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We report theoretical and experimental results for imaging of electromagnetic phase edge effects
in lithography photomasks. Our method starts from the transport of intensity equation (TIE), which
solves for phase from through-focus intensity images. Traditional TIE algorithms make an implicit
assumption that the underlying in-plane power flow is curl-free. Motivated by our current study, we
describe a practical situation in which this assumption breaks down. Strong absorption gradients in
mask features interact with phase edges to contribute a curl to the in-plane Poynting vector, causing
severe artifacts in the phase recovered. We derive how curl effects are coupled into intensity measure-
ments and propose an iterative algorithm that not only corrects the artifacts, but also recovers missing
curl components. © 2014 Optical Society of America
OCIS codes: (100.5070) Phase retrieval; (110.3960) Microlithography; (080.4865) Optical vortices.
http://dx.doi.org/10.1364/AO.53.0000J1

1. Introduction

The transport of intensity equation (TIE) describes
how phase can be recovered from intensity images
captured at different focus positions. Its experimen-
tal simplicity makes it amenable to existing micro-
scopes in optical [1–6], x-ray [7,8], and electron
[9–11] imaging. Subwavelength phase accuracy
and real-time processing [12] are routinely achieved
and errors can be reduced with multiple images
[5,13,14]. One particularly convenient advantage
of the TIE method is that it is fairly robust under
partially coherent illumination [15,16], making it
suitable for lithography aerial imaging tools, which
we use here.

The TIE is directly derived from the paraxial wave
equation to relate intensity variations over small
defocus distances to gradients of phase as light
propagates [1]. Being a partial differential equation,
solving the TIE involves inverting the equation to
recover phase. The traditional TIE solver has an
implicit assumption that any curl component in
the power flow is not captured in the intensity data.
Thus, the TIE is thought to only recover the “scalar”
part of the phase and fails for the “rotational” com-
ponent [15,17]. In fact, the rotational (curl) compo-
nent does affect the through-focus intensity and,
therefore, causes phase artifacts in the traditional
TIE solver. A standard example of a wave field with
a curl is a phase vortex. This class of curl components
has been studied in detail, and it was shown
empirically that phase vortices can be recovered
by either an iterative algorithm that uses many
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images through-focus [18] or by modifying the tradi-
tional TIE solver [19], assuming small intensity
gradients [20].

Here, we discuss a different class of curl effects
(distinct from phase vortices) that arise in our appli-
cation and in any situation where phase gradients
are not collinear with intensity gradients. This case
has been studied theoretically [21,22], but a solution
to the phase recovery problem was not presented.
Here, we study the nonphysical phase recovery arti-
facts resulting from curl components induced by
strong absorption. We then propose an iterative
wrapper for the traditional TIE solver that corrects
such errors to produce a more accurate phase result.
This method was first described in [23,24] and later
appeared in [25]. We further derive how the curl com-
ponent is coupled into the intensity measurements,
and show that our proposed method also recovers
part of the missing curl.

This work is motivated by our studies of electro-
magnetic phase edges in optical lithography masks
[23,24]. Unlike many other applications, photomasks
are designed specifically to have strong absorption.
An ideal mask would be infinitesimally thin, with
no phase variations. Since material constraints
mean that real-world masks are thick relative to
the size of the feature, the optical field incurs un-
wanted 3D diffraction effects as it passes through
the mask, termed “electromagnetic edge effects”
[26–28] (Fig. 1). The result is that the field exiting
the mask has added complex-field variations near
the feature edges. The real component is easily mea-
sured as a line edge placement bias, but the phase
component produces an asymmetrical, feature-
dependent edge placement change through-focus,
which is difficult to measure. As node sizes shrink,
these undesired phase effects become more promi-
nent and also more problematic, reducing the process
window.

Mask designers often account for electromagnetic
effects using an equivalent thin-mask model, which
replaces the complicated 3D effects with a 2D com-
plex field at the exit plane of the mask. For example,
boundary layer models represent the added phase
effects with quadrature (90 deg) phase strips along
the feature edges [26–28], where the width of the
strip depends on the mask shape and material.
The phase edges are also polarization-dependent,
being much stronger in the direction perpendicular
to the electric field, so separate boundary layers
must be used for each polarization.

In this work, we aim to physically measure phase
edge effects using the TIE method in an aerial
inspection tool. However, phase variations always
occur at the edges of features, where intensity
changes rapidly. Since the gradients of the intensity
and phase are not collinear, significant curl compo-
nents result near the feature corners, and we must
correct the artifacts in order to recover the phase
accurately.

2. Transport of Intensity Equation Solvers and
Curl Effects

First, we describe the traditional TIE solver and
derive how an absorption-induced curl can produce
errors in the phase result. For a 2D complex object���
I

p
eiϕ with intensity I and phase ϕ, the TIE describes

the change of axial intensity as a divergence of the
in-plane power flow [1,2],

dI
dz

� −

λ

2π
∇⃗ · I∇⃗ϕ; (1)

where λ is wavelength, ∇⃗ is the lateral gradient,
and z is the defocus distance. Thus, one can
solve for phase after estimating the intensity deriva-
tive dI∕dz from two or more intensity images at
different z.

Since ∇⃗, I, and ϕ are in-plane, I∇⃗ϕ is the in-plane
Poynting vector [15]. To solve Eq. (1), Teague’s
solver [1] defines an auxiliary variable ψ such that
I⃗∇ϕ � ∇⃗ψ , which converts the TIE into a Poisson
equation,

dI
dz

� −

λ

2π
∇2ψ : (2)

Equation (2) can use any Poisson solver (e.g., in the
Fourier domain [29]) to solve for the auxiliary vari-
able ψ. Substituting this value back into its relation
with phase gives ∇⃗ϕ � ∇⃗ψ∕I, and taking another
divergence yields a Poisson equation in phase,

∇⃗ · �∇⃗ψ∕I� � ∇2ϕ; (3)

from which a second Poisson solver can recover the
final phase ϕ�x; y� to within an unimportant constant
offset. This two-step solution is required for objects
with nonuniform absorption. For the case of constant

E

Fig. 1. Photolithography masks incur polarization-dependent
electromagnetic edge effects. (a) Because the mask is relatively
thick, the electric field accumulates an unwanted phase delay
at the feature edges, due to diffraction. (b) An ideal mask has
only absorption variations. (c) Phase edge effects can be
modeled by phase strips at the feature edges, depending on
polarization [26–28].
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intensity (e.g., a pure phase object), I�x; y� � I0, and
the phase is recovered directly after solving the first
Poisson equation, ϕ � ψ∕I0.

It has been noted [21,22] that substituting the
Poynting vector with the gradient of a scalar field
[to obtain Eq. (2)] makes the implicit assumption
that the Poynting vector is curl-free, requiring colli-
nearity of the phase and intensity gradients:

∇⃗ × �I∇⃗ϕ� � ∇⃗I × ∇⃗ϕ � 0: (4)

As described previously, photomasks have both
strong absorption and phase at the edges of features,
resulting in a significant curl component (i.e., noncol-
linear phase and intensity gradients). This is illus-
trated in Fig. 2 for a simulated OMOG (Opaque
MoSi on Silica)-type mask with a 2% transmitting
block on a clear background. To model electromag-
netic edge effects for horizontally polarized illumina-
tion, we add a boundary layer of width 20 nm with a
90 deg quadrature phase along the vertical direction.
In this simulation, parameters have been chosen to
match those of our experiment, described later. We
use a deep UV wavelength λ � 193 nm, NA 1.35 at
the wafer (0.3375 at the mask), and illumination co-
herence σ � 0.3. Since the phase strips are much
smaller than the resolution of the optical system,
they become blurred and result in smaller peak
phase values. Here, we directly observe that the gra-
dients of the intensity and phase are noncollinear at
the corners, leading to a non-negligible curl for the

in-plane Poynting vector, ∇⃗I × ∇⃗ϕ ≠ 0. The curl com-
ponents for this simulated mask are shown in Fig. 2,
along with the phase recovered by Teague’s solver
(using the Poisson solver in [29,30]). This phase re-
sult incurs a significant error, due to curl effects.

To calculate the phase error due to the missing
curl, consider the Helmholtz decomposition of the
Poynting vector, with curl-free and divergence-free
source terms [15],

I∇⃗ϕ � ∇⃗ψ � ∇⃗ × A⃗1; (5)

where ψ and A⃗1 are the scalar and vector potentials
of the power flow, respectively. Since the TIE de-
scribes the divergence of the Poynting vector, the first
Poisson equation [Eq. (2)] of Teague’s solution is
uniquely and exactly solved for the scalar potential
ψ , given appropriate boundary conditions. In the
presence of a vector potential for the Poynting vector
[Eq. (5)], however, the second Poisson equation in
Teague’s solution [Eq. (3)] has an extra term due
to the curl,

∇⃗ ·
∇⃗ψ
I

� ∇⃗ ·
∇⃗ × A1

I
� ∇2ϕ; (6)

⇒ ∇2ϕTIE � ∇2ϕres � ∇2ϕ; (7)

where ϕTIE is the phase returned by Teague’s solver
and ϕres is the residual error that occurs due to the
curl component, shown in Fig. 2 to create a severe
saddle-shaped artifact for a square feature.

3. Recovering Curl by Iterative Transport of
Intensity Equation

Next, we describe our algorithm and prove analyti-
cally that the curl components of the power flow
are not entirely lost in through-focus measurements,
and can thus be recovered computationally. We
demonstrate this on the simulated photomask
described above, as well as in experimental measure-
ments, showing its efficacy in the presence of strong
absorption.

Our algorithm iterates back and forth through
Teague’s solver, estimating both the phase and the
curl component at each step. In the first step, we
obtain an initial phase estimate using Teague’s
method, ϕTIE, then plug it back into the TIE to esti-
mate the axial intensity derivative that would have
been produced by ϕTIE,

dI
dz

����
est

� −

λ

2π
∇⃗ · I∇⃗ϕTIE: (8)

The residual intensity derivative is then obtained
by calculating the difference between the estimated
and measured intensity derivatives,

Fig. 2. (Left) Simulation of a 240 nm square absorbing feature on
a photomaskwith phase edges added along the vertical sides, caus-
ing a nonzero curl in the Poynting vector near the feature corners,
where the phase gradient is tangential to intensity contours.
(Right) When through-focus images are simulated for this complex
field and are used as input to the traditional TIE solver, the phase
recovered suffers serious errors due to the curl effects.
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dI
dz

����
res

� dI
dz

−

dI
dz

����
est
; (9)

and is expected to be 0 in the absence of curl, notwith-
standing numerical errors and noise. The residual in-
tensity derivative is then used as input to Teague’s
solver for estimating the phase residual,

dI
dz

����
res

� −

λ

2π
∇⃗ · I∇⃗ϕr1; (10)

where ϕr1 is the current estimate of the phase
residual [ϕres in Eq. (7)], after the first iteration.
The phase residual estimated is then subtracted
from the phase ϕTIE estimated previously to give
an improved phase estimate. Additional iterations
can then be used to further refine the result.

To understand how the curl of the Poynting vector
couples into the next iteration of Teague’s solver, we
examine the intensity derivative residual in Eq. (9).
Consider the Helmholtz decomposition of the vector
field ∇⃗ψ∕I,

∇⃗ψ∕I � ∇⃗ϕTIE � ∇⃗ × A⃗2; (11)

where the scalar potential is simply ϕTIE according to
Eq. (3), and A⃗2 denotes the vector potential. By sub-
stituting Eqs. (2) and (8) into Eq. (9), and considering
the relation in Eq. (11), we obtain

dI
dz

����
res

� −

λ

2π
f∇2ψ1 − ∇⃗ · I∇⃗ϕTIEg; (12)

⇒
dI
dz

����
res

� −

λ

2π
∇⃗ · I∇⃗ × A⃗2: (13)

The curl term ∇⃗ × A⃗2 is thus responsible for the
derivative residual on plugging the solved phase
back into the TIE. The TIE solution of the residual
intensity derivative [Eq. (10)] will try to estimate
the error arising due to this curl, which is in fact
directly related to the Poynting vector curl ∇⃗ × A⃗1
from Eqs. (5) and (11),

∇ × ∇ × A⃗2 � −∇ ×
�
∇ × A⃗1

I

�
; (14)

which holds also for vector potentials of any two
successive iterations. In the absence of a curl in
the power flow, A⃗1 � A⃗2 � 0, and hence, the residual
intensity derivative vanishes such that the solution
converges immediately. In the presence of a curl,
however, subsequent iterations will recover some
of the curl missed in the previous iteration, the
solution reaching convergence when the estimate
of the phase gradient at the ith iteration, ∇⃗ψ i∕I,
approaches zero curl, i.e., A⃗i�1 → 0. A more rigorous

formulation of the convergence criteria would have to
include the interplay of the object curl, numerical
and focus sampling, and the severity of the curl.

A simulation of the phase residual estimated from
the first iteration is shown in Fig. 3. After only one
iteration, the improved phase estimate is already
very close to the true phase (shown in Fig. 2), with
the root mean square (RMS) phase error having
dropped by about 42%, from 0.0087 rad/pixel for
Teague’s solver to 0.005 rad/pixel for our iterative al-
gorithm. Subsequent iterations further improve the
estimate of the phase and its residual.

Since the reduction in the error is due to the recov-
ery of the curl, our algorithm also produces an esti-
mate of the curl components, which were previously
considered immeasurable. For the simulation case
(where the true curl components are known), we plot
the error in our curl estimate as iterations progress
(see Fig. 4). The plots compare the Poynting vector
curl, ∇⃗ × I∇⃗ϕ � ∇⃗I × ∇⃗ϕ, for the true object with that
recovered by the iterative method. As expected, the
error in the curl is progressively reduced, with dimin-
ishing gains at each iteration. Notice that the error
does not go to 0, since not all of the curl effects were
transferred into intensity measurements. However,
these unobservable areas of the curl do not produce
phase errors in our result. If the goal is to fully mea-
sure the curl terms, then a systematic variation of
the intensity would be needed [31,32].

4. Experimental Results

Experiments were performed on an AIMS aerial
imaging tool at AMTC/Toppan Photomasks at
Dresden, Germany. The AIMS tool replicates the pro-
jection printing process, with demagnification to
allow the wafer plane intensity to be captured by a
camera. The experimental parameters and the mask
match the simulations described earlier (240 nm
square feature on an OMOG mask). Here, we use
partially coherent illumination with σ � 0.3, which
has been shown to produce accurate phase results
[4], although larger or nonrotationally symmetric

Fig. 3. Simulation showing the first iteration of our algorithm.
Teague’s solver recovers the initial phase estimate; then we plug
that into the TIE to find the estimated intensity derivative. The
residual between the measured and estimated intensity deriva-
tives is plugged into Teague’s solver a second time in order to
estimate the phase residual, which is subtracted from the
recovered phase for an improved estimate.
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sources [2,33] would require more sophisticated
algorithms [34–37]. Images were captured with
10 nm defocus steps across a 200 nm range, building
up a through-focus stack. Then, the intensity deriva-
tive was calculated using the fitting methods
described in [6,14]. Note that although the TIE
equation is based on the paraxial approximation, it
is justified for the mask-side NA of 0.3375 in the ex-
periments here. More details on the experimental
setup can be found in [23].

Images of the experimentally recovered phase
are shown in Fig. 5. We clearly observe electromag-
netic phase edge effects in all the results. In the
experiments, we study two situations, one with hori-
zontally polarized illumination and one with verti-
cally polarized illumination. The phase recovered
shows much stronger phase edge effects along the
direction perpendicular to the illumination polariza-
tion, as predicted by rigorous electromagnetic field
simulations [38].

In comparing our iterative algorithm to the tradi-
tional TIE method, we see that the phase images
recovered by Teague’s solver have saddle-shaped
artifacts that cause negative phase values. These
clearly nonphysical artifacts resemble the error seen
in simulation results in the earlier sections, indicat-
ing that they are indeed due to the power flow curl
near the corners of the square feature. With our iter-
ative solver, however, they are removed and we get a
much cleaner picture of the phase edge effects.

The results match well the rigorous simulation-
based boundary layer model theory [38], which as-
sumes that the peak phase value of 40 deg in Fig. 5
is a convolution of the 90 deg boundary layer with the
point spread function of the system. The smaller
phase peaks for the edges parallel to the electric field
in Fig. 5 likely indicate that OMOG is similar to
attenuating phase shift mask (ATT-PSM), in that
the diffraction at the primary edge reduces with
the rotation of the polarization and the phase drops
in magnitude by about a factor of 5. A detailed analy-
sis can be found in [23].

5. Conclusion

We have demonstrated both theoretically and exper-
imentally an iterative extension to the Transport of
Intensity method that provides both accurate phase
recovery and an estimate of the Poynting vector curl.
Our method is particularly useful for the situation of
curl-induced artifacts due to strong absorption, for
which we provide a motivating example in lithogra-
phy. We show that phase edge effects due to 3D
electromagnetic interactions break the curl-free
assumption of the traditional TIE (Teague’s method).
However, by employing our iterative TIE solver, we
can remove these artifacts and can also solve for curl
components in the process. The solution removes

Fig. 4. Estimating curl components with the iterative TIE. The
top row shows the true curl for the simulated mask, and the cor-
responding curl recovered by our iterative algorithm. The bottom
plot shows that the RMS error in our estimate of the curl dimin-
ishes progressively as the algorithm iterates. Errors in the curl
component estimation for the first three iterations of the algorithm
are shown as insets.

Fig. 5. Experimental results for our iterative TIE method, as
compared with those for the traditional Teague’s solver, with a
240 nm square feature on an OMOG mask. The top row shows
the phase recovered by Teague’s solver, with nonphysical saddle
artifacts due to the Poynting vector curl at the feature corners.
The bottom row shows the phase recovered by the iterative solver,
where artifacts have been corrected, clearly showing the presence
of phase edges that match well the theoretical predictions. On the
left is the result for illumination polarized in the horizontal direc-
tion, whereas on the right is that for the vertical direction, showing
strong polarization dependence, as expected.

1 December 2014 / Vol. 53, No. 34 / APPLIED OPTICS J5



curl-induced phase errors with only a few iterations,
providing significantly improved results without
much computational overhead. Results were demon-
strated for a square feature on an OMOGmask, with
experimental data being captured in an aerial imag-
ing tool. The method serves to elucidate the influence
of power-flow curl on defocus-based phase recovery,
and should find general use in many applications,
particularly those with strong absorption at the
sample.

This work was sponsored by IMPACT+ member
companies: Applied Materials, ARM, ASML, Global
Foundries, IBM, Intel, KLA-Tencor, Mentor Graph-
ics, Panoramic Tech, Qualcomm, Samsung, SanDisk,
and Tokyo Electron. We also thank George Barbas-
thasis, Yunhui Zhu, and Jon Petruccelli for insightful
discussions.
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