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operator on Kähler manifolds. Together with my advisor Zhiqin Lu, we generalized the

spectrum relation in [5] to any Hermitian manifolds. And we proved the closure of Laplace

operator � = δd on the moduli space of polarized Calabi-Yau manifolds is self-adjoint. The

second part considers the asymptotic expansion of the Bergman kernel on a polarized Kähler

manifold. Together with Hezari, Kelleher and Seto [9], we give an alternative proof of the

asymptotic expansion.
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Chapter 1

Introduction

In this thesis, we mainly consider two topics in complex geometry. The first one is about

the spectrum and self-ajoint extension of Laplace operator. And the second topic is about

the asymptotic expansion of Bergman kernel on Kähler manifolds.

In Chapter 2, we assume (M, g) is a Hermitian manifold with a holomorphic Hermitian

vector bundle (E, h). Consider Gaffney extension �p,q of Hodge Laplacian on the E valued

(p, q) forms. We will prove some spectrum relations among the self-adjoint operators �p,q,

∂∂̄∗p,q and ∂̄∗∂p,q.

In Chapter 3, we consider the moduli space of polarized Calabi-Yau manifold endowed with

the Weil-Petersson metric, denoted as (M, ωWP ). As (M, ωWP ) is generally not complete,

the Cauchy boundary ∂cM is not empty. However, we can prove that the Cauchy boundary

is small in the sense that the capacity of ∂cM is zero. Therefore, two Sobolev spaces W 1
0 (M)

and W 1(M) coincide with each other just like in the case of complete manifolds. As a result,

we can prove the closure of the Laplace operator � = δd on functions is self-adjoint.

In Chapter 4, we consider the Bergman kernel of a polarized Kähler manifold (M,L). Meth-
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ods to analyze the asymptotic expansion of the Bergman Kernel have been worked out over

the years. Initially Tian gave leading asymptotics on the diagonal [22]. Extending the result

of Fefferman [6], a complete expansion was given by Zelditch [24], and independently by

Catlin [4]. In particular, their off-diagonal asymptotic expansions, as k → ∞, are given of

the form, with bl certain Hermitian functions,

K(x, y)e−kψ(x,y) =
kn

πn

(
1 +

∞∑
l=1

bl(x, y)

kl

)
. (1.1)

Lu demonstrates that the functions bl(x, y)|x=y encode geometric information about the

underlying manifold M [11]. Based on the joint work with Hezari, Kelleher and Seto [9], we

give an alternative proof of the asymptotic expansion.
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Chapter 2

The Spectrum Relation of Gaffney

Extensions

2.1 Gaffney Extension of Hodge Laplacian

Assume (M, g) is a Hermitian manifold with a holomorphic Hermitian vector bundle (E, h).

Let m = dimM and p, q be any integers between 0 and m. Consider Hodge Laplacian on

E-valued (p, q) forms with compact support. As Hodge Laplacian is symmetric but not self-

adjoint, we will instead consider Gaffney extension of Hodge Laplacian via the corresponding

closed quadratic form. For more detailed discussions, we recommend references [15, 21].

We begin with the d-bar differential operator

∂p,q : L2(M,Λp,q(E))→ L2(M,Λp,q+1(E)),
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which has the following domain of definition

Dom(∂p,q) = {ϕ ∈ L2(M,Λp,q(E)) : the distributional derivative ∂ϕ ∈ L2(M,Λp,q+1(E))}.

With the above domain of definition, the operator ∂p,q is a densely defined closed operator.

We denote the L2 inner product on L2(M,Λp,q(E)) as (·, ·)p,q for any 0 ≤ p, q ≤ m. With

respect to the L2 inner products on L2(M,Λp,q(E)) and L2(M,Λp,q+1(E)), we have the adjoint

operator of ∂p,q as

∂̄∗p,q+1 : L2(M,Λp,q+1(E))→ L2(M,Λp,q(E)),

with

Dom(∂̄∗p,q+1) = {φ ∈ L2(M,Λp,q+1(E)) : ∃ ϕ ∈ L2(M,Λp,q(E)) such that

(∂p,qu, φ)p,q+1 = (u, ϕ)p,q for any u ∈ Dom(∂p,q)}.

And in the above notation, ∂̄∗p,q+1φ is defined to be ϕ.

In the following, we will suppress the indices p, q in the operators and the inner products for

simplicity when there is no confusion from context.

Now let us recall Hodge Laplacian and the associated quadratic form. We use the notation

D(M,Λp,q(E)) to denote the set of all smooth E-valued (p, q) forms with compact support.

Definition 2.1.1 (Hodge Laplacian).

i) Let � : D(M,Λp,q(E))→ D(M,Λp,q(E)) be the Hodge Laplacian defined as

� = ∂∂̄∗ + ∂̄∗∂.
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ii) Let Q : D(M,Λp,q(E)) × D(M,Λp,q(E)) → C be the quadratic form associated to �

defined as

Q(ϕ, φ) = (∂ϕ, ∂φ) + (∂̄∗ϕ, ∂̄∗φ) for any ϕ, φ ∈ D(M,Λp,q(E)).

Since ∂, ∂̄∗ are closed operators, if we endow quadratic form Q with Dom(Q) = Dom(∂) ∩

Dom(∂̄∗), then Q is closed. That means, for any sequence ϕn ∈ Dom(Q), if ϕn
L2

−→ ϕ and

Q(ϕm − ϕn, ϕm − ϕn)→ 0 as m,n→∞, then ϕ ∈ Dom(Q) and Q(ϕn − ϕ, ϕn − ϕ)→ 0.

We cite the following theorem from [20] in Chapter VIII.6.

Theorem 2.1.1 ([20]). If q is a closed semibounded quadratic form, then q is the quadratic

form of a unique self-adjoint operator.

By applying this theorem to our quadratic form Q with Dom(Q) = Dom(∂) ∩Dom(∂̄∗) ⊂

L2(M,Λp,q(E)), we get a self-adjoint extension of �, which is called Gaffney extension and

denoted as �G or still � when there is no ambiguity. The domain of �G is

Dom(�G) = {ϕ ∈ Dom(∂) ∩Dom(∂̄∗) : ∃η ∈ L2(M,Λp,q(E)) such that

Q(ϕ, φ) = (η, φ) for any φ ∈ Dom(∂) ∩Dom(∂̄∗)}.
(2.1)

And in the same notation as above, �Gϕ is defined to be η.

The following Gaffney’s Theorem from Chapter 3 in [15] tells us that Gaffney extension can

be viewed as the composition of ∂ and ∂̄∗ as follows.

Theorem 2.1.2 (Gaffney).

Dom(�G) = {ϕ ∈ Dom(∂) ∩Dom(∂̄∗) : ∂ϕ ∈ Dom(∂̄∗) and ∂̄∗ϕ ∈ Dom(∂)}. (2.2)
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And for any ϕ ∈ Dom(�G), we have

�Gϕ = ∂∂̄∗ϕ+ ∂̄∗∂ϕ.

We recall the following definition of Sobolev spaces. Denote Q1(·, ·) = Q(·, ·) + (·, ·). It is

not hard to see Q1 is an inner product on D(M,Λp,q(E)).

Definition 2.1.2 (Sobolev Spaces).

W 1
0 (M,Λp,q(E)) =Completion of D(M,Λp,q(E))

with respect to Q1 inner product,

(2.3)

W 1(M,Λp,q(E)) =Completion of {ϕ ∈ C∞(M,Λp,q(E)) : Q1(ϕ, ϕ) <∞}

with respect to Q1 inner product.

(2.4)

Remark 2.1.1. Note that ϕ is not necessarily in Dom(∂̄∗p,q) when ϕ ∈ C∞(M,Λp,q(E)). So in

the definition of W 1(M,Λp,q(E)), to be precise, Q1(ϕ, ϕ) <∞means ϕ ∈ L2(M,Λp,q(E)) and

the distributional differentials ∂ϕ, ∂̄∗ϕ (or pointwise differential since ϕ is smooth) belong to

L2(M,Λp,q+1(E)) and L2(M,Λp,q−1(E)) respectively.

Remark 2.1.2. One can prove ϕ ∈ W 1(M,Λp,q(E)) if and only if ϕ ∈ L2(M,Λp,q(E)) and

the distributional differentials ∂ϕ, ∂̄∗ϕ belong to L2(M,Λp,q+1(E)) and L2(M,Λp,q−1(E))

respectively.

Remark 2.1.3. Note that W 1
0 ⊂ Dom(∂)∩Dom(∂̄∗) ⊂ W 1. But they are generally not equal

to each other.

Example 2.1.4. Take the Hermitian manifold M = Ω ⊂ Cn to be a bounded open set with

smooth boundary. Let the Hermitian vector bundle E be the trivial line bundle. Assume

u ∈ C∞(Ω,Λp,q). Let us investigate the boundary condition induced from �G in this case.
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If u ∈ Dom(∂̄∗), then

(∂ϕ, u) = (ϕ, ∂̄∗u) for any ϕ ∈ C∞(Ω,Λp,q−1).

Note

(∂ϕ, u) =

∫
Ω

∂ϕ ∧ ∗u =

∫
∂Ω

ϕ ∧ ∗u+ (−1)p+q
∫

Ω

ϕ ∧ ∂ ∗ u =

∫
∂Ω

ϕ ∧ ∗u+ (ϕ, ∂̄∗u).

Here ∗ is the Hodge star operator. The second equality follows from Stokes’ Theorem and

the third equality is based on the identity ∂̄∗ = − ∗ ∂∗. Therefore, we have

∫
∂Ω

ϕ ∧ ∗u = 0 for any ϕ ∈ C∞(Ω,Λp,q−1).

It implies ∗u|∂Ω (the restriction of ∗u to ∂Ω) vanishes. So by Theorem 2.1.2, u ∈ Dom(�G)

implies the boundary condition ∗u|∂Ω = 0 and ∗∂u|∂Ω = 0.

2.2 Spectrums of Gaffney Extension

The main goal of this section is to prove the following spectrum relations of Gaffney exten-

sions.

Theorem 2.2.1. Let (M, g) be a Hermitian manifold with a holomorphic Hermitian vector

bundle (E, h). Consider the Gaffney extension �p,q : L2(M,Λp,q(E))→ L2(M,Λp,q(E)). We

have the following spectrum relations.

Spec(�p,q) ∪ {0} = Spec(∂∂̄∗p,q+1) ∪ Spec(∂̄∗∂p,q−1) ∪ {0}. (2.5)

Spec(�p,q) ∪ {0} = Spec(∂∂̄∗p,q) ∪ Spec(∂̄∗∂p,q) ∪ {0}. (2.6)
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Remark 2.2.1. The above notation ∂∂̄∗p,q means ∂p,q−1∂̄
∗
p,q and ∂̄∗∂p,q means ∂̄∗p,q+1∂p,q. Note

that ∂∂̄∗p,q and ∂̄∗∂p,q are self-adjoint operators by Von Neumann’s Theorem (see Chapter X

in [19]) since both ∂p,q and ∂̄∗p,q are densely defined closed operators. In the following, we

will omit the subindex p, q when there is not confusion from the context.

This is a generalization of the results in [5], where similar spectrum relations were proved

for complete Riemannian manifolds. One main tool we are going to use is the generalized

Weyl’s Criterion from [5]. The advantage of this generalized Weyl’s Criterion is that we do

not necessarily pick the test sequence from the domain of an unbounded operator. After

proving it, we will mention a well-known relation between the Gaffney extension and L2

estimates.

We will split the proof for Theorem 2.2.1 into several Lemmas. First, we prove Lemma 2.2.1,

which is one containment of identity 2.5.

Lemma 2.2.1. Under the same assumption as in Theorem 2.2.1, we have

Spec(�p,q) ⊂ Spec(∂∂̄∗p,q+1) ∪ Spec(∂̄∗∂p,q−1) ∪ {0}. (2.7)

Proof. In this proof, we will use � to represent �p,q for simplicity. Take λ0 ∈ Spec(�) and

λ0 > 0. By Weyl’s criterion, there exists a sequence uj ∈ Dom(�) with (uj, uj) = 1 such

that

(�− λ0)uj → 0 as j →∞.

Since � is nonnegative and self-adjoint, (1 + �)−1 : L2(M,Λp,q(E)) → Dom(�p,q) ⊂

L2(M,Λp,q(E)) is a bounded operator. By identity 2.1, we have

Q((1 + �)−2uj, (1 + �)−2uj) = (�(1 + �)−2uj, (1 + �)−2uj). (2.8)

8



Let {Pλ} be the Projection Valued Measure of �. Then

(�(1 + �)−2uj, (1 + �)−2uj) =

∫ ∞
0

λ

(1 + λ)4
d(Pλuj, uj). (2.9)

Take C(λ0) = min
λ∈[

λ0
2
,
3λ0
2

]

λ
(1+λ)4

> 0. Then

∫ ∞
0

λ

(1 + λ)4
d(Pλuj, uj) ≥ C(λ0)

∫ 3
2
λ0

1
2
λ0

d(Pλuj, uj) ≥ C(λ0)‖P( 1
2
λ0,

3
2
λ0)uj‖2. (2.10)

We denote u
(1)
j = P( 1

2
λ0,

3
2
λ0)uj and u

(2)
j = uj − u(1)

j . By using the Projection Valued Measure

again, we have

((�− λ0)uj, (�− λ0)uj) =

∫ ∞
0

(λ− λ0)2d(Pλuj, uj) ≥
λ2

0

4
‖u(2)

j ‖2.

Since we know (�− λ0)uj → 0 as j goes to infinity, we have

‖u(2)
j ‖ → 0 as j →∞,

whence

‖u(1)
j ‖ → 1 as j →∞. (2.11)

Take 2.11 together with 2.8, 2.9 and 2.10. For sufficiently large j, we have

‖∂(1 + �)−2uj‖2 + ‖∂̄∗(1 + �)−2uj‖2 ≥ C(λ0)

2
> 0. (2.12)
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On the other hand, we have

‖(∂∂̄∗ − λ0)∂(1 + �)−2uj‖2 + ‖(∂̄∗∂ − λ0)∂(1 + �)−2uj‖2

=‖∂(�− λ0)(1 + �)−2uj‖2 + ‖∂̄∗(�− λ0)(1 + �)−2uj‖2

=
(
�(1 + �)−2(�− λ0)uj, (1 + �)−2(�− λ0)uj

)
≤‖(�− λ0)uj‖2.

The first equality is obtained because ∂ ◦ ∂ = 0 on Dom(∂) and ∂̄∗ ◦ ∂̄∗ = 0 on Dom(∂̄∗).

The second equality follows from identity 2.1 and the commutativity of � and (1 + �)−1

on Dom(�). And the last inequality follows from ‖(1 + �)−1‖L2→L2 ≤ 1 and ‖�(1 +

�)−1‖L2→L2 ≤ 1. Therefore,

‖(∂∂̄∗ − λ0)∂(1 + �)−2uj‖2 + ‖(∂̄∗∂ − λ0)∂(1 + �)−2uj‖2 → 0. (2.13)

Combining 2.12 and 2.13, we have λ0 ∈ Spec(∂∂̄∗p,q+1) ∪ Spec(∂̄∗∂p,q−1) by Weyl’s Criterion.

So the result follows.

Now we will prove Lemma 2.2.2, the other containment of identity 2.5 in Theorem 2.2.1.

Lemma 2.2.2. Under the same assumption as in Theorem 2.2.1, we have

Spec(∂∂̄∗p,q+1) ∪ Spec(∂̄∗∂p,q−1) ⊂ Spec(�p,q) ∪ {0}.

In order to prove this lemma, we will use one generalized Weyl’s Criterion from [5].

Theorem 2.2.2 (Charalambous-Lu). Let H be a nonnegative self-adjoint operator on Hilbert

space H. A positive real number λ0 is contained in Spec(H) if there exists a sequence uj ∈ H

such that

10



(1) For any j, ‖uj‖ = 1.

(2) ((H − λ0)(1 +H)−muj, uj)→ 0 for m = 1, 2.

Note that compared to the classical Weyl’s Criterion, the above theorem does not require

uj ∈ Dom(H). We give a proof of this theorem here for the completeness.

Proof. Note that

(H − λ0)2(1 +H)−2 = (H − λ0)(1 +H)−1 − (λ0 + 1)(H − λ0)(1 +H)−2.

The assumption (2) implies that

(
(H − λ0)2(1 +H)−2uj, uj

)
→ 0. (2.14)

Let {Pλ} be the Projection Valued Measure of H. Then

(
(H − λ0)2(1 +H)−2uj, uj

)
=

∫ ∞
0

(λ− λ0)2

(1 + λ)2
d(Pλuj, uj). (2.15)

Define u
(1)
j = P(λ0−εj ,λ0+εj)uj and u

(2)
j = uj − u(1)

j . The sequence of constants εj ∈ (0, λ0
2

) is

to be selected later.

(λ− λ0)2

(1 + λ)2
≥ min

(
ε2
j

(1 + λ0 − εj)2
,

ε2
j

(1 + λ0 + εj)2

)
≥

ε2
j

(1 + 3
2
λ0)2

. (2.16)

Therefore,

(
(H − λ0)2(1 +H)−2uj, uj

)
≥

ε2
j

(1 + 3
2
λ0)2
‖u(2)

j ‖2. (2.17)

Choose a sequence εj ∈ (0, λ0
2

) such that

11



i) εj → 0.

ii) ((H − λ0)2(1 +H)−2uj, uj) /ε
2
j → 0.

For example, we can take εj = ((H − λ0)2(1 +H)−2uj, uj)
1
3 . Therefore, 2.17 implies

‖u(2)
j ‖ → 0 as j →∞,

whence

‖u(1)
j ‖ → 1 as j →∞. (2.18)

On the other hand, as

∫ ∞
0

λ2d(Pλu
(1)
j , u

(1)
j ) ≤ (λ0 + εj)

2‖uj‖2 <∞,

we have the sequence u
(1)
j ∈ Dom(H). So we can apply Weyl’s Criterion to the sequence

u
(1)
j . By Projection Valued Measure again, we have

‖(H − λ0)u
(1)
j ‖2 =

∫ ∞
0

(λ− λ0)2d(Pλu
(1)
j , u

(1)
j ) ≤ ε2

j → 0, (2.19)

which implies λ0 ∈ Spec(H). So the result follows.

Remark 2.2.2. Note that by the proof, the condition (2) in Theorem 2.2.2 can be weaken to

(
(H − λ0)2(1 +H)−2uj, uj

)
→ 0.

Remark 2.2.3. Theorem 2.2.2 also holds for λ0 = 0. In fact, we can prove that conditions

(1) and (2) are also necessary for λ0 ∈ Spec(H). More details can be found in [5].

With the generalized Weyl’s Criterion (Theorem 2.2.2), we are ready to prove Lemma 2.2.2.

12



Proof. Here we prove Spec(∂∂̄∗p,q+1) ⊂ Spec(�p,q)∪{0}. The other containment Spec(∂̄∗∂p,q−1) ⊂

Spec(�p,q) ∪ {0} can be proved similarly.

Take λ0 ∈ Spec(∂∂̄∗) and λ0 > 0. By Weyl’s Criterion, there exists a sequence uj ∈

Dom(∂∂̄∗) with (uj, uj) = 1 such that

((∂∂̄∗ − λ0)uj, (∂∂̄
∗ − λ0)uj)→ 0. (2.20)

We will verify that the sequence ∂̄∗uj satisfies the conditions in Theorem 2.2.2. For m = 1, 2,

(
(�− λ0)(1 + �)−m∂̄∗uj, ∂̄

∗uj
)

=
(
(�− λ0)(1 + �)−muj, ∂∂̄

∗uj
)

=
(
(∂∂̄∗ − λ0)(1 + �)−muj, ∂∂̄

∗uj
)

=
(
∂∂̄∗(1 + �)−muj, (∂∂̄

∗ − λ0)uj
)
.

The first equality is a result of (1 + �)−1∂̄∗ = ∂̄∗(1 + �)−1 on Dom(∂̄∗), which follows from

Theorem 2.1.2. The second equality follows from ∂ ◦∂ = 0 on Dom(∂). The third one comes

from the self-adjointness of ∂∂̄∗ and straightforward calculations. Since

‖∂∂̄∗(1 + �)−muj‖ ≤ ‖�(1 + �)−muj‖ ≤ ‖uj‖ = 1, (2.21)

2.20 implies

(
(�− λ0)(1 + �)−m∂̄∗uj, ∂̄

∗uj
)
→ 0 for m = 1, 2. (2.22)

We also need to verify that ‖∂̄∗uj‖ has a positive lower bound uniformly for all j, which is

13



from the following calculations.

(∂̄∗uj, ∂̄
∗uj) = ((∂∂̄∗ − λ0)uj, uj) + λ0 → λ0 > 0. (2.23)

So 2.22 and 2.23 imply λ0 ∈ Spec(�) by Theorem 2.2.2, and therefore the result follows.

Now we will prove Lemma 2.2.3, which is one containment in identity 2.6.

Lemma 2.2.3. Under the same assumption as in Theorem 2.2.1, we have

Spec(∂∂̄∗p,q) ∪ Spec(∂̄∗∂p,q) ⊂ Spec(�p,q) ∪ {0}.

Proof. We only prove Spec(∂∂̄∗p,q) ⊂ Spec(�p,q)∪{0} here. And Spec(∂̄∗∂p,q) ⊂ Spec(�p,q)∪

{0} can be proved in a similar way.

Take λ0 ∈ Spec(∂∂̄∗p,q) and λ0 > 0. By Weyl’s Criterion, there exists a sequence uj ∈

Dom(∂∂̄∗) with ‖uj‖ = 1 such that

(∂∂̄∗ − λ0)uj → 0. (2.24)

We will verify that ∂∂̄∗uj satisfies all the conditions in Theorem 2.2.2 for �. First, 2.24

directly implies

‖∂∂̄∗uj‖ → λ0 > 0. (2.25)

Secondly, by similar calculations as in the proof of Lemma 2.2.2, for m = 1, 2, we have

(
(�− λ0)(1 + �)−m∂∂̄∗uj, ∂∂̄

∗uj
)

=
(
∂∂̄∗(1 + �)−m(∂∂̄∗ − λ0)uj, ∂∂̄

∗uj
)
. (2.26)
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Since

‖∂∂̄∗(1 + �)−m(∂∂̄∗ − λ0)uj‖ ≤ ‖(∂∂̄∗ − λ0)uj‖ → 0, (2.27)

we have

(
(�− λ0)(1 + �)−m∂∂̄∗uj, ∂∂̄

∗uj
)
→ 0. (2.28)

So 2.25 and 2.28 imply λ0 ∈ Spec(�) by Theorem 2.2.2 and therefore the result follows.

Now we are going to finish the proof of Theorem 2.2.1 by proving the next lemma.

Lemma 2.2.4. Under the same assumption as in Theorem 2.2.1, we have

Spec(�p,q) ⊂ Spec(∂∂̄∗p,q) ∪ Spec(∂̄∗∂p,q) ∪ {0}.

Proof. Take λ0 ∈ Spec(�) and λ0 > 0. Then by Weyl’s Criterion, there exists a sequence

uj ∈ Dom(�) with ‖uj‖ = 1 such that

(�− λ0)uj → 0. (2.29)

We will use ∂∂̄∗(1 + �)−2uj and ∂̄∗∂(1 + �)−2uj as the test sequences. By the fact that

∂ ◦ ∂ = 0 on Dom(∂) and (1 + �)−1� = �(1 + �)−1 on Dom(�), we have

(∂∂̄∗ − λ0)∂∂̄∗(1 + �)−2uj = ∂∂̄∗(1 + �)−2(�− λ0)uj. (2.30)

Since ‖∂∂̄∗(1 + �)−2‖L2→L2 ≤ 1, we have

‖(∂∂̄∗ − λ0)∂∂̄∗(1 + �)−2uj‖ ≤ ‖(�− λ0)uj‖ → 0. (2.31)
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Similarly, we also have

‖(∂̄∗∂ − λ0)∂̄∗∂(1 + �)−2uj‖ ≤ ‖(�− λ0)uj‖ → 0. (2.32)

Now we need to verify that either ‖∂∂̄∗(1+�)−2uj‖ or ‖∂̄∗∂(1+�)−2uj‖ has a positive lower

bound which is uniform for j. Note

‖∂∂̄∗(1 + �)−2uj‖2 + ‖∂̄∗∂(1 + �)−2uj‖2 = ‖�(1 + �)−2uj‖2. (2.33)

Let {Pλ} be the Projection Valued Measure of �. Then

‖�(1 + �)−2uj‖2 =

∫ ∞
0

λ2

(1 + λ)4
d(Pλuj, uj) ≥ C(λ0)‖P( 1

2
λ0,

3
2
λ0)uj‖2, (2.34)

where C(λ0) = minλ∈[ 1
2
λ0,

3
2
λ0]

λ2

(1+λ)4
. Note (�− λ0)uj → 0 implies

‖P( 1
2
λ0,

3
2
λ0)uj‖ → 1. (2.35)

Therefore for sufficiently large j,

‖∂∂̄∗(1 + �)−2uj‖2 + ‖∂̄∗∂(1 + �)−2uj‖2 ≥ C(λ0)

2
> 0. (2.36)

So λ0 ∈ Spec(∂∂̄∗p,q) ∪ Spec(∂̄∗∂p,q) by Weyl’s Criterion and the result follows.

One direct corollary from Theorem 2.2.1 is the following spectrum relations of Gaffney ex-

tensions.

Corollary 2.2.1. Under the same assumption as Theorem 2.2.1, we have

Spec(�p,q) ⊂ Spec(�p,q+1) ∪ Spec(�p,q−1) ∪ {0}. (2.37)
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At the end of this section, let us recall the well-known relation between the spectrum of

Gaffney extension and L2 estimates.

Theorem 2.2.3. Let (M, g) be a Hermitian manifold with a holomorphic Hermitian vector

bundle (E, h). Assume the Gaffney extension of Hodge Laplacian �p,q+1 : L2(M,Λp,q+1(E))→

L2(M,Λp,q+1(E)) satisfies Spec(�p,q+1) ⊂ [a,∞) for some positive number a. Then for any

f ∈ ker ∂p,q+1 ⊂ L2(M,Λp,q+1(E)), there exists u ∈ L2(M,Λp,q(E)) such that ∂u = f with

the following estimate

(u, u) ≤ 1

a
(f, f). (2.38)

Proof. In the proof, we will use � to represent �p,q+1 for simplicity. By the condition

Spec� ⊂ [a,∞), we have that �−1 : L2(M,Λp,q+1(E)) → Dom(�) ⊂ L2(M,Λp,q+1(E)) is a

bounded operator with

‖�−1‖L2→L2 ≤ 1

a
. (2.39)

Take u = ∂̄∗�−1f and we will verify u satisfies all the conclusions. First, since the Gaffney

extension satisfies � = ∂∂̄∗ + ∂̄∗∂ by Theorem 2.1.2, we have

∂u = ∂∂̄∗�−1f = f − ∂̄∗∂�−1f. (2.40)

Therefore, f ∈ ker ∂ implies ∂̄∗∂�−1f ∈ ker ∂. By taking the following inner product

0 =
(
∂∂̄∗∂�−1f, ∂�−1f

)
=
(
∂̄∗∂�−1f, ∂̄∗∂�−1f

)
, (2.41)

we have

∂̄∗∂�−1f = 0. (2.42)
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Again, by taking the following inner product with �−1f

0 =
(
∂̄∗∂�−1f,�−1f

)
=
(
∂�−1f, ∂�−1f

)
, (2.43)

we have

∂�−1f = 0. (2.44)

Combining with 2.40, we have

∂u = f.

Second, we will verify the estimate 2.38. By 2.44 and straightforward calculations, we have

(u, u) = (∂̄∗�−1f, ∂̄∗�−1f) = (∂∂̄∗�−1f,�−1f) = (f,�−1f).

Therefore 2.39 implies the result.

Remark 2.2.4. Note we cannot directly use ∂p,q+2�
−1
p,q+1f = �−1

p,q+2∂p.q+1f = 0 in the proof

as we do not know the existence of �−1
p,q+2.
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Chapter 3

Self-adjointness of the Laplace

Operator on Calabi-Yau Moduli Space

3.1 Manifolds with almost polar boundary

Let (M, g) be a Riemannian manifold. First, we recall the following notations. Let D(M)

be the set of smooth functions on M with compact support. We use Q1(·, ·) = (·, ·) + (d·, d·)

to denote the quadratic form on functions. And recall the definition of Sobolev spaces, as

shown below.

Definition 3.1.1.

W 1
0 (M) =Completion of D(M) with respect to Q1 inner product, (3.1)

W 1(M) =Completion of {ϕ ∈ C∞(M) : Q1(ϕ, ϕ) <∞} with respect to Q1 inner product.

(3.2)

Generally, we know W 1(M) = W 1
0 (M) for complete Riemannian manifolds. In [16, 17],
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Masamune proved W 1(M) = W 1
0 (M) for Riemannian manifolds with almost polar boundary.

We will repeat the proof here for the sake of completeness, and because there is a gap in

Masamune’s proof.

We need to introduce some more definitions and notations. Let d be the distance function

induced by the length of piecewise curves on M . Then (M,d) is a metric space. We use

(M c, d) to denote the Cauchy completion of (M,d). We define the Cauchy boundary ∂cM =

M c −M .

Definition 3.1.2. We define the capacity of an open set O ⊂M c by

cap(O) = inf{Q1(u, u) : u ∈ W 1(M), 0 ≤ u ≤ 1 and u|O∩M = 1}. (3.3)

We also define the capacity of an arbitrary set Σ ⊂M c by

cap(Σ) = inf{cap(O),Σ ⊂ O,O ⊂M c is open}. (3.4)

A set Σ is said to be almost polar if cap(Σ) = 0.

Remark 3.1.1. For any open set O ⊂ M c, e ∈ W 1(M) is called the equilibrium potential of

O if it satisfies the following conditions.

1. Q1(e, e) = cap(O).

2. e|O = 1.

3. 0 ≤ e ≤ 1.

It is known that the equilibrium potential exists for any open set O ⊂M c. See [7] for more

details.

Here is the main theorem we are going to prove.
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Theorem 3.1.1. Let (M, g) be a Riemannian manifold. If cap(∂cM) = 0, then

W 1(M) = W 1
0 (M). (3.5)

It might be a good idea to go through the main idea of the proof beforehand. First we show

that L∞(M)∩W 1(M) ⊂ W 1(M) is dense. Then without loss of generality, we only need to

consider f ∈ L∞(M) ∩W 1(M). After choosing a sequence of open sets {Vn} decreasing to

∂cM , by using the equilibrium potential of Vn, say en, we can approximate f by (1 − en)f

whose support is contained in M −Vn. In the end, we want to modify the function (1− en)f

to be compactly supported. As (M c, d) is only a complete metric space, the closed metric

ball excluding an open set containing ∂cM might not be a compact set even if cap(∂cM) = 0

(see Section 3.4 for more details). So we will use the intrinsic distance on M−Vn instead. By

Hopf-Rinow-Cohn-Vossen Theorem (see Theorem 2.5.28 in [3]), we know the closed metric

ball with respect to the intrinsic distance is compact . And we will use some cut-off function

to finish the modification on the support.

We begin the proof with the following lemma.

Lemma 3.1.1. For any Riemannian manifold (M, g), L∞(M)∩W 1(M) is dense in W 1(M).

Proof. Take f ∈ W 1(M). Define a cut-off function ρ ∈ C∞(R) such that

ρ(x) =


1 x ≤ 1

0 x ≥ 2

,

and

0 ≤ ρ ≤ 1, −C ≤ ρ′ ≤ 0.
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Then define fm = ρm(|f |)f . Note fm ∈ L∞(M) ∩ W 1(M) and we will prove fm → f in

W 1(M). By the dominated convergence theorem, we directly get fm → f in L2(M).

As to dfm, we have

dfm − df =
(
ρ(
|f |
m

)− 1
)
df +

1

m
ρ′(
|f |
m

)f · d|f |. (3.6)

The first term on the right hand side converges to 0 in L2(M,Λ1) as |ρ( |f |
m

)− 1| ≤ χ{|f |≥m}.

For the second term, since

∣∣ 1

m
ρ′(
|f |
m

)f · d|f |
∣∣ ≤ 2Cχ{m≤|f |≤2m}|df |, (3.7)

it follows that 1
m
ρ′( |f |

m
)f · d|f | → 0 in L2(M,Λ1). So we have fm → f in W 1(M) and the

result follows.

In the next two lemmas, we will construct open sets containing ∂cM with smooth boundary.

Lemma 3.1.2. ∂cM ⊂M c is a closed subset.

Proof. Since M is the complement of ∂cM in M c, it is equivalent to verify that M ⊂M c is an

open subset. For any x ∈M , let ix be the injectivity radius at x. Then for any r ∈ (0, ix), by

considering the exponential map at x, we know BM(x, r) = {y ∈M,d(x, y) ≤ r} is compact,

whence complete. Therefore BM(x, r) = BMc
(x, r) = {y ∈ M c, d(x, y) < r} since we will

not add any new point to BM(x, r) during the Cauchy completion of M . So BMc
(x, r) ⊂M

and the result follows.

Lemma 3.1.3. For any open set U ⊂M c containing ∂cM , there exists an open set V ⊂M c

such that ∂cM ⊂ V ⊂ V ⊂ U and ∂(M c \ V ) ⊂ M is a smooth submanifold of codimension

1.
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Proof. Let UC be the complement of U in M c. Since ∂cM and UC are both closed in

(M c, d). By Urysohn’s Lemma, there exists a function f ∈ C(M c) such that 0 ≤ f ≤ 1,

f−1({0}) = ∂cM and f−1({1}) = UC . Take S = f−1([0, 1
2
)). Then S is an open subset of

M c such that ∂cM ⊂ S ⊂ S ⊂ U .

Note that S \∂cM = S∩M and UC are both closed in M . By the Smooth Urysohn’s Lemma

in [18], there exists a function g ∈ C∞(M) such that 0 ≤ g ≤ 1, g−1({0}) = S \ ∂cM and

g−1({1}) = UC . By Sard’s Theorem, without loss of generality, we can assume 1
2

is a regular

value of g. Take V = g−1([0, 1
2
)) ∪ ∂cM ⊂ M c. Then it is easy to see V = g−1([0, 1

2
)) ∪ S.

Therefore, V is open in M c such that ∂cM ⊂ V ⊂ V = g−1([0, 1
2
)) ∪ S ⊂ U . Because

∂(M c \ V ) = g−1({1
2
}) and 1

2
is a regular value of g, the remaining part of the lemma

follows.

Let V be an open subset satisfying the conclusion in the above lemma. Denote V C = M c \V

as the complement of V inM c. Then V C = ∪λ∈ΛAλ, where each Aλ is a connected component

of V C and Λ is the index set. Since V C is locally path-connected, each Aλ is both open and

closed in V C . We define the intrinsic distance function dAλ on Aλ as follows.

Definition 3.1.3. Define the intrinsic distance on Aλ as dAλ : Aλ × Aλ → [0,∞),

dAλ(x, y) = inf
l∈LAλ

‖l‖ (3.8)

where LAλ = {all piecewise smooth curves contained in Aλ from x to y} and ‖l‖ denotes the

length of curve l.

Remark 3.1.2. d(x, y) ≤ dAλ(x, y) for any x, y ∈ Aλ as d is the infimum over a larger set.

In general, d and dAλ are not globally equivalent to each other on Aλ. The next lemma shows

that they are locally equivalent on Aλ.

23



Lemma 3.1.4. For any x ∈ Aλ, there exists r = r(x) > 0 such that

dAλ(x, y) ≤ 4d(x, y) for any y ∈ BAλ(x, r). (3.9)

where BAλ(x, r) = {y ∈ Aλ, d(x, y) < r}.

Proof. For any x ∈ Aλ ⊂ V C ⊂ M , either x is in the interior of V C or x ∈ ∂V C . In

the first case, take r < ix (ix denotes the injectivity radius at x) small enough such that

BM(x, r) ⊂ Aλ. Then for any y ∈ BM(x, r), there exists a minimizing geodesic l ⊂ BM(x, r)

such that ‖l‖ = d(x, y). Therefore, dAλ(x, y) = d(x, y) for any y ∈ BAλ(x, r) = BM(x, r).

In the second case, i.e. x ∈ ∂V C , take r < ix. We can identify BRm(o, r)(w.r.t the Euclidean

metric gx for fixed x) with BM(x, r) by the exponential map Expx at x. By shrinking r,

we can assume the Riemannian metric on BM(x, r) is equivalent to the metric at x, say

1
2
gx ≤ g ≤ 2gx. Let {ei}mi=1 be the standard orthonormal basis of Rm. Up to an orthonormal

linear transformation, we can assume {ei}m−1
i=1 ⊂ Tx(∂V

C) and em is the normal direction

of ∂V C at x. According to Lemma 3.1.3, possibly by shrinking r again, we can assume

∂V C = {(x1, x2, · · · , xm) ∈ B(o, r), xm = h(x1, x2 · · · , xm−1)} where h ∈ C∞(Rm−1) and

h(0, · · · , 0) = 0. Since {ei}m−1
i=1 are tangent vectors of ∂V C at x, ∇h(0, · · · , 0) = 0. By

shrinking r again, we can assume |∇h| ≤ 1 in BRm−1(o, r).

For any point y ∈ BRm(o, r), consider the curves

l1 = (ty1, ty2, · · · , tym−1, h(ty1, · · · , tym−1)) for t ∈ [0, 1],

and

l2 = (y1, y2, · · · , ym−1, tym + (1− t)h(y1, y2, · · · , ym−1)) for t ∈ [0, 1].
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Then the concatenation l1 ∪ l2 ⊂ V C is from x to y. The Euclidean length of l1, l2 are

respectively

‖l1‖Rm =

∫ 1

0

√
y2

1 + y2
2 + · · ·+ y2

m−1 + |∇h(ty1, ty2, · · · , tym−1) · (y1, y2, · · · , ym−1)|2dt

≤2
√
y2

1 + y2
2 + · · ·+ y2

m−1,

‖l2‖Rm =|ym − h(y1, y2, · · · , ym−1)|

≤|ym|+
√
y2

1 + y2
2 + · · ·+ y2

m−1.

Therefore,

dAλ(x, y) ≤‖l1‖+ ‖l2‖

≤2‖l1‖Rm + 2‖l2‖Rm

≤4
√
y2

1 + y2
2 + · · ·+ y2

m−1 + y2
m

=4d(x, y).

The second inequality is due to 1
2
gx ≤ g ≤ 2gx. So the result follows.

Based on Remark 3.1.2 and Lemma 3.1.4, we have the following proposition on (Aλ, dAλ).

Proposition 3.1.3. (Aλ, dAλ) satisfies the following properties.

(a). (Aλ, dAλ) and (Aλ, d) have the same topology.

(b). (Aλ, dAλ) is locally compact.

(c). (Aλ, dAλ) is complete.

Proof. Part (a) directly follows from Remark 3.1.2 and Lemma 3.1.4.
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Now we prove part (b). Since V C is a closed subset of (M,d) and (M,d) is locally compact,

(V C , d) is locally compact. Because Aλ is a closed subset of (V C , d), (Aλ, d) is locally

compact. The result follows from part (a).

Lastly we prove part (c). Let {xn}∞n=1 be a Cauchy sequence in (Aλ, dAλ). By Remark 3.1.2,

{xn}∞n=1 is also a Cauchy sequence in (Aλ, d). Since Aλ is closed in (V C , d) and V C is closed

in the complete space (M c, d), (Aλ, d) is complete. Then we know there exists some x ∈ Aλ

such that lim d(x, xn) = 0. By Lemma 3.1.4, lim dAλ(xn, x) = 0 and therefore the result

follows.

For any x0 ∈ Aλ, define the function rx0 : Aλ → [0,∞) as rx0(x) = dAλ(x0, x). Then we have

the following proposition on rx0 .

Proposition 3.1.4. For the function rx0 defined as above, we have

|∇r|g ≤ 4. (3.10)

Proof. Since |r(x)− r(y)| ≤ dAλ(x, y), the result follows from Lemma 3.1.4.

The closed metric ball induced from dAλ is compact though it is not the case for metric d.

The following lemma is essentially Hopf-Rinow-Cohn-Vossen Theorem. See Theorem 2.5.28

in [3] for more details.

Lemma 3.1.5. For any x ∈ Aλ, r > 0, B(Aλ,dAλ )(x, r) is compact. Here B(Aλ,dAλ )(x, r)

denotes the set {y ∈ Aλ, dAλ(x, y) < r}.

Remark 3.1.5. By part (a) in Proposition 3.1.3, the closures of B(Aλ,dAλ )(x, r) in (Aλ, d) and

in (Aλ, dλ) are the same. The compactness in (Aλ, d) and that in (Aλ, dλ) are also the same.

So there is no ambiguity in the above lemma.
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Proof. By part (b) in Proposition 3.1.3, the set {r > 0, B(Aλ,dAλ )(x, r) is compact} is nonempty.

So we can define r0 = sup{r > 0, B(Aλ,dAλ )(x, r) is compact}. Now it suffices to prove r0 =∞.

Assume not. Then r0 ∈ (0,∞).

First, we prove that B(Aλ,dAλ )(x, r0) is compact. Take an arbitrary ε > 0. Since dAλ(x, y) ≤ r0

for any y ∈ B(Aλ,dAλ )(x, r0), there exists a piecewise smooth curve l ⊂ Aλ from x to

y such that ‖l‖ < r0 + ε. Reparametrize the curve l by its arc length. Then the re-

striction l|[r0−ε,‖l‖] is a piecewise smooth curve from a point in B(Aλ,dAλ )(x, r0 − ε) to y.

Since ‖l|[r0−ε,‖l‖]‖ < 2ε, y ∈ B(Aλ,dAλ )(B(Aλ,dAλ )(x, r0 − ε), 2ε). Therefore, B(Aλ,dAλ )(x, r0) ⊂

B(Aλ,dAλ )(B(Aλ,dAλ )(x, r0 − ε), 2ε). Since B(Aλ,dAλ )(x, r0 − ε) is compact by the definition of

r0, B(Aλ,dAλ )(x, r0) is totally bounded in (Aλ, dAλ). Therefore, B(Aλ,dAλ )(x, r0) is compact by

part (c) in Proposition 3.1.3.

Second, we prove that B(Aλ,dAλ )(x, r0 + δ) is compact for some δ > 0, which contradicts

the definition of r0 and therefore we get the result. Since B(Aλ,dAλ )(x, r0) is also com-

pact, together with part (b) in Proposition 3.1.3, we know B(Aλ,dAλ )(x, r0) has a finite cover

{B(Aλ,dAλ )(yi, δi)}Ni=1, such that yi ∈ B(Aλ,dAλ )(x, r0), δi > 0 and B(Aλ,dAλ )(yi, 2δi) is com-

pact for each i. Take δ = min1≤i≤N δi. Then B(Aλ,dAλ )(x, r0 + δ) ⊂ ∪Ni=1B(Aλ,dAλ )(yi, 2δi) is

compact, contradicting that r0 is the supreme of {r > 0, B(Aλ,dAλ )(x, r) is compact}. So the

result follows.

Now we are ready to prove the Theorem 3.1.1.

Proof. Since cap(∂cM) = 0, there exists a sequence of open sets {Un}∞n=1 such that ∂cM ⊂ Un

and lim cap(Un) = 0. For U1, by Lemma 3.1.3, there exists an open set V1 such that

∂cM ⊂ V1 ⊂ V1 ⊂ U1 and ∂(V C
1 ) is a smooth submanifold. Then for V1 ∩ U2, by Lemma

3.1.3, there exists an open set V2 such that ∂cM ⊂ V2 ⊂ V2 ⊂ V1∩U2 and ∂(V C
2 ) is a smooth

submanifold. Inductively, we construct Vi+1 by applying Lemma 3.1.3 to Vi ∩ Ui+1. So we

27



get a sequence of decreasing open sets {Vn}∞n=1 such that ∂cM ⊂ Vn ⊂ Vn ⊂ Vn−1 ∩ Un and

∂(V C
n ) is a smooth submanifold. In particular Vn ⊂ Un, so we have lim cap(Vn) = 0.

Take f ∈ W 1(M) ∩ L∞. It suffices to prove f ∈ W 1
0 (M).

First, we approximate f by using functions with the support sets in some V C
n . Let en be the

equilibrium potential (see Remark 3.1.1) of Vn, i.e. en satisfies the following properties.

1. en ∈ W and Q1(en, en) = cap(Vn).

2. en|Vn = 1.

3. 0 ≤ en ≤ 1.

Since ‖en‖W = cap(Vn) → 0, we can assume en → 0 a.e. by passing to a subsequence. Let

fn = (1− en−1)f . Then fn → f in W 1(M) and supp(fn) ⊂ V C
n−1 ⊂ Vn

C ⊂ interior(V C
n ).

Secondly, we approximate each fn with supp(fn) ⊂ interior(V C
n ) by using functions with

compact supports. From now on, we fix fn and V C
n . For simplicity, we suppress the index n.

Write V C as the disjoint union of connected components, V C = ∪λ∈ΛAλ. Since f ∈ W 1(M)

and {Aλ}λ∈Λ is pairly disjoint, f vanishes on all but countably many Aλ, say {Aλj}∞j=1.

Denote gj = fχAλj where χAλj is the characteristic function of Aλj . Note gj ∈ W 1(M) and

∇gj = (∇f)χAλj , due to the fact that ∂Aλj ⊂ ∂(V C)1 and that f vanishes close to ∂(V C)

as supp f ⊂ interior(V C). Then f =
∑∞

j=1 gj and ‖f‖2
W =

∑∞
j=1 ‖gj‖2

W . Therefore, for any

ε > 0, there exists N > 0 such that ‖f −
∑N

j=1 gj‖W < ε.

Now it suffices to approximate each gj by using compact supported functions. Take xj ∈ Aλj

and define rj : Aλj → [0,∞) as rj(x) = dAλj (xj, x). Then we have |∇rj|g ≤ 4 by Proposition

3.1.4. Let ϕ ∈ C∞(R) satisfy the following conditions.

1. ϕ is a decreasing function and 0 ≤ ϕ ≤ 1.

1This is a fact in locally connected topological space. See [1] for more details.
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2. ϕ|(−∞,0] = 1 and ϕ[1,∞) = 0.

3. |ϕ′| ≤ C and C is a fixed constant.

Define ϕk(x) = ϕ(x
k
). Then ϕk ◦ rj → 1 a.e. on Aλj as k → ∞ and |∇(ϕk ◦ rj)|g ≤ 4C

k
.

Therefore, we have (ϕk ◦ rj)gj → gj in W 1(M). And supp((ϕk ◦ rj)gj) ⊂ supp(ϕk ◦ rj) ⊂

B(Aλj ,dAλj
)(xj, 2k), which is compact by Lemma 3.1.5. So the result follows.

3.2 Moduli Space of Polarized Calabi-Yau Manifolds

In this section, we consider the moduli space of polarized Calabi-Yau manifolds M. In

[23], Viehweg proved the moduli space M is a quasi-projective variety. Take M as the

compactification ofM. By resolution of singularities and normalization, we may assumeM

is a smooth manifold and the divisor Y =M\M is a divisor of normal crossings. Let ωWP

be the Weil-Petersson metric. From now on, we will work on this quasi-projective Kähler

manifold (M, ωWP ) with the compactification M which is a compact Kähler manifold.

Here is the main theorem we are going to prove in this section.

Theorem 3.2.1. The moduli space of Polarized Calabi-Yau manifolds (M, ωWP ) has an

almost polar Cauchy boundary, i.e. cap(∂cM) = 0.

Remark 3.2.1. In general, the Cauchy completion Mc is not necessarily identical to the

compactification M. Therefore, the Cauchy boundary ∂cM is not necessarily identical to

the divisor Y =M\M.

It is well-known that there is a complete Kähler metric onM such that it is asymptotical to

the Poincaré metric near infinity. We call it Poincaré metric and denote it by ωP (See Lemme

3.1 in [14]). The key ingredient in proving Theorem 3.2.1 is the following lemma from [12].
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Lemma 3.2.1. For any ε > 0 small enough, there is a smooth real valued function ρε ∈

D(M) such that

(a). 0 ≤ ρε ≤ 1;

(b). There is a constant C, independent of ε, such that −CωP ≤
√
−1∂∂ρε ≤ CωP ;

(c). In some neighborhood of Y , ρε = 0 and ρε(x) = 1 if the Euclidean distance of x ∈ M

to Y is greater than 2ε.

Proof. As Y ⊂ M is a divisor of normal crossings, we can find a finite cover {Uα}tα=1 of

M such that Y ⊂ ∪sα=1Uα and Us+1 ∪ · · · ∪ Ut) ∩ Y = ∅. Furthermore, we can assume that

Uα− Y = (∆∗)aα × (∆)bα with the coordinates (sα1 , · · · , sαaα , w
α
1 , · · · , wαbα) for any 1 ≤ α ≤ s.

Let η : R→ R be a smooth decreasing function such that 0 ≤ η ≤ 1 and

η =


1 x ≤ 0

0 x ≥ 1

.

Let

ηε(z) =


1 |z| ≤ e−

1
ε

η(
(log 1

|z| )
−1−ε

ε
) e−

1
ε ≤ |z| ≤ e−

1
2ε

0 |z| ≥ e−
1
2ε

.

And let

ηαε (sα1 , · · · , sαaα) =
aα∏
j=1

(1− ηε(sαj )).
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Then define the function

ρε =
s∑

α=1

ψαη
α
ε +

t∑
α=s+1

ψα,

where {ψα} is a partition of unity subordinated to {Uα}.

Then 0 ≤ ρε ≤ 1. By a straightforward calculation, we have

∂ηε =
1

2ε
η′

dz̄

z̄(log 1
|z|)

2
,

∂∂ηε =
1

4ε2
η′′

dz ∧ dz̄
|z|2(log 1

|z|)
4

+
1

2ε
η′

dz ∧ dz̄
|z|2(log 1

|z|)
3
.

Note that η′ = 0 unless ε ≤ (log 1
|z|)
−1 ≤ 2ε. Therefore,

|∂ηε| ≤ C| dz̄

|z| log 1
|z|
|, |∂∂ηε| ≤ C| dz ∧ dz̄

|z|2(log 1
|z|)

2
|,

where C is a constant independent of ε. Therefore, we obtain part (b) as ψα are fixed smooth

functions on M.

Let x ∈ M. When x is sufficiently close to Y , ψα = 0 for any α ≥ s + 1 and ηαε = 0 for

any α ≤ s. Therefore, we obtain ρε = 0 in a neighborhood of Y . If the distance from x to

Y is at least 2ε, then there is a constant C > 0 such that |sαj | ≥ Cε for any 1 ≤ j ≤ aα

and 1 ≤ α ≤ s. Since εe
1
2ε → ∞ as ε → 0, we have ρε(x) =

∑
ψα = 1 when ε is small

enough.

Now we are ready to prove Theorem 3.2.1.

Proof. Take the function ρε constructed in Lemma 3.2.1. As ρε ∈ D(M) and 0 ≤ ρε ≤ 1,
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we have

cap(∂cM) ≤
∫
M
|1− ρε|2

ωnWP

n!
+

∫
M
|d(1− ρε)|2

ωnWP

n!
, for any ε > 0. (3.11)

Since ρε → 1 pointwise onM and the volume of Weil-Petersson metric is finite by Theorem

1.1 in [14],

lim
ε→0

∫
M
|1− ρε|2

ωnWP

n!
= 0. (3.12)

It suffices to prove that
∫
M |dρ|

2 → 0. Note

∫
M
|dρε|2ωnWP =2

∫
M
|∂ρε|2ωnWP

=2n

∫
M

√
−1∂ρε ∧ ∂ρε ∧ ωn−1

WP

=− 2n

∫
M

√
−1ρε∂∂ρε ∧ ωn−1

WP .

Since −CωP ≤
√
−1∂∂ρε ≤ CωP and ωWP ≤ CωP (see Proposition 3.1 in [14]), we have

∫
M
|∂ρε|2ωnWP ≤ C

∫
supp(∂ρε)

ωnP .

Use the same cover of {Uα}tα=1 of M as in Lemma 3.2.1. Then Y ⊂ ∪sα=1Uα, Us+1 ∪ · · · ∪

Ut) ∩ Y = ∅ and Uα − Y = (∆∗)aα × (∆)bα with the coordinates (sα1 , · · · , sαaα , w
α
1 , · · · , wαbα)

for any 1 ≤ α ≤ s. When ε is small enough, we can assume that supp(∂ρε) ∩ Uα ⊂ {|sαj | ≤
1
2
, |wαj | ≤ 1

2
} for any 1 ≤ α ≤ s. In Uα − Y for any 1 ≤ α ≤ s, the Poincaré metric ωP is

asymptotic to

√
−1

2

(
aα∑
j=1

dsαj ∧ ds̄αj
|sαj |2(log 1

|sαj |
)2

+
bα∑
j=1

dwαj ∧ dw̄αj

)
, (3.13)
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so we have

∫
supp(∂ρε)

ωnP ≤ C

s∑
α=1

aα∏
j=1

∫ e−
1
ε

e−
1
2ε

1

|sαj |(log 1
|sαj |

)2
d|sαj |

bα∏
j=1

∫ 1
2

0

|wαj |d|wαj | ≤ Cε. (3.14)

Therefore,

lim
ε→0

∫
M
|dρε|2ωnWP = 0 (3.15)

and the result follows.

3.3 Self-Adjointness of the Laplacian on Moduli Space

In this section, we will consider the self-adjointness of Laplacian on (M, ωWP ). Let us

consider the differential operators d and δ defined respectively on C1 functions and C1 forms

on M. We define the domain Dom(d) of d to be the set of C1 functions f defined on M

such that both f and df are in L2. Similarly, we define the domain Dom(δ) of δ to be the

set of C1 1-forms w such that both w and δw are in L2. We then define the Laplacian ∆

with respect to ωWP as δd. And the domain Dom(∆) is given by the set of C2 functions f

such that f ∈ Dom(d) and df ∈ Dom(δ). In this section, we will prove the closure ∆ of ∆

is self-adjoint.

Theorem 3.3.1. On (M, ωWP ), the closure ∆ of Laplacian on functions is self-adjoint.

It is proved in [10] that ∆ is self-adjoint on M \ ΣM when M is an algebraic variety with

the induced Fubini-Study metric and ΣM is the singular set of at least real codimension 2.

Here our result is different as we are considering the Weil-Petersson metric.

Proof. By the theorem of Gaffney in [8], in order to show ∆ is self-adjoint, it is sufficient to
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prove

(df, w) = (f, δw) for any f ∈ Dom(d) and w ∈ Dom(δ). (3.16)

By Theorem 3.2.1 and 3.1.1, we have W 1(M) = W 1
0 (M). Since Dom(d) ⊂ W 1(M), there

exists a sequence fn ∈ D(M) such that fn → f in W 1(M). As each fn has a compact

support, through integration by parts, we have

(dfn, w) = (fn, δw). (3.17)

The result follows by taking n→∞.

3.4 An Example

Let (M, g) be a Riemannian manifold. As we have mentioned in Section 3.1, a closed

metric ball in (M c, d) excluding an open set containing ∂cM might not be compact even if

cap(∂cM) = 0. And that is why we use the intrinsic distance instead in the proof of Theorem

3.1.1. In this section, we will give a concrete example to demonstrate.

Consider the Riemannian manfold (M, g) as follows. Suppose M = R3 and

g = e2z(dr2 + f 2(r)dθ2 + dz2), (3.18)

where (r, θ, z) is the cylindrical coordinates. Here the function f ∈ C∞([0,∞)) satisfies the

following properties.

1. f(r) = r for r ∈ [0, 1
2
].

2. f is increasing on [0, 1] and f(1) = 1.
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3. f is decreasing on [1,∞).

4. f(r) = e−r for f ∈ [2,∞).

For any piecewise smooth curve l : [a, b]→M , we denote the lenth of l by ‖l‖, i.e.

‖l‖ =

∫ b

a

ez(t)
√
ṙ2(t) + f 2(r(t))θ̇2(t) + ż2(t)dt. (3.19)

Define the distance function d as

d(p, q) = inf
l∈L
‖l‖,

where L = {all piecewise smooth curves from p to q}. Then we know (M,d) is a metric

space. Let us first obtain some bounds on the distance function d.

Lemma 3.4.1. For any P1, P2 ∈ M , denote the coordinates of Pi as (ri, θi, zi) for i = 1, 2.

Then

d(P1, P2) ≤ ez1 + ez2 . (3.20)

Proof. For any t0 < min(z1, z2). Define the following three smooth curves:

l1 : (r1, θ1, t) for t ∈ [t0, z1] oriented from z1 to t0,

l2 : (r1 + (r2 − r1)t, θ1 + (θ2 − θ1)t, t0) for t ∈ [0, 1],

l3 : (r2, θ2, t) for t ∈ [t0, z2].

Then l1∪ l2∪ l3 is a piecewise smooth curve conecting P1 and P2. We can calculate the lenth
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of these curves straightfowardly.

‖l1‖ =

∫ z1

t0

etdt = ez1 − et0 ,

‖l3‖ =

∫ z2

t0

etdt = ez2 − et0 ,

‖l2‖ =

∫ 1

0

et0
√

(r2 − r1)2 + (θ2 − θ1)2f 2(r1 + (r2 − r1)t)dt

≤ et0
√

(r2 − r1)2 + (θ2 − θ1)2.

Therefore,

d(P1, P2) ≤ ez1 + ez2 − 2et0 + et0
√

(r2 − r1)2 + (θ2 − θ1)2.

Taking t0 → −∞, the result follows.

Define HI = R2 × I = {(r, θ, z) : z ∈ I} for any I ⊂ R. And we will use diam S to denote

the diameter of set S ⊂M .

Corollary 3.4.1. diam H(−∞,0] ≤ 2.

Proof. For any P1, P2 ∈ H(−∞,0], we have d(P1, P2) ≤ ez1 + ez2 ≤ 2.

Lemma 3.4.2. For any P1, P2 ∈M ,

d(P1, P2) ≥ |ez1 − ez2|. (3.21)
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Proof. For any piecewise smooth curve l : [0, 1]→M from P1 to P2, we have

‖l‖ =

∫ 1

0

ez(t)
√
ṙ2(t) + f 2(r(t))θ̇2(t) + ż2(t)dt

≥
∫ 1

0

ez|ż(t)|dt

≥ |ez1 − ez2|.

Note that the metric space (M,d) is not complete. {(0, 0,−n)}∞n=1 is a Cauchy sequence

since d((0, 0,−m), (0, 0,−n)) ≤ e−m + e−n. But it is not convergent in M .

Theorem 3.4.1. Let M c be the Cauchy completion of M with respect to metric d. Then

M c = M ∪ {∞} where {∞} is defined as the Cauchy sequence {(0, 0,−n)}∞n=1.

We want show that for any Cauchy sequence {Pn}∞n=1, either it is convergent in M or it

is equivalent to the Cauchy sequence {(0, 0,−n)}∞n=1. We split the proof into the following

lemmas.

Lemma 3.4.3. Let {Pn}∞n=1 be a Cauchy sequence in M and denote Pn = (rn, θn, zn). Then

either {zn}∞n=1 is convergent in R or limn→∞ zn = −∞.

Proof. By inequality 3.21, we have d(Pm, Pn) ≥ |ezm − ezn|. Therefore, {ezn} is a Cauchy

sequence in R. So the result follows.

Lemma 3.4.4. Let {Pn}∞n=1 be a Cauchy sequence in M and denote Pn = (rn, θn, zn). If

{zn}∞n=1 is a Cauchy sequence in R, then {rn}∞n=1 is a Cauchy sequence in R.

Proof. Let z0 = lim zn. By dropping finitely many initial terms, we can assume zn ∈ [z0 −

1, z0 + 1]. Let δ = δ(z0) = ez0−1 − ez0−2. Since {Pn} is Cauchy, by dropping more initial
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terms, we can assume further that d(Pm, Pn) < δ
3

for any m,n ∈ Z+. By the definition of

distance d, there exists a piecewise smooth curve lmn : [0, 1]→ M from Pm to Pn such that

‖lmn‖ ≤ 3
2
d(Pm, Pn). We claim

min
t∈[0,1]

z(t) > z0 − 2. (3.22)

Assume not. Take t = t0 ∈ [0, 1] to be the first time such that z(t) = z0 − 2, which implies

that z(t) ≥ z0 − 2 for t ∈ [0, t0]. Then

‖lmn‖ ≥
∫ t0

0

ez(t)|ż(t)|dt ≥ ezm − ez(t0) ≥ ez0−1 − ez0−2 = δ.

However, according to our assumption on lmn, we have

‖lmn‖ ≤
3

2
d(Pm, Pn) <

δ

2
, (3.23)

which is a contradiction and therefore the claim follows. Thus we have

3

2
d(Pm, Pn) ≥ lmn ≥

∫ 1

0

ez(t)|ṙ(t)|dt ≥ ez0−2|rm − rn|.

Therefore, {rn} is a Cauchy sequence in R.

Lemma 3.4.5. Let {Pn}∞n=1 be a Cauchy sequence in M and denote Pn = (rn, θn, zn). If

{zn}∞n=1 is a Cauchy sequence in R and lim rn > 0, then {θn}∞n=1 is a Cauchy sequence in R.

Proof. Let z0 = lim zn and r0 = lim rn. By dropping finitely many initial terms, we can

assume that zn ∈ [z0−1, z0 +1] and rn ∈ [1
2
r0,

3
2
r0] for any n ∈ Z. Define δ(z0) = ez0−1−ez0−2

and δ(r0, z0) = 1
4
r0e

z0−2. And take δ = min{δ(z0), δ(r0, z0)}. By dropping more initial terms,

we can further assume d(Pm, Pn) < δ
3

for any m,n ∈ Z. Again, we take a piecewise smooth

curve lmn : [0, 1]→M from Pm to Pn such that ‖lmn‖ ≤ 3
2
d(Pm, Pn). By the proof of Lemma
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3.4.4, we have min z(t) ≥ z0 − 2. Here we claim

r(t) ∈ [
1

4
r0,

7

4
r0] for any t ∈ [0, 1]. (3.24)

Assume not. Let t = t0 be the first time such that r(t0) = 1
4
r0 or 7

4
r0. Then

‖lmn‖ ≥
∫ t0

0

ez(t)|ṙ(t)|dt ≥ ez0−2|r(t0)− rm| ≥
1

4
r0e

z0−2 = δ(r0, z0).

But we also have

‖lmn‖ ≤
3

2
d(Pm, Pn) <

δ

2
,

which is a contradiction. So the claim follows. Therefore,

3

2
d(Pm, Pn) ≥ ‖lmn‖ ≥

∫ 1

0

ez(t)f(r(t))|θ̇(t)|dt

≥ ez0−2 min{f(
1

4
r0), f(

7

4
r0)}|θm − θn|.

It follows that {θn} is a Cauchy sequence.

Lemma 3.4.6. Let Pn = (rn, θn, zn) be a sequence in M . If rn → r0, θn → r0, zn → z0 in R,

then Pn converges to P0 = (r0, θ0, z0) with respect to metric d.

Proof. Since zn → z0 in R. By dropping finitely many initial terms, we can assume zn ∈

[z0 − 1, z0 + 1]. Define a smooth curve from P0 to Pn as

l(t) = (r0 + (rn − r0)t, θ0 + (θn − θ0)t, z0 + (zn − z0)t). (3.25)
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Then

d(P0, Pn) ≤ ‖l‖ =

∫ 1

0

ez(t)
√

(rn − r0)2 + f 2(r0 + (rn − r0)t)(θn − θ0)2 + (zn − z0)2dt

≤ez0+1
√

(rn − r0)2 + (θn − θ0)2 + (zn − z0)2.

So the result follows.

Now we are ready to prove Theorem 3.4.1.

Proof. Let {Pn}∞n=1 be a Cauchy sequence in M . By Lemma 3.4.3, we have either lim zn =

−∞ or lim zn = z0 for some z0 ∈ R. In the first case, we have

d(Pn, (0, 0,−n)) ≤ ezn + e−n → 0.

Therefore Cauchy sequence {Pn} and {(0, 0,−n)} are equivalent to each other.

In the second case that z0 = lim zn ∈ R, we can assume zn ∈ [z0 − 1, z0 + 1] for any n ∈ Z+.

By Lemma 3.4.4, we know that {rn} is a Cauchy sequence in R. Let r0 = lim rn. We have

two sub-cases, either r0 = 0 or r0 > 0. When r0 = 0, define a smooth curve l from (0, 0, z0)

to Pn as l(t) = (rnt, θnt, z0 + (zn − z0)t). Then

d((0, 0, z0), Pn) ≤ ‖l‖ =

∫ 1

0

ez(t)
√
r2
n + f 2(rnt)θ2

n + (zn − z0)2dt

≤ez0+1

∫ 1

0

√
r2
n + 4π2f 2(rnt) + (zn − z0)2dt

→0 as n→∞.

Therefore, Pn → (0, 0, z0) in M .

In the second sub-case that r0 > 0, by Lemma 3.4.5, we have that lim θn = θ0 for some

θ0 ∈ R. Then by Lemma 3.4.6, we have that Pn converges to P0 = (r0, θ0, z0) in M . So the
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result follows.

Theorem 3.4.2. The capacity of ∂cM = {∞} ⊂M c is zero.

Proof. Define a decreasing function ϕ ∈ C∞(R) such that

ϕ(z) =


1 z ≤ 0

0 z ≥ 1.

For any a ∈ R, define ϕa ∈ C∞(M) as ϕa(P ) = ϕ(z − a) for any P = (r, θ, z) ∈ M . Then

ϕ = 1 on H(−∞,a) = B(∞, ea) and ϕ = 0 outside H(−∞,a+1) = B(∞, ea+1). Then

∫
M

ϕ2
adVg ≤

∫
H(−∞,a+1)

dVg

=

∫ a+1

−∞

∫ 2π

0

∫ ∞
0

e3zf(r)drdθdz

= 2πe3a+3

∫ ∞
0

f(r)dr

→ 0, as a→ −∞.

On the other hand,

∫
M

|∇ϕa|2gdVg =

∫
H(a,a+1)

|ϕ′(z − a)|2e−2zdVg

=

∫ a+1

a

∫ 2π

0

∫ ∞
0

|ϕ′(z − a)|2ezf(r)drdθdz

≤ 2π(ea+1 − ea) sup
R
|ϕ′|

∫ ∞
0

f(r)dr

→ 0, as a→ −∞.

Therefore the result follows.

Proposition 3.4.1. Let o = (0, 0, 0). Then B(o, 2) \B(∞, e−1) is not compact in M .
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Proof. By Corollary 3.4.1, we have

B(o, 2)−B(∞, e−1) ⊃ H(−∞,0] −H(−∞,−1) = H(−1,0].

Consider the sequence Pn = (n, 0, 0) in H(−1,0]. We claim

d(Pm, Pn) ≥ min(e−1, 1− e−1) for any m 6= n. (3.26)

Let l : [0, 1] → M be an arbitrary smooth curve from Pm to Pn. Then either l ⊂ H(−1,+∞)

or l will hit the plane z = −1. In the first case, we have

‖l‖ ≥
∫ 1

0

ez(t)|ṙ(t)|dt ≥ e−1|rm − rn| ≥ e−1

In the second case, take t = t0 be the first time l hit the plane z = −1. Then

‖l‖ ≥
∫ t0

0

ez(t)|ż(t)|dt ≥ ez(0) − ez(t0) = 1− e−1.

Combining these two cases, we have ‖l‖ ≥ min(e−1, 1− e−1) for any piecewise smooth curve

from Pm to Pn. So the claim follows. Therefore, there is no convergent subsequence of {Pn}

and thus the result follows.
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Chapter 4

Bergman Kernel

4.1 Introduction

4.1.1 Background

Let M be a compact complex manifold with dimC(M) = n. Let L be a positive Hermitian

holomorphic line bundle over M with Hermitian metric h. Suppose that the Kähler form ω

is defined by Ric(h) i.e.,

ω = −
√
−1

2π
∂∂̄ log(h). (4.1)

SetH0(M,L) to denote the subspace of holomorphic global sections of L within L2(M,L), the

space of all square integrable sections of L over M . The L2-inner product for f, g ∈ H0(M,L)

is given by the formula

〈f, g〉L2 :=

∫
M

(f, g)h
ωn

n!
, (4.2)
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where ωn

n!
is the volume form on M . The orthogonal projection PH0 : L2(M,L)→ H0(M,L)

is called the Bergman projection, and its kernel with respect to the scalar product men-

tioned above is K, the Bergman kernel of H0(X,L), a section of L ⊗ L̄. We naturally

extend the metric h on L to L⊗k :=

(k times)︷ ︸︸ ︷
L⊗ · · · ⊗ L, the Kähler form becomes kω and consider

the corresponding kernel. For the remainder of this chapter, both the metric, kernel and

corresponding quantities will be denoted by h and K. Given some point x ∈ M , that suf-

ficiently small coordinate neighborhoods Ux admit a local trivialization with corresponding

local frame {ekL}. For the case k = 1, this trivialization may be chosen so that a real valued

smooth plurisubharmonic function ϕ may represent h in the sense that

(eL, eL)h = e−ϕ(x). (4.3)

Set ψ(x, x) := ϕ(x) be the polarization of ϕ. We will call this a standard local frame with

the choice of Bochner coordinates, i.e. coordinates so that

ϕ(x) = |z|2 +R(z), R = O(|z|4). (4.4)

Note that in the Kähler setting, these coordinates may always be chosen in some neighbor-

hood of p. For general k, given a local trivialization, any local section f of L⊗k, can be

written f = f̃ ekL ∈ H0(Ux, L
⊗k), where f̃ is a local holomorphic function. After rescaling

the variable z 7→ v√
k
, we can view the space of weighted local holomorphic L2 sections with

finite norm

L2(Ux, L
⊗k, kϕ) :=

{
f ∈ H0(Ux, L) :

∫
Ux

∣∣∣f̃ ∣∣∣2
h
e−kϕ

ωn

n!
<∞

}
. (4.5)
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as a perturbed Bargmann-Fock space. We denote the above space as L2(Ux, kϕ) for conve-

nience. Given local holomorphic coordinates {zi}ni=1, the volume form is given by

dV :=

(√
−1

2π

)n
dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n, (4.6)

while the Kähler form is given by

ω =

√
−1

2π

∂2ϕ

∂zi∂zj
dzi ∧ dzj =

√
−1

2π
gijdz

i ∧ dzj. (4.7)

The components of the curvature tensor are given by

Rmijkl = −
∂2gij
∂zk∂zj

+ gst
∂git
∂zk

∂gsj
∂zl

. (4.8)

Furthermore set

Ω(z) := kn det
(
∂∂ϕ(z)

)
, (4.9)

where the determinant is taken over each matrix coefficient of the matrix valued two-form

∂∂ϕ(z) and consequently

ωn

n!
:= ΩdV. (4.10)

4.1.2 Bergman kernel

Methods to compute and analyze the coefficients of the Bergman Kernel have been worked

out over the last 25 years. Initially Tian gave leading asymptotics on the diagonal [22].

Extending the result of Fefferman [6], a complete expansion was given by Zelditch [24]

by regarding it as a Szegö kernel via lifts to the unit circle bundle, and independently by
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Catlin using the Boutet de Monvel-Sjöstrand parametrix [4]. In particular, their off-diagonal

asymptotic expansions, as k →∞, are given of the form, with bl certain Hermitian functions,

K(x, y)e−kψ(x,y) =
kn

πn

(
1 +

∞∑
l=1

bl(x, y)

kl

)
. (4.11)

Lu demonstrates that the functions bl(x, y)|x=y encode geometric information about the

underlying manifold M [11].

The purpose of this chapter is to provide an alternative proof of the near diagonal asymptotic

expansion of the Bergman Kernel as shown in the following theorem.

Theorem 4.1.1. Let (L, h) → (M,ω) be a positive line bundle over a compact Kähler

manifold with dimC(M) = n. Consider H0(M,L⊗k) the space of holomorphic sections of

k tensor powers of L. Then the scaled off-diagonal Bergman kernel admits an asymptotic

expansion. In Bochner coordinates, the expansion takes the form

K

(
u√
k
,
v√
k

)
= eu·v

(
∞∑
j=0

cj(u, v̄)√
kj

)
. (4.12)

The coefficients of cj(u, v̄) =
∑

p,q c
p,q
j upv̄q further satisfy


cp,qj = 0 for p+ q > 2j,

cp,qj = 0 for p+ q 6≡2 j.

(4.13)

4.1.3 Sketch of the proof

The proof of the Theorem 4.1.1 is subdivided into two components: construction and anal-

ysis of a local reproducing kernel (§4.2, §4.3, §4.4), and demonstration of this construction
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coinciding with the global reproducing kernel (§4.5).

Local construction and analysis

Initially in §4.2 we focus on proving the following proposition.

Proposition 4.1.1. Let k ∈ N and f ∈ H0(B), the set of holomorphic functions on the unit

ball centered at the origin, and fix χ ∈ C∞c (Cn) such that

χ(x) =


1 if |x| ≤ 1

2
,

0 if |x| ≥ 1.

(4.14)

Set χk(x) := χ(k
1
4x). Then there exists polynomials cj(u, v̄) such that it satisfies the scaled

local reproducing property:

f

(
u√
k

)
=

〈
χk

(
·√
k

)
f

(
·√
k

)
, eū·(·)

(
N∑
j

cj (·, ū)√
kj

)〉
L2

(
B(
√
k),kϕ

(
·√
k

))

+O

(
1

√
k
N+1−2n

)
‖f‖L2(B,kϕ).

(4.15)

The strategy is as follows. Given an arbitrary point p ∈ M we choose an appropriate

standard chart. Our choice for the scaling of the cut-off function is to localize the inner

product to the “near-diagonal” and to ensure that the expansion of the potential has the

asymptotics

kϕ( v√
k
) ∼ |v|2 +O(1) (4.16)

In these coordinates one may model this setting as a perturbed Bargmann-Fock space

L2(Cn, kϕ).
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Given the cj, Hermitian functions for all j ∈ N, we expand them in the form

cj(u, v̄) =
∑
p,q

cp,qj upv̄q, (4.17)

So that we have the local reproducing kernel given by

K loc(u, v̄) := euv̄
∑
j,p,q

cp,qj (u, v̄)
√
kj

= euv̄
∑
j

cj

(
u√
k
, v̄√

k

)
. (4.18)

Additionally we group together the quantity e−kRΩ and expand this as a bivariate power

series.

We utilize the expected reproducing property on monomials over Cn to solve directly for

the coefficients cp,qj . This allows us to first conclude that, (provided existence) cp,q0 vanishes.

(Lemma 4.2.1). With this we demonstrate that in fact all coefficients cj which reproduce

polynomials truly exist (Lemma 4.2.2) via a formal iterative construction.

To demonstrate that these cj are truly polynomials, we introduce the notion of the parity

property (definition 4.2.3), an algebraic characteristic of bivariate power series which is ad-

mitted by and yields the vanishing of higher order powers of cj. Specifically, deg cj ≤ 2j

(Theorem 4.2.1). The theorem relies on two key combinatorial identities and a strategy of

embedding quantities as coefficients of a polynomial to demonstrate the desired identity.

Provided the existence, in §4.3 we focus on demonstrating that up to small error, the con-

structed local kernel K loc reproduces any holomorphic function f . To do so, portions of the

integrand are expanded as series and truncated to evaluate remainders.

We then provide an explicit computation in Bochner coordinates of the coefficient c2 (the
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coefficients c0 and c1 are computed in Lemmas 4.2.5 and 4.4.1 respectively), yielding that


c0 = 1,

c1 = 0,

c2 = ρ
2
− 1

4
Rmijkl(0)uiukvjvl.

(4.19)

This iterative computation captures the essential strategy one may utilize to compute (if

they feel so inclined) any desired cj.

Global construction

The final focus of our work in §4.5 lies in demonstrating that our construction coincides with

the globally reproducing kernel. The strategy is essentially the same as [2] and is as follows.

We first compute a uniform upper bound for the Bergman function (Lemma 4.5.1)

B(x) = sup
||s||L2≤1

|s(x)|2h. (4.20)

This estimate is key in the comparison of the constructed local reproducing kernel K loc and

global Bergman kernel K. We apply the local reproducing property to the global Bergman

kernel, then consider the difference between the local kernel with the Bergman projection

of the local kernel. Since the difference is the orthogonal to the holomorphic functions, it is

in fact the L2 minimal solution to a certain ∂-equation. By using standard ∂-estimates, we

show the difference is small. Hence the difference between the global and local kernel is of

sufficiently small enough order.
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4.2 Local construction

The first step of our analysis is to establish the existence of the reproducing kernel of Cn.

The strategy is to first establish a formal construction during which we demonstrate the

existence of the Hermitian coefficients cj by considering their formal local expansion (4.17),

where p, q are multiindices and cp,qj ∈ C. Similarly we discuss the existence of the coefficients

ap,qj generated from the formal expansion of the exponential part of the Bergmen kernel with

the Jacobian of the volume form, given by e−kRΩ. The convergence of the coefficients ap,qj

and cp,qj is not given in this section and will be verified in §4.3 (cf. Lemma 4.3.1).

4.2.1 Notation and Conventions

We set the following conventions which will be used extensively throughout the paper.

Let Z+ denote the collection of all nonnegative integers. Let ` ∈ N and let α, β ∈ Z`+ such

that α := (α1, ..., α`) and β := (β1, ..., β`). Then define a multiindex factorial to be given by

α! :=
∏̀
i=1

αi!.

Additionally, set the multiindex length to be given by

|α| :=
∑̀
i=1

αi,

and a multiindex binomial coefficient is defined by the following

(
α

β

)
:=
∏̀
i=1

(
αi
βi

)
. (4.21)

Note we establish the convention that if q > p then
(
p
q

)
:= 0. Lastly, multiindex inequalities
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will be defined as follows. We have

α ≤ β ⇐⇒ (αi ≤ βi for all i ∈ [1, `] ∩ Z+), (4.22)

and furthermore

α < η ⇐⇒ (α ≤ β and |η − r| > 0). (4.23)

Given x ∈M and r > 0 we set

Bx(r) := {y ∈M : dist(y, x) < r} . (4.24)

In the setting of M = Cn we set B(r) := B0(r) and B := B(1). We set

Bc
x(r) := {y ∈M : dist(y, x) ≥ r} . (4.25)

For any summations if the ranges are not specified one will assume summation indices range

over multiindex values Z`+ with ` determined by the free variable.

4.2.2 Formal construction of coefficients

We denote the power series expansion for the product

e
−kR

(
v√
k

)
Ω
(

v√
k

)
=
∑
m

∑
p,q

ap,qm vpvq√
km

. (4.26)
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We will formally construct coefficients cj such that for any polynomial F ,

F

(
u√
k

)
=

(
1

2π

)n ∫
Cn
F

(
v√
k

)
eu·v̄−|v|

2

(
N∑
j=0

∑
j,p,q

cp,qj√
kj
upv̄q

)(∑
m≤d

∑
p,q

ap,qm vpvq√
km

)
dV.

(4.27)

It is sufficient to consider arbitrary degree l monomials in u, and due to the homogeneity

this simplifies (4.27) to

ul =

∫
Cn
vleu·v̄−|v|

2
N∑
t=0

∑
j+m=t

(∑
p,q

∑
r,s

cp,qj ar,sm√
kt

upv̄qvrvs

)
dV

=
N∑
t=0

∑
m+j=t

∑
q+s≤l+r

∑
p

cp,qj ar,sm√
kt

up+l+r−q−s
(l + r)!

(l + r − q − s)!
.

(4.28)

We can immediately determine the c0 coefficients, as seen in the following lemma.

Lemma 4.2.1. For multiindices p, q ∈ Zn+ the following property holds

cp,q0 =


1 if pi = qi = 0 for all i,

0 otherwise.

(4.29)

Proof. The proof proceeds by induction on the length of the multiindex q. First, we consider

|q| = 0. Then taking (4.28) for l = (0, . . . , 0) and comparing the coefficient of k coefficient

yields

1 =
∑
p

q+s≤r

cp,q0 ar,s0 up+r−q−s
r!

(r − q − s)!
. (4.30)

By the vanishing of ar,s0 from Proposition 4.4.1, we have

1 =
∑
p

cp,00 up. (4.31)
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Immediately we compare the coefficients of u and conclude result (4.29) for this case.

Now we assume the induction hypothesis holds for |q| ≤ λ− 1 and consider the case |q| = λ,

and take |l| = λ. Then applying the induction hypothesis to (4.28) and parsing apart the

right hand summation yields

ul =
∑
p

∑
q≤l

upcp,q0

l!

(l − q)!
ul−q

=
∑
p

∑
|q|=λ
q≤l

upcp,q0

l!

(l − q)!
ul−q +

∑
p

∑
q≤l

|q|≤λ−1

upcp,q0

l!

(l − q)!
ul−q.

Note in particular that the requirements in the first right side term that q ≤ l and |q| = λ

immediately imply that q = l. Additionally, by the induction hypothesis, the second right

side term reduces to simply ul. Subtracting this from both sides yields

0 =
∑
p

upcp,l0 . (4.32)

The coefficients vanish accordingly and we conclude (4.29). The desired result follows.

Lemma 4.2.2 (Existence of coefficients). There exist coefficients cp,qj ∈ C depending only

on the Kähler potential ϕ such that for any polynomial F ,

F

(
u√
k

)
=

∫
Cn
F

(
v√
k

)
eu·v̄−|v|

2

(
N∑
t=0

∑
m+j=t

∑
p,q

∑
r,s

cp,qj ar,sm√
kt

upv̄qvrvs

)
dV. (4.33)

for any N ≥ 0.

Remark 4.2.1. When N = 0 the equation reduces to the reproducing property of the

Bargmann-Fock kernel.
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Proof. By (4.28), from comparing the coefficients of k, we get

∑
m+j=t

∑
s+q≤l+r

∑
p

cp,qj ar,sm u
p+r+l−q−s (l + r)!

(l + r − q − s)!
=


ul t = 0,

0 t ≥ 1.

(4.34)

In order to determine the coefficients cp,qj , we induct on j. The base case j = 0 is demon-

strated by Lemma 4.2.1. Now assume the induction hypothesis is satisfied for j ≤ τ − 1,

which implies that the coefficients cp,qj have been determined for all multiindices p and q and

for all such values of j. Take (4.34) for t = τ ,

τ∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ−ju
p+r+l−q−s (l + r)!

(l + r − q − s)!
= 0. (4.35)

By moving all the terms with j ≤ τ − 1 to the other side, we have

∑
s+q≤l+r

∑
p

cp,qτ ar,s0 up+r+l−q−s
(l + r)!

(l + r − q − s)!

=−
τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ−ju
p+r+l−q−s (l + r)!

(l + r − q − s)!
.

(4.36)

Since we know ar,s0 all vanish except that a0,0
0 = 1 (c.f. Remark 4.4.1),

∑
q≤l

∑
p

cp,qτ up+l−q
l!

(l − q)!
= −

τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ−ju
p+r+l−q−s (l + r)!

(l + r − q − s)!
. (4.37)

We consider various lengths of l to determine the values of the coefficients. When |l| = 0,

(4.37) reduces to

∑
p

cp,0τ up = −
τ−1∑
j=0

∑
s+q≤r

∑
p

cp,qj ar,sτ−ju
p+r−q−s r!

(r − q − s)!
. (4.38)

Since, the values of ar,sm are determined (c.f. Lemma 4.4.1) and cp,qj are known due to the

inductive hypothesis for j ≤ τ − 1, we obtain all cp,0τ by comparing the coefficients of u in
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(4.38). We begin a subinduction argument on the values of |q| such that cp,qτ is known for

any |q| ≤ λ − 1. The case λ = 0 is determined via our analysis of (4.38) discussed above.

Consider multiindices l such that |l| = λ within the (4.39). As in the Lemma 4.2.1, we

decompose the left hand summation of (4.37) and rearrange the equality to obtain

∑
p

cp,lτ u
p =−

τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ−ju
p+r+l−q−s (l + r)!

(l + r − q − s)!

−
∑
p

∑
q≤l
|q|≤λ−1

cp,qτ up+l−q
l!

(l − q)!
.

(4.39)

Due to the induction hypothesis on τ , the first quantity of the right hand side is completely

determined. Furthermore, by comparing the coefficients on up we can solve for cp,lτ . This

concludes the induction on |q| which implies that cp,qτ are completely determined, and thus

the induction on τ is also completed. The result follows.

4.2.3 Parity of the coefficients

We establish the following property of bivariate power series.

Definition 4.2.1 (Parity property of power series). We say the coefficients of the bivariate

power series

B(x, y) :=
∑
m,p,q

Bp,q
m√
km

xpyq, (4.40)

has the parity property if given p, q ∈ Zn+ with |p|+ |q| 6≡2 m, then Bp,q
m = 0.

By demonstrating that this property is preserved under standard algebraic manipulations,

we will conclude the vanishing of particular coefficients cp,qj and ap,qj of (4.17) and (4.26)

respectively. This is key in demonstrating the finiteness and bounds on the degrees of each

cj.
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Lemma 4.2.3. If A and B are bivariate power series with the parity property, then so are

A+B and AB.

Proof. The additive closure is immediate. For the multiplication, we have

A(x, y)B(x, y) =
∞∑
m=0

1√
km

m∑
n=0

∑
p,q,r,s

Ap,qn Br,s
m−nx

p+ryq+s.

The term is nonzero when |p|+ |q| ≡2 n and |r|+ |s| ≡2 m− n, that is, when

|p|+ |r|+ |q|+ |s| ≡2 m. (4.41)

The result follows.

Lemma 4.2.4. The bivariate expansion of e−kRΩ has the parity property.

Proof. Consider the expansion

e
−kR

(
v√
k

)
=
∑
n

(
(−1)n(

√
k)2
∑ 1√

km
Rp,q
m vpvq

)n
= (−1)n(

√
k)2n

∑
n

(∑ 1√
km

Rp,q
m vpvq

)n
.

The factors of k−1/2 come from evaluating the expansion of the exponential at ( v√
k
), the

Rp,q
m terms have the parity property. Since the parity property is closed under addition

and multiplication by Lemma 4.2.3, and multiplication by k2n preserves the parity property,

the entire power series admits the property. Furthermore since Ω( v√
k
) also has the parity

property, the product also has the parity property. The result follows.

Lemma 4.2.5. For all m ∈ N, given p, q ∈ Zn+ such that |p|+ |q| 6≡2 m, we have cp,qm = 0.

Proof. The proof proceeds by induction on m satisfying the Lemma statement. First, the

case when m = 0 is an immediate consequence of (4.29). Next assume that the parity
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property holds for m ≤ t− 1 and we do a sub induction on |q|. From (4.38) we obtain

−
∑

cα,0t uα =
t−1∑
j=0

∑
r≥q+s

cp,qj ar,st−ju
p+r−q−s r!

(r − q − s)!
. (4.42)

On the right hand side, the coefficients are nonzero only when |p|+ |q| ≡2 j and |r|+ |s| ≡2

t− j. Combining these two equalities yields

|p|+ |q|+ |r|+ |s| ≡2 t.

which implies that cα,0t = 0 for α 6≡2 t. Now we assume the induction hypothesis holds for

|q| ≤ λ− 1. For |q| = λ, we have from (4.39)

∑
p

cp,lt u
p =−

t−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,st−ju
p+r+l−q−s (l + r)!

(l + r − q − s)!

−
∑
p

∑
q≤l
|q|≤λ−1

cp,qt up+l−q
l!

(l − q)!
.

(4.43)

On the right hand side, in the first summation, when |p|+ |q|+ |r|+ |s| 6≡2 t, the terms are

zero by the induction on j, hence the exponent must be

|p|+ |r|+ |q|+ |s|+ |l| ≡2 t+ |l|.

In the second summation, when |p| + |q| 6≡2 t, the terms are zero by the induction on |q|,

hence the exponent must be

|p|+ |q|+ |l| ≡2 t+ |l|.

Then compare the exponent on both sides, we get on the left hand side,

|p| ≡2 t+ |l|.
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Hence

|p|+ |l| ≡2 t.

The subinduction on |q| has been proven, therefore we may determine all cp,qt for the given

t. Consequently the induction on t is complete, and the result follows.

We next establish two combinatorial identities in preparation for the proof of Theorem 4.2.1.

Lemma 4.2.6. Given l ∈ Z+, for all s ∈ [1, l] ∩ Z+ the following equality holds

s∑
w=0

(−1)s
(
l

w

)(
l − w
l − s

)
= 0. (4.44)

Proof. We assign the terms of (4.44) as polynomial coefficients and rearrange terms appro-

priately,

l∑
w=0

w∑
s=0

(−1)s
(
l

w

)(
l − w
l − s

)
xl−s =

l∑
w=0

(
l∑

s=w

(
l − w
l − s

)
xl−s

)(
l

w

)
(−1)s

=
l∑

w=0

(
(x+ 1)l−w

)( l
w

)
(−1)w

=
l∑

w=0

(
(x+ 1)l−w

(
l

w

)
(−1)w

)
= xl.

The result follows.

Corollary 4.2.1. Given a multiindex l ∈ Zn+, for all nonzero multiindices s ≤ l the following

equality holds

∑
w≤s

(−1)|w|
(
l

w

)(
l − w
l − s

)
= 0. (4.45)

Proof. Taking the left hand side of (4.2.1) and decomposing it as a product of binomial
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coefficients we obtain

∑
w≤s

(−1)|w|
(
l

w

)(
l − w
l − s

)
=

n∏
i=1

(∑
wi≤si

(−1)wi
(
li
wi

)(
li − wi
li − si

))
.

We observe that since s is nonzero then there is at least one i ∈ [1, n] ∈ Z+ such that

si is nonzero. Applying Lemma 4.2.6 to this index within the product yields the desired

result.

Lemma 4.2.7. For all η ∈ [1, l] ∩ Z+, and r ∈ [0, η − 1] ∩ Z+,

η∑
w=0

(−1)w
(
l

w

)(
r + l − w
η − w

)
= 0. (4.46)

Proof. To verify the lemma we apply the following combinatorial identity. For 0 ≤ w ≤ 2,

we have

(
r + l − w
η − w

)
=

((
l − w
η − w

)(
r

0

)
+

(
l − w

η − w − 1

)(
r

1

)
+ · · ·+

(
η + 1− w

0

)(
r

η − w

))
.

(4.47)

We expand left hand side of (4.49) by the above identity and obtain

η∑
w=0

(−1)w
(
l

w

) η−w∑
v=0

(
l − w

η − w − v

)(
r

v

)
=

η∑
v=0

(
η−v∑
w=0

(−1)w
(
l

w

)(
l − w

η − w − v

))
L

(
r

v

)
.

It suffices to prove that the labeled quantity L = 0, that is

η−v∑
w=0

(−1)w
(
l

w

)(
l − w

η − j − v

)
= 0. (4.48)

This is equivalent to demonstrating that for any η ∈ Z+ such that 1 ≤ η ≤ l + 1,

rη =

η∑
w=0

(−1)w
(
l

w

)(
l − w
η − w

)
= 0. (4.49)
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We again embed (4.49) as coefficients of a polynomial in x and with careful manipulation

obtain,

l∑
η=0

rηx
η =

l∑
η=0

η∑
w=0

(−1)w
(
l

w

)(
l − w
η − w

)
xη

=
l∑

w=0

(
l∑

η=w

(
l − w
η − w

)
xη−w

)(
l

w

)
(−x)w

=
l∑

w=0

(1 + x)l−w
(
l

w

)
(−x)w

= 1.

The result follows.

Corollary 4.2.2. For all multiindices η, r ∈ Zn+ with r < η,

∑
w≤η

(−1)|w|+1

(
l

w

)(
r + l − w
η − w

)
= 0. (4.50)

Proof. Taking the left hand side of (4.2.2) and decomposing it as a product of binomial

coefficients we obtain

∑
w≤η

(−1)|w|+1

(
l

w

)(
r + l − w
η − w

)
= −

n∏
i=1

(∑
wi≤ηi

(−1)wi
(
li
wi

)(
ri + li − wi
ηi − wi

))
.

We observe that since s is nonzero then there is at least one i ∈ [1, n] ∈ Z+ such that ri < ηi.

Applying Lemma 4.2.7 to this index within the product yields the desired result.

Theorem 4.2.1. Given m ∈ Z+ and multiindices p, q ∈ Zn+ such that |p + q| > 2m, then

cp,qm = 0.
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Proof. Recall the identity (4.37) established in Lemma 4.2.2, we have

∑
q≤l

∑
p

cp,qτ up+l−q
l!

(l − q)!
= −

τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ−ju
p+r+l−q−s (l + r)!

(l + r − q − s)!
. (4.51)

With the theorem statement as the induction hypothesis, for each fixed τ ∈ N, we induct

on appropriate values of m. For m = 0 this is true by (4.29). Next assume the hypothesis

holds when m ≤ τ − 1. Then we consider the case m = τ . Define the quantities (given by

the left and right hand sides of (4.51) respectively),

Pl :=
∑
q≤l

∑
p

cp,qτ up+l−q
l!

(l − q)!
, (4.52)

and

Ql := −
∑

r+l≥q+s

τ−1∑
j=0

cp,qj ar,sτ−ju
p+r+l−q−s (r + l)!

(r + l − q − s)!
. (4.53)

Then we have that by (4.51) that Pl = Ql for all multiindices l ∈ Zn+. We prove the

identity cp,qm = 0 by embedding the two families of coefficients {Pw}w≤l and {Qw}w≤l into a

polynomial. Set, for B ∈ {P ,Q},

Ψl(B) :=
∑
w≤l

(−1)|w|
(
l

w

)
uwBl−w. (4.54)

First we compute Ψl(P) by inserting (4.53) into (4.54), carefully rearranging terms with
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respect to powers of u:

Ψl(P) =
∑
w≤l

(−1)|w|
(
l

w

)
uwPl−w

=
∑
w≤l

(−1)|w|
∑
p

∑
q≤l−w

(
l

w

)
cp,qτ ul+p−q

(l − w)!

(l − w − q)!

=
∑
p

∑
w≤l

(−1)|w|

( ∑
w≤s≤l

cp,(l−s)τ up+s
(
l

w

)
(l − w)!

(s− w)!

)

=
∑
p

∑
s≤l

cp,(l−s)τ up+s

(∑
w≤s

(−1)|w|
(
l

w

)
(l − w)!

(s− w)!

)
.

Note the substitution used to obtain the second to last line is through the identification

s = l−q, and then interchanging the order of summation yields the final line. We decompose

the above summation into two pieces to conclude that

Ψl(P) =
∑
p

cp,lτ u
pl! +

∑
p

∑
06=s≤l

cp,(l−s)τ up+s

(∑
w≤s

(−1)|w|
(
l

w

)
(l − w)!

(s− w)!

)
. (4.55)

Applying Corollary 4.2.1, we have that the quantity above reduces to simply

Ψl(P) =
∑
p

cp,lτ u
pl!. (4.56)
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We next compute Ψl(Q). We collect up terms with respect to the powers of u.

Ψl(Q) =
∑
w≤l

(−1)|w|
(
l

w

)
uwQl−w

= −
∑
w≤l

(−1)|w|
(
l

w

)
uw

∑
r+l≥q+s+w

τ−1∑
j=0

cp,qj ar,sτ−ju
p+r+l−w−q−s (r + l − w)!

(r + l − w − q − s)!

=
τ−1∑
j=0

∑
w≤l

∑
r+l≥q+s+w

(−1)|w|+1

(
l

w

)
cp,qj ar,sτ−ju

p+r+l−q−s (r + l − w)!

(r + l − w − q − s)!

=
τ−1∑
j=0

r+l∑
q+s=r

∑
w≤r+l−q−s

(−1)|w|+1

(
l

w

)
cp,qj ar,sτ−ju

p+r+l−q−s (r + l − w)!

(r + l − w − q − s)!
.

(4.57)

For simplicity, set η := r + l − q − s and allow it to range 0 ≤ η ≤ l. Updating the index of

(4.57) we obtain

Ψl(Q) =
τ−1∑
j=0

r+l∑
q+s=r

∑
w≤η

(−1)|w|+1

(
l

w

)
cp,qj ar,sτ−ju

p+η (r + l − w)!

(η − w)!

=
τ−1∑
j=0

r+l∑
q+s=r

cp,qj ar,sτ−ju
p+η
∑
w≤η

(−1)|w|+1

(
l

w

)
(r + l − w)!

(η − w)!
.

(4.58)

As a result of Corollary 4.2.2 we then only need to consider r ≥ η, otherwise the term

vanishes. As a result of the induction hypothesis combined with the fact that ar,sj = 0 when

r + s > 2j (cf. Remark 4.4.1) we apply these facts to Ψl(Q),

2τ ≥ |p+ q + r + s| = |p+ 2r + l − η|.

Manipulating the above expression yields

|p+ η| ≤ 2τ − 2|r| − |l|+ 2|η| ≤ 2τ − 2|(r − η)| − |l| ≤ 2τ − |l|.
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Combining this fact with (4.58) we conclude

deg Ψl(Q) ≤ 2τ − |l|.

Recall that since Pl = Ql for all l by (4.51), so that Ψl(P) = Ψl(Q). Noting that as a result

of (4.56), we have that

|p| ≤ deg Ψl(Q) ≤ 2τ − |l|,

therefore if 2τ < |p|+ |l|, then cp,lτ = 0, demonstrating the desired induction step. The result

follows.

4.3 Remainder Estimates

4.3.1 On the choice of the shrinking radius

We begin choosing a point p ∈ M and choosing some local neighborhood Ux which admits

a local trivialization as well as a plurisubharmonic kϕ corresponding to the metric h on M .

Due to the rescaling property of kϕ, we rescale coordinates via the identifications


x = p+ u√

k
,

y = p+ v√
k
.

(4.59)

Without loss of generality we additionally take coordinates so that p is identified with the

origin. Thus the potential scales as follows:

kϕ
(

v√
k

)
= |v|2 + kR

(
v√
k

)
. (4.60)
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Consequently, for large k, one may compute in the setting of a perturbed Bargmann-Fock

space. Under Bochner coordinates (cf. Proposition 4.4.1) we have R(z) = O(|z|4), so we

further stipulate that v will be chosen from within B(k
1
4 ) to ensure that R

(
v√
k

)
is bounded

above by a constant. Thus we choose some cutoff function χ ∈ C∞c (Cn) satisfying

χ(x) =


1 if |x| ≤ 1

2

0 if |x| ≥ 1,

(4.61)

and set χk(x) := χ(k
1
4x). We then incorporate χk into the domain of integration, yielding

the local reproducing property of Proposition 4.3.1. Note that

supp(dχk(x)) ⊂ {z | 1
2
k

1
4 ≤ |z| ≤ k

1
4} (4.62)

So for some |u| ≤ 1 and v ∈ supp(dχk(x)), their distance has a lower bound |u− v| ≥ 1
4
k

1
4 ,

which is crucial in obtaining an estimate for the exponential decay outside the near-diagonal

neighborhood. We then analyze the orders of the remainders of the truncations of the

locally defined pieces to show that their contribution to the local reproducing property is of

negligible order.

4.3.2 Local Reproducing Kernel

We demonstrate that we have constructed a local reproducing kernel with the coefficients

chosen in §4.2 up to small error, and give measure of such error. For the following section

we use the following notation: given a domain U ⊂ Cn and f ∈ H0(U) we expand f via the

Taylor series expansion

f(x) =
∞∑
j=0

(
(Djf)(0)

j!
xj
)
. (4.63)
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Then we set

fN(x) :=
N∑
j=0

(
(Djf)(0)

j!
xj
)
. (4.64)

Proposition 4.3.1 (Local reproducing property). Let f ∈ H0(B), and cj quantities as

constructed above in §4.2. Then for u ∈ B, the following equality holds

f

(
u√
k

)
=

〈
χk

(
·√
k

)
f

(
·√
k

)
, eū·(·)

(
N∑
j

cj (·, ū)√
kj

)〉
L2

(
B(
√
k),kϕ

(
·√
k

))

+O

(
1

√
k
N+1−2n

)
‖f‖L2(B,kϕ).

(4.65)

To prepare to verify Proposition 4.3.1, we prove a series of estimates on the truncations and

Taylor series remainders of the volume form. We also show that the integral outside of the

disk rapidly decays.

Lemma 4.3.1 (Remainder of exponential term). For N ≥ 0 and any f ∈ H0(B),

∫
B(
√
k)

χk

(
v√
k

)
f
(

v√
k

)
euv̄−|v|

2

(
N∑
j=0

cj(u,v)√
kj

)(
e
−kR

(
u√
k

)
−
(
e
−kR2N+5

(
u√
k

))
2N+1

)
Ω
(

v√
k

)
dV

= ‖f‖L2(B,kϕ)O

(
k−

N+1
2

)
.

Proof. First note that since |v| ≤ k
1
4 we have

kR

(
v√
k

)
= O(1). (4.66)

We regroup the quantity

e−kR − e−kR2N+5 = e−kR
(
1− ek(R−R2N+5)

)
. (4.67)
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By Taylor expansion

k

∣∣∣∣(R−R2N+5)

(
v√
k

)∣∣∣∣ ≤ k sup
|α|=2N+6

|ξ|≤ |v|√
k

∣∣∣∣DαR(ξ)

(α)!

∣∣∣∣ ∣∣∣∣ v√k
∣∣∣∣α

≤ CNk

(
|v|√
k

)2N+6

≤ CNk
−N+1

2 .

Applying the above to (4.67), we have

∣∣∣∣e−kR(
v√
k

)
− e−kR2N+5

(
v√
k

)∣∣∣∣ ≤ CNk
−N+1

2 . (4.68)

Next we consider the difference

∣∣∣∣e−kR2N+5

(
v√
k

)
−
(
e
−kR2N+5

(
v√
k

))
2N+1

∣∣∣∣ ≤ sup
|α|=2N+2

ξ∈B(k−
1
4 )

∣∣∣∣Dαe−kR2N+5(ξ)

α!

∣∣∣∣ ∣∣∣∣ v√k
∣∣∣∣2N+2

≤ CNk
−N+1

2 .

(4.69)

Combining (4.68) and (4.69), we have

∣∣∣∣e−kR(
v√
k

)
−
(
e
−kR2N+5

(
v√
k

))
2N+1

∣∣∣∣ ≤ CNk
−N+1

2 . (4.70)

67



Applying our estimate directly to the integral,

∣∣∣∣∣
∫
B

χk

(
v√
k

)
f
(

v√
k

)
euv̄−|v|

2

(
N∑
j=0

cj(u,v)√
kj

)(
e
−kR

(
v√
k

)
−
(
e
−kR2N+5

(
v√
k

))
2N+1

)
Ω
(

v√
k

)
dV

∣∣∣∣∣
≤ CNk

−N+1
2

∫
B

∣∣∣∣∣χk ( v√
k

)
f
(

v√
k

)
e−
|v|2
2

(
N∑
j=0

cj(u,v)√
kj

)
Ω
(

v√
k

)
euv̄−

|v|2
2

∣∣∣∣∣ dV
≤ CNk

−N+1
2

(∫
B

χk

(
v√
k

) ∣∣∣f ( v√
k

)∣∣∣2 e−|v|2dV) 1
2

≤ CN‖f‖L2(B,kϕ)k
−N+1

2 .

The result follows.

Lemma 4.3.2 (Remainder of determinant). The following estimate holds

∣∣∣∣∣
∫
B

χk

(
v√
k

)
f
(

v√
k

)
euv̄−|v|

2

(
N∑
j=0

cj(u,v)√
kj

)(
e
−kR2N+5

(
v√
k

))
2N+1

(Ω− Ω2N+1)
(

v√
k

)
dV

∣∣∣∣∣
= ‖f‖L2(B,kϕ)O

(
k−

N+1
2

)
.

(4.71)

Proof. We first observe the following estimate

∣∣∣∣(Ω− Ω2N+1)

(
v√
k

)∣∣∣∣ ≤ sup
|α|=2N+2

|ξ|≤
∣∣∣ v√

k

∣∣∣

∣∣∣∣DαΩ(ξ)

α!

∣∣∣∣ ∣∣∣∣ v√k
∣∣∣∣2N+2

≤ CNk
−N+1

2 . (4.72)

Using the above estimate with a similar manipulation as Lemma 4.3.1 we conclude (4.71).

Lemma 4.3.3 (Estimate Outside Disk). The following estimate holds

∫
Cn

(
1− χk

(
v√
k

))
fN

(
v√
k

)
euv̄−|v|

2

(
N∑
t=0

∑
m+j=t

cj(u, v)am(v, v̄)√
kt

)
dV

≤ ‖f‖L2(B,kϕ)e
− 1

16
k
1
2 .

Proof. First note that since |u| ≤ 1 and |v| ≥ 1
2
k

1
4 , we have |u− v| ≥ 1

4
k

1
4 . Next we use the
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identity

∂

(∑
i

ev̄(u−v) 1

ui − vi
dV̂

i

)
= −nev̄(u−v)dV (4.73)

Integrating by parts, we have

∫
Cn

(
1− χk

(
v√
k

))
F

(
v√
k

)
ev̄(u−v)

(
N∑
t=0

∑
m+j=t

cj(u, v)am(v, v̄)√
kt

)
dV

=− 1

n

∫
Cn

(
1− χk

(
v√
k

))
F

(
v√
k

)( N∑
t=0

∑
m+j=t

cj(u, v)am(v, v̄)√
kt

)

· ∂

(∑
i

ev̄(u−v) 1

ui − vi
dV̂

i

)

=− 1

n

∫
Cn
F

(
v√
k

)∑
i

∂i

((
1− χk

(
v√
k

))( N∑
t=0

∑
m+j=t

cj(u, v)am(v, v̄)√
kt

))

· ev̄(u−v) 1

ui − vi
dV

Iterating the above integration by parts 2N times we obtain

=
(−1)2N+1

n2N+1

∫
Cn
F

(
v√
k

) ∑
I=(i1,...,i2N+1)

|I|=2N+1

∂Ī

((
1− χk

(
v√
k

)) N∑
t=0

∑
m+j=t

cj(u, v)am(v, v̄)√
kt

)

· e
v̄(u−v)

(u− v)I
dV.

(4.74)

Recalling that the degree of ar,sm and cp,qj are 2m and 2j respectively, we will always take the

derivative on 1−χk. Therefore, we only consider the integral on the annulus 1
2
k

1
4 ≤ |v| ≤ k

1
4 .

The above integral is bounded above by
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(∫
1
2
k
1
4≤|v|≤k

1
4

∣∣∣∣F ( v√
k

)∣∣∣∣2 e−|v|2dV×
∫

1
2
k
1
4≤|v|≤k

1
4

∣∣∣∣∣∣∣∣∣
∑

I=(i1,...,i2N+1)

|I|=2N+1

∂Ī

(1− χk
(
v√
k

)) N∑
t=0

∑
m+j=t

cj(u, v)am(v, v̄)√
kt

 e
|u|2−|u−v|2

2

(u− v)I

∣∣∣∣∣∣∣∣∣
2

dV

) 1
2

≤ CN‖f‖L2(B,kϕ)e
− 1

16
k
1
2 .

With the results above, we prove the following.

Proof of Proposition 4.3.1. By our construction, we have

F

(
u√
k

)
=

∫
Cn
F

(
v√
k

)
eu·v̄−|v|

2

(
N∑
t=0

∑
m+j=t

cj(u, v̄)am(r, s)√
kt

)
dV (4.75)

for N ≥ 0. We note that the N is independent of the polynomial F . Since

∣∣∣∣∣
(

N∑
t=0

∑
m+j=t

cj(u, v̄)am(r, s)√
kt

)
−

(
N∑
j=0

cj(u, v̄)√
k

)(
e
−kR2N+5

(
v√
k

))
2N+1

Ω2N+1

∣∣∣∣∣ ≤ CN .

We have

F

(
u√
k

)
=

∫
Cn
F

(
v√
k

)
eu·v̄−|v|

2

(
N∑
j=0

cj(u, v̄)√
k

)(
e
−kR2N+5

(
v√
k

))
2N+1

Ω2N+1dV

+O(k−
N+1

2 )‖F‖L2(B,kϕ).

(4.76)
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We then split the above to two pieces

F

(
u√
k

)
=

∫
Cn

(
1− χk

(
v√
k

))
F

(
v√
k

)
eu·v̄−|v|

2

(
N∑
j=0

cj(u, v̄)√
k

)(
e
−kR2N+5

(
v√
k

))
2N+1

Ω2N+1dV

+
1

(2π)n

∫
Cn
χk

(
v√
k

)
F

(
v√
k

)
eu·v̄−|v|

2

(
N∑
j=0

cj(u, v̄)√
k

)(
e
−kR2N+5

(
v√
k

))
2N+1

Ω2N+1dV.

The first integral is bounded above by ‖f‖L2(B,kϕ)e
−
(

1
4
k
1
4−ε

)2

from Lemma (4.3.3). For the

second integral, by applying Lemmas (4.3.2) and (4.3.1), we have

∫
B

χk

(
v√
k

)
F
(

v√
k

)
euv̄−|v|

2

(
N∑
j=0

cj(u,v)√
kj

)(
e
−kR2N+5

(
v√
k

))
2N+1

Ω2N+1

(
v√
k

)
dV

=

〈
χk

(
·√
k

)
F
(
·√
k

)
, eū·(·)

(
N∑
j

cj(ū,·)√
kj

)〉
L2(B(

√
k),kϕ( ·√

k
))

+ ‖F‖L2(B,kϕ)O
(
k−

N+1
2

)
.

We can extend to arbitrary f ∈ H0(B) by considering the uniform convergence of the Taylor

series since |u| ≤ 1 and |v| ≤
√
k. The result follows.

4.4 Computation of the coefficients

We next explicitly compute the coefficient c1 and c2 of K loc under Bochner coordinates (the

coefficients c0 was computed in Lemma 4.2.1.

To compute c1 and c2 we require preliminary terms of the Kähler potential as well as the

coefficients ar,sm .

Proposition 4.4.1 (Expansion of Kähler potential). We have the following series expansion
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of the potential ϕ under Bochner coordinates is given by

ϕ(z) = |z|2 −
Rmijkl(0)

4
zizkzjzl +O(|z|5)

= |z|2 +R(z, z̄).

Lemma 4.4.1 (Properties of e−kRΩ expansion). The expansion up to 1
k

for
∑

m

∑
p,q

ap,qm vpvq√
km

is

e
−kR

(
v√
k

)
Ω
(

v√
k

)
= 1− 1

k

(
Rickl v

kvl − 1
4

Rmijkl(0)vivkvjvl
)
, (4.77)

where the numbers apqj for j = 0, 1, 2 are given by

ap,q0 =


1 if |p| = |q| = j = 0

0 otherwise,

(4.78)

ap,q1 = 0 for all p, q, (4.79)

and lastly

ap,q2 =


−
∑

k,l Rickl̄ if |p| = |q| = 1

1
4

∑
k,l Ricij̄kl̄(0) if |p| = |q| = 2

0 otherwise.

(4.80)

Proof. We expand each quantity of the product on the left hand side of 4.77. First, for the

exponential term we have

e
−kR

(
v√
k

)
= 1 +

Rmijkl(0)

4k
vivkvjvl + o(k−

3
2 ). (4.81)
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And the determinant quantity becomes

Ω

(
v√
k

)
= det

(
δij +

1

k

∂4ϕij
∂zk∂zl

(0)vkvl +O
(
k−

3
2

))
= 1− 1

k
Rickl v

kvl +O
(
k−

3
2

)
.

The result follows.

The computation of c1 is now immediate.

Corollary 4.4.1. For all p, q ∈ Z+ we have cp,q1 = 0.

Proof. By comparing coefficients in (4.28), we see that there is no contribution from a1 for

the 1√
k

term, hence

cp,q1√
k
up+l−q = 0.

for any l. The result follows.

4.4.1 Computing the coefficient c2

By applying equation (4.28) to f(z) = 1 we obtain c00
2 :

1 =

∫
Cn
eu·v̄−|v|

2

(
1 +

c00
2

k
+
c

(i),(j)
2

k
uivj +

c
(i,k)(j,l)
2

k
uiukvjvl

)

·
(
1− 1

k

(
Rickl v

kvl − 1
4

Rmijkl(0)vivkvjvl
))
dV.

(4.82)

Collecting the 1
k

terms, we obtain

c00
2 =

∫
Cn

Ricij v
ivjeuv−|v|

2

dV − 1

4

∫
Cn

Rmijkl v
ivkvjvleuv−|v|

2

dV. (4.83)
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The first integral on the right hand side is nonzero when i = j. The left side is nonzero when

i = j, k = l and i = l, j = k. We therefore obtain

c00
2 =

ρ

2
. (4.84)

Next to obtain the c
(i)(j)
2 coefficient, we apply equation (4.28) with f = vα to obtain

∑
i

c
(i)(α)
2 ui =

∫
Cn

(
Rickl v

kvαvl − 1

4
Rmijkl v

ivkvαvjvl
)
eu·v−|v|

2

dV (4.85)

The first term on the right hand side is nonzero when α = l, hence the only relevant term

after integration is ∫
Cn

Riciα v
i|vα|2eu·v−|v|2dV =

∑
i

Riciα u
i.

The second term splits into four cases:

1. α = j, i = l.

2. α = j, k = l.

3. α = l, i = j.

4. α = l, k = j.

In each case, after integration, we obtain the term

∫
Cn

Rmiα,k,i v
k|vi|2|vα|2eu·v−|v|2dV =

∑
k

Rickα u
k.

and similar computations for the other cases, hence

c
(i)(α)
2 = 0. (4.86)
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Next to obtain the c
(ik)(jl)
2 coefficient, we apply equation (4.28) with f = vαvβ to obtain

2
∑
i,k

c
(ik)(jl)
2 uiuk =

∫
Cn

(
Rickl v

kvαvβvl − 1

4
Rmijkl v

ivkvαvβvjvl
)
eu·v−|v|

2

dV. (4.87)

For the first term on the right hand side, it is not possible to sum over two variables, hence

is an irrelevant term. The second term has two cases:

1. j = α, l = β

2. l = α, j = β

Hence we have

c
(ik)(αβ)
2 = −1

4
Riαkβ. (4.88)

Note that the result matches with [13] except for the emergence of non-analytic terms,

however the computations in Lu and Shiffman were done for the lifted Szegö kernel.

4.5 Local to Global

Let K(x, y) be the global Bergman kernel, as a section of L ⊗ L̄. The norm as a section of

this bundle is the Bergman function B(x), which in the standard local frame is

B(x) = |K(x, x)|h = |K̃(x, x)|e−ϕ(x), (4.89)
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where K̃(x, x) is the coefficient function of the Bergman kernel with respect to this local

trivialization. We also have an extremal characterization of the Bergman function given by

B(x) = sup
‖s‖L2≤1

|s(x)|2h, (4.90)

where s ∈ H0(M,L). Henceforth we will denote B(x) to be the Bergman function associated

to L⊗k.

Lemma 4.5.1 (Uniform upper bound on Bergman function). There exists C ∈ R dependent

on M which is uniform over all k ∈ Z+ and x ∈M such that

Bk(x) ≤ Ckn. (4.91)

Proof. We use the extremal characterization of the Bergman function

Bk(z) =
∑
|s̃(z)|2e−kϕ(z), (4.92)

where s is a section of L⊗k with ‖s‖L2 = 1. Fix a point z ∈M and choose local trivialization

of L such that z = 0 and the Taylor expansion of ϕ under Bochner coordinates is given by

(cf. Proposition 4.4.1)

ϕ(w) = |w|2 +O(|w|4). (4.93)

For such coordinates set dVE := w1 ∧ w̄1 ∧ · · ·wn ∧ w̄n. Then we compute the following

estimate, comparing the volume form to the Euclidean volume form for sufficiently large k
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and utilizing the subharmoniticity of |s̃|2,

1 ≥
∫
B

(
1√
k

) |s̃(w)|2e−kϕ(w)dV (w)

≥ 1

C

∫
B

(
1√
k

) |s̃(w)|2e−k|w|2dVE(w)

≥ 1

C
|s̃(0)|2

∫
B

(
1√
k

) e−k|w|2dVE(w)

=
1

C ′
|s̃(0)|2 1

kn
.

By considering the remainder term of the Taylor expansion of ϕ, we obtain a uniform C > 0

and C ′ > 0 is another uniform constant. Since ϕ(0) = 0 we observe that

|s̃(0)|2e−kϕ(0) ≤ C ′kn. (4.94)

Taking the supremum over all such s yields the desired result.

Let K(x, y) = Ky(x) be the global Bergman kernel of H0(M,L⊗k). We view Ky(x) as a

section of Lk ⊗ Lky. It is defined by the global reproducing property

f(y) = 〈f,Ky〉L2 (4.95)

for any element f ∈ H0(M,L⊗k). To be precise, for some local trivialization s, we have

f̃(y)s(y) = 〈f,Ky〉L2s(y) =

∫
M

(f,Ky)h
ωn

n!
s(y) (4.96)

In other words, the integral kernel reproduces the coefficient function. Using the local

reproducing property on the global Bergman kernel, we show that the local Bergman kernel

is equivalent to the global Bergman kernel up to a small error. The proof is essentially the

same as [2].
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Theorem 4.5.1 (Local to Global). The following equality relates the truncated local Bergman

kernel K loc
N to the global Berman kernel Kk.

K

(
u√
k
,
v√
k

)
= K loc

N

(
u√
k
,
v√
k

)
+O

(
k−

N+1
2

)
. (4.97)

Proof. Fix u, v ∈ B. We apply the local reproducing property to the global Bergman kernel

K̃

(
v√
k
,
u√
k

)
=

〈
χk(·)K̃

(
·, u√

k

)
, K loc

N

(
·, v√

k

)〉
L2(B,kϕ)

+O
(
kn−

N+1
2

)
‖K̃‖L2(B,kϕ).

(4.98)

By the reproducing property, we obtain from Lemma 4.5.1,

‖K̃ u√
k
‖2
L2(B,kϕ) ≤ ‖K u√

k
‖2
L2 = K̃

(
u√
k
,
u√
k

)
= B

(
u√
k

)
e
kϕ( u√

k
) ≤ Ckn, (4.99)

where K u√
k
(w) means section with respect to w and coefficient function with respect to u.

Thus we have

K̃

(
v√
k
,
u√
k

)
=

〈
χk(·)K̃

(
·, u√

k

)
, K loc

N

(
·, v√

k

)〉
L2(B,kϕ)

+O
(
k2n−N+1

2

)
. (4.100)

We next estimate the difference of the local Bergman kernel with the projection of the local

kernel.

gk,v

(
w√
k

)
:=χk

(
w√
k

)
K loc
N

(
w√
k
,
v√
k

)
−
〈
χk(·)K̃

(
·, w√

k

)
, K loc

N

(
·, v√

k

)〉
L2(B,kϕ)

=χk

(
w√
k

)
K loc
N

(
w√
k
,
v√
k

)
−
〈
χk(·)K loc

N

(
·, v√

k

)
, K

(
·, w√

k

)〉
L2

.

(4.101)

We can regard gk,v as a global section of L⊗k because of the cut-off function χk for each fixed
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v. Since

〈
χkK

loc
N, v√

k
, K u√

k

〉
L2

= PH0

(
χkK

loc
N, v√

k

)
, (4.102)

where PH0 is the Bergman projection, gk,v is the L2-minimal solution to

∂gk,v = ∂
(
χkK

loc
N, v√

k

)
. (4.103)

Now we estimate ∂(χkK
loc

N,
v√
k

) by using Hormänder’s L2-estimate:

∂
(
χkK

loc
N, v√

k

)∣∣∣
w√
k

=

(
∂ (χk)K

loc
N, v√

k
+ χk∂

(
K loc

N,
v√
k

))∣∣∣∣
w√
k

= ∂ (χk)K
loc

N,
v√
k

∣∣∣∣
w√
k

.

Considering the right hand side of the equality, we have that the second term vanishes due

to analyticity. The first term of the right hand side ensures |w − v| ≥ 1
4
k

1
4 . Furthermore,

since K loc
N, v√

k

( w√
k
) = ewv̄

(
1 +O

(
1√
k

))
then we observe that

|ewv̄|2e−|w|2 = e2 Rewv̄−|w|2 = e−|w−v|
2+|v|2 ≤ Ce−

1
16
k
1
2 . (4.104)

Therefore for some constant δ > 0,

∥∥∥∂(χk)K
loc
N, v√

k

∥∥∥
L2(M,L⊗k)

≤ e−δk
1
4 . (4.105)

So by the Hormänder’s L2-estimate, the following inequality holds uniformly for v ∈ B,

‖gk,v‖L2(M,L⊗k) ≤ Ce−δk
1
4 . (4.106)

By the same step as the Lemma 4.5.1 above, for the fixed u ∈ B we obtain the pointwise
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estimate

∣∣∣gk,v ( u√
k

)∣∣∣ ≤ Ce−δk
1
4 . (4.107)

Note the δ here may be smaller than in (4.106). Finally we conclude the estimate, for any

u, v ∈ B,

∣∣∣∣K loc
N

(
u√
k
,
v√
k

)
−K

(
u√
k
,
v√
k

)∣∣∣∣ ≤ Ck2n−N+1
2 . (4.108)

The result follows.

4.5.1 Twisted bundle case

Let (E,H)→M be a Hermitian holomorphic vector bundle. A twisting of a line bundle L⊗k

by a vector bundle E is simply the tensor product E ⊗ L⊗k. Sections f ∈ H0(M,E ⊗ L⊗k)

are now locally viewed as vector valued holomorphic functions. Let x0 ∈ M , {ei(x)} be a

local frame for E at x0, and s(x) be a local trivialization for L at x0. Then the reproducing

property takes the form

f i(y)s(y)⊗ ei(y) =

∫
M

(f,Kx)H,hk dVgs(y)⊗ ei(y) (4.109)

Locally,

(
fk, Kx

)
H,hk

= f̃k(y)K̃
j,i

(y, x)Hkj(y)e−kϕ(y)ei(x) (4.110)

where H(ek, ej) = Hkj.

By considering the Taylor expansion of H, we can repeat the same local construction and

obtain similar remainder estimates to extend our result to the twisted bundle case.
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4.6 Appendix

Any background notions pertinent to our work will be discussed here. In particular, we

discuss the background notions of the Bargmann-Fock space.

4.6.1 Bargmann-Fock space

In this subsection we discuss the Bargmann Fock space, F is the space of entire functions

that satisfy the weighted square integrability condition:

∫
Cn
|f(z)|2e−|z|2dV <∞. (4.111)

The space F is precisely L2(Cn, |z|2), and is thus a closed linear subspace of the space L2(Cn)

with inner product given by

〈f, g〉F :=

∫
Cn
f(z)g(z)e−|z|

2

dV, (4.112)

and thus is a Hilbert space. In fact, it is a reproducing kernel Hilbert space on Cn, with

reproducing kernel

RCn(u, v) := eu·v̄. (4.113)

We first show that this kernel has the reproducing property on C and then extend this

argument to Cn.

Lemma 4.6.1. On C, the Bargmann-Fock kernel is given by

RC(u, v) := euv̄. (4.114)
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Proof. Taking some f ∈ H0(Cn), we consider the inner product against RC. We convert

the resulting integral to polar coordinates and then apply the Cauchy Integral Formula to

obtain

〈f(v),RC〉F =
√
−1

∫
C
f(v)euv̄−|v|

2 dv ∧ dv̄
2π

= − 1

π

∫ ∞
0

∫ 2π

0

f(u+ reiθ)eu(ū+re−iθ)−|u+reiθ|2 r

2
dθdr

= − 1

π

∫ ∞
0

re−r
2

∫ 2π

0

f(u+ reiθ)e−ūre
iθ

dθdr

= −f(u)

∫ ∞
0

2re−r
2

dr

= f(u).

The result follows.

Corollary 4.6.1. On Cn, the Bargmann-Fock kernel is given by

RCn(u, v) := eu·v̄. (4.115)

Proof. Let u, v ∈ Zn+ with u = (u1, . . . , un) and v = (v1, . . . , vn). Observe that

eu·v̄ =
n∏
i=1

euiv̄i−|vi|
2

. (4.116)

To demonstrate the reproducing property, we consider f ∈ H0(Cn) and decompose the inte-

grand of the resulting inner product agains RCn . Applying Lemma 4.6.1 to each dimensional
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component, we have

〈f(v),RCn〉F =

∫
Cn
f(v)eu·v−|v|

2

dV

=

∫
Cn
f(v1, . . . , vn)

(
n∏
i=i

euiv̄i−|vi|
2

)
dV

= f(u).

The result follows.

The following Lemmas demonstrate the Bargmann-Fock kernel on monomials of different

variables.

Lemma 4.6.2. Given some multiindex m ∈ Zn+ the following equality holds.

∫
Cn
v̄meu·v̄−|v|

2

dV = 0. (4.117)

Proof. By manipulation and an application of Dominated Convergence Theorem,

∫
Cn
v̄meu·v̄−|v|

2

dV =

∫
Cn
∂(m)
u

[
eu·v̄−|v|

2
]
dV

= ∂(m)
u

[∫
Cn
eu·v̄−|v|

2

dV

]
= 0.

Note that the integral is constant with respect to u, hence the derivative vanishes. The result

follows.

Lemma 4.6.3. The following equality holds, for p, q ∈ Z+ with p ≤ q.

∫
Cn
v̄pvqeu·v̄−|v|

2

dV =


0 if p > q,

q!
(q−p)!u

q−p if p ≤ q.

(4.118)
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Proof. Again by manipulation and an application of Dominated Convergence Theorem,

∫
Cn
v̄pvqeu.v̄−|v|

2

dV =

∫
Cn
∂(p)
u

[
vqeu·v̄−|v|

2
]
dV

= ∂(p)
u

[∫
Cn
vqeu·v̄−|v|

2

dV

]
= ∂(p)

u [uq] ,

therefore

∫
Cn
v̄pvqeu·v̄−|v|

2

dV =


0 if p > q,

q!
(q−p)!u

q−p if p ≤ q.

The result follows.
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