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ABSTRACT OF THE DISSERTATION

A Method for Dynamic Earthquake Rupture Simulation with

Applications to a Large Southern San Andreas Scenario

by

Geoffrey Palarz Ely

Doctor of Philosophy in Earth Sciences

University of California, San Diego, 2008

Professor Jean-Bernard Minster, Chair

Given the scarcity of near-source recordings for large earthquakes, numerical simula-

tions play an important roll in the prediction of possible ground motion from future

events. Simulations also give insight to physical processes of fault rupture that are

difficult or impossible to empirically measure. In this dissertation I develop a numeri-

cal method to simulate spontaneous shear crack propagation within a heterogeneous,

three-dimensional, viscoelastic medium. The implementation is highly scalable, en-

abling large scale, multi-processor calculations. Wave motions are computed on a

logically rectangular hexahedral mesh, using the generalized finite difference method

of Support Operators. This approach enables the modeling on nonplanar bound-

aries, as well as nonplanar ruptures. Computations are second-order in space and

time. Stiffness and viscous hourglass corrections are employed to suppress suppress

xvi



zero-energy grid oscillation modes. Model boundaries may be reflective or absorb-

ing, where absorbing boundaries are handled using the method of perfectly matched

layers (PML). Three well known test problems are used to verify various aspects of

the numerical method: wave propagation in a layered medium; surface amplification

due to a semi-cylindrical canyon; and spontaneous rupture of a rectangular fault.

Tests are repeated with varying amounts of simple shear deformation of the mesh.

Sufficient accuracy is preserved under high-angle mesh shearing to permit model-

ing of thrust-earthquake geometries. The method is used to simulate large (Mw7.6)

earthquake scenarios along the southern San Andreas fault, using a piecewise planar

fault representation and true topography of the ground surface. The crustal velocity

structure is taken from the Southern California Earthquake Center Community Ve-

locity Model (SCEC-CVM), which is currently the most complete three-dimensional

model available for the region. Heterogeneous initial traction conditions are derived

from an inversion of the M7.3 1992 Landers strong ground motion records. Hetero-

geneity in the traction model leads to focusing of the rupture front, in many cases

producing super-shear rupture velocity in areas of high initial traction (asperities).

Focusing sometimes occurs between the asperities, with the notable result that high-

est peak slip rates occur in areas of low initial traction. The overall distribution of

simulated peak ground velocities is consistent with those derived from the current

empirical models, with some important deviations associated with basin wave-guide

and directivity effects.

xvii



Chapter 1

Introduction

Great strides have been made over the last century towards understanding the

nature of earthquakes and the motions they produce at the surface of the earth.

We are now able to make probabilistic earthquakes forecasts for many faults, and

reasonably characterize possible ground motions. The science is being advanced on a

number of fronts. Remarkable amounts of information on the structure of the earth

and processes of fault rupture have been decoded from recordings of ground motion.

Strain meters, GPS and satellite altimeters continuously track the deformation of

the earth’s crust. Fault surface traces, offsets, and tectonic deformations have been

carefully mapped by geologists. Excavations of active faults have identified sequences

of earthquake events going back thousands of years. We can even extract information

about the intensity of such prehistoric earthquakes through mapping occurrences of

precariously balanced rock formations, and measuring their tipping load. Much has

been learned about the physics of friction and rupture from laboratory experiments

with rock samples and other other materials. In conjunction with observational tools,

scientists have developed increasingly sophisticated theoretical models and numerical

simulation techniques. Collaboration among these diverse scientists, and the synthesis

of their methods and findings, is seen as the most promising way forward. One of

1



2

the key objectives of much current research is the better understanding of earthquake

sources. The basic obstacles we face are that fault ruptures occur deep under ground,

commence without notice, last at most a couple of minutes, and recur on a time scale

of centuries. This situation makes it very difficult to make detailed observations of

the physical processes that govern fault rupture. One way that this gap has been

filled is through numerical simulations.

The promise of numerical methods has grown as the performance of computers

has continued to expand. However, the parallel architecture of today’s fastest com-

puters adds significant complexity to programming, and hinders full utilization the

computational capacity. This raises the bar for any single scientist to perform large

numerical simulations. For this reason, it is essential to have scalable, high quality

codes, that are freely available as a community resource. Towards this goal, we have

developed a new numerical tool for simulating earthquakes called the Support Op-

erator Rupture Dynamics (SORD) code. This dissertation describes the theory and

development of the numerical scheme, as well as its applications to real problems. We

use SORD to investigate idealized wave propagation and rupture dynamics problems

and to simulate potential future earthquakes using realistic fault and basin models.

Chapter 2 develops the method for simulating three dimensional visco-elastic wave

propagation based on the generalized finite difference method of Support Operators

(SOM). It serves as a framework for rupture dynamics simulations in the follow-

ing chapters. The discretization used is a partially staggered, logically rectangular

hexahedral mesh. This allows for non-planar surfaces to be incorporated into the

medium, though it does not provide as much geometrical flexibility as a fully unstruc-

tured mesh. A major benefit of the logically rectangular structure over unstructured

meshes, however, is that parallelization of the computational algorithm is greatly

simplified. In benchmark tests using up to 512 processors, the code performs at 85%
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efficiency, and the slope of the efficiency curve is nearly flat, indicating that the code

will continue to scale well up to higher number of processors. Through the SOM

derivation, spatial derivative operators are constructed that obey a discrete analog of

the negative adjoint relation of the gradient and divergence. This property ensures

that the spatial derivative operators conserve discrete energy. The derivation also

naturally gives rise to a free surface boundary condition that is also conservative.

The method is initially developed for arbitrary dimensionality and order of accuracy.

I then apply it to the specific case to 3D, second order operators. Second order

methods that use the partially staggered hexahedral discretization are susceptible to

zero-energy grid oscillation modes that can be problematic for applications incorpo-

rating non-linear physics, such as rupture dynamics modeling. Zero-energy modes

are suppressed with both stiffness and viscous ’hourglass’ corrections. Artificial do-

main boundaries are made to absorb nearly all incident waves using the method of

perfectly matched layers (PML). A slight reformulation of previous PML implemen-

tations is presented that reduces computations and memory storage. To verify the

accuracy of the numerical scheme we use a set of two test problems, designed to assess

most of the important capabilities. The first test is a layered model with a buried

double-couple source. A simple shearing is applied to the mesh to assess any bias

introduced from mesh deformation. The problem can be independently computed

with the frequency wavenumber method. Velocity time histories at the free surface

match frequency wavenumber solutions (with up to 1% error in amplitude and tim-

ing) when the waves are sampled with at least 10 grid points per wavelength. The

second test imposes a vertically incident P-wave onto a semi-cylindrical canyon at

the free surface. The problem has been studied by multiple authors using boundary

integral methods. SOM solutions give a close match to surface amplifications when

the resolution is at least 20 points per wavelength.
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Chapter 3 lays out the theory and numerical scheme for solving spontaneous rup-

ture dynamics problems with SOM. The fault is modeled with pairs of co-located

mesh nodes along the fault surface that are coupled by a traction boundary condi-

tion. The method is verified against boundary integral solutions with a slip-weakening

friction law. The accuracy of the method is established on meshes sheared by up to

70 degrees (i.e., sufficient to model rupture in shallow-angle thrust earthquakes). We

go on to investigate the effects of kinked and curved fault geometry.

In Chapter 4 the SOMmethod is applied to simulatingMw7.6 earthquake scenarios

on the southern San Andreas fault. The models follow closely the TeraShake2.2

calculation by Olsen et al. (2008). The primary difference is that the geometric

flexibility of the SOM scheme allows for computing non-planar rupture dynamics, as

well as surface topography effects, whereas TeraShake2.2 was confined to a rectangular

grid. A planar and segmented fault geometry is used, and the initial tractions on

the fault are derived from the inversion of strong ground motion recordings of the

Mw7.3 Landers earthquake by Peyrat et al. (2001). Strong rupture focusing effects

are observed in the dynamic rupture solutions. Waves are propagated through the

Southern California Earthquake Center Community Velocity Model (SCEC-CVM),

currently the most complete three-dimensional velocity model available for southern

California (Magistrale et al., 2000; Kohler et al., 2003; Magistrale, 2005). We compare

models using version 3.0 and version 4.0 of the SCEC-CVM, as well as models with

and without the inclusion of Earth topography at the free surface. Ground motions

predicted by the simulations are in general agreement to the recent empirical model

by Campbell and Bozorgnia (2007), although three-dimensional basin effects cause

some deviations. The models are computationally expensive, and provided a further

benchmark of code performance, attaining 85% efficiency using 1920 processors.

The conclusions chapter (5) summarizes our findings and proposes possible future
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research directions in rupture physics and strong ground motions modeling. Chapter 6

provides documentation for the SORD code and includes annotated input files used

to produce the various simulations.
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Chapter 2

A Support-Operator Method for

Viscoelastic Wave Modeling in 3D

Heterogeneous Media

Abstract

We apply the method of Support Operators (SOM) to solve the three dimen-

sional, viscoelastic equations of motion for use in earthquake simulations. SOM is a

generalized finite-difference method that can utilize meshes of arbitrary structure and

incorporate irregular geometry. Our implementation uses a 3D, logically-rectangular,

hexahedral mesh. Calculations are second-order in space and time. A correction

term is employed for suppression of spurious zero-energy modes (hourglass oscilla-

tions). We develop a free surface boundary condition, and an absorbing boundary

condition using the method of Perfectly Matched Layers (PML). Numerical tests us-

ing a layered material model in a highly deformed mesh show good agreement with

the frequency-wavenumber method, for resolutions greater than 10 nodes per wave-

6
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length. We also test a vertically incident P wave on a semi-circular canyon, for which

results match boundary integral solutions at resolutions greater that 20 nodes per

wavelength. We also demonstrate excellent parallel scalability of our code.

2.1 Introduction

The finite-difference method (FDM) has been extensively used for modeling three-

dimensional seismic wave propagation and rupture-dynamics problems. The fourth-

order staggered-grid scheme, nicely summarized by Graves (1996), is particularly well

suited for large-scale, high-resolution problems because it is accurate, efficient, and

readily parallelized for multiprocessor execution. Recent applications include basin

wave propagation by Olsen et al. (2006) and rupture dynamics by Dalguer and Day

(2007).

Many such FDM implementations, however, are restricted to rectilinear discretiza-

tions of the problem domain, which in some cases leads to a poor approximation

of problem geometry. Surface topography, for example, may be neglected. Ma

et al. (2007) show with finite-element simulations that the topography of the San

Bernardino Mountains may disrupt surface waves generated on the adjacent San An-

dreas Fault, effectively shielding Los Angeles. The restriction to rectilinear meshes

also represents a severe constraint on dynamic rupture simulations, usually restricting

consideration to planar, vertical faults that coincide with grid planes. This constraint

can be relaxed, as in Cruz-Atienza (2006), for example, but at a substantial sacrifice

of accuracy. Alternatively, a coordinate mapping can be introduced to conform the

FDM grid to a non-planar fault geometry, as in Kase and Day (2006), for example.

A variety of approaches have been taken to enable non-rectangular geometry in

earthquake simulations. To cite a few examples, Aagaard (1999) used the finite ele-

ment method (FEM) on tetrahedral meshes; Oglesby (1999), and Oglesby et al. (2000)
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employed FEM on hexahedral meshes; Komatitsch and Tromp (1999) used the spec-

tral element method; and Dumbser and Kas̈er (2006) used a high-order discontinuous

Galerkin method.

We apply the method of Support-Operators (SOM) developed by Samarskii et al.

(1981, 1982) and Shashkov (1996). SOM is a general scheme for discretizing the

differential form of partial differential equations. Many simple FDMs and FEMs

are special cases of SOM. The approach constructs discrete analogs of continuum

derivative operators that satisfy important integral identities, such as the adjoint

relation between gradient and divergence. SOM brings to an FDM-type formulation

the FEM advantage that energy is conserved in the semi-discrete equations (i.e.,

spatially discrete but before time discretization), as an immediate consequence of the

adjoint relations. Likewise, the adjoint relations ensure that seismic reciprocity is

satisfied by the fully discrete equations.

SOM may employ structured or unstructured meshes, and be extended to high

order of accuracy. We develop the theory for arbitrary order on structured meshes,

and implement the second order case for our numerical algorithm. Rojas et al. (2008)

use a related finite difference formulation to model earthquake rupture dynamics in

2D. They implement a fourth-order scheme, but restrict it to Cartesian meshes. Their

approach is similar to ours, in that they form the difference operators using the adjoint

relations, but differs from our SOM formulation in the nature of the mesh employed

(they use a staggered mesh of the form used in, e.g., Levander (1988)).

This paper begins with a derivation of 3D SOM spatial difference operators, fol-

lowed by a comparison to the related method of one-point quadrature. A full listing

of both types of operators is located in the appendix. We then lay-out the numer-

ical algorithm for solving wave equations with hourglass corrections, and Perfectly

Matched Layer (PML) absorbing boundaries. Presented next are numerical tests us-
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ing a layered model, that is verified against wavenumber integration solutions, and

a semi-circular canyon model that is verified against boundary integral solutions.

Finally, we examine the parallel processing capability of our algorithm. In the con-

cluding discussion, we look at potential enhancements to, and applications of our

method.

2.2 The Support Operator Method

The linearized equations of motion for isotropic viscoelastic motion are

gij = ∂j(ui + γvi) , (2.1)

σij = λ δij gkk + µ(gij + gji) , (2.2)

ai =
1

ρ
∂jσij , (2.3)

v̇i = ai , (2.4)

u̇i = vi , (2.5)

where σ is the stress tensor, u and v are displacement and velocity vectors, ρ is

density, λ and µ are elastic moduli, and γ is viscosity. The Kelvin-Voigt model of

viscosity used here is not of a realistic form for seismological problems, but is included

in the formulation in anticipation of future applications to nonlinear problems (e.g.,

rupture dynamics) where viscous losses may be needed for numerical regularization.

Realistic attenuation can be readily added by the memory-variable technique intro-

duced by Day and Minster (1984) and since refined by various authors (Moczo et al.,

2006, provide a comprehensive review). All variables are functions of position x, while

σ, u, and v are time dependent as well. It is generally not possible to find analytical
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Figure 2.1: Map of Cartesian space to logical space

solutions to this system of equations, so we must rely on numerical methods to find

approximate solutions.

We first discretize the field variables and material constants onto a hexahedral

mesh that has a logically rectangular structure. We adapt the general formalism

of Shashkov (1996) to the equations of 3D elastodynamics. Following that general

formalism, we define two types of spatial discretizations on the mesh. Nodal functions

are defined at the node points. We denote the space of nodal functions by HN .

Cell functions represent average function values over element volumes. We denote

the space of cell functions by HC . Mesh node points are located in the 3D logical

structure by their indices j, k and l, and each interior node is shared by exactly eight

elements. For the structured mesh there is a mapping from Cartesian space to logical

space, x → ξ (Fig. 2.1), and the nodal coordinates Xjkl ∈ HN map to the logical

coordinates Ξjkl.

We will need two types of discrete difference operators, one that operates on nodal

functions and one that operates on cell functions. We begin with the derivation of

the first one: an operator that computes the derivative of a nodal function with a cell

function result. Consider the nodal discretization of an unknown function: Fjkl ∈ HN .

Polynomial interpolation of the discrete function Fjkl can be used to construct a
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Figure 2.2: Stencil node and cell indexing for cubic (n = 3) interpo-
lation in the shaded cell (1,1). For simplicity only two dimensions are
shown instead of three.

continuous function f(ξ) that is an approximation to the original unknown function.

Provided the original function is smooth and well behaved, the error of approximation

depends on the polynomial degree n.

We restrict the interpolation scheme such that, for a particular cell, f(ξ) depends

only on the nodes in the immediate vicinity. This group of nodes is called the stencil,

and is diagrammed in Fig. 2.2. The stencil nodes have the indices j, k, l = 0, . . . , n

and the stencil cells have the indices j, k, l = 0, . . . , n − 1. The value of n must be

odd to insure logical symmetry about the central cell. The index of the central cell

is (m,m,m) where m = (n− 1)/2.

The interpolation function is given by

f(ξ) =
n∑

j,k,l=0

Njkl(ξ)Fjkl , (2.6)

where the shape functions Njkl(ξ) are formed from Lagrange interpolation polynomi-

als

Njkl(ξ) = `nj (ξ)`nk(η)`nl (ζ) , (2.7)
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and the Lagrange polynomials of degree n are given by

`nj (ξ) =
n∏
i=0
i 6=j

ξ − Ξi

Ξj − Ξi

. (2.8)

Evaluating the shape functions at the nodes gives

Njkl(Ξpqr) = δjpδkqδlr , (2.9)

so evaluating the interpolation function at the mesh nodes returns exactly the discrete

function values

f(Ξjkl) = Fjkl . (2.10)

Repeating the interpolation procedure for the nodal coordinates Xjkl results in a

mapping from logical coordinates to Cartesian coordinates,

x(ξ) =
n∑

j,k,l=0

Njkl(ξ)Xjkl . (2.11)

We can use this mapping to find the gradient of f by solving the system of equations

∂f

∂ξ
= (∇f) · ∂x

∂ξ
,

[
∂f

∂ξ

∂f

∂η

∂f

∂ζ

]
=

[
∂f

∂x

∂f

∂y

∂f

∂z

]


∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ


.

(2.12)

The matrix J = ∂x/∂ξ is known as the Jacobian of the mapping. Columns of J are

tangent vectors to the logical coordinate system. The determinant of the Jacobian
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J = |J| relates volume elements between the logical and Cartesian coordinate systems

dx dy dz = J dξ dη dζ . (2.13)

The inverse of the Jacobian matrix is

J−1 =
∂ξ

∂x
=

1

J



∣∣∣∣∣∣∣
∂y
∂η

∂z
∂η

∂y
∂ζ

∂z
∂ζ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂z
∂η

∂x
∂η

∂z
∂ζ

∂x
∂ζ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂x
∂η

∂y
∂η

∂x
∂ζ

∂y
∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂y
∂ζ

∂z
∂ζ

∂y
∂ξ

∂z
∂ξ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂z
∂ζ

∂x
∂ζ

∂z
∂ξ

∂x
∂ξ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂x
∂ζ

∂y
∂ζ

∂x
∂ξ

∂y
∂ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂z
∂ξ

∂x
∂ξ

∂z
∂η

∂x
∂η

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣∣


. (2.14)

Rows of JJ−1 are surface area vectors dS for surfaces of constant ξ, η or ζ, and are

formed by cross products of the tangent vectors. Solving (2.12) gives the gradient of

f :

∇f =
∂f

∂ξ
· J−1 . (2.15)

Because we seek the average gradient over the element volume, we will use the ap-

proximation

∇f ≈ 1

V

∫
V

∇f dV , (2.16)

and define discrete operators Dx, Dy and Dz:

DiF ≡
∫
V C

∂f

∂xi
dV , (2.17)

Di : HN → HC , (2.18)
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where V C is the volume of the central cell enclosed by the logical coordinates

ξm < ξ < ξm+1 ,

ηm < η < ηm+1 ,

ζm < ζ < ζm+1 .

(2.19)

Substituting (2.13), (2.15) and (2.19) into (2.17) gives

x̂DxF + ŷDyF + ẑDzF =

∫
ζ

∫
η

∫
ξ

∂f

∂ξ
· J−1J dξ dη dζ . (2.20)

A computer algebra system is helpful for solving this integral. The remainder of

this paper is concerned with the 3D, linear case (n = 1). The resulting expressions

for Di are rather complex and are not available elsewhere, so we tabulate them in

the Appendix. If elements are restricted in shape to rectangular parallelepipeds, the

operators simplify to

(DxF )000 = 1
4
(Z1 − Z0)(Y1 − Y0)

(F111 + F100 − F010 − F001

−F000 − F011 + F101 + F110) ,

(2.21)

(DyF )000 = 1
4
(X1 −X0)(Z1 − Z0)

(F111 − F100 + F010 − F001

−F000 + F011 − F101 + F110) ,

(2.22)
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and

(DzF )000 = 1
4
(Y1 − Y0)(X1 −X0)

(F111 − F100 − F010 + F001

−F000 + F011 + F101 − F110) ,

(2.23)

each of which is recognizable as the average of four separate finite-difference operations

along the cell edges.

Now that we have the difference operator Di that operates on the nodal functions,

the next task is to build a complementary difference operator that operates on a cell

function and returns a nodal function:

Di : HC → HN . (2.24)

We will rely on the previously derived operators Di and the adjoint relation between

gradient and divergence. The goal is to ensure global conservation of the numerical

scheme. This is the guiding principle of SOM and other mimetic methods. They

attempt to ’mimic’ fundamental conservation laws of the continuum. In this case Di

is called the natural operator and Di is called the support operator.

Applying the divergence theorem to the product fw gives

∫
V

(∇f) ·w dV +

∫
V

f(∇ ·w) dV =

∫
S

fw · dS . (2.25)

When the normal component of w at the boundary surface is 0,

∫
V

f∇ ·w dV = −
∫
V

(∇f) ·w dV , (2.26)

which expresses the fact that gradient and divergence are adjoint operators. The
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adjoint relationship has the discrete analog

3,p−1,q−1,r−1∑
i,j,k,l=0

(DiF )jkl(Wi)jkl = −
3,p,q,r∑
i,j,k,l=0

Fjkl(DiWi)jkl , (2.27)

where Wjkl ∈ HC is a cell-valued vector function. Until this point we have considered

only the local vicinity of the difference operator. Here we broaden the scope to the

global problem domain, where the mesh size is p× q × r.
Inserting DiF into the left hand side of (2.27) results in a summation factored in

terms of common Wjkl values. We can re-factor this summation in terms of common

Fjkl. Equating this result to the right hand side of (2.27), we can write the expressions

for Di as listed in the Appendix. On a rectangular mesh the equations simplify to

(DxW)111 = 1
4
(Z2 − Z1)

[
(Y2 − Y1)(W111 −W011)

+(Y1 − Y0)(W101 −W001)
]

+1
4
(Z1 − Z0)

[
(Y2 − Y1)(W110 −W010)

+(Y1 − Y0)(W100 −W000)
]
,

(2.28)

(DyW)111 = 1
4
(X2 −X1)

[
(Z2 − Z1)(W111 −W101)

+(Z1 − Z0)(W110 −W100)
]

+1
4
(X1 −X0)

[
(Z2 − Z1)(W011 −W001)

+(Z1 − Z0)(W010 −W000)
]
,

(2.29)

(DzW)111 = 1
4
(Y2 − Y1)

[
(X2 −X1)(W111 −W110)

+(X1 −X0)(W011 −W010)
]

+1
4
(Y1 − Y0)

[
(X2 −X1)(W101 −W100)

+(X1 −X0)(W001 −W000)
]
.

(2.30)
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At the boundaries, certain terms in Di drop out. For example at the boundary j = 0,

(2.28), (2.29) and (2.30) reduce to

(DxW)011 = 1
4
(Z2 − Z1)

[
(Y2 − Y1)W011

+(Y1 − Y0)W001

]
+1

4
(Z1 − Z0)

[
(Y2 − Y1)W010

+(Y1 − Y0)W000

]
,

(2.31)

(DyW)011 = 1
4
(X2 −X1)

[
(Z2 − Z1)(W011 −W001)

+(Z1 − Z0)(W010 −W000)
]
,

(2.32)

and

(DzW)011 = 1
4
(X2 −X1)

[
(Y2 − Y1)(W011 −W010)

+(Y1 − Y0)(W001 −W000)
]
.

(2.33)

Accounting for each face, edge and corner of the mesh, there exist 48 different bound-

ary operators for Di. The application of the boundary operators is simplified in

practice by using a ghost cell technique. We extend the mesh outside of the bound-

aries with ’ghost’ cells, and in those cells Wjkl is always zero. Applying the interior

operators (2.28), (2.29) and (2.30) to the expanded mesh reproduces the boundary

operators appropriately.

We can now approximate the partial derivative of F with

(DiF )jkl
V C
jkl

, (2.34)
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and approximate the partial derivative of W with

(DiW)jkl
V N
jkl

, (2.35)

where V C
jkl is the cell volume and V N

jkl is the nodal volume. The cell volume can be

found by noting that ∫
V

∂xi
∂xi

dV = V , (2.36)

and differencing any one of the nodal coordinates

V C
jkl = (DxX)jkl = (DyY )jkl = (DzZ)jkl . (2.37)

The nodal volume is then found by averaging the surrounding eight cell volumes

V N
000 = 1

8

(
V C

000 + V C
011 + V C

101 + V C
110

+V C
111 + V C

100 + V C
010 + V C

001

)
.

(2.38)

2.3 One-point Quadrature

The gradient operator Di is defined in equation (2.17) by exactly integrating the

integral (2.16). An alternative method is to approximate the integral with numerical

quadrature. For one-point quadrature we simply evaluate equation (2.15) at the

center of the stencil

DiF ≡ ∂f

∂xi

∣∣∣∣
ξ=(ξm+ξm+1)/2

. (2.39)

The resulting operators, equations (2.98) through (2.103) listed in the Appendix, offer

some computational savings. One-point quadrature has been frequently applied to

seismic problems (see e.g., Day et al., 2005; Ma and Liu, 2006). The operator Di is of-

ten called the ’B matrix’ in FEM literature. Goudreau and Hallquist (1982) found that
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for their applications, exactly integrated elements perform no better than one-point

quadrature, and therefore the extra computational expense is not justified. However,

this may not be true for all applications. With non-parallelepiped elements, one-point

quadrature fails the patch test. One consequence of this is that rigid body motion

can lead to non-zero stress. To illustrate, from equations (2.98) through (2.102),

the one-point quadrature gradient DiF clearly evaluates to zero when F is uniform.

However, the divergence DiW, listed in equations (2.99) through (2.103), does not in

general evaluate to zero when W is uniform. The non-physical consequence is that

energy can enter the system due simply to the shape of the mesh. Conversely, the

exactly integrated operators, equations (2.92) through (2.97) always evaluate to zero

for uniform fields F and W. We have not established whether, in practice, this is an

important issue for seismic wave simulations, but violation of conservation of energy

is clearly undesirable and should be avoided if possible.

The exactly integrated elements require roughly twice as many floating point oper-

ations to compute. However, the difference can be negated, and additional computa-

tional efficiency achieved, by holding the operators in memory rather than calculating

them on-the-fly. One can store Di in a memory array, and Di can be had directly from

Di via the adjoint relation. Storage of Di requires 24 memory variables per element,

while storage of X for on-the-fly operators requires three variables per element. The

21 variable increase roughly doubles the amount of storage needed overall, while the

number of floating point operations is reduced by a factor of six for the complete

algorithm.

Tests of our code (summarized in Table 2.1), under ideal conditions with no par-

allel processing or file output, show a 25% reduction in runtime for one-point quadra-

ture, and a factor of 3 reduction for precomputed operators. This is only half of

the speedup expected considering only floating point operations. However, memory
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Table 2.1: Resource usage per node per time time step for different
operators. Numbers are for the complete wave simulation algorithm.

Floating Memory Normalized
Operator type pt. ops. variables run-time

Exactly integrated 3380 23 3.56
One-point quadrature 1688 23 2.67
Stored operators 518 44 1.27
Rectangular 446 20 1.00

access speed can be an equally important factor on architectures with fast CPUs. Par-

allel processing overhead and file access reduce even further the relative speed gains.

Due to the modest performance penalty, and the potential for removing that penalty

altogether by precomputed operators, we prefer the exactly integrated elements.

2.4 Numerical Algorithm

We can now build an explicit time-stepping scheme by discretizing equations (2.1)

through (2.5). The continuous field variables are replaced with discrete variables

of the same name. On the nodes we have (u,v, a, ρ, γ,g) ∈ HN , and on the cells

we have (σ, λ, µ) ∈ HC . Time is discretized with constant spacing ∆t. Spatial

derivative are approximated with the operators (2.34) and (2.35) and time derivatives

are approximated with with second-order centered differences. The time index is

indicated by a superscript, and for clarity, spatial indices are omitted in the discrete

equations

gij = Dj(u
n
i + γv

n−1/2
i ) , (2.40)

σij = Λ δijgkk +M(gij + gji) , (2.41)
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ai = RDj σij , (2.42)

v
n+1/2
i = v

n−1/2
i + ∆t ai , (2.43)

un+1
i = uni + ∆t v

n+1/2
i . (2.44)

The material variables incorporate the cell and node volumes

R =
1

ρV N
, (2.45)

Λ =
λ

V C
, (2.46)

M =
µ

V C
. (2.47)

If material contrasts are to be aligned with the cell boundaries, it is most convenient

to begin with an initial cell valued density function ρC ∈ HC . Care must be taken

to conserve global mass, and correctly align the material boundary when finding the

nodal densities. This is achieved by weighting cell density by cell volume prior to

averaging,

R000 = 8
(
V C

000ρ
C
000 + V C

011ρ
C
011 + V C

101ρ
C
101 + V C

110ρ
C
110

+V C
111ρ

C
111 + V C

100ρ
C
100 + V C

010ρ
C
010 + V C

001ρ
C
001

)−1

.

(2.48)

By the same principle, when material contrasts are to bisect the cells, it is most

convenient to begin with initial nodal elastic moduli (λN , µN) ∈ HN , and compute

the cell values by weighted harmonic averaging,

Λ111 = 8

(
V N

000

λN000

+
V N

011

λN011

+
V N

101

λN101

+
V N

110

λN110

+
V N

111

λN111

+
V N

100

λN100

+
V N

010

λN010

+
V N

001

λN001

)−1

,

(2.49)
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M111 = 8

(
V N

000

µN000

+
V N

011

µN011

+
V N

101

µN101

+
V N

110

µN110

+
V N

111

µN111

+
V N

100

µN100

+
V N

010

µN010

+
V N

001

µN001

)−1

.

(2.50)

Stability of the explicit scheme requires that ∆t be less than the shortest time for

waves to traverse a cell. The condition

1 <
∆t

∆x

√
3(λ+ 2µ)

ρ
(2.51)

is necessary to ensure stability for a rectangular mesh of constant spacing ∆x, and can

be used as an approximate guide for selecting stable time steps for non-rectangular

meshes as well.

The 24 degrees of freedom for displacement on the eight node hexahedral element

can be decomposed into three rigid body, nine uniform, and 12 non-uniform strain

modes. The non-uniform modes are alternatively referred to as hourglass, keystone or

bending modes. Hourglass modes are orthogonal to and transparent to single-point

derivative operators such as we have derived. Unchecked they may grow to dominate

the solution, so they must be independently controlled. We use a modified form

of the hourglass control scheme described by Flanagan and Belytschko (1981) and

more recently by Day et al. (2005) and Ma and Liu (2006). We define the hourglass

operators

Qi : HN → HC , (2.52)

(Q1F )000 =F000 + F011 − F101 − F110

+F111 + F100 − F010 − F001 ,

(2.53)

(Q2F )000 =F000 + F101 − F110 − F011

+F111 + F010 − F001 − F100 ,

(2.54)
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(Q3F )000 =F000 + F110 − F011 − F101

+F111 + F001 − F100 − F010 ,

(2.55)

(Q4F )000 =F000 + F011 + F101 + F110

−F111 − F100 − F010 − F001 ,

(2.56)

and

Qi : HC → HN , (2.57)

(Q1W)111 =W111 + W100 −W010 −W001

+W000 + W011 −W101 −W110 ,

(2.58)

(Q2W)111 =W111 + W010 −W001 −W100

+W000 + W101 −W110 −W011 ,

(2.59)

(Q3W)111 =W111 + W001 −W100 −W010

+W000 + W110 −W011 −W101 ,

(2.60)

(Q4W)111 =W111 + W100 + W010 + W001

−W000 −W011 −W101 −W110 .

(2.61)

Viscous as well as stiffness hourglass control may be used, for which we define the

viscosity β, and stiffness

Y =
µ(λ+ µ)

6(λ+ 2µ)
. (2.62)

The correction is applied by modifying the acceleration equation (2.42), and the

discrete equations now become:

gij = Dj(u
n
i + γv

n−1/2
i ) , (2.63)

σij = Λ δijgkk +M(gij + gji) , (2.64)
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ai = RDj σij −Qk Y Qk(u
n
i + βv

n−1/2
i ) , (2.65)

v
n+1/2
i = v

n−1/2
i + ∆t ai , (2.66)

un+1
i = uni + ∆t v

n+1/2
i . (2.67)

The form we choose for hourglass stiffness Y is based on the approximate analysis of

Kosloff and Frazier (1978). They found that the growth of the hourglass modes in 2D

grids was effectively resisted with a stiffness of this form, and numerical experiments

(Day et al., 2005; Ma and Liu, 2006, e.g.) demonstrate that the same stiffness works

well to suppress growth of the corresponding 3D modes, especially in combination

with a damping β of order 1 (and results are not very sensitive to values of Y and β,

once they are large enough to suppress mode growth).

2.5 Perfectly Matched Layer

Modeling waves in a boundless material requires artificial truncation of the com-

putational domain. Various types of absorbing boundaries have been used to sup-

press artificial reflections at the boundaries. One of the most effective is the method

of Perfectly Matched Layers (PML). First introduced for electromagnetic waves by

Berenger (1994, 1996), PML sets up an absorbing layer where waves are exponen-

tially attenuated and the reflection coefficient at the layer interface is nearly zero

for all angles of incidence. Marcinkovich and Olsen (2003) present a PML absorb-

ing boundary condition for the velocity-stress formulation of elastodynamics. We

modify their given system of equations to find an equivalent formulation that offers

a compact notation and that is more optimized numerically. The modification is a

reordering of operations that results in damping of the spatial derivatives of velocity

and stress rather than velocity and stress themselves. The change reduces the addi-
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tional required storage from nine to six variables per damping direction, and reduces

the number of multiplication operations. The modified formulation is

ġij + d(xj)gij = ∂jvi , (2.68)

σ̇ij = λ δij
∑
k

ġkk + µ(ġij + ġji) , (2.69)

ṗij + d(xj)pij = ∂jσij , (2.70)

v̇i =
1

ρ

∑
j

ṗij , (2.71)

where d(xj) is the damping profile, and xj is the distance measured from the node or

cell location to the PML interface along the x, y, or z direction. Note that repeated

indices do not imply summation here. In this formulation, the PML interface plane

must be normal to one of the Cartesian directions. Where PML zones overlap, such

as at the corners of the model, damping occurs in more than one direction. For the

interior of the model, not in the PML, d(xi) = 0, and the equations reduce to the

elastic wave equations. This formulation is suitable for numerical schemes that store

the elastic state as velocity and stress. In this paper, however, we have developed a

scheme that stores velocity and displacement, so the system must be modified slightly

to

ġij + d(xj)gij = ∂jvi , (2.72)

σij = λ δij
∑
k

gkk + µ(gij + gji) , (2.73)

ṗij + d(xj)pij = ∂jσij , (2.74)

ai =
1

ρ

∑
j

ṗij , (2.75)

v̇i = ai , (2.76)
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u̇i = vi . (2.77)

Discretizing equations (2.72) and (2.74) gives

gnij − gn−1
ij

∆t
+ d(xi)

gnij + gn−1
ij

2
= Djv

n−1/2
i (2.78)

and
p
n+1/2
ij − pn−1/2

ij

∆t
+ d(xi)

p
n+1/2
ij + p

n−1/2
ij

2
= Djσij , (2.79)

from which we can build an explicit time stepping scheme for the PML similar to

that for the viscoelastic solid in equations (2.63–2.67):

gnij =
2∆t

2 + d(xj)∆t
Djv

n−1/2
i +

2− d(xj)∆t

2 + d(xj)∆t
gn−1
ij , (2.80)

σij = Λδij
∑
k

gnkk +M(gnij + gnji) , (2.81)

ṗij =
2

2 + d(xi)∆t
Djσij − 2d(xi)

2 + d(xi)∆t
p
n−1/2
ij , (2.82)

ai = R
∑
j

ṗij −Qk Y Qk(βv
n−1/2
i ) , (2.83)

p
n+1/2
ij = p

n−1/2
ij + ∆t ṗij , (2.84)

v
n+1/2
i = v

n−1/2
i + ∆t ai , (2.85)

un+1
i = uni + ∆t v

n+1/2
i . (2.86)

For each direction of damping, six extra memory arrays are required for the storage

of g1j, g2j, g3j, p1j, p2j, and p3j. The non-damped components of gij and pij need not

be stored because, when d(xj) = 0, equation (2.80) can be replaced by

gij = Dju
n
i , (2.87)
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and equation (2.82) reduces to

ṗij = Djσnij . (2.88)

Ma and Liu (2006) have found that stiffness hourglass control can cause instability

in the PML. Therefore, only viscous hourglass control is used in equation (2.83).

Following Marcinkovich and Olsen, the damping profile within the PML zone is

given by

d(x) =
3.5Vs
w

(
x

w

)2(
8

15
n− 3

100
n2 +

1

1500
n3

)
, (2.89)

where w is the PML thickness, n is the number of mesh nodes in the PML, and Vs is

the harmonic mean of the minimum and maximum S-wave velocities present in the

material model.

2.6 Layered Model Test

For numerical verification of the support-operator method, we reproduce the

double-couple point source test LOH.1 from Day and Bradley (2001). The model,

diagrammed in Fig. 2.3, consists of a 1 km layer over a uniform half-space. In the layer

Vs = 2,000m/s, Vp = 4,000m/s, and density ρ = 2600 kg/m3, and in the underlying

half-space Vs = 3,464m/s, Vp = 6,000m/s, and ρ = 2700 kg/m3. The model is purely

elastic, so viscosity γ = 0, but we use a relatively high hourglass viscosity β = ∆t.

The time step length ∆t = 0.004 s.

We do two calculations, one with a rectangular mesh of node spacing ∆x = 50m,

and another with a mesh highly distorted by shearing. The sheared mesh is con-



28

Figure 2.3: Perspective view of the layer over half-space model on a
sheared mesh. The layer is 1 km thick. The source is located at 2 km
depth, beneath the origin. Observation points are marked S1, S2 and
S3.

structed from the rectangular mesh by applying the coordinate mapping


X ′jkl

Y ′jkl

Z ′jkl

 =


1 0 1

1 1 0

0 0 1



Xjkl

Yjkl

Zjkl

 , (2.90)

where (X, Y, Z) are coordinates of the rectangular mesh and (X ′, Y ′, Z ′) are coordi-

nates of the sheared mesh. The mapping is a superposition of two 45◦ simple shears

with a maximum shear angle of tan−1(
√

2) = 54.7◦. This mesh is by no means a test

for all types of possible mesh distortion. It does not, for example, address the case

of non-parallelepiped elements or element volume variability. But, sheared meshes

are useful for a number of types of earthquake problems, and are readily compatible

with the layered model. A PML absorbing boundary is used for the bottom and

side surfaces of the rectangular mesh and the bottom surface of the sheared mesh.
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Since our PML implementation is limited to boundary surfaces that are normal to

the Cartesian directions, it cannot be used on the sides of the sheared mesh. One way

around this is to gradually reduce the shear of the mesh to zero at the boundary. We

have taken an alternative approach by simply extending the mesh far enough that

artificial reflections to not return during the simulation time.

A double-couple point source is located at the coordinates (0, 0, 2 km). The non-

zero components of the moment tensor are

Mxy = Myx =
M0H(t)√

2πS
e−0.5(t−4S)2/S2

, (2.91)

where M0 = 1018 Nm, S = 0.09 s, and H(t) is a step function. The half-width of the

Gaussian source spectrum is 2.08 Hertz, corresponding to a Rayleigh wavelength of 17

grid points, and the source spectrum falls to 10% of its maximum at 3.8 Hz, or about

9 points per Rayleigh wavelength. The source is inserted into the wave simulation

by normalizing the moment tensor by cell volume and adding it to the stress tensor

after equation (2.64).

Particle velocity is recorded at three receiver locations at the surface: S1

(−6 km,−8 km, 0), S2 (6 km,−8 km, 0), and S3 (6 km, 8 km, 0). At 2.08 Hertz, the

source-receiver distance is approximately equal to 12 Rayleigh wavelengths in the

layer, and 3.5 P wavelengths in the half-space, and at 3.8 Hertz, the distance is 21

Rayleigh wavelengths, and 6.3 P wavelengths. Due to symmetry, the analytical solu-

tions for S1 and S3 are the same in cylindrical coordinates (with z axis through the

source point). Receiver S2 is also the same with a sign change. For the numerical

solution, though, the path from the source to each receiver has a different axis of

propagation through the geometry of the sheared elements. The ray path to S1 is

aligned with the long axis of the elements, while the path to S2 is aligned with the

short axis. Receiver S3 has an intermediate alignment. In this way, anisotropy of
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wave propagation due to element distortion can be tested.

Fig. 2.4 compares velocity time histories from both the rectangular- and

sheared-mesh calculations against a reference solution computed by the frequency-

wavenumber (FK) method of Apsel and Luco (1983). The reference solution can

be viewed as semi-analytical, in that the FK method first forms the doubly Fourier

transformed (from time and radial coordinate to frequency and wavenumber) solu-

tion analytically, then inverts the transformed solution to space-time coordinates by

numerical quadrature. The radial and vertical components show good agreement for

early arriving P-waves and late arriving Rayleigh waves, with amplitude misfits up to

1% of peak velocity, and arrival time misfits up to 0.01s. Multiply reflected P waves

have greater misfits of up to 10% of peak velocity, and up to 0.04s in time. All of

the SOM curves have roughly the same level of misfit to the FK solution, and a high

level of agreement with each other. This indicates that mesh shearing is not the main

source of error for P-waves and Rayleigh waves. Given the source bandwidth noted

above, the level of waveform agreement achieved is consistent with expectations for a

second-order accurate method, for which points-per-wavelength requirements in the

range 10-15 are typically cited. The numerical errors take the form of non-physical

dispersion, leading to phase velocity errors that (for second-order methods) increase

monotonically with frequency (e.g., Virieux , 1986) so of course the actual points-per-

wavelength requirement depends upon how much tolerance for phase errors one has

in a given application.

The effects of mesh anisotropy are most apparent for S-wave arrivals in the trans-

verse component. Interestingly, the sheared mesh curves consistently match FK better

than does the rectangular mesh curve. For each arrival, S1 is the closest match, fol-

lowed by S3, then S2, and finally the rectangular case. We have observed that the

differences between the stations increases with hourglass viscosity β, and we attribute
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Figure 2.4: Simulated ground velocity compared to the reference solu-
tion calculated by frequency-wavenumber integration (FK). For com-
parison purposes, the polarity of S2 has been inverted to match stations
S1 and S3.
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X

Y

R 0

Figure 2.5: Close-in view of the mesh for a semi-circular canyon. The
mesh extends outward to rectangular boundaries at x = ±11R0 and
y = 11R0.

the higher mismatch for the rectangular mesh to hourglass oscillations, and imperfect

removal of them by the hourglass correction scheme. Rectangular meshes are more

susceptible to hourglass errors due to stronger coherence of the grid oscillation modes.

Conversely, a greater diversity of nodal spacing and relative position lead to reduced

hourglass mode coherence in the sheared mesh.

2.7 Semi-circular Canyon Test

Our second numerical test aims to verify the free surface boundary condition in

the presence of topographic features. A vertically incident P wave on a semi-circular

canyon presents a challenging test for numerical methods, as significant energy is

converted to SV and Rayleigh waves, and relative amplification is highly variable in

and around the canyon. The problem has been thoroughly studied using various types

of boundary integral methods that we may use to verify the results of our present

method.

The problem is set up with dimensionless parameters ρ = 1, Vp = 2, Vs = 1,

γ = 0, and a semi-circular cavity of radius R0 = 1 at the surface of a half space

(Fig. 2.5). We accommodate the 2D geometry by constructing a mesh with a thickness
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of one element in the z direction, and restricting motion to the x − y plane. To

facilitate planar boundary conditions, the outer boundaries are made rectangular.

The dimensions of the mesh are 22R0 × 11R0. Elements gradually increase in size

from 0.005R0 at the canyon to 0.07R0 at the boundaries. Computational savings

are realized by calculating solutions for only the positive x half of the mesh, and

enforcing a symmetry boundary condition along the y-axis. The symmetry boundary

condition is also applied to the x = 11R0 boundary, which is placed far enough from

the canyon, that no horizontal motion is received during the simulation time. The

vertically incident P wave is introduced as a boundary condition on displacement at

the y = 11R0 boundary. We mention that the time function of the source is a Ricker

wavelet of f0 = 0.5, though the exact form is not crucial for the method of analysis

using spectral ratios. The computation is run for 6000 iterations with a time step of

∆t = 0.002.

Analysis is preformed in terms of normalized frequency f0 = ωR0/2πVs. We

consider the displacement amplitude at the surface for two frequencies: f0 = 0.25,

and f0 = 1.0. The low frequency case, studied by Wong (1982), Sánchez-Sesma et al.

(1985), and Mossessian and Dravinski (1987), corresponds to a P wavelength of four

times the canyon width, and an S wavelength of twice the canyon width. The high

frequency case, also studied by Wong , as well as Kawase (1988), and Sánchez-Sesma

and Campillo (1991), corresponds to a P wavelength equal to the canyon width, and

an S wavelength equal to half of the canyon width. Our results agree particularly

well with the more recent studies (Fig. 2.6). For the high frequency case, the limiting

factor for satisfactory agreement, is the spatial resolution of the P wave at the bottom

bottom boundary where elements are largest. For f0 = 1.0, the resolution is 28 points

per wavelength at the bottom. We have seen noticeable differences in the surface

response, when the resolution goes below 20 points per wavelength for the P wave
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Figure 2.6: Surface displacement amplitude, at frequencies f0 = 0.25
(top) and f0 = 1.0 (bottom), as function of horizontal distance from the
center of the canyon. Amplitudes are relative to the vertically incident
P wave source. Results digitized from previous studies are shown for
comparison.
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source. The f = 0.25 signal is more than adequately resolved in the discretization,

with at least 50 points per wavelength for all types of waves.

2.8 Parallelization

For large computational tasks, code parallelization is required for maximal utiliza-

tion of modern computer hardware. A significant benefit of the structured mesh ap-

proach we have taken is that apportioning work among multiple processors is straight-

forward. We have implemented domain decomposition, where the mesh is subdivided

and distributed across processors. During each time step, between equations (2.65)

and (2.66) in the computational cycle, the nodal acceleration field at each sub-domain

edges is transmitted to the neighboring sub-domain. In this way, the sub-domains

are connected to form a single global computational domain.

To test parallel performance, we benchmarked our code on the TeraGrid IA64

cluster at the San Diego Supercomputer Center. A traditional strong scaling test

measures runtime speedup for a fixed size problem as the number of processors in-

creases. However, due to the distributed memory architecture of the cluster, it is

impossible for a fixed size problem to fit in a single processor’s memory and at the

same time be a representative test for the communication and memory access pat-

terns of a typical real-world, large-scale problem. For this reason, we prefer a weak

scaling test in which the problem size is increased proportionally to the number of

processors. Our weak scaling benchmark consists of a problem size of 128×128×128

nodes per processor, run for 10 time steps. Timing begins after code initialization,

since, though insignificant for a long run, initialization time might well influence a

short-running benchmark test. The tests take about 30 seconds to run on TeraGrid.

Ideal weak scaling occurs when runtime stays the same as the number of processors

(and problem size) increases. The code achieves 84% efficiency on 512 processors.
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Table 2.2: Weak scaling benchmark for the SDSC TeraGrid IA64 Clus-
ter.

Normalized
Processors run-time Efficiency

1 1.000 100%
8 1.176 85.1%
64 1.182 84.6%
512 1.188 84.2%

And, as shown in Table 2.2, the falloff in efficiency between 8 and 512 processors is

very gradual, indicating the code likely will continue to scale well to higher numbers

of processors.

2.9 Discussion and Conclusions

We have described a three-dimensional, arbitrary-order, support-operator method

for viscoelastic wave simulation, and implemented it for the second order case. We

have also implemented hourglass corrections, a free surface boundary condition, and

a PML absorbing boundary condition. Our method addresses the problem of adding

topography and non-planar boundaries to earthquake simulations. It has been tested

against frequency-wavenumber solutions for wave propagation in a layer over half-

space model (LOH.1), on a rectangular mesh as well as a mesh deformed by 54.7◦

simple shear. For wavelengths long enough to be propagated without significant

numerical dispersion (e.g., represented by more than 10 points per wavelength) in

the rectangular mesh, shearing the mesh introduces no measurable anisotropy. The

points-per-wavelength requirement found here is typical of second-order methods.

The use of a structured mesh permits very efficient parallel execution, and we have
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been able to demonstrate scalability of the algorithm at greater than 80% efficiency

on up to 512 processors.

The choice of using a logically rectangular mesh rather than an unstructured mesh

has trade-offs. Unstructured meshes, used by some of the other methods cited in the

introduction, are more adaptable to arbitrary problem geometry. They also allow

for a high degree of local mesh refinement, which is particularly useful for modeling

basins with a large range of material velocities, or for resolving small-scale detail of

fault rupture dynamics. On the other hand, structured meshes, though significantly

more restrictive, are more computationally efficient. If the differentiation operators

are saved in memory, floating-point operations are reduced by a factor of six, nearly

to the level of rectangular finite differences. This reduces actual run times by a factor

of three. Structured meshes also greatly simplify the tasks of parallelization, mesh

generation, and visualization of results. When the ratio of maximum to minimum

wavespeed over the problem domain is not extreme, and the problem geometry can

be adequately handled, structured meshes are quite advantageous. As an example,

we have run wave propagation problems of 1.8 billion nodes, using 1920 processors

and 250 GBytes of memory, that achieved a computation rate of 370 Gflop/s. That

example used the SCEC Community Velocity Model (Magistrale et al., 2000), with a

ratio of maximum to minimum wavespeed of roughly 20.

Our method can be easily adapted to split nodes and nonlinear boundary con-

ditions to simulate rupture. We presented rupture dynamics simulations on sheared

meshes in Ely et al. (2005) that achieved accuracy comparable to rectangular mesh

rupture dynamics methods. This will facilitate research on the dynamics of faults

with realistic morphology, which, among other things, may produce strong nonlinear

coupling between shear and normal stress perturbations. It also facilitates research

on dynamics of dipping faults.
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Because the method works explicitly with stress components (rather than a stiff-

ness matrix, for example), it is easily generalized to calculate stresses from inelastic

constitutive models (e.g. Coulomb plasticity, damage rheology, etc.), at the cost of

saving the stress tensor components globally. This capability would be important

in the study earthquake rupture dynamics, for example, as rupture-induced off-fault

nonlinear deformation may be a significant contributor to the energy budget of earth-

quakes, and may also influence strong motion amplitudes.

We have formulated the SOM method for arbitrary order of accuracy, leaving the

potential for developing a higher order algorithm. At higher than order two, how-

ever, it may not be possible to solve integral (2.20) algebraically. Instead, numerical

quadrature would be required to calculate the operator weights. Either method of

calculating the weights will be computationally costly, and the optimal scheme may

be to store the weights rather that recalculate them on-the-fly. In a stored scheme,

fourth-order operators, with a 4 × 4 × 4 stencil, are eight times more costly than

second-order operators in terms of storage and computations per time-step required

to compute the spatial derivatives. When the entire numerical algorithm is consid-

ered, this translates to a five-fold increase in storage and computations for going

to fourth order. The increased accuracy, though, reduces the points-per-wavelength

requirement, permitting spatial and temporal resolution to be reduced. If the points-

per-wavelength requirement can be reduced enough to surpass the break-even point

in the cost trade-off, then the fourth-order method will be beneficial. Given that the

memory usage goes like the third power of spatial resolution, and computational cost

goes like the fourth power, we would need a factor of 3
√

5 points-per-wavelength gain

to break even on storage, and a factor of 4
√

5 gain to break even on computations.
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Appendix: Spatial Difference Operators

These are the 3D, second-order difference operators for gradient and divergence.
Equations (2.92) through (2.97) are the exactly integrated versions, and equations
(2.99) through (2.103) are the one-point quadrature versions.
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Exactly integrated gradient, x component:

(DxF )000 = 1
12

{
F111

[
(Y100 − Y011)(Z110 − Z101) + Y011(Z001 − Z010)

+(Y010 − Y101)(Z011 − Z110) + Y101(Z100 − Z001)

+(Y001 − Y110)(Z101 − Z011) + Y110(Z010 − Z100)
]

+F100

[
(Y111 − Y000)(Z101 − Z110) + Y000(Z010 − Z001)

+(Y010 − Y101)(Z110 − Z000) + Y101(Z001 − Z111)

+(Y001 − Y110)(Z000 − Z101) + Y110(Z111 − Z010)
]

+F010

[
(Y111 − Y000)(Z110 − Z011) + Y000(Z001 − Z100)

+(Y100 − Y011)(Z000 − Z110) + Y011(Z111 − Z001)

+(Y001 − Y110)(Z011 − Z000) + Y110(Z100 − Z111)
]

+F001

[
(Y111 − Y000)(Z011 − Z101) + Y000(Z100 − Z010)

+(Y100 − Y011)(Z101 − Z000) + Y011(Z010 − Z111)

+(Y010 − Y101)(Z000 − Z011) + Y101(Z111 − Z100)
]

+F000

[
(Y011 − Y100)(Z010 − Z001) + Y100(Z101 − Z110)

+(Y101 − Y010)(Z001 − Z100) + Y010(Z110 − Z011)

+(Y110 − Y001)(Z100 − Z010) + Y001(Z011 − Z101)
]

+F011

[
(Y000 − Y111)(Z001 − Z010) + Y111(Z110 − Z101)

+(Y101 − Y010)(Z111 − Z001) + Y010(Z000 − Z110)

+(Y110 − Y001)(Z010 − Z111) + Y001(Z101 − Z000)
]

+F101

[
(Y000 − Y111)(Z100 − Z001) + Y111(Z011 − Z110)

+(Y011 − Y100)(Z001 − Z111) + Y100(Z110 − Z000)

+(Y110 − Y001)(Z111 − Z100) + Y001(Z000 − Z011)
]

+F110

[
(Y000 − Y111)(Z010 − Z100) + Y111(Z101 − Z011)

+(Y011 − Y100)(Z111 − Z010) + Y100(Z000 − Z101)

+(Y101 − Y010)(Z100 − Z111) + Y010(Z011 − Z000)
]}

(2.92)
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Exactly integrated divergence, x component:

(DxW)111 = 1
12

{
W111

[
(Y211 − Y122)(Z121 − Z112) + Y211(Z221 − Z212)

+(Y121 − Y212)(Z112 − Z211) + Y121(Z122 − Z221)

+(Y112 − Y221)(Z211 − Z121) + Y112(Z212 − Z122)
]

+W100

[
(Y211 − Y100)(Z101 − Z110) + Y211(Z201 − Z210)

+(Y101 − Y210)(Z110 − Z211) + Y101(Z100 − Z201)

+(Y110 − Y201)(Z211 − Z101) + Y110(Z210 − Z100)
]

+W010

[
(Y121 − Y010)(Z110 − Z011) + Y121(Z120 − Z021)

+(Y110 − Y021)(Z011 − Z121) + Y110(Z010 − Z120)

+(Y011 − Y120)(Z121 − Z110) + Y011(Z021 − Z010)
]

+W001

[
(Y112 − Y001)(Z011 − Z101) + Y112(Z012 − Z102)

+(Y011 − Y102)(Z101 − Z112) + Y011(Z001 − Z012)

+(Y101 − Y012)(Z112 − Z011) + Y101(Z102 − Z001)
]

+W000

[
(Y011 − Y100)(Z110 − Z101) + Y011(Z010 − Z001)

+(Y101 − Y010)(Z011 − Z110) + Y101(Z001 − Z100)

+(Y110 − Y001)(Z101 − Z011) + Y110(Z100 − Z010)
]

+W011

[
(Y011 − Y122)(Z112 − Z121) + Y011(Z012 − Z021)

+(Y121 − Y012)(Z011 − Z112) + Y121(Z021 − Z122)

+(Y112 − Y021)(Z121 − Z011) + Y112(Z122 − Z012)
]

+W101

[
(Y101 − Y212)(Z211 − Z112) + Y101(Z201 − Z102)

+(Y112 − Y201)(Z101 − Z211) + Y112(Z102 − Z212)

+(Y211 − Y102)(Z112 − Z101) + Y211(Z212 − Z201)
]

+W110

[
(Y110 − Y221)(Z121 − Z211) + Y110(Z120 − Z210)

+(Y211 − Y120)(Z110 − Z121) + Y211(Z210 − Z221)

+(Y121 − Y210)(Z211 − Z110) + Y121(Z221 − Z120)
]}

(2.93)
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Exactly integrated gradient, y component:

(DyF )000 = 1
12

{
F111

[
(Z100 − Z011)(X110 −X101) + Z011(X001 −X010)

+(Z010 − Z101)(X011 −X110) + Z101(X100 −X001)

+(Z001 − Z110)(X101 −X011) + Z110(X010 −X100)
]

+F100

[
(Z111 − Z000)(X101 −X110) + Z000(X010 −X001)

+(Z010 − Z101)(X110 −X000) + Z101(X001 −X111)

+(Z001 − Z110)(X000 −X101) + Z110(X111 −X010)
]

+F010

[
(Z111 − Z000)(X110 −X011) + Z000(X001 −X100)

+(Z100 − Z011)(X000 −X110) + Z011(X111 −X001)

+(Z001 − Z110)(X011 −X000) + Z110(X100 −X111)
]

+F001

[
(Z111 − Z000)(X011 −X101) + Z000(X100 −X010)

+(Z100 − Z011)(X101 −X000) + Z011(X010 −X111)

+(Z010 − Z101)(X000 −X011) + Z101(X111 −X100)
]

+F000

[
(Z011 − Z100)(X010 −X001) + Z100(X101 −X110)

+(Z101 − Z010)(X001 −X100) + Z010(X110 −X011)

+(Z110 − Z001)(X100 −X010) + Z001(X011 −X101)
]

+F011

[
(Z000 − Z111)(X001 −X010) + Z111(X110 −X101)

+(Z101 − Z010)(X111 −X001) + Z010(X000 −X110)

+(Z110 − Z001)(X010 −X111) + Z001(X101 −X000)
]

+F101

[
(Z000 − Z111)(X100 −X001) + Z111(X011 −X110)

+(Z011 − Z100)(X001 −X111) + Z100(X110 −X000)

+(Z110 − Z001)(X111 −X100) + Z001(X000 −X011)
]

+F110

[
(Z000 − Z111)(X010 −X100) + Z111(X101 −X011)

+(Z011 − Z100)(X111 −X010) + Z100(X000 −X101)

+(Z101 − Z010)(X100 −X111) + Z010(X011 −X000)
]}

(2.94)
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Exactly integrated divergence, y component:

(DyW)111 = 1
12

{
W111

[
(Z211 − Z122)(X121 −X112) + Z211(X221 −X212)

+(Z121 − Z212)(X112 −X211) + Z121(X122 −X221)

+(Z112 − Z221)(X211 −X121) + Z112(X212 −X122)
]

+W100

[
(Z211 − Z100)(X101 −X110) + Z211(X201 −X210)

+(Z101 − Z210)(X110 −X211) + Z101(X100 −X201)

+(Z110 − Z201)(X211 −X101) + Z110(X210 −X100)
]

+W010

[
(Z121 − Z010)(X110 −X011) + Z121(X120 −X021)

+(Z110 − Z021)(X011 −X121) + Z110(X010 −X120)

+(Z011 − Z120)(X121 −X110) + Z011(X021 −X010)
]

+W001

[
(Z112 − Z001)(X011 −X101) + Z112(X012 −X102)

+(Z011 − Z102)(X101 −X112) + Z011(X001 −X012)

+(Z101 − Z012)(X112 −X011) + Z101(X102 −X001)
]

+W000

[
(Z011 − Z100)(X110 −X101) + Z011(X010 −X001)

+(Z101 − Z010)(X011 −X110) + Z101(X001 −X100)

+(Z110 − Z001)(X101 −X011) + Z110(X100 −X010)
]

+W011

[
(Z011 − Z122)(X112 −X121) + Z011(X012 −X021)

+(Z121 − Z012)(X011 −X112) + Z121(X021 −X122)

+(Z112 − Z021)(X121 −X011) + Z112(X122 −X012)
]

+W101

[
(Z101 − Z212)(X211 −X112) + Z101(X201 −X102)

+(Z112 − Z201)(X101 −X211) + Z112(X102 −X212)

+(Z211 − Z102)(X112 −X101) + Z211(X212 −X201)
]

+W110

[
(Z110 − Z221)(X121 −X211) + Z110(X120 −X210)

+(Z211 − Z120)(X110 −X121) + Z211(X210 −X221)

+(Z121 − Z210)(X211 −X110) + Z121(X221 −X120)
]}

(2.95)
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Exactly integrated gradient, z component:

(DzF )000 = 1
12

{
F111

[
(X100 −X011)(Y110 − Y101) + X011(Y001 − Y010)

+(X010 −X101)(Y011 − Y110) + X101(Y100 − Y001)

+(X001 −X110)(Y101 − Y011) + X110(Y010 − Y100)
]

+F100

[
(X111 −X000)(Y101 − Y110) + X000(Y010 − Y001)

+(X010 −X101)(Y110 − Y000) + X101(Y001 − Y111)

+(X001 −X110)(Y000 − Y101) + X110(Y111 − Y010)
]

+F010

[
(X111 −X000)(Y110 − Y011) + X000(Y001 − Y100)

+(X100 −X011)(Y000 − Y110) + X011(Y111 − Y001)

+(X001 −X110)(Y011 − Y000) + X110(Y100 − Y111)
]

+F001

[
(X111 −X000)(Y011 − Y101) + X000(Y100 − Y010)

+(X100 −X011)(Y101 − Y000) + X011(Y010 − Y111)

+(X010 −X101)(Y000 − Y011) + X101(Y111 − Y100)
]

+F000

[
(X011 −X100)(Y010 − Y001) + X100(Y101 − Y110)

+(X101 −X010)(Y001 − Y100) + X010(Y110 − Y011)

+(X110 −X001)(Y100 − Y010) + X001(Y011 − Y101)
]

+F011

[
(X000 −X111)(Y001 − Y010) + X111(Y110 − Y101)

+(X101 −X010)(Y111 − Y001) + X010(Y000 − Y110)

+(X110 −X001)(Y010 − Y111) + X001(Y101 − Y000)
]

+F101

[
(X000 −X111)(Y100 − Y001) + X111(Y011 − Y110)

+(X011 −X100)(Y001 − Y111) + X100(Y110 − Y000)

+(X110 −X001)(Y111 − Y100) + X001(Y000 − Y011)
]

+F110

[
(X000 −X111)(Y010 − Y100) + X111(Y101 − Y011)

+(X011 −X100)(Y111 − Y010) + X100(Y000 − Y101)

+(X101 −X010)(Y100 − Y111) + X010(Y011 − Y000)
]}

(2.96)
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Exactly integrated divergence, z component:

(DzW)111 = 1
12

{
W111

[
(X211 −X122)(Y121 − Y112) + X211(Y221 − Y212)

+(X121 −X212)(Y112 − Y211) + X121(Y122 − Y221)

+(X112 −X221)(Y211 − Y121) + X112(Y212 − Y122)
]

+W100

[
(X211 −X100)(Y101 − Y110) + X211(Y201 − Y210)

+(X101 −X210)(Y110 − Y211) + X101(Y100 − Y201)

+(X110 −X201)(Y211 − Y101) + X110(Y210 − Y100)
]

+W010

[
(X121 −X010)(Y110 − Y011) + X121(Y120 − Y021)

+(X110 −X021)(Y011 − Y121) + X110(Y010 − Y120)

+(X011 −X120)(Y121 − Y110) + X011(Y021 − Y010)
]

+W001

[
(X112 −X001)(Y011 − Y101) + X112(Y012 − Y102)

+(X011 −X102)(Y101 − Y112) + X011(Y001 − Y012)

+(X101 −X012)(Y112 − Y011) + X101(Y102 − Y001)
]

+W000

[
(X011 −X100)(Y110 − Y101) + X011(Y010 − Y001)

+(X101 −X010)(Y011 − Y110) + X101(Y001 − Y100)

+(X110 −X001)(Y101 − Y011) + X110(Y100 − Y010)
]

+W011

[
(X011 −X122)(Y112 − Y121) + X011(Y012 − Y021)

+(X121 −X012)(Y011 − Y112) + X121(Y021 − Y122)

+(X112 −X021)(Y121 − Y011) + X112(Y122 − Y012)
]

+W101

[
(X101 −X212)(Y211 − Y112) + X101(Y201 − Y102)

+(X112 −X201)(Y101 − Y211) + X112(Y102 − Y212)

+(X211 −X102)(Y112 − Y101) + X211(Y212 − Y201)
]

+W110

[
(X110 −X221)(Y121 − Y211) + X110(Y120 − Y210)

+(X211 −X120)(Y110 − Y121) + X211(Y210 − Y221)

+(X121 −X210)(Y211 − Y110) + X121(Y221 − Y120)
]}

(2.97)
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One-point quadrature gradient, x component:

(DxF )000 = 1
16

{
(F111 − F000)

[
(Y100 − Y011)(Z010 − Z101 − Z001 + Z110)

+(Y010 − Y101)(Z001 − Z110 − Z100 + Z011)

+(Y001 − Y110)(Z100 − Z011 − Z010 + Z101)
]

+(F100 − F011)
[
(Y111 − Y000)(Z001 − Z110 − Z010 + Z101)

+(Y010 − Y101)(Z111 − Z000 − Z001 + Z110)

+(Y001 − Y110)(Z010 − Z101 − Z111 + Z000)
]

+(F010 − F101)
[
(Y111 − Y000)(Z100 − Z011 − Z001 + Z110)

+(Y001 − Y110)(Z111 − Z000 − Z100 + Z011)

+(Y100 − Y011)(Z001 − Z110 − Z111 + Z000)
]

+(F001 − F110)
[
(Y111 − Y000)(Z010 − Z101 − Z100 + Z011)

+(Y100 − Y011)(Z111 − Z000 − Z010 + Z101)

+(Y010 − Y101)(Z100 − Z011 − Z111 + Z000)
]}

(2.98)
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One-point quadrature divergence, x component:

(DxW)111 = 1
16

{
W111

[
(Y211 − Y122)(Z121 − Z212 − Z112 + Z221)

+(Y121 − Y212)(Z112 − Z221 − Z211 + Z122)

+(Y112 − Y221)(Z211 − Z122 − Z121 + Z212)
]

+W100

[
(Y211 − Y100)(Z101 − Z210 − Z110 + Z201)

+(Y101 − Y210)(Z110 − Z201 − Z211 + Z100)

+(Y110 − Y201)(Z211 − Z100 − Z101 + Z210)
]

+W010

[
(Y121 − Y010)(Z110 − Z021 − Z011 + Z120)

+(Y110 − Y021)(Z011 − Z120 − Z121 + Z010)

+(Y011 − Y120)(Z121 − Z010 − Z110 + Z021)
]

+W001

[
(Y112 − Y001)(Z011 − Z102 − Z101 + Z012)

+(Y011 − Y102)(Z101 − Z012 − Z112 + Z001)

+(Y101 − Y012)(Z112 − Z001 − Z011 + Z102)
]

+W000

[
(Y011 − Y100)(Z010 − Z101 − Z001 + Z110)

+(Y101 − Y010)(Z001 − Z110 − Z100 + Z011)

+(Y110 − Y001)(Z100 − Z011 − Z010 + Z101)
]

+W011

[
(Y011 − Y122)(Z012 − Z121 − Z021 + Z112)

+(Y121 − Y012)(Z021 − Z112 − Z122 + Z011)

+(Y112 − Y021)(Z122 − Z011 − Z012 + Z121)
]

+W101

[
(Y101 − Y212)(Z201 − Z112 − Z102 + Z211)

+(Y112 − Y201)(Z102 − Z211 − Z212 + Z101)

+(Y211 − Y102)(Z212 − Z101 − Z201 + Z112)
]

+W110

[
(Y110 − Y221)(Z120 − Z211 − Z210 + Z121)

+(Y211 − Y120)(Z210 − Z121 − Z221 + Z110)

+(Y121 − Y210)(Z221 − Z110 − Z120 + Z211)
]}

(2.99)
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One-point quadrature gradient, y component:

(DyF )000 = 1
16

{
(F111 − F000)

[
(Z100 − Z011)(X010 −X101 −X001 + X110)

+(Z010 − Z101)(X001 −X110 −X100 + X011)

+(Z001 − Z110)(X100 −X011 −X010 + X101)
]

+(F100 − F011)
[
(Z111 − Z000)(X001 −X110 −X010 + X101)

+(Z010 − Z101)(X111 −X000 −X001 + X110)

+(Z001 − Z110)(X010 −X101 −X111 + X000)
]

+(F010 − F101)
[
(Z111 − Z000)(X100 −X011 −X001 + X110)

+(Z001 − Z110)(X111 −X000 −X100 + X011)

+(Z100 − Z011)(X001 −X110 −X111 + X000)
]

+(F001 − F110)
[
(Z111 − Z000)(X010 −X101 −X100 + X011)

+(Z100 − Z011)(X111 −X000 −X010 + X101)

+(Z010 − Z101)(X100 −X011 −X111 + X000)
]}

(2.100)
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One-point quadrature divergence, y component:

(DyW)111 = 1
16

{
W111

[
(Z211 − Z122)(X121 −X212 −X112 + X221)

+(Z121 − Z212)(X112 −X221 −X211 + X122)

+(Z112 − Z221)(X211 −X122 −X121 + X212)
]

+W100

[
(Z211 − Z100)(X101 −X210 −X110 + X201)

+(Z101 − Z210)(X110 −X201 −X211 + X100)

+(Z110 − Z201)(X211 −X100 −X101 + X210)
]

+W010

[
(Z121 − Z010)(X110 −X021 −X011 + X120)

+(Z110 − Z021)(X011 −X120 −X121 + X010)

+(Z011 − Z120)(X121 −X010 −X110 + X021)
]

+W001

[
(Z112 − Z001)(X011 −X102 −X101 + X012)

+(Z011 − Z102)(X101 −X012 −X112 + X001)

+(Z101 − Z012)(X112 −X001 −X011 + X102)
]

+W000

[
(Z011 − Z100)(X010 −X101 −X001 + X110)

+(Z101 − Z010)(X001 −X110 −X100 + X011)

+(Z110 − Z001)(X100 −X011 −X010 + X101)
]

+W011

[
(Z011 − Z122)(X012 −X121 −X021 + X112)

+(Z121 − Z012)(X021 −X112 −X122 + X011)

+(Z112 − Z021)(X122 −X011 −X012 + X121)
]

+W101

[
(Z101 − Z212)(X201 −X112 −X102 + X211)

+(Z112 − Z201)(X102 −X211 −X212 + X101)

+(Z211 − Z102)(X212 −X101 −X201 + X112)
]

+W110

[
(Z110 − Z221)(X120 −X211 −X210 + X121)

+(Z211 − Z120)(X210 −X121 −X221 + X110)

+(Z121 − Z210)(X221 −X110 −X120 + X211)
]}

(2.101)
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One-point quadrature gradient, z component:

(DzF )000 = 1
16

{
(F111 − F000)

[
(X100 −X011)(Y010 − Y101 − Y001 + Y110)

+(X010 −X101)(Y001 − Y110 − Y100 + Y011)

+(X001 −X110)(Y100 − Y011 − Y010 + Y101)
]

+(F100 − F011)
[
(X111 −X000)(Y001 − Y110 − Y010 + Y101)

+(X010 −X101)(Y111 − Y000 − Y001 + Y110)

+(X001 −X110)(Y010 − Y101 − Y111 + Y000)
]

+(F010 − F101)
[
(X111 −X000)(Y100 − Y011 − Y001 + Y110)

+(X001 −X110)(Y111 − Y000 − Y100 + Y011)

+(X100 −X011)(Y001 − Y110 − Y111 + Y000)
]

+(F001 − F110)
[
(X111 −X000)(Y010 − Y101 − Y100 + Y011)

+(X100 −X011)(Y111 − Y000 − Y010 + Y101)

+(X010 −X101)(Y100 − Y011 − Y111 + Y000)
]}

(2.102)
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One-point quadrature divergence, z component:

(DzW)111 = 1
16

{
W111

[
(X211 −X122)(Y121 − Y212 − Y112 + Y221)

+(X121 −X212)(Y112 − Y221 − Y211 + Y122)

+(X112 −X221)(Y211 − Y122 − Y121 + Y212)
]

+W100

[
(X211 −X100)(Y101 − Y210 − Y110 + Y201)

+(X101 −X210)(Y110 − Y201 − Y211 + Y100)

+(X110 −X201)(Y211 − Y100 − Y101 + Y210)
]

+W010

[
(X121 −X010)(Y110 − Y021 − Y011 + Y120)

+(X110 −X021)(Y011 − Y120 − Y121 + Y010)

+(X011 −X120)(Y121 − Y010 − Y110 + Y021)
]

+W001

[
(X112 −X001)(Y011 − Y102 − Y101 + Y012)

+(X011 −X102)(Y101 − Y012 − Y112 + Y001)

+(X101 −X012)(Y112 − Y001 − Y011 + Y102)
]

+W000

[
(X011 −X100)(Y010 − Y101 − Y001 + Y110)

+(X101 −X010)(Y001 − Y110 − Y100 + Y011)

+(X110 −X001)(Y100 − Y011 − Y010 + Y101)
]

+W011

[
(X011 −X122)(Y012 − Y121 − Y021 + Y112)

+(X121 −X012)(Y021 − Y112 − Y122 + Y011)

+(X112 −X021)(Y122 − Y011 − Y012 + Y121)
]

+W101

[
(X101 −X212)(Y201 − Y112 − Y102 + Y211)

+(X112 −X201)(Y102 − Y211 − Y212 + Y101)

+(X211 −X102)(Y212 − Y101 − Y201 + Y112)
]

+W110

[
(X110 −X221)(Y120 − Y211 − Y210 + Y121)

+(X211 −X120)(Y210 − Y121 − Y221 + Y110)

+(X121 −X210)(Y221 − Y110 − Y120 + Y211)
]}

(2.103)



Chapter 3

A Support-Operator Method for 3D

Rupture Dynamics

Abstract

We present a numerical method to simulate spontaneous shear crack propaga-

tion within a heterogeneous, three-dimensional, viscoelastic medium. Wave motions

are computed on a logically rectangular hexahedral mesh, using the generalized fi-

nite difference method of Support Operators (SOM). This approach enables modeling

of non-planar surfaces and non-planar ruptures. Our implementation, the Support

Operator Rupture Dynamics code (SORD), is highly scalable, enabling large scale,

multi-processors calculations. The fault surface is modeled by coupled double nodes,

where rupture occurs as dictated by the local stress conditions and a frictional failure

law. The method successfully performs test problems developed for the Southern Cal-

ifornia Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earth-

quake rupture code validation exercise, showing good agreement with semi-analytical

boundary integral method results. We undertake further dynamic rupture tests to

quantify numerical errors introduced by shear deformations to the hexahedral mesh.

55



56

We generate a family of meshes distorted by simple shearing, in the along-strike

direction, up to a maximum of 73-degrees. For SCEC/USGS validation problem

number 3, grid-induced errors increase with mesh shear angle, with the logarithm

of error approximately proportional to angle over the range tested. At 73-degrees,

RMS misfits are about 10% for peak slip rate, and 0.5% for both rupture time and

total slip, indicating that the method (which up to now we have applied mainly

to near-vertical strike-slip faulting) is also capable of handling geometries appropri-

ate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate

non-planar rupture effects, by modifying the test geometry to include, respectively,

cylindrical curvature and sharp kinks.

3.1 Introduction

The simulation of earthquake rupture dynamics on non-planar faults embedded

in a three dimensional, heterogeneous medium has been addressed by a number of

methods. Aagaard (1999) and Oglesby et al. (2000) used finite element methods;

Festa (2004) and Vilotte et al. (2005) used spectral element methods; Zhang et al.

(2006), Kase and Day (2006) and Cruz-Atienza et al. (2007) used modified finite

difference schemes; and Benjemaa et al. (2007) used a finite volume technique. The

high spatial sampling necessary to adequately resolve the rupture process presents

a substantial computational challenge to most methods. Unstructured meshes with

adaptive local refinement is a strategy employed by some. The limitations of adaptive

meshing are that grid generation is more cumbersome, and algorithms may be less

efficient and more difficult to adapt for parallel computation. A more ’brute force’

approach is to densely sample the model everywhere with a mesh of regular structure,

and to exploit that structure to create highly efficient and parallelizable algorithms.

We have adopted the latter approach, using the method of Support Operators, a
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generalized finite difference method introduced by Samarskii et al. (1981, 1982) and

Shashkov (1996). The Support Operator method was applied to three-dimentional

elastic wave propagation by Ely et al. (2008), and we extend that application here to

including modeling of spontaneous rupture.

This paper begins by first reviewing the formulation for the wave propagation

equations and the spontaneous rupture boundary condition. We then lay out the

discretization scheme and algorithm for computing numerical solutions. Next, we

verify the method against semi-analytical solutions computed with the boundary

integral method. We then quantify errors induced due to deformation of the mesh by

simple shearing. Finally, we study the effects of curved and kinked fault geometry on

spontaneous rupture.

3.2 Theoretical Formulation

The faulting model is embedded within a three-dimensional, heterogeneous, vis-

coelastic solid. The linearized equations of motion for the medium are

gij = ∂j(ui + γvi) , (3.1)

σij = λ δij gkk + µ(gij + gji) , (3.2)

ai =
1

ρ
∂jσij , (3.3)

v̇i = ai , (3.4)

u̇i = vi , (3.5)

where σ is the stress tensor, u and v are displacement and velocity vectors, ρ is

density, λ and µ are elastic moduli, and γ is viscosity. All variables are functions of
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position x, while σ, u, and v are time dependent as well.

Two types of boundary condition are employed over the external surface of the

model: a free surface condition, where the normal component of stress is zero (σ · n̂ =

0), and a non-reflective absorbing boundary. The absorbing boundary condition is

a variation of the Perfectly Matched Layer (PML) method, introduced by Berenger

(1994, 1996), and adapted to support operators by Ely et al. (2008).

Following Day et al. (2005), faulting is modeled as an internal surface Σ across

which discontinuity of displacement may occur. The unit normal n̂(x) points from

the Σ− side to the Σ+ side of the surface Σ. The limiting values of displacement u−

and u+, at the surface Σ are

u±(x, t) = lim
ε→0

u(x± εn̂(x), t) . (3.6)

The two sides are permitted to separate, but not to interpenetrate, so the relative

normal displacement must be positive,

n̂ · (u+ − u−) ≥ 0 . (3.7)

The tangential discontinuity of displacement is denoted ’slip’ and given by

s = (I− n̂n̂) · (u+ − u−) . (3.8)

Stress is continuous across Σ, and when dotted with the unit normal, is resolved onto

Σ to give traction

τ = σ · n̂ . (3.9)

Traction is the surface density of force acting on Σ− due to Σ+. The shear component
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of traction is

τ s = (I− n̂n̂) · τ . (3.10)

The rupture boundary condition is formulated by specifying a frictional strength

τc that is a bound on the magnitude of shear traction

|τ s| ≤ τc . (3.11)

When shear traction is less than the frictional strength, slip does not occur and Σ is

invisible to elastic waves. Slip only occurs when shear traction reaches the level of the

frictional strength. Slip velocity opposes the direction of the shear traction according

to the relation

τcṡ = |ṡ|τ s . (3.12)

This specifies that direction of slip velocity is antiparallel to traction, since the relative

slip velocity of Σ− has the opposite sign of ṡ.

For the friction law, we use the slip-weakening model, that evolves as a function

of the slip path length. The path length is found by the integral

` =

∫ t

0

|ṡ|dt . (3.13)

The frictional strength is equal to the product of the normal traction and a coefficient

of friction,

τc = −τnµf (`) . (3.14)

τn = n̂ · σ · n̂ , (3.15)
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and the coefficient of friction is a function of the slip path length,

µf (`) =

 µs − (µs − µd)`/d0 ` ≤ d0

µd ` > d0 ,
(3.16)

where µs and µd are coefficients of static and dynamic friction, and d0 is the critical

slip-weakening distance. Fault opening ensures that normal stress is always negative

(never tensional), and therefor the sign of τc in (3.14) is always positive. This model

accounts for potentially repeated episodes of rupture initiation, and subsequent arrest

of sliding, a well as repeated episodes of fault opening, and subsequent fault closing.

The methodology can also accommodate more complex friction laws (such as those

based on rate- and state-dependent formulations) where there is stationary contact

only at zero shear traction, in which case inequality (3.11) becomes an equality and

the distinction between τ and τc disappears.

Traction is referenced to an initial state τ 0. This can either be resolved from

an initial stress field σ0, or specified directly in terms of a local coordinate system

on the fault, such as the strike and dip coordinate system traditionally used for

earthquake problems (Fig. 3.1). The former is useful for specifying tractions that

result, for example, from a regional tectonic load. The latter is most natural when

initial traction is determined by local frictional conditions on the fault. In general

they can be combined as

τ 0 = σ0 · n̂ + τnn̂ + τs1 ŝ1 + τs2 ŝ2 , (3.17)

where ŝ1 is the strike unit normal, and ŝ2 is the dip unit normal. The strike and dip

normals can be defined in terms of a downward pointing unit normal d̂,

ŝ1 = n̂× d̂ , (3.18)
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Figure 3.1: Non-planar fault with surface unit normals. Surface unit
normal n̂ and downward unit vector d̂ define the local strike and dip
coordinate system (ŝ1, ŝ2, n̂).

ŝ2 = ŝ1 × n̂ . (3.19)

3.3 Numerical Method

Aside from a narrow selection of problems for which analytical solutions have been

found, numerical approximations are needed to solve the equations of motion and fault

boundary conditions outlined above. Our numerical algorithm discretizes the wave

propagation problem using the Support Operators method (SOM) developed by Ely

et al. (2008). The scheme is explicit in time, and uses a hexahedral, logically rectan-

gular mesh. On the mesh we define the space of nodal functions HN consisting of the

hexahedra vertices, and the space of cell functions HC consisting of the hexahedra

volumes. Discrete variables are defined on the mesh with the same names as their cor-

responding continuous variables. On the nodes we have (ρ, γ, β,x,u,v, a,g) ∈ HN ,

and on the cells we have (λ, µ,Y ,σ) ∈ HC . Hourglass viscosity β and hourglass
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stiffness Y , used for numerical stabilization, are explained below. Time is discretize

with constant spacing ∆t. Spatial derivatives are approximated with the discrete

difference operators

Di : HN → HC and Di : HC → HN . (3.20)

Time derivatives are approximated with with second-order centered differences. The

time index is indicated by a superscript, and for clarity, spatial indices are omitted

in the discretized system of equations:

gij = Dj(u
n
i + γv

n−1/2
i ) , (3.21)

σij = Λ δijgkk +M(gij + gji) , (3.22)

ai = RDj σij −Qk Y Qk(u
n
i + βv

n−1/2
i ) , (3.23)

v
n+1/2
i = v

n−1/2
i + ∆t ai , (3.24)

un+1
i = uni + ∆t v

n+1/2
i . (3.25)

The material variables incorporate the cell volumes V C and the node volumes V N :

Λ =
λ

V C
, (3.26)

M =
µ

V C
, (3.27)

R =
1

ρV N
. (3.28)
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Instabilities in the numerical method due to non-uniform stress modes are corrected

for by hourglass operators

Qk : HN → HC and Qk : HC → HN . (3.29)

with hourglass viscosity β, and hourglass stiffness Y . Detailed derivations of difference

operators, hourglass corrections, and surface boundary conditions are provided in Ely

et al. (2008).

For the fault boundary condition, we use a split node technique described by

Andrews (1999) and Day et al. (2005). Here the method is generalized for non-planar

surfaces, and it is also modified to allow for fault opening. The double nodes are

constructed by inserting a layer of zero-thickness cells along the fault surface in which

all of the cell valued functions (Λ,M,Y ,σ) are zero. This has the effect of dividing

the problem domain into two uncoupled regions, and for the nodal functions, places

two sets of co-located values at each fault surface point. Equation (3.23) then gives

the acceleration for a frictionless free surface at the double nodes. Coupling of the

double nodes takes place by applying traction to the frictionless acceleration, to find

modified acceleration

ã±i = a±i ± A(τi − τ 0
i )R± , (3.30)

where A is the portion of the fault surface area associated with each node. The nodal

areas are found from the magnitude of the surface area normal vectors as detailed

in Appendix A. Traction is constructed according to the fault boundary condition

equations (3.7), (3.11), (3.12), and (3.14). We first find a trial traction, that is the

value of traction required for zero relative velocity between the double nodes at the

next time step,

τ̃i = τ 0
i +

(v+
i − v−i ) + ∆t(a+

i − a−i )

∆tA(R+ +R−)
. (3.31)
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The trial traction, if applied, would lock the current relative locations of the nodes.

The tangential contribution to the trial traction is

τ̃ si = τ̃i − n̂i
3∑
j=1

n̂j τ̃j , (3.32)

that has the magnitude

|τ̃ s| =
√

(τ̃ s1 )2 + (τ̃ s2 )2 + (τ̃ s3 )2 . (3.33)

We also calculate a trial value of normal traction required for zero relative normal

displacement,

τ̃n =
3∑
i=1

n̂i

[
τ̃i +

(u+
i − u−i )

∆t2A(R+ +R−)

]
. (3.34)

This traction, if applied, would ensure zero separation of the split nodes, in the

fault normal direction. We then apply the condition that normal traction cannot be

tensional,

τn =

 0 , τ̃n ≥ 0

τ̃n, τ̃n < 0 ,
(3.35)

and the condition that shear traction is bound by the frictional strength,

τ s =

 τc , |τ̃ s| ≥ τc

|τ̃ s| , |τ̃ s| < τc .
(3.36)

Finally, the total traction on the fault can be assembled,

τi = τn n̂i + τ s
τ̃ si
|τ̃ s| , (3.37)

and then the modified nodal accelerations (3.30) are used to update the nodal veloc-

ities by equation (3.24).
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3.4 Numerical Tests

To verify the numerical accuracy of our method we use one of a series of test

problems developed for the dynamic earthquake rupture code validation exercise or-

ganized by the Southern California Earthquake Center (SCEC) and the U.S. Geo-

logical Survey (USGS) (Harris and Archuleta, 2004; Harris et al., 2008). For test

problem number 3 (TPV3), Day et al. (2005) computed both boundary integral (BI)

and finite difference (FD) solutions to help establish mutual verification of the two

methods. We preform a similar analysis here and use the BI solutions from Day et al.

as a basis to compare TPV3 solutions computed with our SOM method.

TPV3 consists of a finite planar fault within an infinite elastic isotropic medium.

The material and fault parameters for TPV3 are given in Table 3.1. Rupture occurs

on a 30 × 15 km fault (diagrammed in Fig. 3.2) that is stressed parallel to the x

axis. Rupture is nucleated by a 1.5× 1.5 km patch in which shear traction is higher

than the initial static frictional strength τc(` = 0). Rupture spreads spontaneously

out from the nucleation patch, producing a mixed-mode rupture that reduces to pure

mode II along the x axis and pure mode III along the y axis.

Accurate numerical solutions for rupture dynamics problems require sufficient res-

olution of the cohesive zone. For slip-weakening friction, the cohesive zone is the

portion of the fault that has begun slipping, but not yet reached its dynamic friction

level. Day et al. found that with a mesh resolution of 50m (which we use for the

SOM models) the cohesive zone is sampled with a least 6.5 nodes for TPV3, and that

this is sufficient for accurate solutions (e.g., less than 1% error in rupture time). The

resolution requirement for BI is lower, so we are able to use the coarser 100m grid

BI solution from Day et al..

We preform three SOM calculations, one with a rectangular mesh of node spacing

∆x = 50m, and two more with meshes distorted by simple shearing. The first sheared
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Table 3.1: TPV3 Model Parameters

Material Parameters

ρ Density 2670 kg/m3

Vp P-wave speed 6000 m/s
Vs S-wave speed 3464 m/s
γ Viscosity 0.02
Y Hourglass stiffness 1.0
β Hourglass viscosity 2.0

Fault Parameters Nucleation Elsewhere

τn Initial normal traction -120 MPa -120 MPa
τs1 Initial shear traction 81.6 MPa 70.0 MPa
µs Coefficient of static friction 0.677 0.677
µd Coefficient of dynamic friction 0.525 0.525
d0 Critical slip distance 0.4 m 0.4 m

mesh, pictured in Fig. 3.2, is constructed from the rectangular mesh by applying the

coordinate mapping


X ′jkl

Y ′jkl

Z ′jkl

 =


Xjkl

Yjkl

Zjkl

+


0 1 1

0 0 0

0 0 0



Xjkl

Yjkl

−|Zjkl|

 , (3.38)

where (X, Y, Z) are coordinates of the rectangular mesh and (X ′, Y ′, Z ′) are coor-

dinates of the sheared mesh. We call this mesh ’S23’. The name is derived from

positions of the non-zero coefficient in the transformation matrix (second and third

positions, where elements are ordered with column index most rapidly varying). The
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Figure 3.2: Schematic diagram of the model configuration for sheared
mesh S23. The near fault block (a mirror image of the far block) is
removed to allow viewing of the fault surface. Fault surface elements
lying within the 30 × 15 km slipping portion of the fault are shaded
gray. Elements in the 3 × 3 km nucleation patch are shaded dark gray.
Slip is right-lateral, with mode II rupture along the x axis, and mode
III rupture along the y axis. Observation points are located at P1 and
P2.

second sheared mesh, named ’S26’, is constructed from the mapping


X ′jkl

Y ′jkl

Z ′jkl

 =


Xjkl

Yjkl

Zjkl

+


0 1 0

0 0 1

0 0 0



Xjkl

Yjkl

−|Zjkl|

 . (3.39)

Both mappings produce mirror symmetry across the fault plane, 45◦ shearing of the

fault surface, and a maximum of 54.7◦ of shearing in the volume. However, the shapes

of the elements are quite different between the two meshes.

To assess the level of agreement between BI and SOM solutions we first compare

the rupture arrival time (defined as the time when slip velocity surpasses 1 mm/s)

over the fault plane. During the early stages of rupture, the rupture arrival times

agree closely among BI and SOM solutions (Fig. 3.3). At later times, the rectangular
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SOM solution falls behind BI by as much as .022 s. The RMS difference (averaged

over the fault plane) is .009 s, or about 0.24% of the average rupture time of 3.56 s.

Rupture velocities on the sheared meshes are faster in the direction corresponding to

the long axis of the sheared elements, matching BI for S26 and slightly exceeding BI

for mesh S23. In the direction of the short axis of the elements, rupture velocities

are similar to the rectangular case–slightly slower than BI. The maximum and RMS

difference are .034 s and .010 s for mesh S23, and .021 s and .006 s for mesh S26.

Fig. 3.4 compares unfiltered times histories of shear traction, slip rate and slip at a

point P1, 7.5 km from the origin in the mode II direction. All important features are

closely matched, including: waveform shape and amplitude; time of initial rupture at

2.95 s; time of reflected arrival at 6.2 s; time of rupture arrest at 7 s; and the time

of short rupture reactivation at 8 s. The largest misfit is due to small oscillations

in the slip rate. At frequencies lower than the oscillations, the fit is nearly perfect.

Fig. 3.5 shows a similar comparison for point P2, 6 km from the origin in the mode

III direction.

Perhaps the most useful mesh deformation for earthquake rupture simulations

is shearing in the plane defined by the fault surface normal and the slip vector.

Shearing of this orientation does not effect the fault surface elements, and they remain

rectangular. Volume element are defected towards or away from the slip vector. This

geometry accommodates the case of dip-slip rupture on a dipping fault intersecting

the free surface, as well as the case of a vertical strike-slip fault with variable strike.

Low-angle thrust faults, in particular, may require drastic element deformations of

this type, so it is important to understand the numerical affects of such deformations.
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Figure 3.3: Rupture arrival time contours (s) comparing boundary
integral solutions (BI) to SOM solutions for a rectangular mesh and for
sheared meshes S23 and S26.
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Figure 3.4: Time histories of shear stress, slip, and slip rate for the
mode II, in-plane point P1. The right hand panels are magnified in
time to show detail of the rupture arrival.
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Figure 3.5: Time histories of shear stress, slip, and slip rate for the
mode III, anti-plane point P2. The right hand panels are magnified in
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To that end we ran a series of tests with the mapping


X ′jkl

Y ′jkl

Z ′jkl

 =


Xjkl

Yjkl

Zjkl

+


0 0 exz

0 0 0

0 0 0



Xjkl

Yjkl

−|Zjkl|

 , (3.40)

where exz is a variable amount of mesh strain. In our naming scheme this mesh

is called ’S3’. Mesh strain was increase to a maximum of 3, in increments of 0.5,

resulting in a maximum shear angle of 72.6◦.

Numerical errors are assessed by comparing each sheared mesh model to the refer-

ence rectangular mesh model. RMS differences in rupture arrival time, slip, and peak

slip rate are computed for the entire 30 × 15 km slipping portion of the fault. The

RMS differences increase logarithmically by roughly an order of magnitude over the

26.6◦ to 72.6◦ range of shearing (Fig. 3.6). At maximum shear the difference is 0.5%

for rupture time, 0.6% for slip, and 10.3% for peak slip rate. These results indicate

the method remains highly accurate for applications with modest shearing such as

60◦ dipping normal faults (30◦ shear) or vertical strike-slip faults with small changes

in strike. Even for low-angle trust faults, with high amounts mesh shear, accuracy is

likely acceptable for many applications.

3.5 Non-Planar Faults

Changes in fault direction can play an important role in the nucleation, termina-

tion, and radiated energy of earthquakes. Non-planar geometry provides a mechanism

by which dynamic changes in normal stress (and therefor friction) can occur. Detailed

study of non-planar rupture, using a variety of analysis and numerical methods, in-

clude work by Andrews (1989), Tada and Yamashita (1996), Aochi et al. (2000),
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Poliakov et al. (2002), Kase and Day (2006), Cruz-Atienza et al. (2007), Benjemaa

et al. (2007), and Adda-Bedia and Madariaga (2008). Laboratory scale model exper-

iments have also been performed by Rousseau and Rosakis (2003). Here we make

simple modifications to TPV3 to demonstrate the effects of fault curvature and sharp

fault kinks.

Our test problems modify TPV3 by varying the strike direction, keeping the fault

vertical, and keeping the total fault length the same at 30 km (Fig. 3.7). The first

test problem has cylindrical fault geometry of radius 90/π km, with the ends of the

fault rotated 30◦ relative the nucleation point. The second test problem has a kinked

geometry consisting of three planar segments with a 30◦ change in strike 7.5 km from

the nucleation point, on either side. The problems are otherwise identical to TPV3.

The grids are constructed so that the fault is discretized with square elements having

the same 50 km resolution as the rectangular planar model. No elements are sheared



74

Figure 3.7: TPV3 modified for cylindrical fault geometry (top) and for
kinked fault geometry (bottom).



75

more than 30◦, so gauging from the sheared mesh tests, we can expect that RMS

errors due to mesh shearing will be less than 0.2% for slip, less than 2% for slip rate,

and less than 0.05% for rupture time.

Typically, non-planar fault studies have set up a uniform external stress field that

is resolved onto the fault, resulting in variable traction conditions depending on the

fault’s local orientation. Here, we instead rotate the local initial stress field so that

the resolved traction on the fault remains in a fixed orientation relative to the local

fault orientation. The magnitudes of initial normal and shear traction are assigned

uniform values over the fault surface, regardless of local orientation. The goal is to

isolate the effects of non-planar geometry, without introducing heterogeneity in the

initial resolved tractions on the fault. This scheme presents a problem for the case of

a sharp kink, as it requires a discontinuity of stress at the kink. However, a perfectly

sharp discontinuity can not be represented by discrete equations, so the sharp kink

effectively becomes a curve of radius comparable to the discretization length in the

numerical solution.

Symmetry in the planar TVP3 model ensures that normal traction of the fault

remains constant at all times. A fundamental difference of the non-planar models is

that fault slip induces dynamic changes in normal traction (and frictional strength)

at other locations on the fault. In the cylindrical and kinked geometries, right-lateral

slip results in decompression (lower strength) in the negative x direction, and com-

pression (higher strength) in the positive x direction relative to the axis of the curve

or kink. For the cylindrical model the normal traction change is a gradual, nearly lin-

ear function of distance along the fault (Fig. 3.8). The kinked model develops large

stress concentrations at the kinks that rapidly decay with distance from the kink.

The stress concentrations have a sign change at the axis of the kink that divides the

decompressed side from the compressed side. In both models, the decompressed side
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has higher rupture velocity (Fig. 3.9) and higher total slip (Fig. 3.10).

The total moment release for the cylindrical model (34.0 × 1018 N-m) is greater

than the planar model (33.2 × 1018 N-m), and the moment release for the kinked

model (27.9 × 1018 N-m) is lower than the planar model. The lower moment for

the kinked model is due to the partial barriers to slip formed by the kinks, as seen

in slip profiles along the in-plane axis (Fig. 3.11). The kink barrier in the positive

x side causes rupture to pause for about two seconds before continuing to the next

fault segment. The two second pause is clearly visible in a space-times plot of slip

acceleration (Fig. 3.12).

Another effect seen in the space-time plot is the radiation of P and S waves from

the fault kicks at the time of their initial rupture. The kinked model in general has

a more complicated rupture history compared to the planar and cylindrical models.
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For the cylindrical model, the space-time plot shows that rupture along the antiplane

axis is primarily halted by the P-wave reflected from the lateral fault boundaries

(marked Pi). Towards the edges, rupture is briefly reactivated by laterally reflected

S-waves (Si) or vertically reflected S-waves (Sa). By contrast much of the kinked

model rupture is halted by the Sa wave. Rupture is reactivated on most of the

central segment after rupture begins on the compressed segment following the two

second pause. This second rupture stage is halted by a Pi wave and in some places

briefly reactivated by an Si wave.

3.6 Conclusion

We have extended the Support Operator numerical scheme for three-dimensional

viscoelastic wave propagation, previously developed by Ely et al. (2008), to model

non-planar spontaneous rupture. We implement a slip weakening friction model, and

the method is readily adaptable to other types of friction laws. The method is verified

against a boundary integral solution for planar rupture problems using both rectan-

gular meshes and meshes distorted by shearing. The accuracy of the sheared mesh

tests indicates that the method is suitable for modeling low-angle surface rupturing

thrust faults. Non-planar rupture effects were demonstrated using a cylindrical fault

geometry as well as a planar segmented, or kinked, geometry. The kinked geometry

introduces significant rupture complexity relative to planar and cylindrical cases, with

the kinks acting as partial barriers to slip that lead to high stress concentrations.
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Appendix: Calculation of Surface Normals and Nodal

Areas

Surface normals and nodal areas are needed for the fault boundary calculations.

On a hexahedral mesh they may be found as follows. Quadratic interpolation of 3×3

patch of boundary surface nodes with coordinates Xjk is given by

x(ξ) =
2∑

j,k=0

Njk(ξ)Xjk , (3.41)

where the shape functions Njkl(ξ) are formed from Lagrange interpolation polynomi-

als

Njk(ξ) = `2j(ξ)`
2
k(η) . (3.42)

The Lagrange polynomials of degree 2 are

`2j(ξ) =
2∏
i=0
i 6=j

ξ − Ξi

Ξj − Ξi

. (3.43)

The interpolation maps continuous Cartesian coordinates x to logical coordinates ξ,

and discrete nodal coordinates Xjk to logical nodal coordinates Ξjk. Surface area
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vectors are given by the Jacobian of the coordinate mapping

dS =
∂x

∂ξ
× ∂x

∂η
=



∣∣∣∣∣∣∣
∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂z
∂ξ

∂x
∂ξ

∂z
∂η

∂x
∂η

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣∣


(3.44)

The magnitude of the Jocobian J = |dS| gives the area accociated with each mesh

node, and the surface unit normal is n̂ = dS/J . Evaluating (3.41) at the central node

dS(Ξ11) gives

dSx11 =
1

12[
Y21(Z12 − Z10 + Z22 − Z20)

+Y12(Z01 − Z21 + Z02 − Z22)

+Y01(Z10 − Z12 + Z00 − Z02)

+Y10(Z21 − Z01 + Z20 − Z00)

+Y22(Z12 − Z21)

+Y00(Z10 − Z01)

+Y02(Z01 − Z12)

+Y20(Z21 − Z10)
]

(3.45)
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dSy11 =
1

12[
Z21(X12 −X10 +X22 −X20)

+Z12(X01 −X21 +X02 −X22)

+Z01(X10 −X12 +X00 −X02)

+Z10(X21 −X01 +X20 −X00)

+Z22(X12 −X21)

+Z00(X10 −X01)

+Z02(X01 −X12)

+Z20(X21 −X10)
]

(3.46)

dSz11 =
1

12[
X21(Y12 − Y10 + Y22 − Y20)

+X12(Y01 − Y21 + Y02 − Y22)

+X01(Y10 − Y12 + Y00 − Y02)

+X10(Y21 − Y01 + Y20 − Y00)

+X22(Y12 − Y21)

+X00(Y10 − Y01)

+X02(Y01 − Y12)

+X20(Y21 − Y10)
]

(3.47)

Quadratic interpolation cannot be used at the edge and corners nodes of the surface

where the 3×3 stencil would otherwise extend outside of the mesh. In this case we may

instead use linear interpolation in the direction normal to the edge. Fortunately, this

does not require constructing separate operators for each special case. It is handled

more simply by extending the mesh with ghost nodes, and duplicating the edge node
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coordinates into the ghost nodes. It can be shown that when the interior operators

(3.45)-(3.47) are applied at edges with such ghost nodes, the equations automatically

reduce to the proper linear interpolation equations.



Chapter 4

Dynamic Rupture Models for the

Southern San Andreas Fault

Abstract

Dynamic rupture, and resultant ground motions up to 0.25Hz, are simulated for

a Mw7.6 earthquake on the southern San Andreas Fault. Spontaneous rupture is

modeled with slip-weakening friction, and viscoelastic wave solutions are computed

with an explicit support-operator method. Piecewise planar geometry is used for the

fault surface. Initial traction conditions are derived from inversions of theMw7.3 1992

Landers strong ground motion records. The fault geometry and traction distribution

borrow heavily from the TeraShake2 simulations by Olsen et al. (2008). Heterogeneity

in the traction model leads to focusing of the rupture front, in some cases producing

super-shear rupture velocity in areas of high initial traction (asperities). Rupture

focusing sometimes occurs between the asperities, with the notable result that the

highest peak slip rates occur in areas of low initial traction. Low frequency ground

motion agrees with TeraShake2, though amplitudes are smaller due to the lower

overall event size (TeraShake2 simulated a Mw7.7 event). Separate solutions are

88
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computed for version 3.0 and 4.0, respectively, of the Southern California Earthquake

Center Community Velocity Model (SCEC-CVM). We also compare the case of a flat

ground surface (a common simplification made for finite difference calculations such

as TeraShake) to the case of the ground surface conformed to regional topography. We

find that the differences in the velocity models and the ground surface representations

have minimal effect on the early stages of rupture (before the event has reached

its full size) but the effects become substantial in the later stages of rupture. As

first seen in the TeraShake1 simulations (Olsen et al., 2006), stronger than expected

ground motions occur at the site of Montebello, due to a basin wave guide, though

the effect is not as strong in version 4.0 of the SCEC-CVM relative to version 3.0.

The overall distribution of simulated peak ground velocities is consistent with those

derived from the empirical model of Campbell and Bozorgnia (2007) for Mw7.6, in

the sense that the bulk of simulated PGVs are within the 16–84% probability of

exceedance (POE) range. Those simulated PGVs that would correspond to lower

POE in the Campbell/Bozorgnia empirical model are principally associated with

basin wave-guide and directivity effects.

4.1 Introduction

The southern San Andreas fault (SAF) is one of the most likely sources for the

next large earthquake in Southern California. The Working Group on California

Earthquake Probabilities (1995) estimates the The San Bernardino Mountain segment

has a 28% probability of rupturing within 30 years, and the Coachella Valley segment

has a 22% probability. A combined rupture of both segments, that study estimates,

would produce aMw7.6 earthquake in close proximity to the greater Los Angeles area.

The San Bernardino and Coachella segments last ruptured in 1812 and 1690 ± 20,

respectively (Weldon et al., 2004), events that occurred well before the deployment of
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seismic networks in southern California. So, in the absence of ground motion records

from a large SAF event in this region, we are faced with large uncertainty in the

expected ground motion from a future event.

Large scale numerical simulations have been used to help address some of this

uncertainty. The TeraShake1 simulations by Olsen et al. (2006) modeled 0–0.5 Hz

motion from aMw7.7 event on the southern SAF, using kinematic source models. The

kinematic sources were derived from slip models of the 2002Mw7.9 Denali earthquake

by Oglesby et al. (2004). Wave fields were propagated through the Southern California

Earthquake Center Community Velocity Model (SCEC-CVM) version 3.0 (Magistrale

et al., 2000; Kohler et al., 2003) with a staggered grid finite difference method. For

a NW propagating rupture, they found unexpectedly large ground motion in Los

Angeles basin that they attribute to a wave guide effect. The wave guide is formed

by the continuous chain of basins, connecting the fault zone to the Los Angeles basin,

lying at the southern foot of the San Gabriel and San Bernardino mountains. The

assumption of constant rupture velocity in their kinematic model, however, may have

over-estimated rupture directivity effects. TeraShake1 was followed by the TeraShake2

simulations by Olsen et al. (2008) that investigated similar scenarios, replacing the

kinematic models with spontaneous rupture models. They found that the reduced

coherency of the wave field due to source complexities in the dynamic model, that

were not present in the kinematic TeraShake1 simulations, significantly reduced the

predicted ground motion in Los Angeles. They considered multiple scenarios with

different initial stress models, including both NW and SE propagating unilateral

rupture. A two step procedure was used in which the fault and velocity model were

first conformed to rectangular mesh (as required by the staggered finite difference

method) for computation of the spontaneous rupture solution on a planar fault. The

resultant slip motions were then mapped back to their proper spatial positions (on the
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original non-planar fault model of the SAF) and used as kinematic source functions

for the wave propagation simulation.

This study reexamines one of the NW propagating TeraShake2 scenarios, with up-

dated version 4.0 of the SCEC-CVM (Magistrale, 2005). Simulations are performed

with the Support Operator Rupture Dynamics (SORD) code developed by Ely et al.

(2008). SORD is based on a numerical scheme able to handle non-planar boundaries,

allowing rupture dynamics (on the non-planar SAF model) and wave propagation

to be computed simultaneously, and allowing true topography to be included in the

simulations (as was not the case in the TeraShake models). We present a set of

spontaneous rupture models that compare rupture behavior and ground motion us-

ing the two versions of the SCEC-CVM and also compare results from a flattened

topography model with those from a model incorporating true southern California

topography and bathymetry at the free surface.

4.2 Wave Propagation Model

The modeling region is a 600 × 300 × 80 km volume that includes southern Cal-

ifornia, northern Baja California, southwestern-most Arizona, the western Mojave

Desert, the southern San Joaquin valley, and the Channel Islands. The elastic prop-

erties of the volume are obtained from the SCEC-CVM, a three-dimensional model

of the upper mantle, crust, and sedimentary basins, compiled from a broad range of

sources, including surface geology, geotechnical borings, gravity, seismic refraction,

regional and teleseismic tomography, and teleseismic receiver functions. Version 4.0

of the SCEC-CVM (Magistrale, 2005) updates version 3.0 with a more complete de-

scription of the Salton Trough (Fig. 4.1) and shallower depth to basement rock in the

Chino basin based on gravity and seismic reflection data (Fig. 4.2 and 4.3).

Wave solutions in the volume are computed with an explicit support operator
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Figure 4.1: S-wave velocity at 500m depth for the SCEC-CVM version
3.0 (top) and version 4.0 (bottom). The dashed line marks the loca-
tion of the vertical strike-slip rupture. The Salton Trough, underlying
Coachella and Mexicali, and incomplete in version 3.0, is updated in
version 4.0.
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Figure 4.2: Sedimentary basin depth for the SCEC-CVM version 3.0
(top) and version 4.0 (bottom), as defined by the depth to the shallowest
occurrence of S-wave velocities greater than or equal to 2.5 km/s.
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Figure 4.3: Cross-section of S-wave velocity from Los Angeles to San
Bernardino, comparing SCEC-CVM version 3.0 (top) and version 4.0
(bottom). The Chino basin at this location is 1 km deep in version 3.0,
and 400m deep in version 4.0.

method (Ely et al., 2008). The method uses non-rectangular hexahedral meshes, and

is second-order accurate in space and time. The Kelvin-Voigt model of viscoelasticity

is used, for which the anelastic quality factor Q is inversely proportional to wave

frequency. Besides the anelastic energy losses (attenuation) provided by this model

during wave propagation, the viscosity helps to prevent numerical noise from affecting

the (nonlinear) rupture calculations. Numerical dispersion extends to lower frequen-

cies in low-velocity material, so we set viscosity inversely proportional to the S-wave

velocity, by the ratio γ = 400/Vs. In order to increase the resolvable bandwidth

of the simulations, we set artificial lower limits of 500m/s for S-wave velocity, and

1500m/s for P-wave velocity. For second-order methods, such as this one, numerical

dispersion results in phase velocity errors of about 1% at a resolution of 10 grid points

per wavelength (Virieux , 1986). Using this as a minimum resolution, and given the

node spacing of 200m used, we should be able to resolve frequencies up to 0.25Hz

with reasonable accuracy. For comparison, the forth-order finite difference method

of the TeraShake simulations, needing approximately 5 grid points per wavelength,

is able to resolve up to 0.5Hz, for the same grid spacing. Additionally, TeraShake

incorporates a more realistic attenuation model using the course-grained memory vari-
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Table 4.1: Comparative summary of the numerical wave simulation
methods used for TeraShake simulations by Olsen et al. (2008) and for
the Support Operator Rupture Dynamics (SORD) code.

TeraShake SORD

Numerical scheme Finite difference Support operator

Operator accuracy O(∆x4,∆t2) O(∆x2,∆t2)

Points-per-wavelength ≈5 ≈10
requirement

Mesh Uniform rectangular, Hexahedral, partially
staggered grid staggered grid

Attenuation model Course grain memory Kelvin-Voight viscosity
Q ∼ Vs Q ∼ Vsω

−1

Absorbing boundary PML PML

able technique (Day , 1998; Day and Bradley , 2001). The memory variable technique

can model attenuation that is nearly constant with respect to frequency, which is a

good representation of crustal material within the simulation bandwidth. The higher

order accuracy and more realistic attenuation model make the TeraShake method

superior for modeling waves in rectangular geometries. The advantage of SORD,

and similar methods, is in modeling non-planar topography and fault surfaces. Both

TeraShake and SORD suppress artificial boundary reflections with perfectly matched

layers (PML), introduced by Berenger (1994, 1996), and adapted to their respec-

tive numerical schemes by Marcinkovich and Olsen (2003) and Ely et al. (2008). A

summary of the relative merits of TeraShake and SORD is given in Table 4.1.
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4.3 Source Model

The fault geometry is modeled by five planar segments vertically extrapolated from

the SAF trace in the 2002 USGS National Hazard Maps by Frankel et al. (2002). The

total length is 200 km, and the depth is 16 km. This simplified geometry facilitated

the procedure used in TeraShake2 to map the fault and surrounding velocity model to

a rectangular grid. Though our numerical scheme does not have the same geometrical

restrictions, we use identical fault geometry for consistency in comparing results. The

largest misrepresentation of the simplified geometry lies in the constricting bend east

of San Gregornio Pass (at about the midpoint of the rupture trace), where the true

fault dip is much less than 90◦ (Seeber and Armbruster , 1995) and, by geometrical

considerations, the slip must have a thrust component.

Spontaneous rupture is modeled with a frictional boundary condition across the

fault surface at which the frictional strength is determined by the negative product

of the normal traction τn (negative in compression) and the coefficient of friction µf .

The fault slips accordingly so that shear traction never exceeds the frictional strength

|τ s| ≤ −µfτn . (4.1)

The model of friction is a slip-weakening law, with the coefficient of friction given by

µf (`) =

 µs − (µs − µd)`/d0 ` ≤ d0

µd ` > d0 ,
(4.2)

where µs and µd are the coefficients of static and dynamic friction, ` is the slip path

length, and d0 is the slip-weakening distance. A more complete discussion of the fault

boundary condition is give by Day et al. (2005).

To obtain a plausible set of dynamic parameters for the TeraShake2 scenarios,
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Olsen et al. (2008) used the results of a dynamic inversion of theMw7.3 1992 Landers

earthquake by Peyrat et al. (2001) that achieved good fit to Landers near-field strong

motion records in the 0-0.5Hz band. For TeraShake2, the Landers inversion was

scaled up to a Mw7.7 event by replicating the rupture three times laterally to extend

it to the total length to 200 km. Strong ground motion provides fairly good constraint

on the stress drop ∆τ = |τ 0
s| + µdτn. It does not by itself, however, provide good

constraint on the absolute magnitudes of τn, τ 0
s, µs, and µd. Peyrat et al. found

that Landers ground motion can be equally well fit by either an asperity model, with

heterogeneous initial stress, or a barrier model, with heterogeneous friction. So, for

the purposes of dynamic rupture simulation, there is leeway in how the dynamics can

be configured. TeraShake2 used an asperity model with the dominant heterogeneity

in the initial shear traction. Coefficients of friction were constant at µs = 1 and

µd = 0. The slip-weakening distance was constant at d0 = 1m, aside from a near-

surface modification, discussed below. In selecting parameters, the authors noted

a delicate balance between cases where rupture did not proceed at all, and cases

where the rupture proceeded at super-shear velocity. In order to create a model

with sustained sub-shear rupture velocity, they found it necessary to introduce small

along-strike variation of the normal stress (and therefore the friction), in the form of

an along-strike increase of normal stress in the direction of rupture.

For this study, we use a modified version of one of the NW propagating Tera-

Shake2 scenarios with the specific version number TeraShake2.2. Our model uses

coefficients of friction µs = 1.1 and µd = 0.5, initial normal traction τ 0
n = −20MPa,

and slip-weakening distance d0 = 0.5. Unlike TeraShake2.2, these parameters specify

a non-zero dynamic friction level. This prevents reverse and oscillatory slip, and in

that sense may be a better approximation of real fault behavior, though both models

neglect the strong velocity dependence that is indicated by experimental evidence
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(e.g., Tsutsumi and Shimamoto, 1997; Beeler et al., 2007) and thermal constraints

on friction (Rice, 2006). For the initial shear traction model (Fig. 4.4), we take the

TeraShake2.2 distribution, τ ′s, and apply a scale factor, an offset, and a 10% linear

taper,

τs = (0.6455τ ′s + 10)(1.05− 0.0005r) , (4.3)

where r is the horizontal distance (in km) along the fault from the SE end. Configured

as such, our models produce sustained sub-shear rupture, similar to TeraShake2.2,

but with a reduced magnitude of Mw = 7.6.

A problem with transplanting the Landers inversion onto the SAF for rupture

dynamic simulations is the discrepancy in velocity models at the near surface. The

1D velocity model used by Peyrat et al. for the inversion has a minimum S-wave

velocity of 1.98 km/s at the surface, while the minimum velocity for the rupture

models is 500m/s. To avoid unrealistically large slip and rupture velocities near the

surface, Olsen et al. made a number of adjustments to the dynamics parameters.

The initial shear traction was tapered to zero between 2 km and 1 km depth, and

set to zero over the 0–1 km depth range. Additionally, in the San Bernardino valley

only, initial normal traction was reduced, and dynamic slip-weakening friction was

replaced with constant friction by setting d0 to a very large number. This results

in the fault being highly dissipative near the surface. In this study, we have used

the same reduction of near surface shear traction, although after the rescaling, it is

no longer zero at the surface, but about 10MPa. We have not retained the normal

traction and slip-weakening modifications. We instead opt for a simplified model,

with constant values over the fault. This may result in unrealistic rupture near the

surface at some locations. However, it involves a relatively small percentage of the

fault surface, and the effect on far-field ground motions is presumably minor.

The hypocenter is located at 5 km depth, 9 km from the SE end of the fault. Rup-
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Figure 4.4: Initial shear traction on the fault surface based on dynamic
inversion of strong motion records from theMw7.3 1992 Landers earth-
quake. To scale the Landers event up to the required fault length, the
distribution is repeated multiple times laterally. Initial normal traction
is constant over the fault at -20 MPa.

ture is nucleated by lowering the coefficient of friction to it’s dynamic level (µd) over

an expanding circular patch. The radius of the patch expands at 2300m/s (roughly

the Rayleigh wave speed) until spontaneous rupture is able proceed unassisted, which

occurs within about 3 km of the hypocenter. Table 4.2 provides a summary of wave

propagation and source model parameters.

4.4 Grid Generation

The average resolution for the hexahedral mesh is 200m requiring 1.8× 109 grid

points to mesh the entire volume. The coordinate system is the UTM zone 11 pro-

jection, with the origin translated to 120◦W 34◦30′N, and the x and y axes rotated

40◦ clockwise from UTM easting and northing. The mesh has a logically rectangular

structure in which nodes and cells are referenced by their logical indices j, k, and l.

Grid lines of varying l (i.e., constant j, k lines) are exactly vertical, so that lateral

element faces are planar and vertical. We create two versions of the mesh that differ

only in their z coordinate: one with a flat ground surface, and one conformed to a

digital elevation model. The two meshes have the same horizontal coordinates x and

y, so that they appear identical in map view (Fig. 4.5). Terrestrial elevations are

resampled from the Global Land One-km Base Elevation data set assembled by the
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Table 4.2: Model parameters.

Model size 600× 300× 80 km

Simulation time 180 s

Elements 3000× 1500× 400

Time steps 15000

∆x Node spacing ≈200m
∆t Time step 0.012 s

Vp P-wave velocity min: 1500m/s
max: 8298m/s

Vs S-wave velocity min: 500m/s
max: 4849m/s

γ Viscosity 400/Vs

τ 0
s Initial shear traction mean: 13.4MPa

max: 20.9MPa

τ 0
n Initial normal traction -20MPa

µs Coefficient of static friction 1.1

µd Coefficient of dynamic friction 0.5

d0 Slip weakening displacement 0.5m
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Figure 4.5: Map view, low resolution representation of the hexahedral
mesh. Along the boundaries, within the PML zones, grid lines are
orthogonal to the boundary. In elements surrounding the fault, grid
lines are orthogonal to the fault surface. Elsewhere, within the elements
shaded gray, grid line are linearly interpolated.

GLOBE Task Team (1999), and sea floor elevations are resampled from the ETOPO2

data set. Both GLOBE and ETOPO2 are provided by the US Department of Com-

merce, National Geophysical Data Center. To simplify application of PML absorbing

boundaries, the bottom and side boundaries are made planar and orthogonal to the

Cartesian directions, and the intersecting grid lines are orthogonal to the boundaries.

Special emphasis is given to ensuring the mesh is well behaved in the vicinity of the

fault surface. A double layer of elements encasing the 200 × 16 km slipping portion

of the fault is giving the following properties: element faces intersecting the fault

are orthogonal to the fault surface (at fault kinks the element faces bisect the kink

angle); the length of all k and l grid line segments, as well as the horizontal width

of all fault surface elements is exactly 200m; and each fault surface element is a par-

allelogram (square in the absence of topography) of area exactly equal to 40000m2.

All remaining elements throughout the volume are linearly interpolated between the

fault, PML, and ground surface elements.
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4.5 Rupture Solutions

Three separate simulation were preformed and given the names 3F, 4F, and 4T.

The numeric part of the name indicates the version of the SCEC-CVM used, and

the letter indicates whether surface topography was included (T) or not (F). Fig. 4.6

shows the geometry of the fault plane, and the S-wave velocity for the three models.

Models 3F and 4T were computed on the DataStar machine at the San Diego Super-

computer Center (SDSC) using 1920 processors. The runs took 13 hours each, with a

computation rate of 370 Gflops/s. Model 4F was computed on the SDSC IA-64 Linux

cluster, using 480 processors, and ran for 18 hours. It was halted prematurely due to

technical problems, completing 150 s of simulation time, out of the planned 180 s.

Due to the identical initial tractions among the models, the rupture solutions

are similar at long wavelengths. This is evident in the strong likeness of the final

slip distributions (Fig. 4.7). Shorter wavelength differences are more apparent in

the peak slip rates (Fig. 4.8), rupture velocities (Fig. 4.9), and initial rupture times

(Fig. 4.10). Many of differences can be understood through the following examination

of the rupture process.

Fig. 4.11, a space-time image of slip-rate, shows that the rupture is pulse-like, in

the sense that slip duration at a point is short compared with overall rupture duration.

Pulse-like behavior can result from a friction law in which the fault restrengthens

behind the rupture front (e.g., due to strong velocity dependence, as in Beeler and

Tullis , 1996; Zheng and Rice, 1998; Nielsen and Carlson, 2000), or when slip duration

is controlled by secondary scale lengths such as the seismogenic depth and/or asperity

dimensions (e.g., Day , 1982; Beroza and Mikumo, 1996; Day et al., 1998). Only the

latter mechanism operates in our simulations.

The pulse-like rupture takes a circuitous path across the fault surface, following

patches of high initial traction (asperities). Patches of low initial shear traction (anti-



103

asperities) generally lag behind, rupturing after the main front has passed. At some

locations, delay of rupture by anti-asperities leads to concavities and focusing of the

rupture front into the anti-asperities. V-shaped focusing, visible in the contours of

initial rupture time (Fig. 4.10), leads to the interesting result that the highest peak

slip velocities at depth (Fig. 4.8) are not located in highly stressed asperities, but in

anti-asperities.

In some cases, rupture completely encircles an anti-asperity and converges to a

point at its center, as described by Das and Kostrov (1983). Dunham et al. (2003)

recognized this as a mechanism for generating super-shear rupture velocity. We see

a prominent example of this at the NW end of the fault, that is present in models

3F and 4T, but absent in model 4F. Rupture time contours in Fig. 4.10 highlight the

location of this effect in 4T, and its absence in 4F. The result is a large disparity in

the rupture velocities (Fig. 4.9) within a number of the asperities located in the NW

half of the fault.

From the space-time slip-rate image (Fig. 4.11) it is clear that the overall rupture

velocity is less than the dominant Rayleigh velocity, VR. A historgram of initial

rupture time velocity (Fig. 4.12) shows a maximum value at about 0.85VR, a secondary

maximum at about 1.2VS, and a minimum around VS. This reflects that the rupture

is predominantly mode II. Steady mode II ruptures are capable of propagation at

velocities above VS, but not in the interval between VR and VS. The distribution of

rupture velocities sharply declines above
√

2VS, the velocity at which S-wave radiation

vanishes for mode II rupture (Eshelby , 1949).

4.6 Cohesive Zone Resolution

For numerical solutions of slip-weakening rupture models, it is important to ade-

quately resolve the cohesive zone, that is, the portion of the fault behind the rupture
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Figure 4.6: Comparison of S-wave velocity on the fault surface for
models 3F, 4F and 4T. Vertical lines mark changes in strike between
planar segments. The star marks the nucleation point at 5 km depth.
SCEC-CVM version 3.0 is used for model 3F, and version 4.0 is used
for models 4F and 4T. Topography is flattened in models 3F and 4F,
while true topography is used for model 4T.

Table 4.3: Model statistics.

3F 4F 4T

M0 Moment (EN-m) 269.5 267.8 266.8

Mw Moment magnitude 7.587 7.585 7.584

〈∆τs〉 Mean stress drop (MPa) 3.86 3.74 3.77

〈s〉 Mean slip (m) 3.03 2.79 2.78

smax Maximum slip (m) 15.21 10.60 11.64

〈ṡpeak〉 Mean peak slip rate (m/s) 3.21 2.86 2.84
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Figure 4.7: Comparison of final slip for models 3F, 4F, and 4T. High
slip is smoothly correlated to low density basin material at the surface,
and to high initial traction at depth. Areas of high initial traction
(asperities) are demarcated by dashed contours at 18 MPa.

Figure 4.8: Comparison of peak slip rate for models 3F, 4F, and 4T.
Highest slip rates at the surface occur in low density basin material.
Due to rupture front focusing, highest slip rates at depth occur in nar-
row bands, located in areas of low initial shear traction (anti-asperities).
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Figure 4.9: Comparison of spatially smoothed initial rupture velocity
for models 3F, 4F, and 4T. Largest values are generally confined to
asperities, with high variability among the models at the NW end.

Figure 4.10: Comparison of initial rupture time (defined as the time
when slip velocity first exceeds 1 cm/s) for models 3F, 4F, and 4T. Light
and dark fringes contour rupture fronts. Heavy contours in 3F highlight
V-shaped focusing of rupture that produces high slip-rate bands seen
in Fig. 4.8. Heavy contours in 4T highlight rupture focusing around an
anti-asperity that leads to super-shear rupture velocity. Similar focus-
ing does not occur at the same location in 4F, where instead rupture
takes a single path around the anti-asperity, and propagates upward at
sub-shear velocity.
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Figure 4.11: Space-time plot of depth averaged slip rate for model 4T,
with the peak value normalized to one. In addition to the main NW
rupture pulse, secondary back-propagating ruptures, and slow surface
ruptures are visible as well. The overall rupture velocity is less than the
dominant Rayleigh velocity (VR), and local rupture velocity is bounded
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Figure 4.12: Histogram of rupture velocity, S-wave velocity, and P-
wave velocity on the fault surface for model 4T. The sample is limited
to areas where Vs and Vp are close to their dominant values, thus ex-
cluding the near surface. Rupture velocity is spatially smoothed prior
to computing the histogram, and the histogram values are magnified
by a factor of 10 relative to those for Vs and Vp.
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tip that is actively weakening and has not yet reached the dynamic friction level. For

a static, initially uniformly stressed, semi-infinite, mode II crack, Palmer and Rice

(1973) and Rice (1980) estimated the cohesive zone width to be

Λ0
II =

9π

32

d0µ

(1− ν)(µd − µs)τ 0
n

, (4.4)

and for a mode III crack, they estimated the width to be

Λ0
III =

9π

32

d0µ

(µd − µs)τ 0
n

. (4.5)

For the SCEC-CVM 4.0 models, the Λ0
II estimate ranges from 38m at some surface

locations to 2490m at depth, with a mean of 1600m. Λ0
III ranges from 20 to 1915m,

with a mean of 1200m. With a spatial resolution of 200m, the cohesive zone is likely

to be poorly resolved within the low velocity basins. This has the effect of artificially

increasing d0, and increasing the fracture energy dissipated at the fault. Fortunately,

higher d0 may be physically appropriate for the near surface. As discussed previ-

ously, TeraShake2.2 specified an essentially infinite slip-weakening distance for the

San Bernardino valley.

Equations (4.4) and (4.5) apply to a static crack, and provide an upper bound for

a crack tip propagating with non-zero rupture velocity. For a propagating rupture,

Andrews (1976, 2004) estimates the cohesive zone width to be approximately

Λ =
1

2

(
d0µ

∆τ

)2
1

L
, (4.6)

where L is the propagation distance. It is based on a number of simplifying assump-

tions, such as a semi-infinite, 2D crack geometry. We wish to test whether the Λ

estimate is useful for the complicated, heterogeneous models of the study. If we treat
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Figure 4.13: Magnitude of slip gradient inside the breakdown zone at
1.2 s intervals for model 4T. Plotted is the peak gradient over the time
intervals, normalized by d0/∆x (the slip-weakening distance divided by
the cell size). The cohesive zone is well resolved except in the basins,
where breakdown widths approach ∆x, and slip gradients approach
d0/∆x.

asperities as sub-faults of approximate with 8 km and stress drop of 9MPa, from

(4.6) we get an estimate of about 260m for Λ. That would mean the cohesive zone

is resolved by only 2 or 3 points if the estimate is accurate. However, this estimate

based on local asperity dimension and stress drop appears to be conservative, and

direct measurement of the cohesive zone from the slip (Fig. 4.13), finds it is generally

around 2 km and sometimes wider in the asperities. We can also see that the cohe-

sive zone shrinks to as little as 800 km or so at locations of rupture front focusing

in anti-asperities. These widths are wide enough to be adequately resolve by several

grid points. But, as expected, the cohesive zone is poorly resolve in low velocity

sediments, usually spanning only a single 200m element.

4.7 Ground Motion

We now consider velocity time histories for selected sites at the free surface.

From here onward, where comparisons are made to TeraShake2.2 results, the lat-

ter are scaled by a factor of 0.674, the ratio of moment release between model 3F

and TeraShake2.2. This is equivalent to scaling the TerShake2.2 shear and normal

prestress values and Dc parameter by the same factor of 0.674. We will use the abbre-

viation TS as shorthand for the scaled TeraShake2.2 model. At low frequency (below
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0.1Hz), the strongest velocities are generally confined to a pulse containing between

one and three cycles of oscillation, and lasting 30 to 60 seconds. Model 3F agrees well

with TS (Fig. 4.14). Differences due to the velocity model are minor between models

3F and 4F (Fig. 4.15), and the effects of topography in model 4T compared to model

4F are even smaller (Fig. 4.16).

At higher frequency (0.1 < f ≤ 0.25Hz), basin reverberations last much longer

than 60 s at some sites, and there are greater differences in ground motion among

the models (Figs 4.17, 4.18, and 4.19). Variability in the source ruptures hinders our

ability to distinguish between source and path effects as the cause of the differences.

The ambiguity can be illustrated by the Lancaster site located 75 km from the end

of the rupture in the forward directivity direction. Peak peak ground velocity at

Lancaster is 50% greater in model 4F than in model 4T. A possible source based

explanation is that the deamplification in model 4T is caused by decrease forward

directivity due to the prevalence of super-shear rupture velocities at the NW end of

the fault. A path based explanation may be that surface waves are disrupted by the

topography of the San Bernardino Mountains, an effect described by Ma et al. (2007).

In the case of the wave-guide amplification at the LA basin site of Montebello, a

strong dependence on the velocity model can be seen. For sites lying on the shallow

basin between the SAF and the LA basin (San Bernardino, Riverside, and Ontario),

ground velocity time histories are similar for models 3F and 4F, suggesting that wave

motion entering the LA basin is comparable for the two models. By the time waves

reach Montebello, though, they have 50% greater peak amplitude in 3F, due to strong

energy arriving later in the record. The LA basin sites of Santa Ana and Long Beach

show similar amplification of model 3F relative to model 4F.

For hypothetical earthquake scenarios such as these, one of the few comparisons

to real data that we can make is with empirically determined attenuation relations.
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Figure 4.14: Zero to 0.1Hz ground velocity for TeraShake2.2 (TS) and
model 3F. The TS curves are scaled down to match the moment release
of model 3F. Receiver locations are shown in Figures 4.1 and4.2.
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Based on statistical analysis of earthquake catalogs, attenuation relations predict

ground motion for generic earthquakes based on parameters such as moment mag-

nitude, fault/receiver distance, basin depth, and style of faulting. For the following

comparison, we use the ’next generation’ attenuation relation of Campbell and Bo-

zorgnia (2007), abbreviated as CB-NGA.

Tables 4.4 and 4.5 list 21 sites, the locations of which are shown on Fig. 4.2. The

site specific CB-NGA parameters for this study are: RRUP , the closest distance to the

coseismic rupture surface; Z2.5, the basin depth defined by the shallowest depth to S-

wave velocity greater than 2.5 km/s; and VS30, the average S-wave velocity of the upper

30m. The CB-NGA does not include a parameter for directivity or three-dimensional

path effects. For each site we give the median peak ground velocity (PGV) predicted

by the CB-NGA, and the simulated PGV from models 4F and 4T. The simulated

PGV is computed by the geometric mean of the maxima of the two horizontal velocity

components. The simulated PGV are also given as a probability of exceedance (POE)

determined by CB-NGA median and standard deviation. Additionally, PGV values

are presented graphically in Figs 4.20 and 4.21.

We group the sites into rock sites, shallow basin sites, and deep basin sites. The

near surface S-wave velocity (VS30) is extracted from the SCEC-CVM (and is often

less than the minimum S-wave velocity used in the computations, 500m/s). Outside

of the basins, surface layers are not well resolved by the SCEC-CVM, resulting in

unrealistically high velocities at the rock sites. So we impose an upper limit of 760m/s

for VS30. The rocks sites are useful to illustrate directivity, unobscured by basin

effects. They are listed roughly in SE to NW order, beginning with Yuma, where

PGV is much below the CB-NGA prediction at close to 100% POE, and ending with

Santa Barbara, where PGV is much greater than the CB-NGA prediction, ranging

from 7% to 32% POE. In between POE decreases towards the NW, in the forward
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directivity direction. The absence of this clear rupture directivity effect in the CB-

NGA ground motion predictions is because the CB-NGA does not consider directivity

in its site parameterization.

Shallow basin sites generally fall at or below the expected PGV from CB-NGA

(greater than 50% POE). We speculate that the simulation bandwidth is not able to

entirely capture the dominant shallow basin reverberation frequencies, so the PGV

are under-estimated. This is not a problem for deep basin sites where dominant

wavelengths are longer and frequencies lower. Deep basin PGV is most of the time

at or above the CB-NGA expected values, and more so for the SCEC-CVM version

3.0 models (TS and 3F). The simulated PGV is exceptionally high at Montebello,

though not as high in our models as in TS: the PGV for TS is a factor of four greater

than the median CB-NGA at that site, whereas for our models PGV is only a factor

of two above median CB-NGA.

4.8 Conclusion

We have simulated a Mw7.6, NW propagating dynamic rupture on the southern

San Andreas fault with non-planar fault geometry and surface topography. Numer-

ous cases of rupture front focusing (due to heterogeneous initial stress conditions and

complex rupture propagation) lead to high peak slip velocities in relatively weakly

stressed anti-asperities. Peak slip displacements, on the other hand, are confined to

the highly stressed asperities. This suggests a mechanism by which high-frequency

components of the slip function are at least partially disjointed from low-frequency

components. A further effect of the rupture heterogeneity is that, for our simulations,

the cohesive zone is generally narrower in the anti-asperities than in asperities, con-

trary to the rough a priori estimates derived from steady state, semi-infinite rupture.

We compared simulations with different versions of the SCEC-CVM, and simula-
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Table 4.4: Peak ground velocity (geometric mean horizontal compo-
nent) for TeraShake2.2 (TS) and model 3F compared to the Campbell
and Bozorgnia (2007) NGA ground motion relation (CB). The TS val-
ues are scaled down to Mw7.6 for the comparison.

RRUP Z2.5 VS30 PGV (cm/s) POE
Rock sites (km) (km) (m/s) CB TS 3F TS 3F
Yuma 123.0 0.0 760 4.9 0.9 1.0 >99% >99%
Ensenada 184.2 0.0 760 3.6 2.1 2.2 85% 84%
San Diego 144.6 0.0 760 4.4 3.5 3.7 66% 62%
Oceanside 102.9 0.0 760 5.6 3.4 4.2 82% 70%
Palm Springs 11.7 0.0 760 26.0 18.9 15.6 73% 83%
Victorville 33.3 0.0 760 12.6 10.0 9.2 67% 72%
Barstow 80.4 0.0 760 6.7 6.4 6.0 53% 58%
Lancaster 74.0 0.0 760 7.1 8.2 6.6 39% 55%
Bakersfield 183.7 0.0 760 3.7 3.8 4.5 47% 34%
Santa Barbara 202.8 0.0 760 3.4 7.5 4.3 7% 32%
Shallow basin sites
San Bernardino 6.9 1.0 281 63.0 37.8 32.3 85% 91%
Riverside 26.5 0.8 395 23.7 17.4 10.4 72% 94%
Ontario 28.7 1.2 395 22.9 19.6 15.3 61% 78%
Deep basin sites
Mexicali 80.4 3.9 739 8.9 6.2 12.0 75% 28%
Coachella 3.8 3.9 739 62.1 66.3 94.9 45% 21%
Montebello 64.0 3.5 409 14.1 52.6 29.4 1% 8%
Santa Ana 69.2 2.6 274 14.7 17.9 19.2 35% 30%
Long Beach 86.0 2.9 364 10.9 11.5 17.7 46% 17%
Los Angeles 73.5 2.8 384 11.8 16.5 9.8 26% 64%
Westwood 88.2 3.3 386 11.0 14.8 10.5 29% 53%
Oxnard 154.9 3.2 302 8.2 13.4 11.0 17% 29%

Notes:
RRUP is the closest distance to the coseismic rupture surface.
Z2.5 is the depth to the 2.5 km/s shear velocity horizon (basin depth).
VS30 is the average shear velocity for the upper 30m.
POE is the CB probability of exceedance for the simulated PGV.
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Table 4.5: Peak ground velocity (geometric mean horizontal compo-
nent) for models 4F and 4T compared to the Campbell and Bozorgnia
(2007) NGA ground motion relation (CB)

RRUP Z2.5 VS30 PGV (cm/s) POE
Rock sites (km) (km) (m/s) CB 4F 4T 4F 4T
Yuma 123.0 0.0 760 4.9 1.1 1.2 >99% >99%
Ensenada 184.2 0.0 760 3.6 1.7 1.5 93% 95%
San Diego 144.6 0.0 760 4.4 3.4 2.6 68% 84%
Oceanside 102.9 0.0 760 5.6 4.2 4.0 70% 73%
Victorville 33.3 0.0 760 12.6 8.7 9.5 76% 70%
Barstow 80.4 0.0 760 6.7 6.2 6.3 56% 54%
Lancaster 74.0 0.0 760 7.1 10.2 7.0 24% 51%
Bakersfield 183.7 0.0 760 3.7 4.7 4.7 31% 32%
Santa Barbara 202.8 0.0 760 3.4 6.2 5.3 13% 20%
Shallow basin sites
Palm Springs 11.7 0.2 760 26.6 14.6 14.0 87% 89%
San Bernardino 6.9 0.5 281 60.6 29.9 32.3 92% 90%
Riverside 26.5 0.4 395 22.9 11.2 9.7 91% 95%
Ontario 28.7 0.5 395 21.8 15.5 14.2 74% 79%
Deep basin sites
Mexicali 80.4 2.7 760 7.3 7.8 7.0 45% 53%
Coachella 3.8 2.8 760 50.9 62.9 63.1 34% 34%
Montebello 64.0 3.4 409 13.6 23.3 22.3 15% 17%
Santa Ana 69.2 2.4 274 14.7 11.0 14.2 71% 53%
Long Beach 86.0 2.8 364 10.9 11.6 12.9 45% 37%
Los Angeles 73.5 2.7 384 11.8 12.8 9.1 44% 69%
Westwood 88.2 3.1 386 10.6 11.1 7.4 47% 75%
Oxnard 154.9 3.0 302 7.9 13.0 11.2 17% 25%

Notes:
RRUP is the closest distance to the coseismic rupture surface.
Z2.5 is the depth to the 2.5 km/s shear velocity horizon (basin depth).
VS30 is the average shear velocity for the upper 30m.
POE is the CB probability of exceedance for the simulated PGV.
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Figure 4.20: Plot of peak ground velocity data from Table 4.4 compar-
ing scaled TeraShake2.2 and model 3F to the Campbell and Bozorgnia
(2007) NGA ground motion relation. Error bars indicate one standard
deviation to either side of the CB-NGA median PGV.
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Figure 4.21: Plot of peak ground velocity data from Table 4.5 com-
paring models 4F and 4T to the Campbell and Bozorgnia (2007) NGA
ground motion relation. Error bars indicate one standard deviation to
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tions with and without topography at the free surface, and find that either change

is enough to significantly alter the rupture. At low frequency, the results match the

TeraShake2.2 simulation by Olsen et al. (2008), though our model predicts less pro-

nounced wave guide amplification in the LA basin. We found that the wave guide

effect is smaller still when SCEC-CVM version 4.0 is used, compared to version 3.0.

Peak ground velocities for most sites fall within one standard deviation of the Camp-

bell and Bozorgnia (2007) empirical attenuation relation. However, rupture directivity

and basin wave guide effects cause more significant deviation from the attenuation

relation at some sites.
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Chapter 5

Conclusions

5.1 Summary

For this thesis I have developed a new method for modeling earthquakes using

spontaneous shear crack propagation within a heterogeneous, three-dimensional, vis-

coelastic solid. A few of the important capabilities of the method are: (1) Surfaces

and ruptures may be non-planar, removing the commonly used restriction of rectan-

gular geometry; (2) The accuracy of the method may be acceptable even for highly

deformed elements, such as those needed for low-angle thrust faults intersecting the

free surface; and (3) The numerical algorithm is highly scalable on parallel architec-

tures. The Support Operator Rupture Dynamics code (SORD) provides a tool that

is well poised to help address some of the current challenging problems in seismology.

5.2 Verification

The method was verified using a set of test problems focusing on various vari-

ous aspects of wave propagation and rupture dynamics. The test problems are each

established benchmark exercises for which multiple published solutions are available
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that used alternative numerical or semi-analytical methods. The layer over half-

space problem (LOH.1), with a double-couple point source (Day and Bradley , 2001),

tested three-dimensional wave propagation in a heterogeneous medium with a planar

free-surface boundary condition. The solutions were found to agree with frequency-

wavenumber integration for wavelengths of at least 10 times the discretization length.

A cylindrical canyon problem tested the case of a non-planar free-surface and non-

rectangular elements, using a vertically incident P-wave. Surface amplification agreed

closely with boundary integral solutions at wavelengths of at least 20 times the dis-

cretization length. Spontaneous rupture propagation was tested using SCEC rupture

validation problem number 3 (TPV3), which consists of a rectangular planar fault

within a homogeneous medium (Harris and Archuleta, 2004; Harris et al., 2008). The

results were compared to and agreed closely with boundary integral solutions. The

LOH.1 and TPV3 problems were both computed on rectangular meshes as well as

meshes deformed by simple shearing. The sheared mesh tests were used to look for

any anisotropy in wave or rupture propagation due to non-rectangular elements. For

TPV3 the shear angle was varied over a series of models. Grid-induced errors were

found to increase with mesh shear angle, with the logarithm of error approximately

proportional to angle over the range tested, and accuracy is sufficient for most prac-

tical applications even for mesh shear angles appropriate to low-angle thrust faults

(i.e., mesh shears up to 70 degrees).

5.3 Applications

Non-planar rupture effects were studied by comparing a model with gradual

changes in strike and a model with abrupt changes in strike. TPV3 was modified

for two geometries: one with cylindrical curvature, and one with sharp 30◦ kinks

between planar segments. The kinked model developed stress singularities due to the
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partial rupture barriers formed by the kinks. The kinks are also a source of wave

radiation.

The second, and more prominent application of SORD was a set of Mw7.6 earth-

quake simulations on the southern San Andreas fault. Low frequency (greater than

10 s period) ground velocity agreed well with the TeraShake2.2 model by Olsen et al.

(2008). Shorter than 10 s period showed significant differences. We found that rupture

solutions are nearly identical, at early times, for different versions of the SCEC Com-

munity Velocity Model (Magistrale et al., 2000; Kohler et al., 2003; Magistrale, 2005),

as well as for models with and without topography included at the free surface. How-

ever, the effects are strong enough to cause solutions to diverge significantly at later

times. Episodes of rupture focusing (due to heterogeneous initial traction) were iden-

tified that led to both super-shear rupture velocity within asperities, as well as zones

of high slip velocity between asperities. The second phenomenon is a means by which

the locations of peak motions can be frequency dependent, as peak displacements

are generally confined within asperities. We also identified a local minimum near

the S-wave velocity in the rupture velocity statistics, associated with the forbidden

rupture velocity range of mode II rupture lying between the Rayleigh velocity and the

S-wave velocity. Modeled peak ground velocities were consistent with those predicted

by the empirical attenuation relation of Campbell and Bozorgnia (2007), though there

was systematic deviations associated with rupture directivity and the specifics of the

southern California velocity model (sedimentary basins and wave guides). These type

of three-dimensional effects are not accounted for by the empirical model.

5.4 Future Work

Ground motion predictions from simulations will become more useful for engineer-

ing practice when estimates of their epistemic uncertainty can be made. One way to
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begin to assess that uncertainty is with comparisons using alternative seismic velocity

models. This can be done for southern California because of the availability velocity

model by Süss and Shaw (2003), an alternative to the SCEC-CVM used here. Differ-

ences may arise in the basin response of the two velocity models, for example, because

the Süss and Shaw model more completely represents the off-shore continuation of

the Los Angeles basin.

Further investigation is also needed to determine if the basin wave guides effects

observed in the SAF models are a common characteristic of potential scenarios on

other faults in southern California. The region is dissected by a complex network of

many potentially hazardous faults. With comprehensive digital representations of the

faults available from the SCEC Community Fault Model (Plesch et al., 2007), work

can begin promptly on performing alternate scenario simulations. One difficulty that

must first be addressed is the creation of appropriate discretizations of the problem

domain. Mesh generation is straightforward for vertical faults like the SAF modeled

here. For more complex non-planar and dipping faults, more sophisticated meth-

ods are required. Available mesh generation techniques and software will need to be

evaluated. One promising method is direct optimization (Castillo and McGuinness ,

2002), whereby certain measurements of the mesh fitness are constructed, such as

grid orthogonality and cell volume uniformity, and then global optimization is per-

formed on a weighted sum of the various fitness measures. Optimization could allow

for material velocity to be factored into the fitness measures, and so allowing the

optimization to naturally densify the mesh were it is needed, such as in low velocity

surface sediments. Mesh densification along the fault surface, for better resolution of

the rupture process, could be accomplished in a similar fashion.

The SAF earthquake models focused on relatively low frequencies (up to about

0.25Hz). Since small to medium sized buildings are most sensitive to frequencies
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greater the 0.25Hz, these models are not yet fully adequate for seismic hazard as-

sessment. They need to be extended to finer discretizations, and this presents a

formidable computational challenge. The SORD code has demonstrated very good

scalability, and during the time of this study, the largest parallel computers avail-

able for general research have progressed from thousands of processors to tens of

thousands of processors. The increased parallelism may well necessitate further code

improvements and tuning. If this effort is successful, and combined with adaptive

mesh refinement, the method can be extended to frequencies approaching 1Hz for

large events such as the SAF models. With the option of incorporating a high fre-

quency stochastic component to the ground motions, we can accomplish truly high

bandwidth simulations.

As we move into modeling higher frequencies, accurate treatment of attenuation

becomes more important. The Kelvin-Voigt model used here results in a quality

factor Q that is inversely proportional to frequency, whereas for earth materials,

Q is approximately constant with respect to frequency. Frequency-independent Q

can be modeled numerically by incorporating relaxation memory variables (Day and

Minster , 1984), a technique made more efficient by sparsely sampling the memory

variables (Day , 1998; Day and Bradley , 2001; Graves and Day , 2003). This method

can be readily incorporated into the support operator scheme.

Another potential contribution to be made with this method is the study of rupture

process itself. Because the method works explicitly with stress components (rather

than a stiffness matrix, for example), it is easily generalized to calculate stresses from

inelastic constitutive models (e.g. Coulomb plasticity, damage rheology, etc.), at the

cost of saving the stress tensor components globally. This capability would be im-

portant in the study earthquake rupture dynamics, for example, as rupture-induced

off-fault nonlinear deformation may be a significant contributor to the energy budget
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of earthquakes, and may also influence strong motion amplitudes. It is believed by

some that fault stress heterogeneity may be primarily due to non-planarity of fault

surfaces. We saw in the kinked fault model of Chapter 3 and in the SAF model that

changes in fault direction, as expected, cause stress concentrations. Systematic anal-

ysis of fault topography effects to test this hypothesis is an application well suited to

our method. We have used a slip-weakening friction law, where the frictional coeffi-

cient depends only on the slip path length. However, recent work suggests that strong

velocity weakening induced by thermal and other effects occurs during earthquakes.

Rice (Rice, 2006) reviews the key models, including melting of microscopic frictional

contacts, and effective normal stress reduction from thermal pressurization of pore

fluids. Incorporating models for these types of processes will be needed if we are to

bring earthquake simulation practices into agreement with latest understanding of

rupture physics, and our method is readily adaptable to more exotic friction laws.
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Chapter 6

SORD code documentation

The Support Operator Rupture Dynamics (SORD) code simulates spontaneous

rupture within a 3D isotropic viscoelastic solid. Wave motions are computed on a

logically rectangular hexahedral mesh, using the generalized finite difference method

of support operators. Stiffness and viscous hourglass corrections are employed to

suppress suppress zero-energy grid oscillation modes. The fault surface is modeled by

coupled double nodes, where the strength of the coupling is determined by a linear

slip-weakening friction law. Model external boundaries may be reflective or absorbing,

where absorbing boundaries are handled using the method of perfectly matched layers

(PML). SORD is written in Fortran 95 and parallelized for multi-processor execution

using Message Passing Interface (MPI).

6.1 Usage

SORD is distributed as a tar archive. Installation consists simply of unpacking the

archive and entering the sord/ directory. Configuration, compilation and execution

are all handled by the main wrapper script called ’sord’. The sord script takes an

input file as its argument. Each time sord is executed, a new directory is set up

134
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for that particular run, starting with run/01. The default action is to compile and

configure the job only. Job launching is deferred. In the directory will be a script

called ’run’ to start the job interactively and a script ’que’ for submitting the job to

the batch system. The sord script accepts the following command line options:

-i start job interactively with the run script

-q submit job to batch system with the que script

-n check input only and exit

-g compile with debugging and syntax checking flags

-G start job in debugger

-d delete output from previous runs before starting

-f force recompile

-s serial mode, no MPI (default if np == 1)

-p parallel mode, requires MPI (default if np > 1)

-m opt emulate alternative machine configuration, e.g. ’datastar’

-v opt generate SAF mesh and SCEC-CVM, opt indicates version 3 or 4

6.2 Input and Output

Input is specified in a restricted form of the MATLAB programming language.

Large data sets such as the material model are stored separately in floating-point

binary files. Annotated example input files are located in the in/ directory. The

input file defaults.m, read before any other input, contains a short description of

each SORD parameter.

Output is saved in binary format. An associated metadata file meta.m, contains

a summary of parameters for the run, and a structured description of the binary out-

put. The M-file format facilitates post-processing and visualization with MATLAB.

MATLAB utilities for manipulating and visualizing SORD output are included in the
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m/ directory. Using the read4d function for accessing SORD binary output correctly

accounts for byte order when moving data between big-endian and little-endian ar-

chitectures. Separate Fortran utilities are also included in the util/ directory for

converting the byte order of binary files, and for converting to and from ASCII text

format.

Statistic, such as peak acceleration and peak velocity, are computed periodically

during each run and saved in the directory stats/. Additionally, internal code tim-

ings, for benchmarking performance, are collected and saved to the prof/ directory.

Inspecting these files during a run is a good way to check that it is proceeding cor-

rectly. The raw binary files can be examined with the standard UNIX command ’od

-f’ or with the included Fortran utilities. The stats utility computes the minimum,

maximum, and mean values for binary files.

6.3 Code Portability

SORD has been tested the following system configurations:

Operating systems: Linux, IBM AIX, Apple OSX, Sun Solaris

Fortran 95 compilers: GNU, IBM, Intel, Sun, Portland Group

MPI implementations: ANL MPICH, IBM, Myricom MPICH-GM

Porting to a new system may require adjusting the compiler flags that are set in script

sh/config. Machines with specialized parallel environments may need a custom run

script and modification of the main sord script under the ’Run scripts’ section. See

sh/datastar and sh/teragrid for example custom run scripts.
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6.4 LOH.1 Parameters
The following SORD input file was used for the rectangular mesh version of the

LOH.1 model presented in Section 2.6.

% PEER LOH.1 - Layer over a halfspace, buried double couple source

np = [ 1 16 1 ]; % number of processors in each dimension
nn = [ 261 301 161 ]; % number of mesh nodes, nx ny nz
nt = 2250; % number of time steps
dx = 50.; % spatial step size
dt = 0.004; % time step size

% Material properties of the halfspace
rho = 2700.; % density
vp = 6000.; % P-wave speed
vs = 3464.; % S-wave speed
gam = 0.; % viscosity
hourglass = [ 1. 2. ]; % hourglass stiffness and viscosity

% Material properties of the layer
vp = { 4000. ’zone’ 1 1 1 -1 -1 21 };
vs = { 2000. ’zone’ 1 1 1 -1 -1 21 };
rho = { 2600. ’zone’ 1 1 1 -1 -1 21 };

% Near side boundary conditions:
% Anti-mirror symmetry at the near x and y boundaries
% Free surface at the near z boundary

bc1 = [ -2 -2 0 ];

% Far side boundary conditions:
% PML absorbing boundaries at x, y and z boundaries

bc2 = [ 10 10 10 ];

% Source parameters
faultnormal = 0; % disable rupture dynamics
ihypo = [ 1 1 41 ]; % hypocenter indices
xhypo = [ 0. 0. 2000. ]; % hypocenter coordinates
fixhypo = -2; % cell registered hypocenter
tfunc = ’brune’; % Brune pulse time function
tsource = 0.1; % dominant period
moment1 = [ 0. 0. 0. ]; % moment tensor M_xx, M_yy, M_zz
moment2 = [ 0. 0. 1e18 ]; % moment tensor M_yz, M_zx, M_yz

% Velocity time series output for surface station
timeseries = { ’v’ 6000. 80000. 0. };
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6.5 TPV3 Parameters
The following SORD input file was used for the rectangular mesh version of the

TPV3 model presented in Section 3.4.

% TPV3 - SCEC validation problem version 3

np = [ 1 1 32 ]; % number of processors in each dimension
nn = [ 351 201 128 ]; % number of mesh nodes, nx ny nz
nt = 3000; % number of time steps
dx = 50.; % spatial step size
dt = 0.004; % time step size

% Near side boundary conditions:
% PML absorbing boundaries for the x, y and z boundaries

bc1 = [ 10 10 10 ];

% Far side boundary conditions:
% Anti-mirror symmetry for the x and z boundaries
% Mirror symmetry for the y boundary

bc2 = [ -2 2 -2 ];

% Material properties
rho = 2670.; % density
vp = 6000.; % P-wave speed
vs = 3464.; % S-wave speed
gam = 0.2; % viscosity
gam = { 0.02 ’cube’ -15001. -7501. -4000. 15001. 7501. 4000. };
hourglass = [ 1. 2. ];

% Fault parameters
faultnormal = 3; % fault plane of constant z
ihypo = [ -2 -2 -2 ]; % hypocenter indices
fixhypo = -2; % hypocenter is cell centered
vrup = -1.; % disable circular nucleation
dc = 0.4; % slip weakening distance
mud = 0.525; % coefficient of dynamic friction
mus = 10000.; % coefficient of static friction
mus = { 0.677 ’cube’ -15001. -7501. -1. 15001. 7501. 1. };
tn = -120e6; % normal traction
ts1 = 70e6; % shear traction
ts1 = { 81.6e6 ’cube’ -1501. -1501. -1. 1501. 1501. 1. };

% Fault plane output
out = { ’x’ 1 1 1 -2 0 -1 -1 -2 0 }; % mesh coordinates
out = { ’su’ 1 1 1 0 -1 -1 -1 0 -1 }; % final slip
out = { ’psv’ 1 1 1 0 -1 -1 -1 0 -1 }; % peak slip velocity
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out = { ’trup’ 1 1 1 0 -1 -1 -1 0 -1 }; % rupture time

% Time series output, mode II point
timeseries = { ’su’ -7499. -1. 0. }; % slip
timeseries = { ’sv’ -7499. -1. 0. }; % slip velocity
timeseries = { ’ts’ -7499. -1. 0. }; % shear traction

% Time series output, mode III point
timeseries = { ’su’ -1. -5999. 0. }; % slip
timeseries = { ’sv’ -1. -5999. 0. }; % slip velocity
timeseries = { ’ts’ -1. -5999. 0. }; % shear traction

6.6 San Andreas Fault Parameters
The following SORD input file was used for the San Andreas Fault model 4T

presented in Chaper 4.

% San Andreas Fault, northward dynamic rupture, topography, SCEC-CVM4

np = [ 1 80 24 ] % 1920 total processors on DataStar
nn = [ 3001 1502 401 ]; % number of mesh nodes nx ny nz
nt = 15000; % number of time steps
dt = 0.012; % time step length

% Read mesh coordinates from disk. Horizontal components x1
% and x2 are depth independent, so are stored as 2D planes.
% Vertical coordinate x3 is stored as a full 3D volume.

datadir = ’saf/scecvm4/0200’;
x1 = { ’read’ ’zone’ 1 1 1 -1 -1 1 };
x2 = { ’read’ ’zone’ 1 1 1 -1 -1 1 };
x3 = ’read’;

% Boundary conditions, PML on all side except for free surface
bc1 = [ 10 10 10 ];
bc2 = [ 10 10 0 ];

% Material model
rho = ’read’; % read 3D density file
vp = ’read’; % read 3D V_p file
vs = ’read’; % read 3D V_s file
vdamp = 400.; % set viscosity = vdamp / vs
vp1 = 1500.; % set minimum V_p
vs1 = 500.; % set minimum V_s
gam2 = 0.8; % set maximum viscosity
hourglass = [ 1. 1. ]; % hourglass stiffness and viscosity
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% Fault parameters
ihypo = [ 2266 997 -26 ]; % hypocenter indices
faultnormal = 2; % fault plane at k = ihypo(2) = 997
slipvector = [ 1. 0. 0. ]; % vector for resolving pre-traction
tn = -20e6; % initial normal traction
ts1 = ’read’; % read initial shear traction file
dc = 0.5; % slip weakening distance
mud = 0.5; % coefficient of dynamic friction
mus = 1000.; % coefficient of static friction
mus = [ 1.10 ’zone’ 1317 0 -81 2311 0 -1 ];

% Nucleation
fixhypo = 1; % node registered hypocenter
vrup = 2300.; % nucleation rupture velocity
trelax = 0.12; % time
rcrit = 3000.; % radius of nucleation patch

% Fault plane output
out = { ’su’ 1 1317 0 -81 -1 2311 0 -1 -1 }; % final slip
out = { ’psv’ 1 1317 0 -81 -1 2311 0 -1 -1 }; % peak slip velocity
out = { ’trup’ 1 1317 0 -81 -1 2311 0 -1 -1 }; % rupture time

% Velocity time series output
out = { ’v’ 1 2642 813 -1 0 2642 813 -1 -1 }; % Mexicali
out = { ’v’ 1 2028 979 -1 0 2028 979 -1 -1 }; % Coachella
out = { ’v’ 1 2015 324 -1 0 2015 324 -1 -1 }; % San Diego
out = { ’v’ 1 1842 940 -1 0 1842 940 -1 -1 }; % Palm Springs
out = { ’v’ 1 1457 960 -1 0 1457 960 -1 -1 }; % San Bernardino
out = { ’v’ 1 1476 852 -1 0 1476 852 -1 -1 }; % Riverside
out = { ’v’ 1 1307 1141 -1 0 1307 1141 -1 -1 }; % Victorville
out = { ’v’ 1 1345 840 -1 0 1345 840 -1 -1 }; % Ontario
out = { ’v’ 1 1278 1341 -1 0 1278 1341 -1 -1 }; % Barstow
out = { ’v’ 1 1384 620 -1 0 1384 620 -1 -1 }; % Santa Ana
out = { ’v’ 1 1205 668 -1 0 1205 668 -1 -1 }; % Montebello
out = { ’v’ 1 1142 642 -1 0 1142 642 -1 -1 }; % Los Angeles
out = { ’v’ 1 1262 532 -1 0 1262 532 -1 -1 }; % Long Beach
out = { ’v’ 1 1079 589 -1 0 1079 589 -1 -1 }; % Westwood
out = { ’v’ 1 951 961 -1 0 951 961 -1 -1 }; % Lancaster
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