt2 metagenome analysis predicted 
there to be 7393 potentially expressed genes among all soil 
bacterial communities in this study. The initial ANOVAs to 
screen for biologically relevant differences in gene abun-
dance among treatments found 521 such genes. According 
to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database, 202 of them were involved in metabolic pathways 
[68] (ANOVAs, all P’s < 0.05; all ƞ2 > 0.40). At T2, APAP-
10 had more genes predicted to be significantly differentially 
abundant than T0, no CEC or APAP-5 treatments (Fig. 5, 
Supplementary Table 2). APAP-10 T2 had 47 predicted 
genes that were significantly greater in abundance compared 
to the initial soil community.

A diverse set of predicted metabolic genes had increased 
in abundance by T2 compared to T0. The majority were 
observed in APAP-treated soil communities. APAP-10 T2 
had many predicted upregulated genes related to amino acid, 
carbohydrate, energy, cofactors, and vitamins, terpenoids 

and polyketides metabolism, and biosynthesis of other sec-
ondary metabolites (Supplementary Table 2), but the no 
CEC soil community had only one metabolic gene predicted 
to be increased. Additionally, 92% of the predicted genes for 
the metabolism of terpenoids and polyketides were observed 
in APAP-treated soil communities and about 70% of them 
were in the APAP-10 T2 soil community. Overall, APAP-10 
T2 had the highest number of predicted genes to increase 
in abundance which were in more diverse metabolism cat-
egories compared to the other treatments (Supplementary 
Table 2).

Evaluating Changes in Microbial Functional 
Diversity

The PICRUSt2 analysis of the expected metagenome pre-
dicted there to be a higher abundance of metabolic genes 
in the APAP-10 T2 soil community compared to the other 
treatments, suggesting there to be higher rates of metabo-
lism in the APAP-10 soil community. Therefore, these 
predictions were confirmed by evaluating soil community 
functions using the Biolog Ecoplate assay. The breakdown 
of various carbon sources directly (measured as the aver-
age well color development, AWCD) serves as a proxy 
to measure soil community activity [66]. Across all the 
time points, carbon sources, and CEC treatments, carbon 
utilization (measured as AWCD) was significantly higher 
in APAP-10-treated soil compared to the control (3 way 
GLiM: X2 = 190.327, P ≤ 0.001). Carbon utilization was also 

Fig. 3   The relative abundance of bacteria in soil samples treated with 
10 μg/L or 5 μg/L of acetaminophen (APAP 10 or APAP 5 respec-
tively) and the untreated control (no CEC), and collected at the begin-

ning of the experiment, 3 and 7  weeks after start of treatment (T0, 
T1, and T2 respectively). Relative abundance of the bacteria was 
determined at the phylum level only. P = phylum
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significantly different among carbon types and timepoints 
(3 way GLiM: X2 = 86.067, P ≤ 0.001 & X2 = 3253.563, 
P ≤ 0.001; respectively). A significant 3-way interaction 
was detected between APAP treatment, carbon type, and 
time point (3-way GLiM: X2 = 54.522, P = 0.003). Signifi-
cant 2-way interactions were detected among CEC treat-
ments and carbon type, CEC treatments and timepoints, 
and carbon type and timepoints (3-way GLiM: X2 = 40.705, 
P ≤ 0.001; X2 = 56.559, P ≤ 0.001; X2 = 182.62, P ≤ 0.001; 
respectively). From 24 h post incubation (hpi) to 144 hpi, the 
AWCD of APAP-10-treated soils was significantly higher 
than that of untreated soils (one-way GLiM: X2 = 2544.759, 
P ≤ 0.001; all post hoc LSD comparisons < 0.05). (Fig. 6A). 
The AWCD of APAP-treated soils were 1.3%,12.7%, 18.7%, 
22.2%, 22.2%, and 20.6% higher than untreated soils after 
24, 48, 72, 96, 120, and 144 hpi, respectively (Fig. 6A). By 
96 hpi, carbon utilization for amines, amino acids, carbo-
hydrates, carboxylic acids, and polymers were significantly 
higher for APAP-treated soils than untreated soils (One-way 

GLiM: X2 = 101.607, P ≤ 0.001; all post hoc LSD P < 0.05; 
Fig. 6B).

The CCA analyses conducted to determine if substrate 
utilization could be a factor in shaping soil community 
differences indicated that amino acid, carbohydrate, car-
boxylic acids, and polymer metabolism contributed to 
community structural differences. These had the largest 
vectors on the CCA plot, indicating that differences in 
these metabolic pathways between treated and untreated 
soil communities had a large effect on influencing com-
munity structure (Fig. 7).

To confirm the results of the Biolog plates, the FDA 
hydrolysis assay was used as a proxy for soil community 
activity. The hydrolysis activities of the different treat-
ments were, 169.94, 161.32, and 154.33 ug of FDA per 
g of dry soil, for APAP-10, APAP-5, and the untreated 
soil respectively. The amount of FDA hydrolyzed in the 
APAP-10-treated soil was significantly higher than in 
the untreated soil (ANOVA: F2 = 6.94 P = 0.018; Tukey 

Table 1   Relative abundance averaged among replicate samples of major taxonomic groups detected in the soil from Illumina sequencing

Taxonomy Initial T0 No CECs T1 No CECs T2 APAP 5 µg/L T1 APAP 5 µg/L T2 APAP 10 µg/L T1 APAP 10 µg/L T2

p__Proteobacteria;c__Betapro-
teobacteria

5.43% 4.01% 2.49% 3.48% 3.91% 2.22% 3.79%

p__Proteobacteria;c__
Deltaproteobacteria;o__Myxo-
coccales

4.10% 4.10% 4.48% 4.02% 4.46% 2.13% 4.24%

p__Proteobacteria;__others 3.42% 2.95% 2.25% 2.69% 2.70% 12.17% 2.73%
p__Proteobacteria;c__

Gammaproteobacteria;o__
Xanthomonadales

8.63% 6.52% 6.76% 6.54% 7.38% 0.01% 8.05%

p__Proteobacteria;c__
Gammaproteobacteria;o__
Pseudomonadales

3.99% 1.34% 5.05% 2.93% 1.17% 0.53% 1.19%

p__Proteobacteria;c__Gam-
maproteobacteria;__others

2.22% 2.95% 3.06% 5.63% 4.05% 23.29% 2.72%

p__Proteobacteria;c__
Alphaproteobacteria;o__
Sphingomonadales

5.47% 5.14% 6.78% 5.55% 5.94% 0.32% 5.62%

p__Proteobacteria;c__
Alphaproteobacteria;o__
Rhizobiales

2.03% 2.99% 4.87% 4.85% 4.17% 2.82% 2.72%

p__Proteobacteria;c__Alphapro-
teobacteria;__others

6.83% 6.91% 8.17% 10.32% 8.45% 21.15% 5.67%

p__Actinobacteria;c__Actino-
bacteria

9.34% 9.38% 17.76% 8.58% 9.81% 6.29% 11.05%

p__Actinobacteria;__others 4.59% 4.74% 2.68% 3.28% 4.10% 2.09% 4.95%
p__Gemmatimonadetes;c__

Gemmatimonadetes
9.07% 10.83% 4.42% 6.35% 6.51% 4.05% 8.25%

p__Gemmatimonadetes;__others 11.78% 13.18% 5.50% 8.61% 8.99% 6.59% 11.22%
p__Bacteroidetes 8.91% 9.34% 15.17% 16.03% 13.24% 9.05% 11.92%
p__Firmicutes 3.49% 3.57% 3.34% 2.78% 3.46% 2.31% 2.85%
p__Chloroflexi 3.20% 3.55% 1.51% 2.09% 5.46% 1.26% 5.52%
p__Acidobacteria 3.30% 3.08% 1.31% 2.22% 2.09% 1.29% 2.51%
p__Verrucomicrobia 1.20% 1.03% 0.82% 1.06% 1.47% 0.73% 1.76%
p__Nitrospirae 0.67% 1.15% 0.24% 0.43% 0.27% 0.26% 0.41%
p__TM7 0.08% 0.72% 1.16% 0.35% 0.30% 0.29% 0.54%
Others 2.24% 2.52% 2.16% 2.22% 2.07% 1.15% 2.28%
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pairwise comparisons P < 0.05). Thus, indicating higher 
microbial activity in APAP-10-treated soil. These results 
parallel well with the above Biolog Ecoplate results.

Discussion

The combined observations of the 16S rRNA data, 
predicted metagenome, Biolog EcoPlate assays, and FDA 
analysis indicate that the bacterial communities in our soil 
samples were sensitive to the APAP concentration used 
in this study. Significant community differences were 
observed within 3 weeks of APAP treatment and significant 
differences in carbon metabolism were observed between 
treated and untreated samples collected 7  weeks after 
starting treatment. Taken together, our results show that 
APAP altered the soil bacterial communities and impacted 
community functions within a single growing season of 
eggplants.

In our study, APAP treatment did not change community 
α-diversity levels as previously observed in another study 
[69]. This may be due to the fact that plants can stabilize 
their associated soil microbial communities [42, 70]. Given 
that microbes are not impacted equally by a disturbance 
[36, 37], our results suggest that APAP did not completely 
displace many bacterial taxonomic groups, but caused a 

shift in the relative abundance of certain groups. Since we 
observed increases in microbial activity, (i.e., increased 
substrate utilization and FDA hydrolysis) it is possible 
that APAP was acting as a carbon source for a subset of 
soil community members and selected for microbes that 
can utilize it directly or indirectly [27, 33, 71–73]. The 
differences in β-diversity between APAP-treated soils 
and the initial sampling point suggest that the microbial 
communities were sensitive to APAP at the concentrations 
found in RWW, especially after 7 weeks of exposure. This 
is consistent with previous observations that indicated 
that pharmaceutical products, including APAP, can 
impact microbial communities, and hinder or disrupt key 
microbial functions [20–22, 74]. Therefore, our rationale 
is that since APAP is found in RWW as an intact active 
compound and is broken down into a glucoside by soil 
fungi or plants [27, 71, 72] or into the carboxylic acid 
2-hexenoic acid by soil microorganisms [33], the intact 
active compound and breakdown products of APAP can 
be utilized as carbon sources by soil bacteria [75–77]. 
Bacterial groups that can utilize these carbon sources will 
most likely be selected for in APAP-contaminated soils, 
thus altering the soil microbiome. Plant health is intimately 
related to its associated soil microbiome and its functions, 
thus any alterations to the microbiome could have negative 
impacts on plant productivity [41, 78]

Fig. 4   PCA graph of Illumina 
sequencing data with plotted 
vectors showing community 
members that contributed most 
to the variability in soil com-
munities from soil treated with 
10 μg/L or 5 μg/L of acetami-
nophen (APAP-10 and APAP-5 
respectively) and the untreated 
control (no CEC), and collected 
at the beginning of the experi-
ment, 3 and 7 weeks after start 
of treatment (T0, T1, and T2 
respectively). * = Gammapro-
teobacteria class containing 
the Pseudomonadaceae family, 
** = Gammaproteobacteria class 
containing the Xanthomona-
daceae family



1456	 N. K. McLain et al.

1 3

The APAP concentrations used in our study represent lev-
els found in RWW effluent [15, 32, 34, 35, 79]. The exact 
concentrations of APAP in RWW effluent vary among 
regions and across seasons, and have been observed to reach 
concentrations up to 112.78 ug/L, with averages between 
0.0081 ug/L [14] and 11.73 ug/L [34, 35]. Additionally, 
soils that are irrigated with RWW effluent can accumulate 
between 604 and 4860% of the APAP found in irrigation 
water [14]. Our results demonstrated that these concentra-
tions can impact soil microbial communities, especially with 
repeated exposure. Our results concur with previous findings 
showing that microbes in agricultural soils are sensitive to 
APAP present in RWW [22, 69, 80]. However, in these other 
studies, the resolution for detecting specific microbial com-
munity members was limited because they relied on non-
sequencing-based approaches to characterize changes in the 
soil microbial community. In contrast, our study was able to 
detect specific shifts in the microbial community and iden-
tify specific bacterial groups that were impacted by APAP 
treatment using Illumina sequencing-based approaches.

When the microbial community shifts, community func-
tions may also change. Addition of APAP to soils disrupted 
key aspects of nitrogen cycling although the concentrations of 
APAP (50 to 1000 mg/L) used in those studies were greater 
than those found in RWW effluent [22, 74]. Our Biolog assay 
showed altered microbial functions using concentrations 
within the range found in RWW effluent (10 ug/L). Besides 
lower APAP concentration, our study distinguishes itself from 
previous ones in a few other ways. Unlike previous studies that 
focused on nitrogen cycling [36, 81], our study examined utili-
zation of 31 ecologically relevant carbon sources (Supplemen-
tary Table 1). This approach encompasses a much larger por-
tion of the soil microbial community and was not limited to a 
specific set of community members such as anammox bacteria 
[74], or bacteria that contain amoA, napaA, or nifH genes for 
nitrification, denitrification, or nitrogen fixation respectively 
[36]. Thus, by using various carbon sources, we screened for a 
wide variety of bacterial groups that were impacted by APAP 
treatment. In addition, we employed secondary methods to 
identify the specific microbes responsible for the observed 

Fig. 5   Venn diagram comparing 
genes predicted to be sig-
nificantly more abundant in soil 
communities from soil treated 
with 10 μg/L or 5 μg/L of 
acetaminophen (APAP-10 and 
APAP-5 respectively) and the 
untreated control (no CEC), and 
collected at the beginning of the 
experiment and 7 weeks after 
start of treatment (T0 and T2 
respectively) compared to the 
initial T0 communities (Welch’s 
T test, all, all P’s < 0.05)
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changes unlike these other studies that examined microbial 
community functions using Biolog plates [66, 69, 80]. Data 
obtained from the Biolog Ecoplates does not represent true, 
in situ, rates for soil bacteria community metabolism, because 
it only measures metabolism from a subset of organisms capa-
ble of growing under laboratory conditions and may not reflect 
in situ conditions. Despite this shortcoming, many studies have 
demonstrated that it is a great method to evaluate changes in 
soil community functions due to disturbances or changes in 
biotic and abiotic factors [66, 69, 80, 82–84].

In our results, APAP-treated samples had significantly 
higher rates of carbon utilization in nearly every category 
measured by 96 hpi (amines, carbohydrates, amino acid, 
carboxylic acid, and polymer metabolism) compared to the 
controls. APAP may not be a carbon source for all organ-
isms; therefore, its addition to the soil might have selected 
for microbes that metabolize it. Liu et al. [66] demonstrated 

that APAP is broken down in non-sterilized soil, but not 
in sterilized soil, indicating that soil microbes metabo-
lize APAP. Metabolomics analyses of APAP-treated soil 
revealed that the microbes break down APAP to 8 identifi-
able intermediates [66]. The intermediate 2-hexenoic acid, 
a carboxylic acid, was the most abundant metabolite in the 
soil after APAP treatment [33]. Therefore, we hypothesized 
that APAP treatment in our study increased carboxylic 
acid content in the soil, which in turn led to an increase 
of microbes that metabolize carboxylic acids. The Biolog 
assay confirmed our hypothesis to be true by showing a sig-
nificant increase in carboxylic acid metabolism in APAP-
treated soils.

Using PICRUSt2, we developed initial predictions on the 
expected impacts of APAP on microbial communities. The PIC-
RUSt2 metagenome predictions paralleled the trend of increased 
carbon metabolism in APAP-treated soil observed in the Biolog 
assay. The gene prediction data indicated that soil communities 
treated with APAP may increase in multiple genes for a variety 
of carbon metabolism pathways, most notably for amino acid 
and carbohydrate metabolism. This concurred with our Biolog 
plates data that indicated significantly higher utilization of amino 
acids and carbohydrates in APAP-treated soils compared to the 
untreated controls. The CCA of the Biolog assay also indicated 
that amino acid and carbohydrate metabolism had a strong impact 
on community shifts between the APAP-10 and untreated soil 
microbial communities (Fig. 7). Previous studies have also indi-
cated that additional carbon input led to increased soil microbial 
activity measured as respiration [85–88], FDA dehydrogenase 
activity [88–91], or microbial biomass [91]. Data from our Biolog 
assay was congruent with the PICRUSt2 predictions and FDA 
hydrolysis which all showed increased carbon metabolism after 
APAP treatment. Therefore, we presume that APAP was acting as 
a carbon source, and thus stimulating microbial activity. However, 
additional studies are required to confirm this assumption.

PICRUSt2 predictions were based on functions linked 
to given 16S rRNA genes that were detected in our soil 
samples. Thus, shifts in the abundance of 16S rRNA genes 
may be interpreted as shifts in community functions; how-
ever, since these are predictions based on the presence of 
16S rRNA genes, these results should be confirmed using 
another method. By utilizing the Biolog plate assay, we were 
able to examine changes in metabolic rates for specific sub-
strates, and test these predictions. We observed that shifts in 
relative abundance of the soil microbial community members 
were consistent with the observed changes in the microbial 
community function determined in the Biolog assay. Amy-
colatopsis thermoflava and Cellvibrio spp., microbial groups 
that increased in relative abundance after APAP applica-
tion, were major contributors to community differences 
among the soil communities. They are capable of metabo-
lizing a diverse set of carbon substrates, including glyco-
sides [75–77]. Glycosides are major breakdown products of  

Fig. 6   Average Well Color Development in Biolog EcoPlate wells 
containing samples from soil treated with 10 μg/L of acetaminophen 
(10  μg/L APAP) and the untreated control collected 7  weeks after 
start of treatment. A Total Average Well Color Development for 
all carbon sources in treated and control samples over the course of 
144  h. B Average Well Color Development of each functional car-
bon group 96 h after incubation. For all graphs, error bars represent 
the standard error. Lines between treatments represent GLim post 
hoc LDS comparisons between control and 10  µg/L APAP. Sin-
gle asterisks represent a P-value < 0.05, double asterisks represent a 
P-value < 0.01, and triple asterisks represent a P-value < 0.001
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APAP due to microbial activity in the soil [71, 72] and plant 
detoxification [27]. Their accumulation in plant roots or in 
the soil probably led to the increase of glycoside metaboliz-
ing organisms like Cellvibrio bacteria. Cellvibrio is a genus 
of cellulolytic bacteria that are capable of degrading plant 
cell walls. Some Cellvibrios can utilize many different car-
bohydrates including ⍶- and β-glycosides [75, 77]. These 
cellulolytic organisms can have major impacts on the soil 
community by degrading refractory cellulose, and thus mak-
ing substrates available to other community members [92, 
93]. Cellvibrio spp. can also utilize carboxylic acids, which 
are another major breakdown product of APAP [33].

Additionally, the relative abundance of Acidobacteria was 
higher in APAP-treated soils than in untreated controls. This con-
curs with other studies that observed higher relative abundance of 
Acidobacteria in the presence of a mixture of pharmaceuticals, 
including APAP [94]. Examples of Acidobacteria that followed 
this trend were Candidatus Koribacter and Candidatus Solibacter. 
Candidatus spp. have optimum growth at pH > 6 [95, 96] and pH 
plays a significant role in the growth of some Acidobacteria than 
other factors [96, 97]. The pH of APAP in a saturated aqueous solu-
tion is about 6 [98], which may explain why Acidobacteria were 
more abundant in APAP-treated soils than in the untreated controls. 
However, not all microbes were tolerant to APAP. For example, 
there was a decrease in the relative abundance of Actinobacteria 
in APAP-treated soil compared to the untreated control. Several 
strains of Actinomyces (a genus in the class Actinobacteria) cannot 
metabolize APAP [71]. This could explain the reduction in the rela-
tive abundance of Actinobacteria observed in our study. A group of 
bacteria identified to the Gemmatiomadetes phylum also decreased 
in abundance in APAP-treated soil. Two species in this phylum, 
Gemmatimonas aurantiaca and G. phototrophica are fastidious 
with carbon utilization, thus they may not be able to use APAP or 

its metabolites [99, 100]. Having particular carbon requirements 
may partially explain the decrease in Gemmatiomonadetes phylum 
members [101]. However, this needs to be evaluated further.

Irrigation with APAP impacted soil microbes of agricultural 
importance. For example, Pseudomonas viridiflava and Lyso-
bacter spp. which increased in soils treated with APAP. P. viridi-
flava is pathogenic to approximately 30 plant species including 
eggplants, kiwis, tomato, and melon [102]. This pathogen causes 
soft rot and subsequent browning of the stem or flowering parts, 
which leads to economic losses to the growers and predisposes 
the plants to fungal infections [102, 103]. In this study, eggplants 
were grown in the soil irrigated with APAP, and we think that 
continued use of irrigation water containing APAP may favor 
infections by P. viridiflava. Lysobacter spp. are recognized for 
their potential as biological control agents of several plant dis-
eases of economic importance such as Fusarium head blight of 
wheat, brown patch in turfgrass caused by Rhizoctonia solani, 
Pythium damping-off of sugarbeet, and summer patch disease of 
Kentucky bluegrass caused by the root-infecting Magnaporthe 
poae [104–107]. Therefore, irrigation with RWW containing 
APAP may cause the soils to be suppressive to several fungal 
diseases.

Our findings highlight the need to investigate the impacts of 
RWW on plant–microbe interactions. The fact that both plant 
pathogens and disease suppressive organisms increased in 
presence of APAP underscores the complexity of soil systems 
and the impacts of APAP and other CECs found in RWW. The 
effects of using RWW are multifaceted and many more studies 
are needed to unravel this issue and to ensure that RWW can 
be used in a way that continues to persevere clean water sup-
plies while facilitating the growth of healthy crops. Our study 
demonstrated that APAP concentrations found in RWW can 
alter soil microbial diversity and functions which may impact 

Fig. 7   Canonical correspond-
ence analysis in PAST of 
Biolog Ecoplates that were 
incubated for 96 h with samples 
from soil treated with 10 μg/L 
of acetaminophen and the 
untreated control and collected 
7 weeks (T2) after start of 
treatment. The figure shows 
the utilization of the 6 general 
carbon substrate groups. The 
vectors, in green, represent a 
given carbon substrate while 
vector length indicates the 
impact of the given factor on 
community differences. Each 
treatment had 3 replicates 
(n = 3). APAP-1 = APAP-10 T2 
replicate 1, APAP-2 = APAP-
10 T2 replicate 2, and 
APAP-3 = APAP-10 T2 repli-
cate 3
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plant health and productivity. In spite of the benefits of RWW to 
agriculture, further investigation into effects of different CECs 
on soil microbes is needed in order to understand the risk that 
CECs may pose to natural and agricultural environments.
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