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Abstract

Bayesian Mixture Models for Spectral Density Estimation

by

Annalisa Cadonna

We introduce a novel Bayesian modeling approach to spectral density estima-

tion for multiple time series. Considering first the case of non-stationary time

series, the log-periodogram of each series is modeled as a mixture of Gaussian

distributions with frequency-dependent weights and mean functions. The im-

plied model for the log-spectral density is a mixture of linear mean functions

with frequency-dependent weights. The mixture weights are built through

successive differences of a logit-normal distribution function with frequency-

dependent parameters. Building from the construction for a single log-spectral

density, we develop a hierarchical extension for multiple stationary time series.

Specifically, we set the mean functions to be common to all log-spectral den-

sities and model time series specific mixtures through the parameters of the

logit-normal distribution. In addition to accommodating flexible spectral den-

sity shapes, a practically important feature of the proposed formulation is

that it allows for ready posterior simulation through a Gibbs sampler with

closed form full conditional distributions for all model parameters. We then

extend the model to multiple locally stationary time series, a particular class

ix



of non-stationary time series, making it suitable for the analysis of time se-

ries with spectral characteristics that vary slowly with time. The modeling

approach is illustrated with different types of simulated datasets, and used for

spectral analysis of multichannel electroencephalographic recordings (EEGs),

which provides a key motivating application for the proposed methodology.
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Chapter 1

Introduction

The problem of modeling multiple time series in the spectral domain arises

naturally in fields where information about frequency behavior is relevant and

several signals are recorded concurrently, as in neuroscience, econometrics, and

geoscience. In these fields, there is growing interest in different types of infer-

ence based on a collection of related time series. For example, multichannel

electroencephalography records measurements of electrical potential fluctua-

tions at multiple locations on the scalp of a human subject. Identifying which

locations lead to electrical brain signals with similar spectral densities is par-

ticularly meaningful, as it provides insights about the physiological state of

the subject and about the spatial structure of cortical brain activity under

certain experimental or clinical conditions. Section 1.1 provides some back-

ground and definitions that are key to understand spectral analysis and its

1



importance. In Section 1.2 we describe the key motivating application for

the proposed methodology, specifically the analysis of multi-channel electroen-

cephalographic recordings (EEGs). Finally, in Section 1.3 the main objectives

and contribution of this PhD dissertation are outlined.

1.1 Time series in the frequency domain

Consider a real valued discrete time series {Xt}t=0,1,.... A time series is

said to be strictly stationary if, for any t1, t2, .., tn, and for any k, the joint

probability distribution of {Xt1 , ..., Xtn} is identical to the joint probability

distribution of {Xt1+k, ..., Xtn+k}. A time series is said to be weakly stationary,

or simply stationary, if its first two moments do not vary with time. The

expected value of a stationary time series is a constant µ = E[Xt], for t =

1, 2, ..., and the autocovariance function depends only on the lag k, that is

γ(k) = E[(Xt − µ)(Xt+k − µ)].

A stationary process can be represented as

Xt =

∫ π

−π
exp(itω)dZ(ω) (1.1)

where Z(ω) a process whose increments for any two distinct values are uncor-

related, i.e., for two distinct frequencies ω and ω′, dZ(ω) = {Z(ω+dω)−Z(ω)}

and dZ(ω′) = {Z(ω + dω′)−Z(ω′)} are uncorrelated. In addition, for each ω,

Z(ω) is such that E(|Z(ω)|2) = dF (ω). Equation (1.1) provides the spectral
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representation of the process X(t). The integral on the right hand side, for a

fixed realization of the process, is a Fourier-Stieltjes integral. If f(ω) = F ′(ω)

exists for every ω, then dF (ω) = f(ω)dω, where f(ω) is the spectral density of

the process. The spectral representation states that, virtually, any stationary

process can be represented as the limit of the sum of sine and cosine functions

with random uncorrelated coefficients. This is crucial for the physical inter-

pretation of the spectral density as distribution of the energy of the process

over the frequency range. For a more complete explanation of the spectral

representation of stationary processes, refer to Priestley (1982).

Consider a zero-mean stationary time series {Xt : t = 1, 2, ...}, with abso-

lutely summable autocovariance function γ(·). The spectral density function

can be expressed as the Fourier transform of the autocovariance function:

f(ω) =
+∞∑

k=−∞

γ(k) exp (−ikω) , for− π ≤ ω ≤ π,

where γ(k) = E(Xt+kXt) denotes the autocovariance function. The relation-

ship between the spectral density function and the autocovariance function

provides a link between the time-domain and the frequency-domain analyses.

Given n observation X1, ..., Xn, the priodogram, denoted with In(ω), is defined

for ω ∈ [−π, π] by

In(ω) =

∣∣∣∣∣
n∑
t=1

Xt exp (−itω)

∣∣∣∣∣
2

/n. (1.2)

Although In(ω) is defined for all ω ∈ [−π, π], it is computed at the Fourier

3



frequencies ωj = 2πj/n, for j = 0, . . . , bn/2c, where bn/2c is the largest integer

not greater than n/2. Because of the symmetry of the periodogram, there are

only bn/2c + 1 effective observations. The periodogram is, for each ω, an

asymptotically unbiased estimator of the spectral density f(ω). However, the

periodogram is not a consistent estimator of the spectral density f(ω), in the

sense that Var(In(ω)) does not tend to zero as n→∞. Moreover, as a function

of ω, the periodogram has an erratic and fluctuating form, due to the fact that

Cov(In(ω), In(ω′)) decreases as n increases. One way to reduce the variance

of the periodogram is to include less terms in (1.2). Improved estimators have

been obtained by smoothing the periodogram (equivalent to weighting less

the terms corresponding to the tails of the autocovariance function) through

windowing methods (e.g., Parzen, 1962). However, truncating or smoothing

the periodogram inevitably introduces bias, that adds to the bias due to the

finite sample size n. For proofs of the asymptotic properties of the periodogram

and smoothed periodogram, see Priestley (1982).

Let us consider a zero-mean Gaussian time series. Whittle (1957) derived

an approximation of the Gaussian likelihood. He proved that, for large sample

size n, the periodogram observations In(ωj), for ωj 6= 0, π, are independent ex-

ponentially distributed with mean the spectral density f(ω). For ωj = 0, π, the

priodogram observations In(ωj) follow a gamma distribution with mean f(ω)

and shape parameter 1/2. The main advantage of the Whittle likelihood with

4



respect to the true likelihood is that the spectral density appears explicitly

and not through the autocovariance function. Most model-based approaches

to spectral density estimation are built from the Whittle likelihood approx-

imation to the periodogram distribution. Moreover, it has been shown that

the asymptotic Whittle approximation to the likelihood remains valid for non-

Gaussian (Hannan, 1973; Naito et al., 2010) and even non-linear time series

(Shao and Wu, 2007). In practice, for finite sample size, the Whittle likelihood

for non-Gaussian models presents a significan efficiency loss compared to the

true likelihood, as studied in Contreras-Cristan et al. (2006).

Using the Whittle’s likelihood, the estimation problem can be cast in a

regression framework with observations given by the log-periodogram ordi-

nates and regression function defined by the log-spectral density. Specif-

ically, log(In(ωj)) = log(f(ωj)) + εj, for j = 1, . . . , N , where the εj fol-

low a log-exponential distribution with scale parameter 1. In this context,

frequentist estimation approaches include approximating the distribution of

the εj with a normal distribution and fitting a smoothing spline to the log-

periodogram (Wahba, 1980), and maximizing the Whittle likelihood with a

roughness penalty term (Pawitan and O’Sullivan, 1994). Regarding Bayesian

modeling approaches: Carter and Kohn (1997) approximate the distribution

of the εj with a mixture of normal distributions and assign a smoothing prior

to log(f(ω)); Choudhuri et al. (2004) develop an approach based on Bernstein

5



polynomial priors (Petrone, 1999) for the spectral density; Rosen and Stoffer

(2007) express the log-spectral density as log(f(ω)) = α0 + α1ω + h(ω), with

a Gaussian process prior on h(ω); and Pensky et al. (2007) propose Bayesian

wavelet-based smoothing of the log-periodogram. More recently, Macaro and

Prado (2014) extended Choudhuri et al. (2004) to consider spectral decompo-

sitions of multiple time series in designed factorial experiments.

1.2 Motivating application: multichannel elec-

troencephalographic recordings (EEGs)

Spectral densities can appropriately summarize characteristics of brain sig-

nals recorded in various experimental or clinical settings, as documented in the

literature. For instance, certain spectral characteristics of electroencephalo-

graphic recordings (EEGs) recorded from patients who received electroconvul-

sive therapy (ECT) as a treatment for major depression have been associated

with the clinical efficacy of such treatment (Krystal et al., 1999). Moreover,

identifying which locations lead to electrical brain signals with similar spectral

densities is particularly meaningful, as it provides insights about the physio-

logical state of the subject and about the cortical brain activity under certain

experimental or clinical conditions. For example, in the area of monitoring and

detection of mental fatigue, prior EEG studies have suggested an association

6



Figure 1.1: Schematic representation of the EEG electrodes placed on a sub-
ject’s scalp.

of fatigue with an increase in the theta (4-8 Hz) band power observed in the

estimated spectral of signals recorded in channels located in mid-line frontal

scalp areas (Trejo et al., 2007).

Figure 1.1 shows a schematic representation of EEG electrodes placed on a

subject’s scalp; in this case, the number of channels is 19. Figure 1.2 shows the

EEGs recording from the Cz channel, for a subject undergoing ECT treatment.

Usually only a small segment of the EEG observations is considered, because

the entire series is non-stationary. In Chapter 3, we will analyze the three

segments between vertical lines in Figure 1.2 separately. In Chapter 4 we

consider the time series in its entirety, through an extension of the hierarchical

model to non-stationary time series.
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Figure 1.2: EEG signal for the Cz channel for a subject undergoing ECT
treatment.

It is clear that eveloping and implementing flexible methods for spectral

analysis of multiple time series is crucial in neuroscience. Available parametric

time-domain approaches based on state-space models are often used in prac-

tice because of their computational tractability, but such approaches are often

restrictive. In particular, they require the selection of a specific parametric

model to describe the data, whereas in real-world applications that involve the

analysis of complex time series, it is uncommon to know in advance the form of

the data-generating process. Moreover, many existing approaches, especially

those in the frequency-domain, cannot be easily extended to settings that in-

volve multiple signals, multiple subjects and/or multiple trials. In fact, most

time-domain analyses can be extended through hierarchical modeling. This is

much harder to do in the frequency-domain, especially due to a huge increase

in the computational complexity
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1.3 Research objectives

In the following paragraphs, we summarize the main research contributions

of this Ph.D. thesis.

• We propose a new approach to modeling spectral densities. Specifically,

motivated by results in Jiang and Tanner (1999a) and Norets (2010),

we replace the Whittle likelihood for the log-periodogram distribution

with a mixture of Gaussian distributions with frequency-dependent mix-

ture weights and mean parameters. This structure implies that the log-

spectral density is modeled as a smooth mixture of the Gaussian mean

functions. Moreover, casting the spectral density in a mixture framework

is key for the implementation of efficient Markov Chain Monte Carlo al-

gorithms.

• We introduce a novel formulation for the mixture weights and propose

a Bayesian hierarchical model for multiple time series in the spectral

domain. The mixture weights are built by consecutive differences of a

logit-normal distribution function with frequency-dependent parameters.

Such construction presents a critical computational advantage, as we

can introduce normally distributed auxiliary random variables and draw

from well established posterior simulation methods for mixture models.

Moreover, the new proposed weights are the starting point for the hier-

9



archical extension of our model to multiple time series. We propose a

flexible Bayesian modeling approach for multiple time series that leads to

full posterior inference of the multiple spectral densities and also allows

us to identify groups of time series with similar spectral characteristics.

The proposed model is more parsimonious than the fully Bayesian model-

based spectral estimation approaches mentioned in Section 1.1, leading

to more efficient posterior simulation. Therefore, the methodology can

be used to analyze temporal datasets that consist of a relatively large

number of related time series. Moreover, a nice feature of our modeling

approach is that it allows to group sets of time series that share similar

spectral characteristics as illustrated in Chapter 3, through simulations

and real data examples.

• The last contribution of this dissertation is the extension of the model to

non-stationary time series. Often, in fact, the stationarity assumption is

not satisfied, especially when we deal with long time series. Our model

formulation is key for this extension, in that we can make the weights and

the means of the mixture depend both on frequency and on time. The

computational advantages are still valid and we can extend the model

for one non-stationary time series to multiple non-stationary time series,

in the same fashion as we did for multiple stationary time series.

The outline of the dissertation is as follows. We begin in Chapter 2 by

10



presenting the new modeling idea for spectral density estimation through a

local mixture model on the log-periodogram observations. First, we use lo-

gistic weights to model the dependency on the frequency in the weights. We

then introduce a novel form of the weights, based on differences of cumulative

distribution functions that depend on the frequency. In Chapter 3, the model

is extended to multiple time series. Specifically, a Bayesian hierarchical model

is used to borrow strength across related time series. Spectral analysis for non-

stationary time series is the focus in Chapter 4; the model can be expanded to

include information about time and provide an estimate of a log-spectral den-

sity that varies with time. In all the chapters we provide results and estimates

for significant synthetic datasets and from the EEG dataset described in Sec-

tion 1.2. Chapter 5 concludes with a summary and some final remarks. Proofs

of Lemmas and Theorems are provided in Appendix A. Technical details on

posterior simulation methods can be found in Appendix B.

11



Chapter 2

Mixture modeling approach to

spectral density estimaton

2.1 Introduction

In this chapter, we present a new Bayesian approach to spectral density es-

timation. Specifically, we approximate the distribution of the log-periodogram

observations under the Whittle with a mixture of normal distributions, with

frequency-dependent mean functions and weights. The mixture of normal dis-

tributions implies a model for the log-spectral density that is a mixture of

the mean functions, which enables a wide range of shapes. First, we study

the performance of our model using logistic weights. Then, we propose a new

formulation for the weights, based on successive differences of a cumulative
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distribution function with finite support, whose location parameter depends

on the frequency. The proposed weights are advantageous in that they facili-

tate extensions to hierarchical modeling in a multiple time series setting. The

mixture representation of the log-spectral density is also key for the implemen-

tation of a Gibbs sampling Markov Chain Monte Carlo (MCMC) algorithm.

In the case of the proposed weights, all the full posterior distributions are

available in closed form.

The outline of the chapter is as follows. The modeling approach is in-

troduced in section 2.2. In Section 2.3 we describe the logistic weights and

introduce the new weights based on the differences of cumulative distribution

functions. Section 2.4 contains the main theoretical results. Our method, for

logistic weights, is illustrated with synthetic and real data sets in Section 2.5.

Results, using the new proposed weights, are presented in Section 2.6. Section

2.7 contains further discussion about the advantages of the proposed modeling

approach.

2.2 The modeling approach

Let n be number of observations from the time series and N = bn/2c−1 the

number of observations of the periodogram. Following common practice, we

exclude the observations at ωj = 0, π, resulting in N = bn/2c−1 for the sample

size Let In(ωj), with ωj = 2πj/n (for j = 1, ..., N), be the observations of the

13



periodogram of a zero-mean stationary time series. We define the translated

log-periodogram, at the Fourier frequency ωj = 2πj/n, as yj = log(In(ωj))+γ,

for j = 1, ..., N , where γ is the Euler-Mascheroni constant. The translation

constant is such that, under the Whittle approximation, the expected value of

the log-periodogram is the log-spectral density. At the Fourier frequencies, for

a large enough sample size n, we can consider the yj as independent. More-

over, under the Whittle likelihood approximation, the yj have the following

distribution:

qY (y) = exp{y − γ − log(f(ω))− exp(y − γ − log(f(ω)))}, y ∈ R. (2.1)

Therefore, E[yj] = log(f(ωj)) and Var[yj] = π2/6. Notice that the distribution

in (2.1) is in the exponential family, and −yj are Gumbel distributed with scale

parameter 1 and location parameter defined additively through log(f(ω)) and

γ, such that the mean is − log(f(ω)). The Whittle approximation has been

widely used in the literature because the spectral density appears explicitly

in the approximate likelihood rather than through the covariance function.

Although (2.1) is a standard distribution, the spectral density enters the like-

lihood in a non-standard fashion through the mean parameter.

We propose to replace the distribution in (2.1) (derived from the Whit-

tle likelihood) with a structured mixture of Gaussian distributions, defined

through frequency-dependent mixture weights and Gaussian mean functions.

In this way, we obtain a model for the log-spectral density that is a mixture

14



of the Gaussian mean functions. More specifically, we approximate the distri-

bution of yj with a mixture of normal distributions, with means that depend

linearly on ωj and frequency-dependent weights:

yj|θ
ind.∼

K∑
k=1

gk(ωj; ξ) N(yj | αk + βkωj, σ
2), j = 1, . . . , N, (2.2)

where gk(ωj; ξ) denotes the k-th mixture weight, and ξ is the vector of the

weight parameters. The weight parameters, as well as the number of weight

parameters, vary depending on the specific form of the weights and will be fully

specified in each case. The vector θ collects all model parameters, specifically,

the weight parameters ξ, the intercept and slope parameters of the K mixture

components means, that is, α = {αk : k = 1, ..., K} and β = {βk : k =

1, ..., K}, and the common variance parameter σ2.

From the approximation in (2.2), taking the expected value, we obtain that

the model for the log-spectral density is given by

log(f(ω)) =
K∑
k=1

gk(ω; ξ) {αk + βkω}, ω ∈ (0, π), (2.3)

that is, the log-spectral density admits a representation as a mixture of linear

functions with component specific intercept and slope parameters, and with

frequency-dependent weights that allow for local adjustment, and thus flexible

spectral density shapes.

In addition to the appealing interpretation of the implied spectral density

model, further theoretical justification for the approximation in (2.2) can be
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provided by means of results in the Lp norm for the spectral density. Such jus-

tifications can be found in section 2.4. The Gaussian mixture model in (2.2),

and the implied model for the log-spectral density in (2.3), are motivated by

the theoretical results of Jiang and Tanner (1999a) and Norets (2010). Jiang

and Tanner (1999a) show that an exponential response distribution, involv-

ing a regression function on a finite support, can be approximated by a mix-

ture of exponential distributions with means that depend on the covariates

and with covariate-dependent mixture weights. More directly related to our

model, Norets (2010) presents approximation properties of finite local mix-

tures of normal regressions as flexible models for conditional densities. The

work in Norets (2010) focuses on the joint distribution of the response and

covariates, showing that, under certain conditions, the joint distribution can

be approximated in Kullback-Leibler divergence by different specifications of

local finite mixtures of normals in which means, variances, and weights can

depend on the covariates. Here, we consider fixed covariate values defined by

the Fourier frequencies. We have explored both methods and found that the

mixture of normal distributions is computationally more efficient.

2.3 Local mixture weights

The key property underlying the approximation results in Jiang and Tan-

ner (1999a) and Norets (2010) is that the covariate-dependent (frequency-
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dependent in our context) mixture weights are such that, for some values of

the weight parameters, they approximate a set indicator functions on a fine

partition of the finite support. Under this condition, it can be proved that, as

the number of components increases, the approximation in (2.2) tends to (2.1)

in the sense of the Kullback-Liebler divergence. Moreover, under a smoothness

assumption for the log-spectral density – assuming that log(f(ω)) and its first

and second derivatives are continuous and bounded – further theoretical jus-

tification for the approximation in (2.3) can be provided by means of results

in the Lp norm for the log-spectral density. The theoretical results for both

formulations of the weights are enunciated and discussed in Section 2.4.

2.3.1 Logistic weights

Logistic weights are defined, for k = 1, ..., K, as

gk(ω; ξ) ≡ gk(ωj;λ, ζ,φ) =
{exp(ζk + φkωj)/λ}∑K
i=1 exp{(ζi + φiωj)/λ}

. (2.4)

In this case, the vector of weight parameters ξ becomes ξ = ({ζk : k =

1, ..., K}, {φk : k = 1, ..., K}, λ). Hence, there are 2K + 1 mixture weight

parameters. The logistic weights partition the support with soft boundaries.

The parameter λ controls the smoothness of the transition between the subsets

of (0, π) induced by the logistic weights. The larger the value of λ, the smoother

is the corresponding estimate of the spectral density.
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Here, θ collects all model parameters, in particular, it includes the param-

eters for the logistic weights, ζ = {ζk : k = 1, ..., K}, φ = {φk : k = 1, ..., K}

and λ, the intercept and slope parameters for the means of the normal mixture

components, α = {αk : k = 1, ..., K} and β = {βk : k = 1, ..., K}, and the

common variance parameter σ2.

Prior specification

For practical purposes, confirmed from empirical investigation with several

data sets including the ones of Section 3, we have observed that in general

a relatively small number of mixture components suffices to capture different

spectral density shapes, with inference results being robust to the choice of K.

Naturally, the modeling approach can be generalized with random K, albeit at

the expense of a more computationally challenging approach to inference. An

arguably more interesting extension involves a nonparametric formulation for

the mixture model which can provide model-based estimation of the effective

number of mixture components.

To complete the full Bayesian model, we assume prior independence among

and between the parameters of each mixture component. Specifically, we use

a normal prior distribution with mean µα and variance σ2
α for the αk, and

a normal prior with mean µβ and variance σ2
β for the βk. For the common

variance parameter, σ2, we use an inverse-gamma prior, and for the smoothness
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parameter, λ, a gamma prior. We place standard normal priors on the ζk and

φk. This choice is motivated by the fact that the variances of ζk and φk and

λ cannot be estimated simultaneously. The prior of λ expresses our belief on

the degree of smoothness of the spectral density. As demonstrated with the

data examples of Section 3, the smoothness parameter can be learned from

the data. The prior on the intercept parameters αk summarizes information

about the spectral density value near ω = 0. Moreover, the prior on the slope

parameters βk can be used to express beliefs about the shape of the spectral

density. For instance, for multimodal spectral densities, we expect some βk

to be positive and some negative, whereas for unimodal spectral densities, we

expect all βk to have the same sign.

Posterior simulation

Using logistic weights, the model in (2.2) can be expanded in hierarchical

form by introducing configuration variables (r1, . . . , rN), where each rj, j =

1, . . . , N , has a discrete distribution with values in {1, . . . , K}:

yj | rj, α, β, σ2 ind∼ N(yj|αrj + βrjωj, σ
2), j = 1, . . . , N

rj | ζ, φ, λ
ind∼

K∑
k=1

gk(ωj;λ, ζ, φ)δk(rj), j = 1, . . . , N

where δk(rj) = 1 if and only if rj = k. The equivalent model is key in sampling

from the joint posterior distribution of the parameters. We develop a Markov

chain Monte Carlo algorithm to simulate from the joint posterior distribu-
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tion of the parameters, which is based almost exclusively on Gibbs sampling

steps. The full conditional distribution for each rj is a discrete distribution

on {1, . . . , K} with updated probabilities. We have conjugate full conditional

distributions for the (αk, βk), and for σ2. Updating the parameters for the lo-

gistic weights is more challenging, and we use a data augmentation step based

on auxiliary Pólya-Gamma variables (Polson et al., 2013). Technical details

about how we can use auxiliary Pólya-Gamma variables to obtain closed form

full conditional distributions for {ζk : k = 1, ..., K} and {φk : k = 1, ..., K}

can be found in Appendix B. Sampling λ requires a Metropolis-Hastings step.

Details of the posterior simulation algorithm are provided in Appendix B.

Note that the variance of the prior spectral density increases with ω. To

minimize this effect, when fitting the model we normalize the support (0, π)

of the spectral density to the unit interval; the results can be reported on the

original scale through straightforward transformation.

2.3.2 Local weights based on differences of cumulative

distribution functions

We propose a novel specification for the mixture weights, as an alterna-

tive to the logistic weights. The proposed weights are built by consecutive

differences of a distribution function on (0, π) with frequency-dependent pa-

rameters. We use a logit-normal distribution on (0, π), but any distribution
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with bounded support can be considered. The idea is reminiscent of the Bern-

stein polynomial prior in Petrone (1999), in that the weights are built through

differences of cumulative distribution functions.

The weights, for k = 1, .., K are defined as follows:

gk(ω; ξ) ≡ gk(µ(ω), τ) =

∫ πk/K

π(k−1)/K

fY (y | µ(ω), τ) dy, (2.5)

where fY (y | µ(ω), τ) is the density of a logit-normal(µ(ω), τ) distribution on

(0, π). A random variable Y is said to have logit-normal(µ, τ) distribution

on (0, π) if log(Y/(π − Y )) is normal distributed with mean µ and precision

parameter τ . Hence, at each frequency, we have a different set of weights which

however evolve smoothly with the frequency. If µ(ω) is a monotonic function

in ω, the weights define a partition on the support (0, π). We use a parametric

form for µ(ω) to determine the location of the modes of the weights. In fact,

the mode for the k-th weight does not depend on τ , and it is the value ωk such

that µ(ωk) = {log(k/(K − k)) + log((k− 1)/(K − k + 1))}/2. We use a linear

function µ(ω) = ζ + φω, but another monotonic function of the frequency can

be chosen. The parameter τ is a smoothness parameter, with smaller values of

τ leading to smoother spectral densities. Hence, the parameters of the logit-

normal distribution are interpretable and play a clear role in the shape of the

weights.

The formulation for the mixture weights in (3.1), including the choice of the

logit-normal distribution function, facilitates the implementation of a Markov
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chain Monte Carlo (MCMC) algorithm for posterior simulation. In particular,

we can augment model (2.2), using continuous auxiliary variables. For each yj,

j = 1, ..., N , we introduce auxiliary variable rj, which is normally distributed

with mean µ(ωj) = ζ + φωj and precision parameter τ . Then, the augmented

model can be written as:

yj | rj,α,β, σ2 ind.∼
K∑
k=1

N(yj | αk + βkωj, σ
2) I
{
k − 1

K
<

exp(rj)

1 + exp(rj)
≤ k

K

}
,

rj | ξ
ind.∼ N(rj | ζ + φωj, 1/τ),

where ξ = (ζ, φ, τ). The full Bayesian model for a single spectral density would

be completed with priors for σ2 and for the elements of α, β and ξ. This

structure allows for a straightforward implementation of a Gibbs sampling

algorithm with full conditional distributions available in closed form for all

model parameters. The full conditional distributions are available in Appendix

B.

2.4 Theoretical results

We want to prove that a smooth mixture of linear functions, hK(ω) =∑K
k=1 gk(ω; ξ){αk + βkω}, can be used to approximate a smooth function h(·)

on Ω = (0, π).

In the following, ‖f(·)‖p =
(∫ π

0
|f(ω)|pdσ(ω)

) 1
p , where σ is a probability mea-

sure on Ω = (0, π), absolutely continuous with respect to Lebesgue measure;
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χB is the indicator function on the subset B ⊆ Ω: χB(ω) = 1 when ω ∈ B,

χB(ω) = 0 when ω /∈ B. Let define the sequence of partitions of Ω given by

{QK
k , k = 1, . . . , }, where QK

k = [(k − 1)π/K, kπ/K) for k = 1, . . . , K − 1, and

QK
K = [(K − 1)π/K, π]. This sequence of partitions has the property that, for

every K and k, being ω1 and ω2 two points in QK
k , |ω1 − ω2| ≤ π/K.

Here, we show that the approximation above is valid in the case of the local

weights introduced in Section 2.3. Lemma 2.1, the proof of which can be found

in Jiang and Tanner (1999a), shows that logistic weights converge, for some

values of the parameters, to a set of indicator functions on a partition of Ω,

specifically K intervals of equal length. Lemma 2.2 states a similar results for

the weights based on differences of cumulative distribution functions, with the

difference that the partition consist on a smaller number of intervals. Theorem

2.1 and 2.2 state the convergence results in the Lp norm of our approximation

to the true log-spectral density, as the number of componentsK goes to infinity,

both n the case of logistic weights and of the new weights, respectively. Note

that we enunciate the results for Ω = (0, π), but they are valid for any bounded

interval on the real line.

Lemma 2.1. For logistic weights, as defined in (2.4) we have that, for all K,

for each ε > 0, there exist ζ(ε), φ(ε), λ(ε) such that

sup1≤k≤K ||gk(·;λ(ε), ζ(ε), φ(ε))− χQKk ||p < ε.

The following result establishes that the distance in the Lp norm (denoted
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by ‖·‖p) between the target log-spectral density, h, and the mixture model

hK(ω) =
∑K

k=1 gk(ω;λ, ζ, φ)(αk + βkω) is bounded by a constant which is

inversely proportional to the square of the number of mixture components K.

Theorem 2.1. Let h(ω) ∈ W∞
2,K0

, where W∞
2,K0

denotes the Sobolev space of

continuous functions on Ω = (0, π) bounded by K0, with the first two derivatives

continuous and bounded by K0. Then, infhK ‖hK − h(·)‖p ≤ π2K0/2K
2, where

hK(ω) =
∑K

k=1 gk(ω;λ, ζ,φ)(αk + βkω).

If Y is distributed as a logit-normal(µ(ω), τ) on (0, π), then Y = π exp(X)/(1+

exp(X)), where X follows a normal distribution with mean µ(ω) and variance

1/τ . Hence, the weights defined in (3.1), can be rewritten as

gk(µ(ω), τ) =
1√
2π

∫ (bk−µ(ω))
√
τ

(bk−1−µ(ω))
√
τ

exp(−x2/2) dx, (2.6)

with bk = log{k/(K−k)}, bk−1 = log{(k−1)/(K−k+1)}, and µ(ω) = ζ+φω.

Lemma 2.2. Let gk(µ(ω), τ) be the k-th weight as defined in (2.6). Then,

there exist values for ζ and φ, and integers k1 and k2, with k2 > k1, such that,

for k = k1 + 1, ..., k2, limτ→∞ ||gk − χQk ||p = 0, for any p ∈ N. Moreover, for

1 < k ≤ k1 or k2 < k ≤ K, limτ→∞ ||gk||p = 0, for any p ∈ N.

According to Lemma 2.2 the proposed local mixture weights approximate

the set of indicator functions on the partition {Qk1+1, ..., Qk2}, for any fixed

K, k1 and k2, with k2 > k1. The following result establishes that the distance
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in the Lp norm between the target log-spectral density, h, and the proposed

mixture model hK is bounded by a constant that is inversely proportional to

the square of K∗ = k2 − k1 < K.

Theorem 2.2. Let h ∈ W∞
2,K0

, that is, the Sobolev space of continuous func-

tions bounded by K0, with the first two derivatives continuous and bounded by

K0. Then, infhK ‖hK − h‖p ≤ K0/(2K
∗2).

The proof of Lemmas 2.1 and 2.2 and Theorems 2.1 2.2 can be found in

Appendix A.

The above results show that we can choose values of the parameters θ

such that the Lp distance between the true log-spectral density and the pro-

posed mixture is bounded by a constant. This constant, in the case of logistic

weights, is proportional to K0/K
2, where K0 is related to the smoothness of

the true spectral density. Hence, the distance decreases quadratically with the

number of components. If we have prior knowledge on the smoothness of the

log-spectral density, we can use it to fix K. For the new proposed weights,

the constant is proportional to K0/K
∗2, where K0 is the same as above, and

K∗ < K is the number of effective components determined by θ. Hence, in

general, we need a larger K for the new proposed weights to obtain the same

degree of approximation as in the logistic weights. However, the computational

advantages make this issue secondary and the new formulation of the weights

is key for the extension to multiple spectral densities.
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2.5 Numerical illustration: Logistic weights mix-

ture model

2.5.1 Synthetic datasets

We evaluate the performance of our method by analyzing simulated datasets.

Focusing first on monotonic spectral densities, we simulated data from two au-

toregressive processes of order one. Specifically, we considered x1,t = 0.7x1,t−1+

ε1,t, with ε1,t ∼ N(0, 1) and x2,t = −0.9x2,t−1 +ε2,t, with ε2,t ∼ N(0, 1), and sim-

ulated 400 observations from each of these processes. Here, we only show the

results with the number of components fixed at K = 10, however, results were

essentially the same with larger K. For the αk and βk, we use zero-mean nor-

mal priors with variances σ2
α = σ2

β = 100. An inverse-gamma prior with shape

parameter 3 and scale 6 is placed on σ2. For λ, we use a gamma prior with

shape parameter 2 and mean 0.2, which places almost all its mass in (0, 1). The

estimated log-spectral densities and the corresponding 95% posterior intervals

are reported in Figure 2.1, together with the true log-spectral densities and

the periodogram observations. The spectral densities for these processes are

respectively monotonically decreasing and increasing. Notice that our model

successfully captures their behavior. The posterior density for λ for each case

is plotted in Figure 2.3.

To evaluate model performance for more complex spectral densities, we
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Figure 2.1: Synthetic data from a single AR(1) process. Posterior mean
(solid dark line), 95% credible interval (shaded area), true log-spectral density
(dashed line) and log-periodogram (dots) for data simulated from autoregres-
sive processes of order one, with parameters 0.7 (left) and −0.9 (right), under
the model with logistic weights.

simulated data from the sum of two autoregressive processes and a white noise

term. Specifically, let x3,t = 0.9x3,t−1+ε3,t, with ε3,t ∼ N(0, 1), x4,t = 0.9x4,t−1−

0.9x4,t−2 + ε4,t, with ε4,t ∼ N(0, 1) and x5,t = −0.8x5,t−1 − 0.8x5,t−2 + ε5,t, with

ε5,t ∼ N(0, 1). We construct z1,t = x3,t + x5,t + ν1,t, where ν1,t ∼ N(0, 1), and

z2,t = x4,t + x5,t + ν2,t, where ν2,t ∼ N(0, 1). We simulated 400 observations

from each of these two processes. The spectral density of z1,t is decreasing for

low frequencies and has a peak around ω = 1.1; the spectral density of z2,t

is bimodal, with two peaks around ω = 1.1 and ω = 2. The estimated log-

spectral densities for the two processes along with 95% posterior intervals are

reported in Figure 2.2. Our model does well in capturing the shape of the log-
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Figure 2.2: Synthetic data from sum of AR processes and white noise. Pos-
terior mean (solid dark line), 95% credible interval (shaded area), true log-
spectral density (dashed line) and log-periodogram (dots) for the sum of au-
toregressive processes and white noise, under the model with logistic weights.

spectral densities, and it successfully identifies the peaks. The corresponding

posterior densities for λ are plotted in Figure 2.3. In both cases, the posterior

distribution of λ is supported by smaller values than for the autoregressive

processes of order one, in agreement with the fact that the spectral densities

of x1,t and x2,t are smoother than those of z1,t and z2,t.

2.5.2 Electroncephalogram data

We consider four times series that correspond to portions of electron-

cephalograms taken from a larger dataset. The original time series were

recorded at 19 locations over the scalp of a patient who received electroconvul-

sive therapy. Further details and data analysis can be found in Krystal et al.
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Figure 2.3: Synthetic data. Posterior density for λ for data simulated from
(from the left) autoregressive processes of order one, with parameter 0.7 and
−0.9, and for the sum of autoregressive processes and white noise, under the
model with logistic weights.

(1999). The time series were recorded in four left channels, two of which are

in the frontal region of the scalp (F7 and F3), one is in the temporal region

(T5), and one is in the parietal region (P3). For each time series, we have 299

observations, obtained by subsampling the electroencephalogram signal every

sixth observation from a mid-seizure section. The original sampling rate was

256 Hz. The priors were the as in Section 2.5.1, save for the prior for λ that

here is given by a gamma distribution with shape parameter 3 and mean 0.1,

which places almost all its mass in (0, 0.5). We choose this prior because we

expect at least one pronounced peak in the spectral density, reflecting brain

activity in at least one frequency band, and we thus want to avoid oversmooth-

ing. The number of components is fixed to K = 10. Also in this case, the

results were robust with respect to the number of components.

Figure 2.7 shows the posterior mean estimates and 95% posterior credi-

ble intervals for the spectral densities together with the logged spectral peri-
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odogram. The behavior of the spectral density is similar for the two frontal

channels, shown in the first row of Figure 2.7, and for the two temporal ones,

on the second raw. All the channels show a peak around 3.4 Hz. that is

slightly shifted to the left in T5 and P3. These results are consistent with pre-

vious analyses that indicate that the observed quasi-periodicity is dominated

by activity in the delta frequency range (1-5 Hz.). We also note that although

there are important similarities across the spectral densities, each density has

its own features with channels F3, T5 and P3 sharing more similarities and F7

being different from the rest.

2.6 Numerical illustration: Mixture model with

local weights based on differences of CDFs

We evaluate the performance of our method by analyzing the same syn-

thetic datasets we presented in Section 2.5.1. For the αk and βk, we use

zero-mean normal priors with variances σ2
α = σ2

β = 100. An inverse-gamma

prior with shape parameter 3 and scale 6 is placed on σ2. For ζ and φ we use

two independent zero mean normal priors with variances σ2
ζ = σ2

φ = 100. The

estimated log-spectral densities and the corresponding 95% posterior intervals

are reported in Figures 2.5 and 2.6. For the autoregressive processes of order

one, we show the results obtained with K = 10. In fact, the monotonic shapes
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Figure 2.4: EEG data. Posterior mean (solid dark line), 95% credible inter-
val (shaded area), and log-periodogram (dots) for the electroencephalogram
datasets recorded in four channels, under the model with logistic weights.
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Figure 2.5: Synthetic data from a single AR(1) process. Posterior mean
(solid dark line), 95% credible interval (shaded area), true log-spectral density
(dashed line) and log-periodogram (dots) for data simulated from autoregres-
sive processes of order one, with parameters 0.7 (left) and −0.9 (right), under
the model with weights based on differences of CDFs.

do not require a larger number of components than those used in the case

of logistic weights. For the sum of autoregressive processes, we need a larger

number of components than in the case of logistic weights. This is due to

the fact that we have only three weight parameters, hence we need more com-

ponents to capture the bimodal shape of the spectral densities. Specifically,

we show results obtained for K = 50. The interval bands in the case of the

bimodal spectral densities are larger than the ones obtained with the logistic

weights. This is due to the fact that a larger number of effective components

are needed.

Finally, we use the model with the weights based on differences of CDFs
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Figure 2.6: Synthetic data from sum of AR processes and white noise. Pos-
terior mean (solid dark line), 95% credible interval (shaded area), true log-
spectral density (dashed line) and log-periodogram (dots) for the sum of au-
toregressive processes and white noise, under the model with weights based on
differences of CDFs.

to estimate the spectral densities of the EEG data. The dataset is the one

analyzed in Section 2.5.2. Again, the number of components is fixed to K =

50. Also in this case, the results were robust with respect to the number of

components. Figure 2.7 shows the posterior mean estimates and 95% posterior

credible intervals for the spectral densities together with the logged spectral

periodogram. The estimate obtained under the model with weights based

on differences of CDFs appears to be smoother than the estimates obtained

under the model with logistic weights. In fact, the number of effective weights,

meaning weights that are not identical to zero on the support, is larger in

this case. The weights based on differences of CDFs distributions create a
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soft partition of the support with more intervals than those in the partition

induced by the logistic weights.

2.7 Discussion

We have presented a Bayesian approach to single spectral density estima-

tion that builds from an approximation to the Whittle log-likelihood through

a mixture of normal distributions. We have obtained good estimates with sim-

ulated datasets. In the real data example, we have shown that the spectral

densities corresponding to different channels in the same subject can present

different characteristics. There is the need to develop a model that is easy

to extend to multiple related time series. Note that the logistic weights are

specified through a (2K + 1)-dimensional vector ξ. Therefore, the number of

parameters for models that consider these weights increases linearly with the

number of components K. Moreover, the denominator that arises from the

structure implied by the logistic weights complicates posterior simulation. For

the logistic weights, we need a data augmentation step, based on auxiliary

Pólya-gamma variables (Polson et al., 2013), which requires N latent vari-

ables for each k = 1, ..., K, thus increasing considerably the computational

cost even for a single spectral density. Alternatively, our proposed formulation

for the mixture weights in (3.1) provides key computational advantages, as

the weights are fully specified through three parameters for a single spectral
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Figure 2.7: EEG data. Posterior mean (solid dark line), 95% credible inter-
val (shaded area), and log-periodogram (dots) for the electroencephalogram
datasets recorded in four channels, under the model with weights based on
differences of CDFs.
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density, leading to more efficient posterior simulation.

The new formulation of the weight is key for the extension of the model

to multiple related time series. In fact, we can make the weight parameters

series specific. We develop a Bayesian hierarchical model for spectral density

estimation of multiple related time series in Chapter 3.
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Chapter 3

Hierarchical model for multiple

time series

3.1 Introduction

In this chapter, we extend the modeling approach for spectral density es-

timation, presented in Chapter 2, to multiple time series. Building from the

construction for a single spectral density, we develop a hierarchical extension

for multiple spectral densities. Specifically, we set the mean functions to be

common to all spectral densities and make the weights specific to the time

series through the parameters of the logit-normal distribution. In addition to

accommodating flexible spectral density shapes, a practically important fea-

ture of the proposed formulation is that it allows for ready posterior simulation
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through a Gibbs sampler with closed form full conditional distributions for all

model parameters.

It is worth emphasizing that we are considering multiple – not multivariate

– time series. For a description of methods for multivariate time series in the

spectral domain, refer, for example, to Shumway and Stoffer (2011).

The outline of the Chapter is as follows. In Section 3.2, we describe the

Bayesian hierarchical model for multiple time series. In Section 3.3, we present

results from an extensive simulation study. In Section 3.4, we apply the pro-

posed model to data from multichannel electroencephalographic recordings.

Finally, Section 3.5 concludes with a summary and discussion of the advan-

tages of our approach.

3.2 Bayesian Hierarchical Model

The model for a single time series, presented in Section 2.2, was devel-

oped with a hierarchical extension in mind. Let us consider M related time

series, which, without loss of generality, are assumed to have the same num-

ber of observations n. For example, assume that M is the number of chan-

nels located over a subject’s scalp for which we have electroencephalographic

recordings. For each time series, we have N observations from the (translated)

log-periodogram, which we denote as ymj, where the first index indicates the

time series (m = 1, ...,M) and the second indicates the Fourier frequency
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(j = 1, ..., N).

Now, for each m and each j we approximate the distribution of the ymj

with a smooth mixture of Gaussian distributions, as described in the previous

section. We take the mean parameters of the Gaussian mixture components,

that is, (αk, βk), for k = 1, ..., K, to be common among time series. This

translates into a set of K linear basis functions for the log-spectral density

approximation which are common to all time series. On the other hand, we

let the parameters that specify the weights be time series specific, that is, we

use the form in (3.1) with parameters ξm = (ζm, φm, τm), for m = 1, ...,M .

Specifically, the weights, for k = 1, .., K are defined as follows:

gk(ω; ξm) ≡ gk(µm(ω), τm) =

∫ πk/K

π(k−1)/K

fY (y | µm(ω), τm) dy, (3.1)

where fY (y | µm(ω), τm) is the density of a logit-normal(µm(ω), τm) distribution

on (0, π). Here, µm(ω) = ζm + φmω.

For each time series, the weights select the linear functions to approximate

the corresponding log-spectral density. We use M distinct smoothness param-

eters τm to allow different levels of smoothness across the spectral densities.

Hence, extending (2.2), the observation stage for the hierarchical model on

the M time series can be written as

ymj | θ
ind.∼

K∑
k=1

gk(µm(ωj), τm) N(ymj | αk + βkωj, σ
2), (3.2)

where the k-th weight at the m-th location is defined as in (3.1) in terms of in-
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crements of a logit-normal distribution function, with mean function, µm(ωj) =

ζm+φmωj, and precision parameter, τm, that are time series specific. Again, θ

collects all model parameters: the intercept and slope parameters of theK mix-

ture components means, α = {αk : k = 1, ..., K} and β = {βk : k = 1, ..., K},

the common variance parameter σ2, and the mixture weights parameters, ζ =

{ζm : m = 1, ...,M}, φ = {φm : m = 1, ...,M}, and τ = {τm : m = 1, ...,M}.

Posterior simulation is implemented using the augmented version of the model

based on MN normally distributed auxiliary variables, rmj, for m = 1, ...,M

and j = 1, ..., N . In particular,

ymj | rmj,α,β, σ2 ind.∼
K∑
k=1

N(ymj | αk + βkωj, σ
2)I
{
k − 1

K
<

exp(rmj)

1 + exp(rmj)
≤ k

K

}

rmj | ζm, φm, τm
ind.∼ N(rmj | ζm + φmωj, 1/τm).

Technical details on the Gibbs sampler used to implement the hierarchical

model are given in Appendix B.

The full Bayesian model is completed with priors for α, β, and σ2, and

a hierarchical prior for the (ζm, φm) and τm, for m = 1, ...,M . The weight

parameters are assumed a priori independent of the Gaussian mixture com-

ponent parameters. We assume σ2 ∼ inv-gamma(nσ2 , dσ2), that is, an inverse

gamma prior (with mean dσ2/(nσ2 − 1), and nσ2 > 1), αk ∼ N(µ0α, σ
2
α), and
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βk ∼ N(µ0β, σ
2
β), for k = 1, ...., K. The hierarchical prior is given by

(ζm, φm) | µw,Σw
ind.∼ N(µw,Σw), m = 1, ....,M,

τm | dτ
ind.∼ gamma(nτ , dτ ), m = 1, ....,M,

where gamma(n, d) denotes the gamma distribution with mean n/d. To borrow

strength across the time series, we place a bivariate normal prior on µw, and

an inverse Wishart prior on the covariance matrix Σw. For the τm, we fix the

shape parameter, nτ , and place a gamma prior on the rate parameter, dτ .

The prior on the intercept parameters, αk, summarizes information about

the spectral density value near ω = 0, while the prior on the slope parameters,

βk, can be used to express beliefs about the shape of the spectral density.

For instance, for multimodal spectral densities, we expect some selected βk

to be positive and some negative, whereas for unimodal spectral densities, we

expect all the selected βk to have the same sign. The parameters ζm and φm, for

m = 1, ...,M , determine the location of the modes of the weights corresponding

to the m-the spectral density, while the τm are smoothness parameters with

smaller values favoring smoother spectral densities. Given the model structure

that involves common parameters for the mixture components, inferences for

the (ζm, φm) are useful in identifying groups of time series with similar spectral

characteristics. This is demonstrated with the data illustrations of Sections

3.3 and 3.4.

In this work, the number of mixture components, K, is fixed. The modeling

41



approach can be generalized to a random K, albeit at the expense of a more

computationally challenging posterior simulation method. The values of the

weight parameters determine how many effective components are used by the

model.

The time series specific weights will select a subset of components to ap-

proximate the specific spectral density. Hence, we expect that the necessary

number of mixture components K will be significantly larger than in the uni-

variate case when the underlying spectral densities of the multiple time series

differ substantially. When the spectral characteristics do not vary among lo-

cations, the number of necessary mixture components K will not increase.

If we have prior knowledge on the smoothness of the log-spectral densities,

we can use it in the specification of K. Based on extensive empirical investiga-

tion with several data sets, including the ones of Section 3.3, we have observed

that, in general, a relatively small number of mixture components suffices to

capture different spectral density shapes, with inference results being robust

to the choice of K.

Since the linear bases are common to all the time series, whereas the weights

are time series specific, we look at the posterior distribution of the weight

parameters. This allows us to identify groups of spectral densities with similar

characteristics. Notice that our model does not allow two spectral densities to

be identical, hence we cannot do clustering of identical spectral densities.
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3.3 Simulation study

In order to assess the performance of the proposed spectral models, we

designed three different data generating mechanisms that represent three hy-

pothetical scenarios involving multiple related time series. In each scenario,

we have M = 15 time series. Moreover, we consider replicates, meaning that

more than one time series is generated from the same underlying process. For

each time series, we simulated n = 300 time points, leading to N = 149 ob-

servations from the log-periodogram. In addition to posterior estimates and

credible intervals for the spectral densities, we investigate the posterior dis-

tribution of the weight parameters, ζm, φm and τm, for m = 1, ...,M , which

can be useful in identifying similar spectral characteristics across multiple time

series.

3.3.1 Total Variation Distance

To quantify the discrepancy between two spectral densities, we use the

concept of total variation distance (TVD) for normalized spectral densities.

The total variation is a distance measure for probability distributions and it

has been used to quantify the distance between two spectral densities, af-

ter normalization (e.g., Euan et al., 2015). In particular, the total variation

distance between two normalized spectral densities f ∗(ω) = f(ω)/
∫

Ω
f(ω)dω

and g∗(ω) = g(ω)/
∫

Ω
g(ω)dω, where Ω = (0, π), is defined as TVD(f ∗, g∗) =
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1 −
∫

Ω
min{f ∗(ω), g∗(ω)}dω. This is equivalent to half of the L1 distance be-

tween f ∗ and g∗, i.e., TVD(f ∗, g∗) = ||f ∗ − g∗||1/2. We use the TVD as a

measure of discrepancy between spectral densities because it is symmetric and

bounded between 0 and 1, with the value of 1 corresponding to the largest pos-

sible distance between the normalized spectral densities. Moreover, we have

the following result. Let fk be a sequence of functions and f be a function

defined on (0, π). Let Lp(0, π) denote Lp convergence on (0, π), and let TV D

denote convergence in the total variation distance.

Lemma 3.1. If log fk
Lp(0,π)−→ log f , then fk/

∫ π
0
fk(ω)dω

TV D−→ f/
∫ π

0
f(ω)dω.

The proof of the above lemma is in appendix A.

Under a Bayesian modeling approach we have a posterior distribution for

the TVD of any two given spectral densities. We use the posterior distributions

of the TVDs to compare the inferred spectral densities of multiple time series,

as illustrated in the analyses of simulated and real data in Chapter 3.

3.3.2 First scenario

The goal of this simulated scenario is to evaluate the performance of our

model for time series with monotonic spectral densities, and also to test if

the model is able to recognize white noise. In order to compare our posterior

estimates to the true spectral densities, we simulated data from processes with

spectral densities available in analytical form. We considered three underlying
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generating processes, with five replicates in each case, leading to a total of

M = 15 time series. The first five time series were generated from an autore-

gressive process of order one, or AR(1) process, with parameter 0.9. The next

five time series (labeled from 6-10) were generated from an AR(1) process with

parameter 0.5. Finally, the last five time series were generated from pure white

noise, or equivalently an AR(1) process with parameter 0. Hence, the under-

lying spectral densities for the first two groups are monotonic decreasing. The

spectral density corresponding to the first five time series has a larger slope

and is less noisy, while the one corresponding to the second group has smaller

slope and more variability in the periodogram realizations. The spectral den-

sity for the last five time series is a constant at one, that corresponds to the

variance of the white noise.

We fixed the number of mixture components to K = 30; similar results

were obtained with a larger value of K. We assumed αk and βk to be indepen-

dent normally distributed centered at zero with variance 1000 such that the

linear basis can have a wide range of motion. For the common variance param-

eters, we used an inverse gamma prior with mean 3 and variance 9. For the

smoothness parameters τm, m = 1, ...,M , we fixed the shape parameter to 30

and placed a gamma(3, 20) on the rate parameter. This results in a marginal

prior distribution for each τm that supports a large interval on the positive

real line. Moreover, since each time series has its own smoothness parameter,
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Figure 3.1: First simulation scenario. Joint posterior densities for (ζm, φm)
(top left panel), marginal prior density (dashed line) and posterior densities
for τm (top right panel), for m = 1, ...,M , and boxplots of posterior samples
for the total variation distance of each estimated spectral density from the true
white noise spectral density (bottom panel).

we can have different levels of smoothness for different spectral densities. The

hyper-prior on the mean parameter was centered at 0 and had variance 10,

while the Inverse Wishart distribution parameters were chosen in a way that

the marginal distributions for the diagonal elements were inv-gamma(3, 3), and

the implied prior distribution on the correlation between ζm and φm was diffuse
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Figure 3.2: First simulation scenario. Posterior mean estimates (solid lines)
and 95% credible intervals (shaded regions) for each log-spectral density. Each
panel includes also the true log-spectral density (dashed line) and the log-
periodogram (dots).

on (0, 1).

Figure 3.1 shows the joint posterior densities for (ζm, φm) (top left panel)

and the prior and posterior densities for τm (top right panel) for m = 1, ...M .

The color red corresponds to the first five time series, the blue to the time series
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from sixth to tenth, and the green one to the last five time series. Clearly, the

joint posterior distribution of (ζm, φm) allows us to accurately identify the

three groups. In addition, we notice that there is a pattern in the posterior

distribution: the steeper the slope of the spectral density (i.e., the larger the

AR coefficient), the larger the value of ζm/φm, which determines the shape

of the posterior spectral density estimates. The posterior distributions of the

τm parameters that determine the smoothness of the spectral densities do not

show a clear distinction among the three groups. Figure 3.1 (bottom panel)

shows the posterior distributions of the total variation distances with respect

to the true white noise spectral density. As expected, the distances for the time

series in the third group are the smallest. In addition, the TVD results support

the grouping identified through the posterior distribution of the (ζm, φm).

Figure 3.2 shows the true log-spectral densities, as well as the corresponding

posterior mean estimates and 95% credible intervals. The model adequately

captures the different log-spectral density shapes and is successful in discerning

noisy processes with corresponding monotonic spectral densities from pure

white noise processes.

3.3.3 Second scenario

The first scenario dealt with monotonic spectral densities. Here, we test

model performance in the case of multiple unimodal spectral densities. A uni-
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modal spectral density shows a single major peak at a particular frequency. For

example, processes with corresponding unimodal spectral densities are second

order quasi-periodic autoregressive processes with one dominating frequency.

We generated a set of M = 15 time series from two different AR(2) processes.

The first 8 time series were simulated from an AR(2) process which character-

istic polynomial has complex conjugate roots. The modulus of the roots is 0.95

and the argument ω = 2.07, while the last 7 time series were simulated from

an AR(2) process with the same modulus of 0.95 but with argument ω = 1.08.

Hence, the time series contain essentially the same amount of information (the

modulus was 0.95 in both groups) and have a single quasi-periodic component,

with dominating frequency ω = 2.07 for the first group, and ω = 1.08 for the

second group.

We applied again the model with K = 30 components, and with the same

prior specification used in the first scenario for all parameters, except for the

hyperparameter that controls the smoothness of the estimates. Since we expect

less smooth spectral densities than the first scenario, we fix the shape param-

eter of the gamma prior on τm to 60 for all m, and place a gamma(10, 300)

hyperprior on the rate parameter. This results in a marginal prior distribution

for the τm that has support on relatively large values.

Figure 3.3 shows the joint posterior densities for (ζm, φm) (left panel) and

the posterior densities for τm (right panel), together with the prior marginal
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Figure 3.3: Second simulation scenario. Joint posterior densities for (ζm, φm)
(left panel) and for τm (right panel), for m = 1, ...,M . The right panel includes
also the marginal prior density (dashed line) for the τm.

density for τm, for m = 1, ...,M . The color red corresponds to the first eight

time series and the blue to the last seven time series. Since parameters (ζm, φm)

determine the location of the peak for each time series, the posterior densi-

ties of (ζm, φm) show a clear separation of the parameters relative to the two

groups. The posterior densities of the τm parameters are similar for all the time

series, as expected, since the peak has the same amplitude. Figure 3.4 shows

the posterior mean estimates and 95% credible intervals for the log-spectral

densities. The log-periodograms and true log-spectral densities are also shown.

Our model adequately captures the distinct log-spectral density shapes, and

successfully identifies the peaks of the quasi-periodic components for the two

types of processes.
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Figure 3.4: Second simulation scenario. Posterior mean estimates (solid lines)
and 95% credible intervals (shaded regions) for each log-spectral density. Each
panel includes also the true log-spectral density (dashed line) and the log-
periodogram (dots).

3.3.4 Third scenario

In this scenario, all M = 15 simulated time series share an underlying

first order autoregressive component, and some of them present an additional

second order autoregressive component. Specifically, the first five time series
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were simulated from an AR(1) with parameter 0.9. The next five time series

were simulated from a sum of two autoregressive processes, an AR(1) and an

AR(2). The AR(1) process has parameter 0.9, as in the previous set of time

series, while the AR(2) process was assumed to be quasi-periodic, with modulus

0.83 and argument ω = 1.54. The last 5 time series were again simulated from

a sum of an AR(1) process and an AR(2) process. The AR(1) process has

parameter 0.9 as before, whereas the AR(2) was a quasi-periodic process with

modulus 0.97 and argument ω = 1.54. In the second and third groups, the

spectral densities show an initial decreasing shape, and a peak corresponding

to the argument ω = 1.54. While the argument is the same, the modulus is

larger in the third group, hence the peak is more pronounced.

We applied the model with K = 30 mixture components, using the same

prior specification with the second scenario, because we expected similar smooth-

ness for the spectral densities. Figure 3.5 shows the joint posterior densities for

(ζm, φm) (top left panel) and the posterior densities for τm (top right panel),

for m = 1, ...M . The color red identifies the first five time series, the blue the

time series from sixth to tenth, and the green the last five time series. The

posterior distributions for (ζm, φm) cluster into two groups, the time series cor-

responding to the AR(1) process, and the time series corresponding to the sum

of AR(1) and AR(2) processes. However, as expected, it is hard to differen-

tiate between the two groups of time series generated from the sum of AR(1)
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Figure 3.5: Third simulation scenario. Joint posterior densities for (ζm, φm)
(top left panel), marginal prior density (dashed line) and posterior densities for
τm (top right panel), for m = 1, ...,M , and boxplots of posterior samples for
the total variation distance of each estimated spectral density from the AR(1)
spectral density (bottom panel).

and AR(2) processes, because they share the same periodicities, with only the

moduli being different. The boxplots in Figure 3.5 summarize the posterior

distributions of the total variation distances between the estimates and the

spectral density of an AR(1) model with parameter 0.9, which corresponds

to the true spectral density for the first set of five time series. As expected,
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Figure 3.6: Third simulation scenario. Posterior mean estimates (solid lines)
and 95% credible intervals (shaded regions) for each log-spectral density. Each
panel includes also the log-periodogram (dots).

the posterior distribution of the total variation distance for the first five time

series is concentrated around smaller values. Also as expected, there is no

clear distinction between the second and the third group. Figure 3.6 displays

the posterior mean estimates and 95% credible intervals for the log-spectral

densities. As with the previous simulation examples, the model successfully
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recovers the different spectral density shapes, and identifies the peak of the

quasi-periodic component for the last ten time series.

3.4 Application: Electroencephalogram data

Multichannel electroencephalographic recordings (EEGs) arise from simul-

taneous measurements of electrical fluctuations induced by neuronal activity

in the brain, using electrodes placed at multiple sites on a subject’s scalp.

One application area in which electroencephalographic recordings have proved

very useful is the study of brain seizures induced by electroconvulsive therapy

(ECT) as a treatment for major depression. The time series studied here are

part of a more extensive study. Further details and data analyses can be found

in West et al. (1999) and Krystal et al. (1999). EEGs were recorded at 19 lo-

cations over the scalp of one subject that received electroconvulsive therapy.

The original sampling rate was 256 Hz.

3.4.1 ECT data 1

We consider first 300 observations from a mid-seizure portion, after sub-

sampling the electroencephalogram signals every sixth observation. We refer

to this dataset as ECT data 1.

We applied our model to these 19 time series, using K = 50 mixture com-

55



ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ4

φ 4

Fp1

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ12

φ 1
2

Fp2

ζm

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ1

φ 1

F7

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ5

φ 5

F3

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ9

φ 9

FZ

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ13

φ 1
3

F4

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ17

φ 1
7

F8

ζm

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ2

φ 2

ω

T3

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ6

φ 6

C3

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ10

φ 1
0

CZ

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ14

φ 1
4

C4

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ18

φ 1
8

T4

ζm

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ3

φ 3

T5

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ7

φ 7

P3

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ11

φ 1
1

PZ

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ15

φ 1
5

P4

ζm

φ m

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ19

φ 1
9

T6

φ 8

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ8

φ 8

01

φ 1
6

-0.6 -0.4 -0.2 0.0

0.
9

1.
1

1.
3

ζ16

φ 1
6

02

Figure 3.7: ECT data 1. Joint posterior densities for (ζm, φm), m = 1, ..., 19.

ponents. Similar results were obtained using a larger number of components.

The priors on the parameters were defined as in the second and third simulated

scenarios above. Figure 3.7 shows the joint posterior densities for (ζm, φm), for

the 19 channels. The configuration of the plots shown in the figure aims to pro-

vide a schematic representation of the physical location of the electrodes over

the subject’s scalp. For example, the first row of the plots represent the front-
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Figure 3.8: ECT data 1. Posterior mean estimates (solid lines) and 95%
credible intervals (shaded regions) for the log-spectral densities corresponding
to the 19 channels. Each panel includes also the log-periodogram (dots) from
the specific channel.

most electrodes on the patient’s scalp (Fp1 and Fp2) viewed from above. All the

posterior distributions are plotted in grey for reference, and the relevant one

is in color. Overall, there is no clear distinction of the posterior distributions

among the various channels. However, in certain regions of the brain the pos-

terior distributions of the (ζm, φm) are concentrated around values similar to

the those obtained from locations in that same region (e.g., channels Cz, Pz, P3
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and C3). On the other hand, some channels that are next to each other show

differences in their posterior distributions (for example Cz and C4). Figure

3.8 shows the posterior mean estimates and the corresponding 95% posterior

credible intervals for the spectral densities along with the log-periodograms.

All the channels show a peak around 3.3-3.5 Hz for these series taken from the

central portion of the EEG signals. These results are consistent with previous

analyses which indicate that the observed quasi-periodicity is dominated by

activity in the delta frequency range, that is, in the range from 1 to 5 Hz (West

et al., 1999; Prado et al., 2001). The peak is slightly shifted to the left in the

temporal channels with respect to the frontal channels. This aspect is also

consistent with previous analyses. To quantify the differences among spectral

densities, we chose to compare each density to the one in the central channel,

Cz, as this channel has been used as a reference channel in previous anayses

(Prado et al., 2001). Figure 3.9 shows the posterior distributions of the total

variation distances between the spectral density estimates at each channel and

that for the reference channel Cz. We can clearly see a correspondence between

the posterior distribution of the weight parameters and the spectral density

estimates. Figures 3.7 and 3.9 suggest that channels P3, Pz, C3, are the ones

that share the most similar spectral features with channel Cz.

Here, we consider the total variation distance between the estimated spec-

tral densities for each channel and the one for channel Cz. In order to do a

58



F7 T3 T5 Fp1 F3 C3 P3 01 FZ PZ Fp2 F4 C4 P4 02 F8 T4 T6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 3.9: ECT data 1. Boxplots of posterior samples for the total varia-
tion distances between the spectral densities for each channel and the spectral
density of the reference channel Cz.

formal clustering of the spectral densities using the total variation distance,

we would need to cluster the spectral densities using a clustering algorithm,

like the one in Euan et al. (2015).

3.4.2 ECT data 2

The analysis above shows that, although there are some differences across

the time series recorded at different locations for the same time period, all

the locations share similar features with respect to the location of the peak

in their estimated log-spectral densities. We now show that our method can

effectively capture differences in the spectral content of EEG time series that

were recorded during different time periods over the course of the ECT induced

seizure. To this end, we use the same dataset described above, but analyze
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Figure 3.10: ECT data 2. Joint posterior densities for (ζm, φm) (left panel) and
τm (right panel), for m = 1, ..., 15. The right panel includes also the marginal
prior density (dashed line) for the τm.

time series recorded only in 5 channels, specifically, channels C3, Fz, Cz, Pz

and C4, at 3 different temporal intervals (we refer to this dataset as ECT data

2). The first temporal interval corresponds to the beginning of the seizure, the

second one is the interval considered in the previous analysis which corresponds

to a mid-seizure period, while the third one was recorded later in time, when

the seizure was fading. We emphasize that this is only an illustrative example

to study if our method is able to capture different spectral characteristics

in multiple EEGs. This is not the ideal model for this more general data

structure, as we are not taking into account the fact that we have three different

time periods. We analyze the 15 EEGs corresponding to 5 channels for three

different time periods, using the model with K = 50 mixture components

and the same prior specification described above. Figure 3.10 shows the joint

posterior densities for (ζm, φm) and τm, for the 15 time series. The 5 series in
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the first time period (plotted in red color) are essentially indistinguishable in

terms of the distributions of (ζm, φm), while the series that correspond to mid

(blue color) and later (green color) portions of the induced seizure display more

variability. Figure 3.11 shows the posterior mean estimates of the log-spectral

densities and the corresponding 95% posterior credible intervals along with

the log-periodograms. In this case, there is a clear distinction in the posterior

distributions of the time series corresponding to different time periods. In

fact, the peak in the log-spectral density is more pronounced for those series

that correspond to the beginning of the seizure. The peak shifts to the left

and its power decreases in the successive time periods. In particular, in the

last time period, the power of the peaks is the lowest and the variability in

the log-periodogram observations and the estimated log-spectral densities is

larger. There is also an increase of spectral variability over the time periods.

This example shows that the frequency content differs among the different time

intervals and suggests that the stationarity assumption is not satisfied for the

entire time series. Our findings are consistent with previous analyses of these

data, using non-stationary time-varying AR models (West et al., 1999; Prado

et al., 2001).
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Figure 3.11: ECT data 2. Log-periodograms (dots), posterior mean estimates
(solid lines) and 95% credible intervals (shaded regions) for the log-spectral
densities corresponding to the 15 time series obtained from 5 channels for 3
time periods: beginning of the seizure (top row), mid-seizure (middle row),
and end of the seizure (bottom row).

3.5 Discussion

In this Chapter, we have developed a new methodology for the analysis and

estimation of multiple time series in the spectral domain. We note again that

the methodology is developed for multiple, not multivariate, time series. To

our knowledge, there are no Bayesian methods in the literature that deal jointly
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and efficiently with multiple time series in the spectral domain. Methods for

multivariate time series analysis are available, but often have the drawback of

high computational cost, and are applicable in practice to a limited number of

dimensions (rarely higher that 2-3). Our approach is based on modeling the

distribution of the log-periodogram through a mixture of Gaussian distribu-

tions with frequency-dependent weights and mean functions, which implies a

flexible mixture model for the corresponding log-spectral density. The main

idea for a single unidimensional time series was presented in Chapter 2. Here,

the mixture weights are built through differences of a distribution function, re-

sulting in a substantially more parsimonious specification than logistic mixture

weights. This is a fundamental feature of the proposed model, as it naturally

leads to a hierarchical extension that allows us to efficiently consider multiple

time series and borrow strength across them. As an additional advantage,

casting the spectral density estimation problem in a mixture modeling frame-

work allows for relatively straightforward implementation of a Gibbs sampler

for inference.

The proposed modeling approach is parsimonious without sacrificing flex-

ibility. Through simulation studies, we have demonstrated the ability of the

model to uncover both monotonic and multimodal spectral density shapes, as

well as white noise. We also applied the methodology to multichannel elec-

troencephalographic recordings, obtaining results that are in agreement with
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neuroscientists’ understanding. As the last ECT example shows, the frequency

content is different in the different time intervals. Ideally we would like to have

a model that allows us to infer time-varying spectral characteristics in mul-

tiple time series. Classical spectral analysis is based on the assumption of

weak stationarity, that is, the observations are assumed to come from a pro-

cess with constant mean and covariance function that depends only on the

lag between observations. The stationarity assumption is often not satisfied,

especially when we need to analyze long time series, and the covariance prop-

erties vary over time. This is equivalent to say that the distribution of power

over frequency changes as time evolves. Chapter 4 will focus on expanding

the methodology in such a way that the evolution of the spectral content over

time can also be included, with the goal of estimating time-varying spectral

densities.

64



Chapter 4

Spectral density estimation for

multiple non-stationary time

series

4.1 Introduction

The classical spectral analysis is based on the assumption of (weak) sta-

tionarity, that is, the generating process is assumed to have mean and auto-

covariance function that do not vary with respect to time. The stationarity

assumption is often valid only as an approximation to the non-stationary na-

ture of the process. Moreover, this assumption is not reasonable in many

cases, especially when we look at long time series, coming from a variety of
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fields such as geophysics, econometrics, speech recognition and neuroscience.

For this reason, spectral analysis is often done on short time intervals, for

which the assumption of stationarity is acceptable. For example, electroen-

cephalographic signals (EEGs) oscillate with greater amplitude and at higher

frequency during an epileptic seizure than before or after such seizure (Ombao

et al., 2001). In Chapter 3, we have analyzed three different temporal intervals

in EEGs recorded at five channels for a patient subject to electroconvulsive

therapy. The first temporal interval corresponded to EEGs recorded during the

beginning of the electrically induced seizure, the second one to a mid-seizure

period, while the third one was recorded later in time, when the seizure was

fading. We emphasized that the spectral densities were different, with the

peak becoming lower and shifting to the left with time. This is consistent with

results from previous analyses of the same data (e.g., West et al. (1999); Prado

et al. (2001)).

When the stationarity assumption is valid, the spectral density is inter-

preted as the the distribution of the energy of the process over the frequency

range. When the stationary assumption is not satisfied, the distribution of

power over frequencies changes as time evolves. The key idea for extending

the spectral analysis to non-stationary time series is to define a spectral den-

sity that evolves over time, while keeping a similar interpretation locally as

the spectral density in the stationary case.
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In this chapter, we extend the methods developed in Chapters 2 and 3

to modeling a single and multiple non-stationary time series, respectively. In

Section 4.2, we introduce the concept of evolutionary spectrum as developed

in Priestley (1965) and the extension to the Whittle likelihood introduced

by Dahlhaus (1997), and we present an overview of applied papers that used

these theoretical results. In Section 4.4, we present the extension of our model

to non-stationary time series, also based on the Dahlhaus’s generalization of

the Whittle likelihood, and we show results for one simulated dataset. The

approach is extended to multiple non-stationary time series in Section 4.4, and

results are shown for synthetic and real datasets. Specifically, we focus on the

multichannel EEG dataset analyzed in Chapter 3.

4.2 Background

During the past two to three decades, the focus has been on modeling

non-stationary time series. Time domain approaches consider models with

parameters that vary over time. Common approaches include piecewise au-

toregressive models and time-varying autoregressive moving average models.

For a review of these methods, see Yang et al. (2016). Here, we focus on

frequency domain approaches.

Priestley (1965) introduces the idea of evolutionary spectrum. He extends

the spectral representation in (1.1) to oscillatory processes, that is, processes
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that evolve smoothly over time. Let us first define an oscillatory function as

φt(ω) = At(ω) exp(iθ(ω)t), where At(ω) =
∫∞
−∞ exp{itu}dKω(u) and |dKω(u)|

has a maximum in u = 0. Then, an oscillatory process is defined as X(t) =∫ π
−π φt(ω)dZ(ω) where Z(ω) is a process whose increments are uncorrelated,

with E[|dZ(ω)|2] = dµ(ω), and µ is a measure that is absolute continuous

with respect to Lebesgue measure. The evolutionary spectrum is defined as

dH(ω) = |At(ω)|2dµ(ω). When X(t) is stationary and θ(ω) = ω, then dH(ω)

reduces to the spectral density for a stationary process.

Another step in the development of a spectral theory for non-stationary

processes was made by Dahlhaus (1997), which introduced the concept of lo-

cally stationary processes. Locally stationary processes have the property that

the spectral characteristics change slowly over time, and they can be locally

approximated with stationary processes. We denote a locally stationary time

series of length T as {X1,T , X2,T , ..., XT,T}, where the double index indicates

the observation and the total number of observations. Notice that increasing

the number of observations, T , implies that we allow for more local informa-

tion in the sense of infill asymptotics, rather than in the sense of increasing

domain asymptotics (i.e., information about the future). We introduce the

rescaled time u = t/T ∈ (0, 1).

A zero-mean process Xt,T is called locally stationary with transfer function
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A0
t,T (ω) if there exist a representation

Xt,T =

∫ π

−π
A0
t,T (ω) exp(itω)dZ(ω),

for t = 1, ..., T , where

(i) Z(ω) is process on [−π, π] with Z(ω) = Z(−ω) and the cumulant of

k-th order cum{dZ(ω1), .., dZ(ωk).} = η(
∑k

j=1)vk(ω1, ..., ωk−1)dω1...dωk.

Here, v1 = 0, v2 = 1, |vk(ω1, ..., ωk−1)| ≤ ck, where ck a constant that

depends on k, and η(ω) =
∑∞

j=−∞, where δ(ω + 2πj) is the periodic 2π

extension of the Dirac delta function.

(ii) There exist a constant L > 0 and a 2π-periodic smooth function A :

(0, 1] × R → C with A(u,−ω) = A(u, ω) such that supt,ω |A0
t,T (ω) −

A(t/T, ω)| ≤ L/T , for all T . A(u, t) is assumed to be continuous in u.

The idea is essentially that for each fixed T , we have a local interval of sta-

tionarity about each time point. Moreover, the smoothness of A as a function

of u controls the change of A0
t,T (ω), as a sequence in t, such that it is al-

lowed to change only smoothly over time. The time-varying spectrum of the

Dahlhaus’ locally stationary process, at time u = t/T ∈ (0, 1) and frequency

ω ∈ (−π, π) is f(u, ω) = |A(u, ω)|2. Dahlhaus (1997) provides various exam-

ples of processes in this category. In particular, it is worth mentioning that

autoregressive moving average processes with time varying parameters are lo-

cally stationary processes. For a time-varying autoregressive process, we have
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that A0
t,T (ω) ≈ A(t/T, ω); for a time-varying moving average process, we have

that A0
t,T (ω) = A(t/T, ω).

The estimation theory of locally stationary processes, introduced by Dahlhaus

(1997), is mostly based on the generalization of the Whittle likelihood function

for stationary processes. The periodogram is replaced by local periodograms

over possibly overlapping stationary data segments. Let n be the number of

observations in each segment. Let h : R → R denote a data taper, with

h(x) = 0 for x /∈ [0, 1). Then, for n even, define

dn(u, ω) =
n−1∑
s=0

h(s/n)XbuT c−n/2+s+1,T exp(−iωs)

Hk,n(ω) =
n−1∑
s=0

h(s/n)k exp(−iωs)

In(u, ω) =
1

2πH2,n(0)
|dn(u, ω)|2

and therefore

In(u, ω) =
|
∑n−1

s=0 h(s/n)XbuT c+n/Q+s+1,T exp(−iωs)|2

2π
∑n−1

s=0 h(s/n)2
.

In(u, ω) is the local periodogram of a segment of length n and midpoint buT c.

Q is the shift from segment to segment, where Q = n means non overlapping

segments. We calculate the periodogram for segments with midpoints t̄i =

Q(i − 1) + n/2, for i = 1, ..., S. Here S is the number of segments (and

midpoints). The length of the time series is T = Q(S−1)+n. We can calculate

the periodogram for each segment and model the periodogram observations at
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the Fourier frequencies through the Whittle likelihood on each segment. This

approximation of the likelihood is called blocked Whittle likelihood and is

given by

S∏
i=1

bn/2c−1∏
j=1

1

f(ui, ωj)
exp

{
−In(ui, ωj)

f(ui, ωj)

}
(4.1)

where ūi = t̄i/T and f(ūi, ωj) is the spectrum for segment i, at frequency ωj.

Local stationarity plays a key role among the methodologies for analyz-

ing non-stationary data. Ombao et al. (2001, 2002, 2005) used Dahlhaus’s

definition of local stationarity concept to develop the Smooth Localized com-

plex Exponential (SLEX) basis functions, which are orthogonal and localized

in both time and frequency domains, and applied them to analyze bivariate

and multivariate epileptic electroencephalograms. Fryzlewicz et al. (2003) also

used Dahlhaus’s definition of local stationarity to fit finance and environmen-

tal time series using wavelets. A Bayesian approach is used in Rosen et al.

(2009, 2012), which extends the splines method for one time series mentioned

in Section 1.1. In Rosen et al. (2009), the time series is divided into equally

long segments and the global log-spectrum in each segment is modeled through

a local mixture log-spectra. Each log-spectrum is modeled through smoothing

splines. In Rosen et al. (2012), the length of the segments is not fixed and each

segment has it is own log-spectrum, modeled, again, using smoothing splines.
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4.3 Modeling approach for non-stationary time

series

In Chapter 2, we used a mixture of Gaussian distributions with frequency

dependent weights and frequency dependent means to approximate the distri-

bution of the log-periodogram observations. The Gaussian mixture model on

the log-periodogram observations induces a model for the log-spectral density,

specifically a mixture of linear (with respect to the frequency) basis, with the

same weights as in the Gaussian mixture. We have pointed out how the fre-

quency can be interpreted as a covariate and the log-periodogram observations

as the response variable.

Since the frequency has a role of a covariate, a natural generalization of

our model to a time-varying model is the introduction of a time covariate.

This can be achieved by making the mixture weights and the mixture means

dependent on both time and frequency. A key observation, at this point, is

that we need more than one observation in the time domain to calculate the

periodogram and we need enough observations to gain meaningful information

about the frequency behavior. It follows naturally, as we have seen in Section

4.2, to divide the time series in segments that are assumed to be stationary.

For each segment we calculate the log-periodogram. The smoothness of the

evolution from one segment to the next one is naturally modeled by the local
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weights in the Gaussian mixture.

For now, let us consider the dimension of length of the time series to

be fixed to T . Recall that we denote the non-stationary time series with

{X1,T , ..., XT,T}, where the double subscript indicates the specific observation

and the total number of observations. Moreover, we consider the rescaled time

u = t/T , for t = 1, ..., T . Increasing the number of observations T , then,

implies that we have time points that are closer to each other. We segment

the time series into S non overlapping segments. The i-th segment contains ni

observations from the time series, for i = 1, ..., S, and
∑S

i=1 ni = T . Equiva-

lently, we segment [0, 1] in S time intervals, Li, for i = 1, ..., S, in such a way

that ∪Si=1Li = [0, 1]. Observation xt,T is associated to the i-th time interval if

t/T ∈ Li, for t = 1, ..., T . Since the i-th time interval contains ni observations,

we have Ni = bni/2c− 1 effective observations of the periodogram for the i-th

interval. We denote by yi = (yi1, ...., yiNi) the (translated) log-periodogram

observations for segment i, and we denote the mid point of each interval as

ūi, for i = 1, ...S. Hence, if t/T ∈ Li, then the (translated) log-periodogram

associated with Xt,T is yi, for i = 1, ..., S.

Now, we can extend the model presented in Chapter 2 by making the

weights and the Gaussian means dependent both on the frequency and on the

segment midpoint.

The mixture model for the (translated) log-periodogram observation j and
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time period i becomes:

yij|θ
ind.∼

K∑
k=1

gk(µ(ūi, ωij), τ)N(yij|αk + βkωij + γkūi + δkωijūi, σ
2), (4.2)

where ωij = 2πj/ni, for j = 1, ..., Ni and i = 1, ..., S. The weights are defined

as follows:

gk(µ(ūi, ω), τ) =

∫ πk/K

π(k−1)/K

fY (y | µ(ūi, ω), τ) dy, (4.3)

where fY (y | µ(ūi, ω), τ) is the density of a logit-normal(µ(ūi, ω), τ) distri-

bution on (0, π). Here, µ(ūi, ω) = ζ + φω + ηūi + ψωūi, and the precision

parameter τ plays again the role of a smoothness parameter.

The vector θ in 4.2 collects all model parameters, in particular, it includes

the parameters for the weights, (ζ, φ, η, ψ) and τ , and all the parameters of the

normal mixture components, α = {αk : k = 1, ..., K}, β = {βk : k = 1, ..., K},

γ = {γk : k = 1, ..., K}, δ = {δk : k = 1, ..., K}, and the common variance

parameter σ2.

In each mixture mean, together with the intercept, αk, and the parameter

associated with the frequency, βk, we include the midpoint with associated

parameter γk and we also include an interaction term between frequency and

time, with parameter δk. In this way, for each midpoint (segment), we have

a different intercept and a different slope (with respect to frequency). In the

mixture weights, we make the first parameter of the logit-normal distribu-

tion dependent on the frequency and the midpoints, in the same fashion as
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we did for the mixture means. The common variance parameter σ2 and the

smoothness parameter τ do not depend on time.

If we fix the time period, we have K basis functions that are linear in ω,

that is (αk+γkūi)+(βk+δkūi)ω. Moreover, the location parameter of the logit-

normal distribution is linear in ω, specifically µ(ūi, ω) = (ζ+ηūi)+(φ+ψūi)ω.

For each segment, we recover the model we presented in Chapter 2, with

parameters (αk + γkūi) and (βk + δkūi) for the mixture means, and (ζ + ηūi),

(φ+ ψūi) and τ for the mixture weights.

Since all the observations that belong to the same time interval have the

same associated log-periodogram, we have a model for the log-spectral density

that is continuous in ω and it is piecewise constant in t. The induced model

for the log-spectral density is:

log fS(u, ω) ≈ ̂log fS(u, ω) =
S∑
i=1

K∑
k=1

gk(µ(ūi, ω), τ)(αk + βkω + γkūi + δkωūi)I(u ∈ Li).

The weights were defined in (4.3).

Based on the blocked Whittle likelihood in 4.1, we can rewrite the model

using
∑

i=1S Ni normally distributed auxiliary variables, rij, for i = 1, ..., S

and j = 1, ..., Ni.

yij | rij,α,β,γ, δ, σ2 ind.∼
∑K

k=1 N(yij | αk + βkωij + γkūi + δkωijūi, σ
2)

I
{
k − 1

K
<

exp(rij)

1 + exp(rij)
≤ k

K

}
rij | ζ, φ, η, ψ, τ

ind.∼ N(rij | ζ + φωij + ηūi + ψωijūi, 1/τ).
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Posterior simulation is implemented using the augmented version of the model.

For practical and theoretical purposes, as explained in Section 4.3.1, we use

the same number of observation for each segment, that is ni = n = T/S, for

i = 1, ..., S. Technical details on the Gibbs sampler used to sample from the

joint posterior distribution of the parameters are given in Appendix B.

4.3.1 Idea for asymptotic theory

Let us consider the case in which each segment of the time series has the

same number of observations, that is, ni = n = T/S. The intervals are

L1 = [0, 1/S] and Li = ((i − 1)/S, i/S) for i = 2, ..., S. Each time interval Li

has length 1/S. The midpoint of each segment is ūi = (i − 1)/S + 1/(2S),

for i = 1, ..., S. As before, we assume stationarity for each segment. In the

following, we fix the number of observations per segment. As the total number

of observations T increases, that is we have a higher sample rate, we consider a

larger number of segments S. Moreover, the length of each Li = 1/S decreases.

We define our estimator of the evolutionary log-spectral density as a bivariate

continuous function, both with respect to frequency and (rescaled) time. The

model for the evolutionary spectral density is:

log f(u, ω) ≈ ̂log f(u, ω) =
K∑
k=1

gk(µ(u, ω), τ)(αk + βkω + γku+ δkωu),
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where the weights are defined as:

gk(µ(u, ω), τ) =

∫ πk/K

π(k−1)/K

fY (y | µ(u, ω), τ) dy,

where fY (y | µ(u, ω), τ) is the density of a logit-normal(µ(u, ω), τ) distribution

on (0, π), with µ(u, ω) = ζ + φω + ηu+ ψωu.

For a finite T and a number S of segments, we built a model for the spectral

density that is continuous in frequency and piecewise constant in (rescaled)

time, that is:

log fS(u, ω) ≈ ̂log fS(u, ω) =
S∑
i=1

K∑
k=1

gk(µ(ūi, ω), τ)(αk + βkω + γūi + δωūi)I(u ∈ Li),

with weights given in 4.3.

If we look at ̂log fS(u, ω) as a function of the (rescaled) time u, at a

fixed frequency ω, we have a piecewise constant function on [0, 1] with values∑K
k=1 gk(µ(ūi, ω), τ)(αk+βkω+γūi+δωūi) for u ∈ Li. Moreover ∪Si=1Li = [0, 1].

As the number of observations increases, that is T →∞, we can increase the

number of segments, that is S → ∞, keeping the number of observations in

each segment constant and large enough to provide an adequate estimate of

the spectral density. It is clear that as the number of segments S increases, the

piecewise constant function ̂log fS(u, ω) converges pointwise to the continuous

function ̂log f(u, ω). Moreover, since | ̂log fS(u, ω)| ≤ maxu ̂log f(u, ω), by the

dominated convergence theorem, we have Lp convergence, for any p ≥ 1.
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4.3.2 Simulation study

We are interested in the performance of our model in the case of locally

stationary processes, for which the spectral density varies slowly over time.

A class of zero-mean locally stationary processes is, for example, the class of

time varying autoregressive processes. For this reason, we perform a simulation

study using data from a time varying autoregressive process of order two. We

are then able to compare our estimate of the time-varying spectral density

to the truth. The simulation scenario is taken from Ombao et al. (2001)

and is also used in Rosen et al. (2009, 2012). We use a total of T = 4800

observations, divided into S = 16 segments with n = 300 observations each.

This means that, for each segment, we have N = 149 effective observations

from the translated log-periodogram. This is consistent with the settings used

in Chapter 2 and Chapter 3, in which we had 300 observations for the time

series.

The observations are generated from the following time varying autoregres-

sive process of order two:

xt = atxt−1 − 0.81xt−2 + εt, t = 1, ..., T, (4.4)

where εt
iid∼ N(0, 1) and T = 4800. The first parameter of the autoregressive

process varies with time, at = 0.8(1 − 0.5 cos(πt/T )). The second parameter

does not vary with time and it is fixed at −0.81. This implies that the modulus

78



of the process, 0.9, does not vary with time; in other words, the amount

of information contained in the time series does not vary with time. The

argument, on the other hand, varies with time and the peak moves to the left

and becomes more accentuated as time evolves. Figure 4.1 shows the data

(left panel), the argument of the process as a function of time (center panel),

and the true continuous bivariate spectral density as a function of time and

frequency (right panel). Time is scaled to the unit interval. In the right plot,

the darker the shades the higher is the power.

We fixed the number of mixture components to K = 50; similar results

were obtained with a larger value of K. We assumed αk , βk, γk and δk to

be independent normally distributed centered at zero with variance 1000. For

the common variance parameter, we used an inverse gamma prior with mean

3 and variance 9. For the weight parameters, we assumed ζ, φ, η and ψ to

be independent normally distributed centered at zero with variance 100. We

placed a gamma(10, 0.01) prior on the smoothness parameters τ , to support

a large interval on the positive real line. We run an MCMC Gibbs sampler

algorithm with a total of 100000 iterations, of which 20000 were taken as

burn-in period.

Figure 4.2 shows the joint posterior densities for (ζ, φ) (left panel), (η, ψ)

(center panel) and the histogram of the posterior density for τ (right panel),

together with the prior (solid line). The joint posterior distribution of (η, ψ)
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Figure 4.1: Process realization (left panel), the argument of the process as
a function of time (center panel), and the true continuous bivariate spectral
density as a function of time and frequency (right panel).
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Figure 4.2: Slowly varying autoregressive process. Joint posterior densities for
(ζ, φ) (left panel), (η, ψ) (center panel) and the prior and posterior density for
τ (right panel).

takes values different from zero. This suggests that the partitioning of the (fre-

quency) support varies with time, and both the time alone and the interaction

between time and frequency are significant.

We compare the analytically available spectral density of the time varying

autoregressive process with the posterior estimate obtained with our method.

For a fair comparison, we averaged the analytical log-spectral density over the

same intervals we used in the estimation. Figure 4.3 shows the log-spectral

80



Figure 4.3: Slowly varying autoregressive process. True log-spectral density,
averaged on each time period (left panel) and posterior mean estimate of the
log-spectral density obtained with our model (right panel).

density, averaged on each time period (left panel) and the posterior mean

estimate of the log-spectral density obtained with our model (right panel). The

posterior mean estimate captures the time varying shape of the log-spectral

density.

Figure 4.4 shows, for each time period, the average log-spectral density, as

well as the corresponding posterior mean estimates and 95% credible intervals.

The model adequately captures the different log-spectral density shapes and

is successful in discerning the evolution of the shape with time.
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Figure 4.4: Slowly varying autoregressive process. Posterior mean estimates
(solid lines) and 95% credible intervals (shaded regions) for the log-spectral
density at each time period. Each panel includes also the average log-spectral
density (dashed line) for each period and the log-periodogram (dots).

4.4 Modeling for multiple non-stationary time

series

The key feature of the model in (4.2) is that it can be extended in a

hierarchical fashion to multiple related non-stationary time series. Consider
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M related non-stationary time series, which, without loss of generality, are

assumed to have the same number of observations n. Following the approach of

Section 4.3, we divide each time series in S time intervals, each one containing

n = T/S observations. For each time series, we calculate S local periodograms,

each one with N observations. In the following, ymij is one observation from

a (translated) log-periodogram, specifically, the first index indicates the time

series (m = 1, ...,M), the second index indicates the time interval (i = 1, ..., S)

and the third index indicates the Fourier frequency (j = 1, ..., ni).

Now, for each m, i and j we approximate the distribution of the ymij with

a smooth mixture of Gaussian distributions. We take the mean parameters of

the Gaussian mixture components, that is, (αk, βk, γk, δk), for k = 1, ..., K, to

be common among time series. This translates into a set of K functions for the

log-spectral density approximation which are common to all time series. On

the other hand, we let the parameters that specify the weights be time series

specific, that is, ξm = (ζm, φm, ηm, ψm, τm), for m = 1, ...,M . For each time

series, the weights select the mean functions to approximate the corresponding

log-spectral density. Since the spectral densities are related, similar mean

functions can be selected for more than one location, allowing grouping of

spectral densities. We use M distinct smoothness parameters τm to allow

different levels of smoothness across the spectral densities. However, we do

not make the smoothness parameters τm vary with time.
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Hence, extending (4.2), the observation stage for the hierarchical model on

the M time series can be written as

ymij | θ
ind.∼

K∑
k=1

gk(µm(ūi, ωij), τm) N(ymij | αk + βkωij + γkūi + δkūiωij, σ
2),

(4.5)

where the k-th weight at the m-th location is defined, again, in terms of incre-

ments of a logit-normal distribution function, with mean function, µm(ūi, (ω) =

ζm + φmω + ηmūi + ψmωūi, and precision parameter, τm, that are time series

specific. Again, θ collects all model parameters: the parameters of the K

mixture components means, α = {αk : k = 1, ..., K}, β = {βk : k = 1, ..., K},

γ = {γk : k = 1, ..., K} and δ = {δk : k = 1, ..., K}, the common variance

parameter σ2, and the mixture weights parameters, ζ = {ζm : m = 1, ...,M},

φ = {φm : m = 1, ...,M}, η = {ηm : m = 1, ...,M}, ψ = {ψm : m = 1, ...,M},

and τ = {τm : m = 1, ...,M}.

Posterior simulation is implemented using the augmented version of the

model based on M
∑S

i=1Ni normally distributed auxiliary variables, rmij, for

m = 1, ...,M , i = 1, ..., S and j = 1, ..., Ni. In particular,

ymij | rmij,α,β,γ, δ, σ2 ind.∼
∑K

k=1 N(ymij | αk + βkωij + γkūi + δkωijūi, σ
2)

I
{

(k − 1)/K <
exp(rmij)

1 + exp(rmij)
≤ k/K

}
rmij | ζm, φm, ηm, ψm, τm

ind.∼ N(rmij | ζm + φmωij + ηmūi + ψmωijūi, 1/τm).

In our examples, we use ni = n for i = 1, ..., S. Technical details on the Gibbs

sampler used to implement the hierarchical model are given in Appendix B.
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The full Bayesian model is completed with priors for α, β, γ, δ and σ2,

and a hierarchical prior for the (ζm, φm, ηm, ψm) and τm, for m = 1, ...,M . The

weight parameters are assumed a priori independent of the Gaussian mixture

component parameters. We assume σ2 ∼ inv-gamma(nσ2 , dσ2), that is, an

inverse gamma prior (with mean dσ2/(nσ2−1), and nσ2 > 1), αk ∼ N(µ0α, σ
2
α),

βk ∼ N(µ0β, σ
2
β), γk ∼ N(µ0γ, σ

2
γ) and δk ∼ N(µ0δ, σ

2
δ ), for k = 1, ...., K. The

hierarchical prior is given by

(ζm, φm, ηm, ψm) | µw,Σw
ind.∼ N(µw,Σw), m = 1, ....,M,

τm | dτ
ind.∼ gamma(nτ , dτ ), m = 1, ....,M,

where gamma(n, d) denotes the gamma distribution with mean n/d. To borrow

strength across the time series, we place a four dimensional normal prior on µw,

and a four dimensional inverse Wishart hyper-prior on the covariance matrix

Σw. For the τm, we fix the shape parameter, nτ , and place a gamma prior on

the rate parameter, dτ .

4.5 Simulation study

In order to assess the performance of the proposed spectral model for re-

lated non-stationary time series, we consider a generating mechanism that

represents a hypothetical scenario involving multiple related time series with

slowly varying spectral density. In order to compare our posterior estimates to

the true spectral densities, we simulated data from processes with spectral den-
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sities available in analytical form. Moreover, we consider replicates, meaning

that more than one time series is generated from the same underlying process.

We considered two underlying generating processes, with five replicates in each

case, leading to a total of M = 10 time series. For each time series, we sim-

ulated 4800 time points, and we divided the time series in S = 16 segments,

leading to N = 149 observations from the log-periodogram for segment. In

addition to posterior estimates and credible intervals for the spectral densities,

we investigate the posterior distribution of the weight parameters, ζm, φm, ηm,

ψm and τm, for m = 1, ...,M , which can be useful in identifying similar time

varying spectral characteristics across multiple time series.

Both the underlying generating processes are time varying autoregressive

processes of order two, or TVAR(2) process, with the second parameter that

does not vary with time set to −0.81, which corresponds to a modulus of 0.9.

The first parameter varies with time and is a1(t) = 0.8(1− 0.5 cos(πt/T )) for

the first generating process, and a2(t) = 0.9(1− 0.99 cos(πt/T )) for the second

one. This means that the argument (peak of the spectral density) varies with

time for both processes, but varies faster in the second one. Figure 4.5 shows

the arguments of the two generating processes as a function of time (left panel),

and the true continuous bivariate spectral densities as a function of time and

frequency (central and right panels). The time is scaled to the unit interval;

the darker the grey scale the higher is the power.
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Figure 4.5: Multiple time series with varying argument and constant modulus.
Arguments of the two generating processes as a function of time (left panel),
where the solid line denotes the argument for the first process and the dashed
for the second process, and the true continuous bivariate spectral densities as
a function of time and frequency, for the first process (central panel) and the
second process (right panel).

We fixed the number of mixture components to K = 50; similar results

were obtained with a larger value of K. We assumed αk, βk, γk and δk to

be independent normally distributed centered at zero with variance 1000 such

that the linear basis can have a wide range of motion. For the common variance

parameters, we used an inverse gamma prior with mean 3 and variance 9. For

the smoothness parameters τm, m = 1, ...,M , we fixed the shape parameter

to 30 and placed a gamma(3, 20) on the rate parameter. This results in a

marginal prior distribution for each τm that supports a large interval on the

positive real line. Moreover, since each time series has its own smoothness

parameter, we can have different levels of smoothness for different spectral

densities. The hyper-prior on the mean vector µw was centered at 0 and had

a diagonal covariance matrix, with diagonal elements equal to 10, while the

inverse Wishart distribution parameters were chosen in a way that the marginal
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Figure 4.6: Multiple time series with varying argument and constant modulus.
Joint posterior densities for (ζm, φm) (left panel), (ηm, ψm) (center panel) and
the prior marginal and posterior densities for the τm (right panel).

distributions for the diagonal elements were inv-gamma(3, 3), and the implied

prior distribution on the correlation between parameters was diffuse on (0, 1).

We run an MCMC Gibbs sampler algorithm with a total of 100000 iterations,

of which 20000 were burn-in.

Figure 4.6 shows the joint posterior densities for the (ζm, φm) parameters

(left panel), (ηm, ψm) parameters (center panel), and the prior marginal distri-

bution and posterior densities for τm (right panel) for m = 1, ...M . The color

red corresponds to the first five time series, and the blue color to the time

series from sixth to tenth. Clearly, the joint posterior distribution of (ζm, φm)

and (ηm, ψm) allows us to accurately identify the two groups. The posterior

distributions of the τm parameters, which determine the smoothness of the

spectral densities, do not show a clear distinction among the two groups.

We compare the analytical spectral densities with the posterior estimate

obtained with our method. For a fair comparison, we averaged the analytical
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Figure 4.7: Multiple time series with varying argument and constant modulus.
Log-spectral densities, averaged over each time period, for the first generating
process (left panel) and for the second generating process (right panel).

log-spectral densities over the same intervals we used in the estimation. Figure

4.7 shows the log-spectral density, averaged on each time period, for the first

generating process (left panel) and for the second generating process (right

panel). Figure 4.8 shows posterior mean estimates of the log-spectral densities

obtained with our model (first group in the left column, second group in the

right column). The model adequately captures the time varying shape of the

log-spectral density.

To further investigate the performance of our model, we plot the spectral

density for each time period for two time series, one for each group. Figure 4.9

and Figure 4.10 show the posterior mean estimates and 95% credible intervals

for the third and eighth time series, respectively. We also plot the average

log-spectral density for each segment. The model captures the changes over

time of the spectral characteristics of the underlying processes.
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Figure 4.8: Multiple time series with varying argument and constant modulus.
Posterior mean estimates of the log-spectral density obtained with our model
(first group in the left column, second group in the right column).
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Figure 4.9: Multiple time series with varying argument and constant modu-
lus. Posterior mean estimates (solid lines) and 95% credible intervals (shaded
regions) for the log-spectral density at each time period. Each panel includes
also the average log-spectral density (dashed line) for each period and the
log-periodogram (dots), for the third time series.
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Figure 4.10: Multiple time series with varying argument and constant modu-
lus. Posterior mean estimates (solid lines) and 95% credible intervals (shaded
regions) for the log-spectral density at each time period. Each panel includes
also the average log-spectral density (dashed line) for each period and the
log-periodogram (dots), for the eighth time series.
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Figure 4.11: EEG data. Posterior mean estimates of the evolutionary spectral
density as a function of time (s) and frequency (Hz)for channel Fp1 (left panel),
channel Cz(center panel), and channel O2 (right panel).

4.6 Electroencephalogram data

We have seen in section 3.4 that the EEG recordings of a subject who

received ECT therapy are not stationary in their entirety. Here, we consider

19 EEG time series from the same subject, with 3000 observations each. We

label this dataset as ECT data 2. These time series include the observations

analyzed in Section 3.4, ECT data 2. The prior specification is the same as in

Section 4.5. We divide the series in S = 10 time periods, each one with 300

observations.

Figure 4.11 shows the posterior mean estimates of the evolutionary spectral

density as a function of time and frequency for channel Fp1, channel Cz and

channel O2. Figures 4.12, 4.13 and 4.14 show the posterior mean estimates

(solid lines) and 95% credible intervals (shaded regions) for the log-spectral

density at time periods three, six and ten respectively.

As we expect, the peak of the spectral density is more pronounced at the
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beginning of the seizure. The peak becomes less pronounced and shifts towards

left as the seizure fades. Moreover, there is an increase in variability with time.

These results are consistent with the finding in Section 3.4, and previous studies

(West et al., 1999; Prado et al., 2001). Figure 4.15 shows the joint posterior

densities for (ζm, φm), for the 19 channels. Figure 4.16 shows the joint posterior

densities for (ηm, ψm), for the 19 channels. The posterior distribution for the

(ηm, ψm) is concentrated on values different from zero, confirming the evolution

over time. Overall, there is no clear distinction of the posterior distributions

among the various channels. However, in certain regions of the brain the

posterior distributions of the (ζm, φm) are concentrated around values similar

to the those obtained from locations in that same region (e.g., channels Cz,

Pz, P3 and C3). The posterior distribution of the parameters for channels F8

and T4 is concentrated around different values than the posterior distribution

corresponding to the other channels. This is consistent with previous studies.

4.7 Discussion

In this Chapter, we have extended our methodology to the analysis of

non-stationary time series, specifically locally stationary time series. Here,

the mixture weights and means depend both on frequency and on time. In

this way we are able to estimate a time varying log-spectral density. Since

we need more than one observation in the time domain to calculate the log-
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periodogram, and enough observations to obtain an adequate estimate, what

we obtain is a piecewise estimate of the log-spetral density. Asymptotically, as

the number of observations tends to infinity in the sense of infill asymptotics,

we have an estimate of the log-spectral density that is continuous in both time

and frequency. As done in Chapter 3 for stationary time series, we can extend

the model from one time series to multiple time series, in a hierarchical fashion.

Hence, we have proposed a Bayesian hierarchical model for non-stationary

time series. The model preserves the computational advantages of the models

presented in Chapter 2 and Chapter 3, allowing for relatively straightforward

implementation of a MCMC Gibbs sampler algorithm for sampling from the

posterior distribution of the parameters.
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Figure 4.12: EEG dataset, third time interval. Posterior mean estimates
(solid lines) and 95% credible intervals (shaded regions) for the log-spectral
densities corresponding to the 19 channels. Each panel includes also the log-
periodogram (dots) from the specific channel.
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Figure 4.13: EEG data, sixth time interval. Posterior mean estimates (solid
lines) and 95% credible intervals (shaded regions) for the log-spectral den-
sities corresponding to the 19 channels. Each panel includes also the log-
periodogram (dots) from the specific channel.
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Figure 4.14: EEG data, tenth time interval. Posterior mean estimates (solid
lines) and 95% credible intervals (shaded regions) for the log-spectral den-
sities corresponding to the 19 channels. Each panel includes also the log-
periodogram (dots) from the specific channel.
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Figure 4.15: EEG data. Joint posterior densities for (ζm, φm), m = 1, ..., 19.
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Figure 4.16: EEG data. Joint posterior densities for (ηm, ψm), m = 1, ..., 19.
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Chapter 5

Conclusions

We have presented a new Bayesian approach to spectral density estimation.

Our approach is based on modeling the distribution of the log-periodogram

through a mixture of Gaussian distributions with frequency-dependent weights

and mean functions, which implies a flexible mixture model for the correspond-

ing log-spectral density. Starting with the model for one time series, we pro-

posed a Bayesian hierarchical model for the analysis and estimation of multiple

time series in the spectral domain. We have then expanded the model to take

into consideration the variation in time of spectral characteristics. A very in-

teresting feature of the time-varying spectral density is that it can be use to

detect changes in frequency behavior. For example it allows us to study how

the spectral features change with time and it can be used to monitor fatigue,

for example, astronauts or drivers.
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Our model presents computational advantages in that, for all of the cases

mentioned above, it is possible to implement a Markov Chain Monte Carlo

algorithm with closed form full conditional distributions. The fact that the

model is easy to implement is an advantage in those areas where we need a

quick analysis and inference, as in neuroscience. The considered application

is from neuroscience, but the approach has a broad range of applications,

including econometrics and geoscience.

A key feature of our model is that it allows to group spectral densities

based on the posterior distribution of the parameters. Extensions in this sense

are discrete nonparametric priors that allow the parameters to be identical,

such as a Dirichlet Process prior. This would allow us to cluster time series

with identical spectral densities, hence identical underlying generating pro-

cess. Being able to cluster identical time series is not a relevant problem in

neuroscience data because spectral characteristics vary among channels, even

if slightly, but it could be relevant for other applications.

We did not include a spatial component to our model, because EEGs do

not have a good spatial resolution. However, extensions include adding a

spatial structure, for example through a Gaussian process prior on the weight

parameters. Moreover, in the presence of covariates we could incorporate them

in the mixture weights and/or means.

For certain types of non-Gaussian time series, it has been shown in Contreras-
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Cristan et al. (2006) that the Whittle likelihood does not provide a satisfac-

tory approximation for small sample sizes. An interesting direction for future

study involves the applicability of the modeling approach for spectral densities

of general non-Gaussian time series.
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Appendix A. Theoretical results

A.1 Proof of Theorem 2.1

Proof. The proof is along the lines of the one in Jiang and Tanner (1999b). We

start with proving that
∥∥∥∑K

k=1 χQKk (·)ĥk(·)− h(·)
∥∥∥ ≤ π2K0/2K

2, where, for

each ω ∈ QK
k , ĥk(ω) ≡ α̂k+ β̂kω. For ω∗k ∈ QK

k , α̂k = h(ω∗k)−ω∗kh′(ω) and β̂k =

h′(ω). We have that
∥∥∥∑K

k=1 χQKk ĥk(·)− h(·)
∥∥∥
p

=
∥∥∥∑K

k=1 χQKk (ĥk − h(·))
∥∥∥
p
≤

sup1≤k≤K

∥∥∥ĥk(·)− h(·)
∥∥∥
∞

∥∥∥1
∑K

k=1 χQKk (·)

∥∥∥
p

= sup1≤k≤K

∥∥∥ĥk(·)− h(·)
∥∥∥
∞

. Con-

sidering a second order expansion of h(ω) around ω∗k and the definition of ĥ(ω)

, we have that |ĥk(ω)− h(ω)| ≤ |(ω − ω∗k)2h′′(ω∗k)|/2 ≤ π2K0/2K
2. Therefore,∥∥∥∑K

k=1 χQKk (·)ĥk(·)− h(·)
∥∥∥ ≤ π2K0/2K

2.

Now,
∥∥∥∑K

k=1 gk(·;λ, ζ, φ)ĥk(·)− h(·)
∥∥∥
p
≤
∥∥∥∑K

k=1(gk(·;λ, ζ, φ)− χQKk (·))ĥk(·)
∥∥∥
p
+∥∥∥∑K

k=1 χQKk (·)ĥk(·)− h(·)
∥∥∥
p
≤
∑K

k=1

∥∥∥(gk(·;λ, ζ, φ)− χQKk (·))
∥∥∥
p

∥∥∥ĥk(·)∥∥∥
∞

+

π2K0/2K
2 ≤ Kε(1+π)K0+π2K0/2K

2. The last step follows from the Lemma,

and from the fact that |ĥk| ≤ |h(ω∗k)|+ |h′(ω)(ω− ω∗k)| ≤ K0 + πK0. Letting ε

tend to zero, we obtain infhK ‖hK − h(·)‖p ≤ π2K0/2K
2.
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A.2 Proof of Lemma 2.2

Proof. Based on the form of the mixture weights in 3.1, for any fixed ω, and

for any k = 1, ..., K,we have

lim
τ→∞

gk(µ(ω), τ) =


1 log

(
k − 1

K − k + 1

)
≤ µ(ω) < log

(
k

K − k

)
0 o.w.

and thus

lim
τ→∞

gk(µ(ω), τ) =


1

k − 1

K
≤ exp(µ(ω))

1 + exp(µ(ω))
<

k

K

0 o.w.

We can find values of ζ and φ > 0, and integers k1 and k2, with k2 > k1, such

that exp(µ(0))/{1 + exp(µ(0))} = k1/K and exp(µ(1))/{1 + exp(µ(1))} =

k2/K, and such that we can build a linear approximation of the logistic func-

tion exp(µ(ω))/{1 + exp(µ(ω))}, given by (k1/K)+{(k2−k1)/K}ω. Therefore,

the partition induced on Ω is {(0, 1/(k2 − k1)), [1/(k2 − k1), 2/(k2 − k1)), ...,

[(k2−k1−1)/(k2−k1), 1)}. From the limiting result above, for k = k1+1, ..., k2,

we have gk(µ(ω), τ) → χQk(ω), almost surely, as τ → ∞. In addition, for

0 < k ≤ k1 or k2 < k ≤ K, gk(µ(ω), τ) → 0, almost surely, as τ → ∞. More-

over, for k = k1 + 1, ..., k2, |gk(µ(ω), τ)− χQk(ω)|p ≤ 1, for ω ∈ (0, 1), and for

0 < k ≤ k1 or k2 < k ≤ K, |gk(µ(ω), τ)|p ≤ 1, for ω ∈ (0, 1). Hence, from the

dominated convergence theorem, for k = k1+1, ..., k2, limτ→∞ ||gk−χQk ||p = 0,

for any p ∈ N. Finally, for 1 < k ≤ k1 or k2 < k ≤ K, we have that
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limτ→∞ ||gk||p = 0, for any p ∈ N.

A.3 Proof of Theorem 2.2

Proof. We start by proving that, for fixed K, k1 and k2, with k2 > k1, any

h ∈ W∞
2,K0

can be approximated by a piecewise linear function on the partition

{Qk1+1, ..., Qk2}, with the Lp distance bounded by a constant that depends on

K∗ = k2−k1. For each interval Qk, k = k1 +1, ..., k2, consider a point ω∗k ∈ Qk

and the linear approximation based on the first-order Taylor series expansion:

ĥk(ω) = α̂k + β̂kω, for ω ∈ Qk, where α̂k = h(ω∗k)− ω∗kh′(ω∗k) and β̂k = h′(ω∗k);

here, h′(ω∗k) denotes the first derivative of h(ω) evaluated at ω∗k, with similar no-

tation used below for the second derivative. We have
∥∥∥{∑k2

k=k1+1 χQk ĥk

}
− h
∥∥∥
p

=
∥∥∥∑k2

k=k1+1 χQk

{
ĥk − h

}∥∥∥
p
≤ supk1+1≤k≤k2

∥∥∥ĥk − h∥∥∥
∞

, where ‖‖∞ denotes

the L∞ norm. Now, for each interval Qk, we consider the second-order expan-

sion of h around the same ω∗k ∈ Qk. Note that the partition {Qk1+1, ..., Qk2}

satisfies the property that, for any k, and for any ω1 and ω2 in Qk, |ω1−ω2| ≤

1/K∗. Using this property and the fact that the second derivative of h is

bounded by K0, we obtain |ĥk(ω)−h(ω)| ≤ |0.5(ω−ω∗k)2h′′(ω∗k)| ≤ K0/(2K
∗2).

Therefore,
∥∥∥{∑k2

k=k1+1 χQk ĥk

}
− h
∥∥∥
p
≤ K0/(2K

∗2). Using the triangular in-

equality, we can write∥∥∥∥∥
{

k2∑
k=k1+1

gkĥk

}
− h

∥∥∥∥∥
p

≤

∥∥∥∥∥
k2∑

k=k1+1

{gk − χQk} ĥk

∥∥∥∥∥
p

+

∥∥∥∥∥
{

k2∑
k=k1+1

χQk ĥk

}
− h

∥∥∥∥∥
p

.
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Based on the previous result, the second term is bounded by K0/(2K
∗2). For

the first term,
∥∥∥∑k2

k=k1+1 {gk − χQk} ĥk
∥∥∥
p
≤
∑k2

k=k1+1 ‖gk − χQk‖p
∥∥∥ĥk∥∥∥

∞
. Us-

ing Lemma 1 and the fact that |ĥk(ω)| ≤ |h(ω∗k)|+ |h′(ω∗k)(ω − ω∗k)|≤ 2K0, we

have that the first term is bounded by 2εK∗K0, for any ε > 0 given sufficiently

large τ . Finally,
∥∥∥{∑K

k=1 gkĥk

}
− h
∥∥∥
p
≤ 2εK∗K0 + {K0/(2K

∗2)}, and letting

ε tend to zero, we obtain the result.

A.4 Proof of Lemma 3.1

Proof. If log fk
Lp(0,π)−→ log f , then fk

Lp(0,π)−→ f , for any 1 ≤ p < ∞, because

the exponential transformation preserves the Lp convergence on a set of finite

measure. Assume, without loss of generality, that
∫ π

0
f(ω)dω 6= 0. We need to

prove that
∫ π

0
fk(ω)dω →

∫ π
0
f(ω)dω. We have that

∣∣∣∣∫ π

0

f(ω)dω

∣∣∣∣− ∫ π

0

|fk(ω)|dω ≤
∫ π

0

|f(ω)− fk(ω)|dω = ||f − fk||L1 .

The last term tends to zero based on Holder’s inequality. Recall that, if we

have a sequence of constants ck, such that ck → c and a sequence of functions

fk, such that fk
Lp(0,π)−→ f , then ckfk

Lp(0,π)−→ cf . Setting c−1
k =

∫ π
0
fk(ω)dω and

c−1 =
∫ π

0
f(ω)dω, we obtain fk/

∫ π
0
fk(ω)dω

Lp(0,π)−→ f/
∫ π

0
f(ω)dω. Again, from

Holder’s inequality, Lp convergence implies L1 convergence, which is equivalent

to convergence in the total variation distance.
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Appendix B. MCMC details

B.1 MCMC algorithm for one time series with

logistic weights

We generate samples from the posterior distribution of the model in (??),

using an MCMC algorithm with Gibbs sampling steps and one Metropolis step

for λ. The MCMC algorithm comprises the following updates:

– For j = 1, . . . , N , sample rj from a discrete distribution on {1, . . . , K}

with probabilities proportional to gk(ωj;λ, ζ, φ)N(yj | αk + βkωj, σ
2), for k =

1, ..., K.

– For k = 1, . . . , K, sample (αk, βk)
′ from a bivariate normal distribution

with covariance matrix Σ∗ = (σ−2
∑
{j:rj=k} zjz

′
j + Σ−1

0 )−1 and mean µ∗ =

Σ∗(Σ−1
0 µ0 +

∑
{j:rj=k} yjzj). Here, zj = (1, ωj)

′, µ0 = (µα, µβ)′ is the prior

mean, and Σ0 the diagonal prior covariance matrix with diagonal elements σ2
α

and σ2
β.
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– Sample σ2 from an inverse-gamma with parameters n0 + N/2 and d0 +

{
∑N

j=1(yj − (αrj + βrjωj))
2}/2, where n0 and d0 are the parameters of the

inverse-gamma prior.

– In order to sample (ζk, φk)
′, for k = 1, . . . , K, we use a data augmenta-

tion technique. For each k, we introduce N Pólya-Gamma random variables,

qj, j = 1, ..., N , as defined in Polson et al. (2013). For k = 1, ..., K, let

ψkj = (ζk + φkωj)/λ and ckj = log(
∑
{i 6=k} exp{(ζi + φiωj)/λ}). Moreover,

let nk be the number of rj such that rj = k. Then, the qj are drawn from

a Pólya-Gamma distribution with parameters 1 and ψkj − ckj. And, given

the qj, we sample (ζk, φk)
′ from a bivariate normal with covariance matrix

Σ∗k =
(
I +

∑N
j=1 λ

−2zjz
′
jqj

)−1

, where I is the identity matrix, and mean µ∗k =

Σ∗k(
∑
{j:rj=k} λ

−1zjckjqj +
∑
{j:rj=k} 0.5λ−1zj −

∑
{j:rj 6=k} 0.5λ−1zj).

– Update λ with a Gaussian random-walk Metropolis step on log(λ).

B.2 MCMC algorithm for Bayesian hierarchical

model for multiple time series

Here, we present the details of the Gibbs sampler that can be used for

posterior simulation from the hierarchical model developed in Section 3.2.

The full conditional distribution for each configuration variable rmj, m =

1, . . .M , j = 1, . . . , N , is a piecewise Gaussian distributed on [log((k−1)/(K−
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k + 1)), log(k/(K − k))] with weights

wk =
gk(µm(ωj), τm)N(ymj | αk + βkωj)∑K
i=1 gi(µm(ωj), τm)N(ymj | αi + βiωj)

,

for k = 1, . . . , K.

We sample (αk, βk) jointly, for k = 1, . . . , K. Let µ = (µα, µβ)′ and Σ0

the diagonal matrix that has σ2
α and σ2

β as diagonal terms. The full con-

ditional distribution for (αk, βk) is a bivariate normal with covariance ma-

trix Σ∗ = σ2

(∑
m,j: k−1

K
<

exp(rmj)

1+exp(rmj)
≤ k
K

zjz
′
j + Σ−1

0

)−1

and mean vector µ∗ =

Σ∗
(

Σ−1
0 µ0 +

∑
m,j: k−1

K
<

exp(rmj)

1+exp(rmj)
≤ k
K

ymjzj

)
, where zj = (1, ωj)

′.

We sample (ζm, φm) jointly, for m = 1, ...,M . The full conditional distribu-

tion is a bivariate normal with covariance matrix Σ∗w =
(
σ−2

∑N
j=1 qjq

′
j + Σ−1

w

)−1

and mean µ∗w = Σ∗w

(∑N
j=1 rmjqj + Σ−1

w µw

)
, where qj = (1, ωj)

′.

The full conditional distribution for the common variance parameter σ2

follows an inverse-gamma distribution with updated parameters n∗ and d∗,

where n∗ = nσ2 + NM/2 and d∗ = dσ2 + 2−1
∑M

m=1

∑N
j=1

∑K
k=1(ymj − (αk +

βkωj))
2)I (k − 1/K < exp(rmj)/(1 + exp(rmj)) ≤ k/K).

The full conditional for τm, m = 1, ...M is gamma with parameters nτ+N/2

and dτ +
∑N

j=1(rmj − (ζm + φmωj))
2/2.

The full conditional for dτ is a gamma with parameters adτ + Mnτ and

bdτ +M
∑M

m=1 τm, where adτ and adτ are the parameters of the hyperprior.

The full conditional for µw is a bivariate normal with covariance matrix

Σ∗0 = (Σ00 +MΣw)−1, and mean µ∗0 = Σ∗0[Σ−1
00 µ00 +Σ−1

w

∑M
m=1(ζm, φm)′], where
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µ00 is the hyperprior mean and Σ00 the hyperprior covariance matrix.

The full conditional for Σw is an inverse Wishart with ν0 + M degrees of

freedom and scale matrix Ψ +
∑M

m=1[(ζm, φm)′−µw][(ζm, φm)′−µw]′, where ν0

are the hyperprior degrees of freedom and Ψ is the hyperprior scale matrix.

B.3 MCMC algorithm for Bayesian hierarchical

model for multiple non-stationary time series

Here, we present the details of the Gibbs sampler that can be used for

posterior simulation from the hierarchical model developed in Section 4.4.

The full conditional distribution for each configuration variable rmij, m =

1, . . .M , i = 1, . . . S, j = 1, . . . , N , is a piecewise Gaussian distributed on

[log((k − 1)/(K − k + 1)), log(k/(K − k))] with weights

wk =
gk(µm(ūi, ωj), τm)N(ymij | αk + βkωj + γkūi + δkūiωj)∑K
l=1 gl(µm(ūi, ωj), τm)N(ymij | αl + βlωj + +γlūiδlūiωj)

,

for k = 1, . . . , K.

We sample (αk, βk, γk, δk) jointly, for k = 1, . . . , K. Let µ = (µα, µβ, µγ, µδ)
′

and Σ0 the diagonal matrix that has σ2
α, σ2

β, σ2
γ and σ2

δ as diagonal terms. The

full conditional distribution for (αk, βk, γk, δk) is a four dimensional normal

with covariance matrix Σ∗ = σ2

(∑
m,j: k−1

K
<

exp(rmij)

1+exp(rmij)
≤ k
K

zijz
′
ij + Σ−1

0

)−1

and

mean vector µ∗ = Σ∗
(

Σ−1
0 µ0 +

∑
m,i,j: k−1

K
<

exp(rmij)

1+exp(rmij)
≤ k
K

ymijzij

)
, where zij =

(1, ωj, ūi, ūiωj)
′.
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We sample (ζm, φm, ηm, ψm) jointly, for m = 1, ...,M . The full condi-

tional distribution is a four dimensional normal with covariance matrix Σ∗w =(
σ−2

∑S
i=1

∑N
j=1 qijq

′
ij + Σ−1

w

)−1

and mean µ∗w = Σ∗w

(∑S
i=1

∑N
j=1 rmjqij + Σ−1

w µw

)
,

where qij = (1, ωj, ūi, ūiωj)
′.

The full conditional distribution for the common variance parameter σ2

follows an inverse-gamma distribution with updated parameters n∗ and d∗,

where n∗ = nσ2 + NMS/2 and d∗ = dσ2 + 2−1
∑M

m=1

∑S
i=1

∑N
j=1

∑K
k=1(ymij −

(αk +βkωj +γkūi + δkūiωj))
2)I (k − 1/K < exp(rmij)/(1 + exp(rmij)) ≤ k/K).

The full conditional for τm, m = 1, ...M is gamma with parameters nτ+N/2

and dτ +
∑S

i=1

∑N
j=1(rmij − (ζm + φmωj + ηmūi + ψmūiωj))

2/2.

The full conditional for dτ is a gamma with parameters adτ + Mnτ and

bdτ +M
∑M

m=1 τm, where adτ and adτ are the parameters of the hyperprior.

The full conditional for µw is a four dimensional normal with covariance ma-

trix Σ∗0 = (Σ00+MΣw)−1, and mean µ∗0 = Σ∗0[Σ−1
00 µ00+Σ−1

w

∑M
m=1(ζm, φm, ηm, ψm)′],

where µ00 is the hyperprior mean and Σ00 the hyperprior covariance matrix.

The full conditional for Σw is an inverse Wishart with ν0 + M degrees of

freedom and scale matrix Ψ+
∑M

m=1[(ζm, φm, ηm, ψm)′−µw][(ζm, φm, ηm, ψm)′−

µw]′, where ν0 are the hyperprior degrees of freedom and Ψ is the hyperprior

scale matrix.
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