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Abstract This paper studies the matrix completion problem under arbitrary sampling
schemes.We propose a new estimator incorporating bothmax-norm and nuclear-norm
regularization, basedonwhichwecan conduct efficient low-rankmatrix recoveryusing
a random subset of entries observed with additive noise under general non-uniform
and unknown sampling distributions. This method significantly relaxes the uniform
sampling assumption imposed for the widely used nuclear-norm penalized approach,
and makes low-rank matrix recovery feasible in more practical settings. Theoretically,
we prove that the proposed estimator achieves fast rates of convergence under different
settings. Computationally, we propose an alternating direction method of multipliers
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6 E. X. Fang et al.

algorithm to efficiently compute the estimator, which bridges a gap between theory
and practice of machine learning methods with max-norm regularization. Further,
we provide thorough numerical studies to evaluate the proposed method using both
simulated and real datasets.

Mathematics Subject Classification 90C25 · 90C29 · 15A60

1 Introduction

We consider the matrix completion problem, which aims to reconstruct an unknown
matrix based on a small number of entries contaminated by additive noise. This prob-
lem has drawn significant attention over the past decade due to its wide applications,
including collaborative filtering (the well-known Netflix problem) [4,27], multi-task
learning [1–3], sensor-network localization [5] and system identification [24]. Specif-
ically, our goal is to recover an unknown matrix M0 ∈ R

d1×d2 based on a subset of
its entries observed with noise, say {Yit , jt }nt=1. In general, the problem of recovering
a partially observed matrix is ill-posed, as the unobserved entries can take any values
without further assumption. However, in many applications mentioned above, it is nat-
ural to impose the condition that the target matrix is of either exact or approximately
low-rank, which avoids the ill-posedness and makes the recovery possible.

To obtain a low-rank estimate of the matrix, a straightforward approach is to con-
sider the rank minimization problem

min
M∈Rd1×d2

rank(M), subject to ‖Y� − M�‖F ≤ δ, (1.1)

where � = {(it , jt ) : t = 1, . . . , n} is the index set of observed entries, and δ > 0
is a tuning parameter. This method directly searches for a matrix of the lowest rank
with reconstruction error controlled by δ. However, the optimization problem (1.1) is
computationally intractable due to its nonconvexity. A commonly used alternative is
the following convex relaxation of (1.1):

min
M∈Rd1×d2

‖M‖∗, subject to ‖Y� − M�‖F ≤ δ, (1.2)

where ‖ · ‖∗ denotes the nuclear-norm (also known as the trace-norm, Ky Fan-norm
or Schatten 1-norm), and it is defined as the sum of singular values of a matrix.
Low-rank matrix recovery based on nuclear-norm regularization has been extensively
studied in both noiseless and noisy cases [9,10,19,21,26,30–32]. Furthermore, various
computational algorithms have been proposed to solve this problem. For example, Cai
et al. [6] propose a singular value thresholding algorithm which is equivalent to the
gradient method for solving the dual of a regularized version of (1.2); Toh and Yun
[37] propose an accelerated proximal gradient method to solve a least squares version
of (1.2); Liu and Vandenberghe [24] exploit an interior-point method; Chen et al. [11]
adopt an alternating direction method of multipliers approach to solve (1.2).

Though significant progress has beenmade, it remains unclear whether the nuclear-
norm is the best convex relaxation for the rank minimization problem (1.1). Recently,
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Max-norm optimization for robust matrix recovery 7

(a) (b)

Fig. 1 a The theoretical guarantee of the nuclear-norm estimator assumes each entry is equally likely to be
observed. b In practice, some entries related to some popular movies or some active users, such as Movie
5 or User 5, are more likely to be sampled than others. Thus, the uniform sampling assumption is violated

some disadvantages of the nuclear-norm regularization have been noted. For instance,
the theoretical guarantee of the nuclear-norm regularization relies on an assumption
that the indices of the observed entries are uniformly sampled. That is, each entry is
equally likely to be observed as illustrated in Fig. 1a. This assumption is restrictive
in applications. Taking the well-known Netflix problem as an example, our goal is to
reconstruct a movie-user rating matrix, in which each row represents a user and each
column represents a movie. The (k, �)-th entry of the rating matrix represents the k-th
user’s rating for the �-th movie. In practice, we only observe a small proportion of the
entries. In this example, the uniform sampling assumption is arguably violated due
to the following reasons: (1) Some users are more active than others, and they rate
more movies than others. (2) Some movies are more popular than others and are rated
by more users. As a consequence, the entries from certain columns or rows are more
likely to be observed. See Fig. 1b for a simple illustration. To sum up, the sampling
distribution can be highly non-uniform in real world applications.

To relax or even avoid the unrealistic uniform sampling assumption, several recent
papers propose to use the matrix max-norm as a convex surrogate for the rank. Sre-
bro and Salakhutdinov [35] observe from empirical comparisons that the max-norm
regularized approach outperforms the nuclear-norm based one for matrix completion
and collaborative filtering under non-uniform sampling schemes. Lee et al. [22] and
Jalali and Srebro [17] demonstrate the advantage of using max-norm regularizer over
nuclear-norm in some other applications. More recently, Cai and Zhou [7] prove that
the max-norm regularized estimator is minimax rate-optimal (over a class of approx-
imately low-rank matrices) under non-uniform sampling schemes.

Though the max-norm approach possesses attractive theoretical properties, effi-
ciently solving large-scale max-norm optimization problem remains challenging and
prevents the wide adoption of max-norm regularizer. As we shall see later, despite the
fact that the max-norm is a convex regularizer and can be formulated as a semidefi-
nite programming problem, classical methods such as interior-point methods are only
scalable to moderate dimensions, while the problem of practical interest is of large
dimensions. In recent work, Lee et al. [22] and Shen et al. [33] propose first-order
algorithms for a nonconvex relaxation of the problem. However, these methods are
sensitive to the choice of initial points and stepsizes, and are only capable of producing
stationary solutions, whose statistical properties remain open due to the nonconvexity.
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8 E. X. Fang et al.

Meanwhile, although themax-normestimator is adaptive to general sampling schemes,
it was shown in Cai and Zhou [7] that if the target matrix is of exact low-rank, and
the sampling scheme is uniform, the max-norm estimator only achieves a sub-optimal
rate compared to the nuclear-norm estimator. Specifically, letting M̂max and M̂∗ be the
estimators using max-norm and nuclear-norm regularizers, we have

(d1d2)
−1‖M̂max − M0‖2F = OP(n−1/2

√
rd) and (d1d2)

−1‖M̂∗ − M0‖2F
= OP(n−1rd log d),

where r is the rank of M0 and d = d1 + d2. To compare, under the uniform sampling
scheme, the nuclear-norm regularizedmethod achieves the optimal rate of convergence
(up to a logarithmic factor) and is computationally more scalable.

To achieve the advantages of both regularizers, we propose a new estimator using
a hybrid regularizer. Meanwhile, we propose an efficient alternating direction method
of multipliers (ADMM) algorithm to solve the optimization problem. Our method
includes the max-norm regularizer as a special case, and the proposed algorithm is
scalable to modestly large dimensions. The contribution of this paper is two-fold:
First, we propose an estimator for matrix completion under general sampling scheme,
which achieves optimal rate of convergence in the exact low-rank case and is adaptive
to different sampling schemes. Second, we provide an efficient algorithm to solve
the corresponding max-norm plus nuclear-norm penalized optimization problem. We
illustrate the efficiencies of the proposed methods and algorithms by numerical exper-
iments on both simulated and real datasets.

Notation Throughout this paper, we adopt the following notations. For any pos-
itive integer d, [d] denotes the set of integers {1, 2, . . . , d}. For a vector v =
(v1, . . . , vd)

T ∈ R
d and a positive number p ∈ (0,∞), we denote ‖u‖p as the

�p-norm, i.e., ‖u‖p = (∑d
i=1 |ui |p

)1/p. Also, we let ‖u‖∞ = maxi=1,...,d |ui |. For a
matrix M = (Mk�) ∈ R

d1×d2 , let ‖M‖F = (∑d1
k=1

∑d2
�=1 M

2
k�

)1/2 be the Frobenius-
norm, and we denote the matrix elementwise �∞-norm by ‖M‖∞ = maxk,l |Mk�|.
Given the �p and �q norms on R

d1 and R
d2 , we define the corresponding ‖ · ‖p,q

operator-norm, where ‖M‖p,q = sup‖x‖p=1 ‖Mx‖q . For examples, ‖M‖ = ‖M‖2,2
is the spectral-norm, and ‖M‖2,∞ = maxk=1,...,d1

(∑d2
�=1 M

2
k�

)1/2 is the maximum
row norm of M . We denote by a � b if c1b ≤ a ≤ c2b for two constants c1 and c2.

Paper Organization The rest of this paper is organized as follows. In Sect. 2, we
review the max-norm approach and formulate the problem. In Sect. 3, we propose
the algorithm. In Sect. 4, we provide theoretical analysis of the estimator. We provide
extensive numerical studies in Sect. 5, and we conclude the paper in Sect. 6.

2 Preliminaries and problem formulation

In this section, we first introduce the concept of the matrix max-norm [23]. Next,
we propose a new estimator which involves both max-norm and nuclear-norm
regularizers.
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Max-norm optimization for robust matrix recovery 9

Definition 2.1 The max-norm of a matrix M ∈ R
d1×d2 is defined as

‖M‖max = min
M=UV T

‖U‖2,∞‖V ‖2,∞,

where the minimum is over all factorizations M = UV T for U ∈ R
d1×k , V ∈ R

d2×k

for k = 1, . . . ,min(d1, d2), and ‖U‖2,∞, ‖V ‖2,∞ denote the operator-norms of U :
�k2 → �

d1∞ and V : �k2 → �
d2∞.

Webriefly compare themax-normandnuclear-norm regularizers.We refer toSrebro
and Shraibman [36] and Cai and Zhou [7] for more detailed discussions. Recall that
the nuclear-norm of the matrix M is defined as

‖M‖∗ = min
{∑

j

|σ j | : M=
∑

j

σ j u jv
T
j , u j ∈ R

d1 , v j ∈ R
d2 , ‖u j‖2=‖v j‖2=1

}
.

From the definition, the nuclear-normencourages low-rank approximationwith factors
in the �2-space. On the other hand, it is known [18] that the max-norm has a similar
interpretation by replacing the constraints in the �2-space by those in the �∞-space:

‖M‖max � min
{∑

j

|σ j | : M =
∑

j

σ j u jv
T
j , u j ∈ R

d1 , v j ∈ R
d2 , ‖u j‖∞ = ‖v j‖∞ = 1

}
,

where the factor of equivalence is theGrothendieck’s constant K ∈ (1.67, 1.79). More
specifically, a consequence of Grothendieck’s inequality is that K−1

G ‖M‖1→∞ ≤
‖M‖max ≤ ‖M‖1→∞ [36], where ‖M‖1→∞ := maxu∈Rd2 :‖u‖1≤1 ‖Mu‖∞ for any

M ∈ R
d1×d2 . This gives some intuition on why the max-norm regularizer could out-

perform the nuclear-norm regularizer when the matrix entries are uniformly bounded.
This scenario indeed stands in many applications. For example, in the Netflix problem
or the low-rank correlation matrix estimation problem, the entries of the unknown
matrix are either ratings or correlation coefficients, and are uniformly bounded.

As mentioned in Sect. 1, the advantages of using the max-norm over the
nuclear-norm are well illustrated in the literature from both theoretical and practi-
cal perspectives. Specifically, we consider the matrix completion problem in a general
sampling scheme. Let M0 ∈ R

d1×d2 denote the unknown matrix to be recovered.
Assume that we are given a random index set � of size n:

� = {
(it , jt ) : t = 1, . . . , n

} ⊂ ([d1] × [d2]
)n

,

where [di ] = {1, 2, . . . , di } for i = 1, 2. We further assume that the samples of
the indices are drawn independently from a general sampling distribution � =
{πk�}k∈[d1],�∈[d2] on [d1] × [d2]. Note that we consider the sampling scheme with
replacement, i.e., we assume P{(it , jt ) = (k, �)} = πk� for all t ∈ [n] and all
(k, �) ∈ [d1] × [d2]. For example, the sampling scheme is uniform if πk� = (d1d2)−1

for all (k, �) ∈ [d1] × [d2]. Given the sampled index set �, we further observe noisy
entries {Yit , jt }t∈[n]:
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10 E. X. Fang et al.

Yit , jt = M0
it , jt + σξt , for t = 1, . . . , n,

where σ > 0 denotes the noise level, and ξt ’s are independent and identically dis-
tributed random variables with E(ξt ) = 0 and E(ξ2t ) = 1.

Using the max-norm regularization, Cai and Zhou [7] propose to construct an
estimator

M̂max = argmin
M∈Rd1×d2

1

n

n∑

t=1

(
Yit , jt − Mit , jt

)2
, subject to M ∈ K(α, R), (2.1)

where K(α, R) = {
M ∈ R

d1×d2 : ‖M‖∞ ≤ α, ‖M‖max ≤ R
}
with α being a

prespecified upper bound for the elementwise �∞-norm of M0 and R > 0 a tuning
parameter. Note that, in many real world applications, we have a tight upper bound
on the magnitudes of all the entries of M0 in advance. This condition enforces that
M0 should not be too “spiky”, and a loose upper bound may jeopardize the estimation
accuracy [26]. Also, the recent work by Lee et al. [22] argues that the max-norm
regularizer produces better empirical results on low-rankmatrix recovery for uniformly
bounded data.

Cai and Zhou [7] provide theoretical guarantees for the max-norm regularizer (2.1).
Specifically, under the approximately low-rank assumption that ‖M0‖max ≤ R, we
have,

1

d1d2
‖M̂max − M0‖2F = OP

⎛

⎝

√
R2d

n

⎞

⎠ ,

where d = d1+d2. This ratematches theminimax lower bound over all approximately
low-rank matrices even under non-uniform sampling schemes. See Cai and Zhou [7]
for more details.

The optimization problem (2.1) is computationally challenging. Cai and Zhou [7]
employ a first-order method proposed in Lee et al. [22]. In particular, Lee et al. [22]
and Shen et al. [33] consider first-order methods based on rewriting problem (2.1) into
the following form:

min
U,V

1

n

n∑

t=1

(
UT
it Vjt − Yit , jt

)2
,

subject to ‖U‖22,∞ ≤ R, ‖V ‖22,∞ ≤ R, max
(k,�)∈[d1]×[d2]

|UT
k V�| ≤ α,

whereUi and Vj denote the i-th rowofU and the j-th rowof V , respectively. Then, Lee
et al. [22] and Shen et al. [33] consider different efficient first-order methods to solve
this problem. However, the problem is nonconvex, and the convergence behaviors of
those methods on such a nonconvex problem are generally sensitive to the choice of
the initial point and stepsize selection. More seriously, the algorithms mentioned can
only guarantee local stationary solutions, which may not necessarily possess the nice
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Max-norm optimization for robust matrix recovery 11

theoretical properties for the solution to problem (2.1). More recently, Orabona et al.
[29] solve the optimization problem (2.1)without the uniform-boundedness constraint.
However, it is unclear how to extend their algorithms to solve the problem (2.1) with
the �∞-norm constraint.

In the next section, we aim to solve the max-norm penalized optimization problem

min
M∈Rd1×d2

1

n

n∑

t=1

(
Yit , jt − Mit , jt

)2 + λ‖M‖max, subject to ‖M‖∞ ≤ α, (2.2)

where λ > 0 is a tuning parameter. By convexity and strong duality, the problem (2.2)
is equivalent to (2.1) for a properly chosen λ. Specifically, for any R specified in (2.1),
there exists a λ such that the solutions to the two problems coincide.

As discussed in Sect. 1, a major drawback of the max-norm penalized estimator
(2.1) is that if the underlying true matrix M0 is of exact low-rank, and when the
sampling scheme is indeed uniform, the max-norm regularizer does not perform as
well as the nuclear-norm regularizer. Since the underlying structure of M0 and the
sampling scheme are unknown, it is difficult to choose the better approach in practice.
To overcome this issue, we propose the following hybrid estimator which is expected
to be more flexible and adaptive:

M̂ := argmin
M∈Rd1×d2

1

n

n∑

t=1

(
Yit , jt −Mit , jt

)2+λ‖M‖max+μ‖M‖∗, subject to ‖M‖∞ ≤ α

(2.3)
where μ is a nonnegative tuning parameter. The addition of the nuclear-norm penal-
ization is motivated by the fact that the nuclear-norm also serves as a convex surrogate
for the rank of the estimator. Thus, the addition of the nuclear-norm encourages the
estimator to be low rank or approximately low rank as compared to the max-norm
estimator in (2.2). However, note that our primary goal here is not to find a low-
rank estimator but one which approximates the underlying matrix M0 at near optimal
recovery and is robust against the unknown sampling scheme. It is worth mentioning
that the use of the sum of two norms in matrix recovery has been considered in other
contexts. For example, in robust principal component analysis Candès et al. [8], the
sum of the nuclear and �1 norms is used in the recovery of the low-rank and sparse
components of a given superposition. In Doan and Vavasis [12], a similar combination
of the two norms (denoted as ‖ · ‖1,∗ := ‖X‖1 + θ‖X‖∗ for a given matrix X and a
parameter θ ) is used to find hidden sparse rank-one matrices in a given matrix. The
geometry of the unit ‖ · ‖1,∗-norm ball is further analyzed in Drusvyatskiy et al. [13].
It is interesting to note that (2.3) is the first time that the sum of the max-norm and
nuclear norm is considered in matrix recovery.

In Sect. 3, we propose an efficient algorithm to solve (2.3), which includes (2.2)
as a special case by taking μ = 0. Section 4 provides theoretical justification for the
hybrid estimator M̂ in (2.3). In particular, it achieves fast rate of convergence under
the “ideal” situation, and is robust against non-uniform sampling schemes. To sum
up, this estimator possesses the advantages of both the max-norm and nuclear-norm
regularizers. Section 5 provides empirical results of the algorithm.
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12 E. X. Fang et al.

3 Algorithm

In this section, we propose a new algorithm to solve the problem (2.3). The key step
is to reformulate the problem to expose the structure.

3.1 Algorithmic framework

We first review that the max-norm regularized problem (2.2) can be equivalently
formulated as a semidefinite programming (SDP) problem. By Definition 2.1, it is
unclear how to efficiently compute the max-norm of a given matrix. By Srebro et al.
[34], the max-norm of a matrix A can be computed via solving the following SDP
problem:

‖A‖max = min R, subject to

(
W1 A
AT W2

)
� 0, ‖diag(W1)‖∞ ≤ R, ‖diag(W2)‖∞ ≤ R.

Thus, the max-norm penalized problem (2.2) can be formulated as an SDP problem
that

min
Z∈Rd×d

1

2

n∑

t=1

(
Yit , jt − Z12

it , jt

)2 + λ ‖diag(Z)‖∞,

subject to ‖Z12‖∞ ≤ α, Z � 0,

(3.1)

where d = d1 + d2, and

Z =
(

Z11 Z12

(Z12)T Z22

)
, Z11 ∈ R

d1×d1, Z12 ∈ R
d1×d2 and Z22 ∈ R

d2×d2 .

One may observe that the problem (3.1) does not explicitly encourage the optimal
solutions to be low-rank matrices, although such a property is desirable in many
practical applications such as collaborative filtering. Thus, we propose to add the
regularization term involving 〈I, Z〉, which is the convex surrogate for the rank of the
positive semidefinitematrix Z , to the objective function in (3.1) to obtain the following
hybrid optimization problem:

min
Z∈Rd×d

1

2

n∑

t=1

(
Yit , jt − Z12

it , jt

)2 + λ ‖diag(Z)‖∞ + μ〈I, Z〉,

subject to ‖Z12‖∞ ≤ α, Z � 0,

(3.2)

where μ ≥ 0 is a tuning parameter. Note that the estimator in Cai and Zhou [7] is
constructed by solving a special case of this problem by setting μ = 0.

Remark 3.1 The problem (3.2) is equivalent to the problem (2.3). To see this, by
Lemma 1 of Fazel et al. [15], there exists an SDP formulation of the trace-norm such
that ‖M‖∗ ≤ t if and only if there exist matrices Z11 ∈ R

d1×d1 , Z12 ∈ R
d1×d2 and

Z22 ∈ R
d2×d2 satisfying
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Max-norm optimization for robust matrix recovery 13

(
Z11 Z12

(Z12)T Z22

)
� 0, and Trace

(
Z11)+ Trace

(
Z22) ≤ 2t.

The optimization problem (3.2) is computationally challenging. Directly solving
the problembygeneric interior-pointmethod basedSDP solvers is not computationally
scalable. This is because the problem of interest is often of high dimensions, and the
�∞-norm constraint in (3.2) induces a large number of constraints in the SDP. In
addition, the feasible set is in a very complex form as it involves both the positive
semidefinite and �∞-norm constraints. Although gradient projection methods are the
most straightforward methods to use, the complicated feasible set also makes them
difficult to be applied. This is because applying such a method requires projecting the
intermediate solution to the feasible set, but it is unclear how to efficiently compute
the projection.

To solve the problem efficiently, we consider an equivalent form of (3.2) below.
As we shall see immediately, this formulation is crucial for efficiently solving the
problem:

min
X,Z

L(Z) + μ〈I, X〉, subject to X � 0, Z ∈ P, X − Z = 0, (3.3)

where the function L(Z) and the set P are defined as follows:

L(Z) = 1

2

n∑

t=1

(
Yit , jt − Z12

it , jt

)2+λ ‖diag(Z)‖∞, P = {Z ∈ Sd : ‖Z12‖∞ ≤ α},

(3.4)

and S
d denotes the set of symmetric matrices in Rd×d .

Intuitively, the advantage of formulating the problem (3.2) into the form of (3.3) is
that we “split” the complicated feasible set of (3.3) into two parts. In particular, X and
Z in (3.3) enforce the positive semidefinite constraint and the �∞-norm constraints,
respectively. The motivation of this splitting is that though projection onto the feasible
set of (3.2), which contains both the semidefinite and �∞-norm constrains, is difficult,
we can efficiently compute the projection onto the positive semidefinite set or the �∞-
constraint set individually. As a result, adopting an alternating direction approach, in
each step, we only need to project X onto the positive semidefinite cone, and control
the �∞-norm of Z . Meanwhile, we impose an additional constraint X − Z = 0 to
ensure the feasibility of both X and Z to the problem (3.2).

To solve (3.3), we consider the augmented Lagrangian function of (3.3) defined by

L(X, Z;W ) = L(Z) + μ〈I, X〉 + 〈W, X − Z〉 + ρ

2
‖X − Z‖2F , X ∈ S

d+, Z ∈ P,

whereW is the dual variable, and Sd+ = {A ∈ Sd : A � 0} is the positive semidefinite
cone.
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14 E. X. Fang et al.

Then, we apply the ADMM algorithm to solve the problem (3.3). The algorithm
runs iteratively, at the t-th iteration, we update (X, Z;W ) by

Xt+1 = argmin
X∈Sd+

L(X, Zt ;Wt ) = �
S
d+
{
Zt − ρ−1(Wt + μI )

}
,

Zt+1 = argmin
Z∈P

L(Xt+1, Z;Wt ) = argmin
Z∈P

L(Z) + ρ

2
‖Z − Xt+1 − ρ−1Wt‖2F ,

Wt+1 = Wt + τρ(Xt+1 − Zt+1),

(3.5)
where τ ∈ (0, (1+ √

5)/2) is a step-length parameter which is typically chosen to be
1.618. Here,�

S
d+(A) denotes the projection of thematrix A ∈ S

d onto the semidefinite

cone Sd+. The worst-caseO(t−1) rate of convergence of ADMMmethod is shown, for
example, in Fang et al. [14].

3.2 Solving subproblems

For fast implementations of the algorithm (3.5), it is important to solve the X - and
Z -subproblems of (3.5) efficiently. For the X -subproblem, we have that the minimizer
is obtained by truncating all the negative eigenvalues of the matrix Zt − ρ−1Wt to
0’s by Eckart–Young Theorem [38]. Moreover, the following proposition provides a
solution to the Z -subproblem in (3.5), which can be computed efficiently.

Proposition 3.2 Let � = {(it , jt )}nt=1 be the index set of observed entries in M0. For
a given matrix C ∈ R

d×d , we have

Z(C) = argmin
Z∈P

L(Z) + ρ

2
‖Z − C‖2F ,

where

Z(C) =
( Z11(C) Z12(C)

Z12(C)T Z22(C)

)
,

Z12
k� (C) =

⎧
⎨

⎩
�[−α,α]

(
Yk�+ρC12

k�
1+ρ

)
, if (k, �) ∈ �,

�[−α,α](C12
k� ), otherwise,

Z11
k� (C) = C11

k� if k �= �, Z22
k� (C) = C22

k� if k �= �,

diag
{Z(C)

} = argmin
z∈Rd

λ‖z‖∞ + ρ

2
‖diag(C) − z‖22,

(3.6)

and �[a,b](x) = min{b,max(a, x)} projects x ∈ R to the interval [a, b].
Proof By the definition of L(Z) in (3.2), we have

Z(C) = argmin
Z∈P

1

2

n∑

t=1

(
Z12
it , jt − Yit , jt

)2 + λ‖diag(Z)‖2∞ + ρ

2
‖Z − C‖2F .

123



Max-norm optimization for robust matrix recovery 15

This optimization problem is equivalent to

min
Z12

{1
2

n∑

t=1

(
Z12
it , jt − Yit , jt

)2 + ρ‖Z12 − C12‖2F : ‖Z12‖∞ ≤ α
}

+ min
Z11

{ρ

2
‖Z11

k� − C11
k�‖2F : k �= �

}
+ min

Z22

{ρ

2
‖Z22

k� − C11
k�‖2F : k �= �

}

+ min
diag(Z)

{
λ‖diag(Z)‖∞ + ρ

2
‖diag(C) − diag(Z)‖22

}
.

(3.7)

For the first termof the above optimization problem, utilizing its separable structure,
it is equivalent to

∑

( j,k)∈S
min

|Z12
k� |≤α

{1
2

(
Z12
k� − Yk�

)2 + ρ
(
Z12
k� − C12

k�

)2}+ ρ
∑

( j,k)/∈S
min

|Z12
k� |≤α

(
Z12
k� − C12

k�

)2
,

from which we see that its minimizer is given by Z12(C).
In addition, the optimality of Z11(C) and Z22(C) are obtained by considering the

remaining terms of (3.7), which concludes the proof. ��
Note that in (3.7), we need to solve the following optimization problem

min
z∈Rd

β‖z‖∞ + 1

2
‖c − z‖22, (3.8)

where c = (c1, . . . , cd)T = diag(C) and β = λ/ρ. A direct approach to solve
this problem is to reformulate it into a linearly constrained quadratic programming
problem. In the next lemma, we show that it actually admits a closed-form solution.
For ease of presentation, we assume without loss of generality that c1 ≥ c2 ≥ . . . ≥
cd ≥ 0.

Lemma 3.3 Suppose that c1 ≥ c2 ≥ · · · ≥ cd ≥ 0. The solution to the optimization
problem (3.8) is of the form

z∗ = (t∗, . . . , t∗, ck∗+1, . . . , cd)
T ,

where t∗ = 1
k∗
∑k∗

i=1(ci −β) and k∗ is the index such that ck∗+1 < 1
k∗
(∑k∗

i=1 ci − β
)

≤ ck∗ . If no such k∗ exists, then z∗ = (t∗, . . . , t∗)T , where t∗ = 1
d

∑d
i=1(ci − β).

Proof Let z = (z1, . . . , zd)T . By the assumption that c1 ≥ c2 ≥ . . . ≥ cd ≥ 0, one
can prove by contradiction that the optimal solution to (3.8) must satisfy the property
that z1 ≥ z2 ≥ · · · ≥ zd ≥ 0. It is clear that (3.8) is equivalent to the following convex
minimization problem:

min
z,t

{
βt + 1

2
‖c − z‖2 : zi ≥ 0, zi − t ≤ 0, i = 1, . . . , d

}
, (3.9)
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16 E. X. Fang et al.

whose KKT optimality conditions are given by

z − c − μ + μ̂ = 0,
β −∑d

j=1 μ̂ j = 0,
μ j ≥ 0, z j ≥ 0, μ j z j = 0, j = 1, . . . , d,

μ̂ j ≥ 0, z j − t ≤ 0, μ̂ j (z j − t) = 0, j = 1, . . . , d.

Define

tk = 1

k

(
k∑

i=1

ci − β

)

, k = 1, . . . , d.

Let k∗ be the index such that ck∗+1 < tk∗ ≤ ck∗ . If no such k∗ exists, i.e., ci < ti for
all i = 1, . . . , d, then set k∗ = d. Now one can verify that the point (z∗, t∗, μ∗, μ̂∗)
defined below satisfies the KKT conditions:

μ∗ = 0, t∗ = tk∗ , z∗i =
{
t∗ for i = 1, . . . , k∗,
ci for i = k∗ + 1, . . . , d,

μ̂∗
i =

{
ci − t∗ for i = 1, . . . , k∗,
0 for i = k∗ + 1, . . . , d.

Hence z∗ is the optimal solution to (3.8). This completes the proof. ��
Remark 3.4 We avoid presenting the general case of c = (c1, . . . , cd)T for simplicity.
The solution in the general case can be derived similarly, and we implement the
algorithm for the general case in later numerical studies.

The algorithm for solving problem (3.2) is summarized in Algorithm 1.

Algorithm 1 Solving max-norm optimization problem (3.2) by the ADMM

Input: X0, Z0, W 0, Y�, λ, μ, α, ρ, τ , t = 0.
while Stopping criterion is not satisfied. do
Update Xt+1 ← �Sd+

{
Zt − ρ−1(Wt + μI )

}
.

Update Zt+1 ← Z(Xt+1 + ρ−1Wt ) by (3.6).
Update Wt+1 ← Wt + τρ(Xt+1 − Zt+1).
t ← t + 1.

end while
Output: Ẑ = Zt , M̂ = Ẑ12 ∈ R

d1×d2 .

Remark 3.5 Taking a closer look at Algorithm 1, we see that the equivalent refor-
mulation (3.3) of the original problem (3.2) brings us computational efficiency. In
particular, all sub-problems can be solved efficiently. Among them, the most compu-
tationally expensive step is the X -update step as we need to compute an eigenvalue
decomposition of the matrix Zt −ρ−1Wt , which has the complexity ofO(d3). Mean-
while, we point out that if a rank-r solution to the X -subproblem is desired, the
computational complexity can be reduced to O(rd2).
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Max-norm optimization for robust matrix recovery 17

Remark 3.6 Note that if the user requires an exact low rank solution, solving the X -
subproblem can be further accelerated. In particular, we can apply the Eckart–Young
Theorem and project the solution onto the nearest face for the target rank, see e.g.,
Oliveira et al. [28] where this idea is applied to the SDP relaxation of the quadratic
assignment problem with nonnegativity constraints added.

In addition to the algorithm for the regularized max-norm minimization prob-
lem (2.2), we also provide the algorithm for solving the constrained version (2.1)
in Appendix 7. We focus our discussions on the regularized version since it is com-
putationally more challenging.

3.3 Stopping conditions

In this section, we discuss the stopping conditions for Algorithm 1. Denote by δC(·)
the indicator function over a given set C such that δC(x) = 0 if x ∈ C and δC(x) = ∞
if x /∈ C. The optimality conditions for (3.3) are given as follows:

0 ∈ ∂δSd+(X) + μI + W, 0 ∈ ∂δP (Z) + ∇L(Z) − W, X − Z = 0, (3.10)

whereW is the Lagrangian multiplier associated with the equality constraint X − Z =
0. Here ∂δSd+(X) denotes the subdifferential of δSd+(·) at X ; similarly for ∂δP (Z).

By the optimality conditions of Xt+1 and Zt+1 in (3.5), we have that

0 ∈ ∂δSd+

(
Xt+1

)
+ ρ

{
Xt+1 − Zt + ρ−1 (Wt + μI

)}

if and only if

ρ
(
Zt − Zt+1

)
+ Wt+1 − W̃ t+1 ∈ ∂δSd+

(
Xt+1

)
+ μI + Wt+1,

and

0 ∈ ∂δP
(
Zt+1

)
+ ∇L

(
Zt+1

)
+ ρ

(
Zt+1 − Xt+1 − ρ−1Wt

)

if and only if

W̃ t+1 − Wt+1 ∈ ∂δP
(
Zt+1

)
+ ∇L

(
Zt+1

)
− Wt+1,

where W̃ t+1 = Wt + ρ(Xt+1 − Zt+1). Observe that the iterate (Xt+1, Zt+1,Wt+1)

generated from Algorithm 1 is an accurate approximate optimal solution to (3.5) if
the residual

ηt+1 := max
{
Rt+1
P , Rt+1

D

}

is small, where
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18 E. X. Fang et al.

Rt+1
P = ‖Xt+1 − Zt+1‖F , Rt+1

D = max
{‖ρ(Zt − Zt+1)

+Wt+1 − W̃ t+1‖F , ‖Wt+1 − W̃ t+1‖F
}
,

denote the primal and dual residuals. In the practical implementation, we let the algo-
rithm stop when ηt+1 ≤ 10−4 or when the number of iterations exceeds 200.

3.4 Practical implementations

We should mention that tuning the parameter ρ properly in the ADMM method is
critical for the method to converge at a reasonable rate. In our implementation, starting
with the initial value of 0.1 for ρ, we adaptively tune the parameter at every tenth
iterations based on the following criterion:

{
set ρ ← 0.7ρ if ‖Rt+1

P ‖ < 0.5‖Rt+1
D ‖,

set ρ ← 1.3ρ if ‖Rt+1
D ‖ < 0.5‖Rt+1

P ‖.

The basic idea is to balance the progress of ‖Rt+1
P ‖ and ‖Rt+1

D ‖ so that the stopping
criterion ηt+1 ≤ 10−4 can be attained within a small number of iterations.

Another important computational issue which we need to address is to cut down the
cost of computing the full eigenvalue decomposition in the X -update step inAlgorithm
1. Given a matrix G ∈ Sd , we observe that to compute the projection �Sd+(G), we
need only the eigen-pairs corresponding to the positive eigenvalues of G. Thus in our
implementation,we use theLAPACKsubroutinedsyevx.f to compute only a partial
eigenvalue decomposition of G if we know that the number of positive eigenvalues of
G is substantially smaller than d, say less than 10% of d. Such a partial eigenvalue
decomposition is typically cheaper than a full eigenvalue decomposition when the
number of eigenvalues of interest is much smaller than the dimension d. For Algorithm
1, at the (t + 1)-th iteration, we estimate the potential number of positive eigenvalues
of Gt := Zt − ρ−1(Wt + μI ) (and hence the rank of Xt+1) based on the rank
of the previously computed iterate Xt . Such an estimation is usually accurate when
the sequence of iterates {(Xt ,Y t , Zt )} starts to converge. During the initial phase of
Algorithm 1, we do not have a good estimate on the rank of Xt+1, and we compute
the projection based on the full eigenvalue decomposition of Gt .

To further reduce the cost of computing Xt+1 in Algorithm 1, we employ a heuristic
strategy to truncate the small positive eigenvalues of Gt to 0’s. That is, if there is a
group of positive eigenvalues of Gt with magnitudes which are significantly larger
than the remaining positive eigenvalues, we compute Xt+1 using only the eigen-pairs
corresponding to the large positive eigenvalues of Gt . Such a strategy can signifi-
cantly reduce the cost of computing Xt+1 since the number of large eigenvalues of
Gt is typically small in a low-rank matrix completion problem. A surprising bonus of
adopting such a cost cutting heuristic is that the recovery error can actually become
30–50% smaller, despite the fact that the computed Xt+1 now is only an approximate
solution of the X -update subproblem in Algorithm 1. One possible explanation for
such a phenomenon is that the truncation of small positive eigenvalues of Xt+1 to 0’s
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Max-norm optimization for robust matrix recovery 19

actually has a debiasing effect to eliminate the attenuation of the singular values of the
recovered matrix due to the presence of the convex regularization term. In the case of
compressed sensing, such a debiasing effect has been explained in Figueiredo et al.
[16].

4 Theoretical properties

In this section, we provide theoretical guarantees for the hybrid estimator (2.3). To
facilitate our discussions, we introduce the following notations. Let X1, . . . , Xn be
i.i.d. copies of a random matrix X with distribution � = (πk�)k∈[d1],�∈[d2] on the set
X = {

ek(d1)e�(d2)T , k = 1, . . . , d1, � = 1, . . . , d2
}
, i.e., P{X = ek(d1)e�(d2)T } =

πk�, where ek(d) are the canonical basis vectors in Rd . By definition,

‖A‖2L2(�) = E〈A, X〉2 =
d1∑

k=1

d2∑

�=1

πk�A
2
k� (4.1)

for all matrices A = (Ak�)1≤k≤d1,1≤�≤d2 ∈ R
d1×d2 . Moreover, let

πk· =
d2∑

�=1

πk� and π·� =
d1∑

k=1

πk�

be, respectively, the probabilities of observing an element from the k-th row and the
�-th column.

Considering the exact low-rank matrix recovery, i.e., rank(M0) ≤ r0, the first part
of the next theorem shows that the estimator (2.3) achieves a fast rate of convergence
under some “ideal” situations, and the second part indicates that it is also robust against
non-uniform sampling schemes. For ease of presentation, we conduct the analysis by
considering a constrained form of (2.3), namely,

M̂ := argmin
M∈K(α,R)

1

n

n∑

t=1

(
Yit , jt − Mit , jt

)2 + μ‖M‖∗, (4.2)

where K(α, R) = {M ∈ R
d1×d2 : ‖M‖∞ ≤ α and ‖M‖max ≤ R}. Our proof partly

follows the arguments in Cai and Zhou [7]. The major technical challenge here is
to carefully balance the tuning parameters R and μ in (4.2) to achieve the desired
recovery results for both the uniform and non-uniform sampling schemes.

Theorem 4.1 Assume that ‖M0‖∞ ≤ α, rank (M0) ≤ r0 and that ξ1, . . . , ξn
are i.i.d. N (0, 1) random variables. The sampling distribution � is such that
min(k,�)∈[d1]×[d2] πk� ≥ (νd1d2)−1 for some ν ≥ 1. Choose R ≥ αr1/20 in (4.2)
and write d = d1 + d2.
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20 E. X. Fang et al.

(i) Let μ = c1(dn)−1/2 for some constant c1 > 0. Then, for a sample size 2 < n ≤
d1d2, the estimator M̂ given at (4.2) satisfies

1

d1d2
‖M̂ − M0‖2F � max

⎧
⎨

⎩
ν2

r0d

n
+ ν(α ∨ σ)

√
R2d

n
, να2 log d

n

⎫
⎬

⎭
(4.3)

with probability at least 1 − 3d−1.
(ii) Let μ = c2 σ max(k,�)∈[d1]×[d2](πk· ∨ π·�)1/2 for some constant c2 > 0. Then, for

a sample size 2 < n ≤ d1d2, the estimator M̂ given at (4.2) satisfies

1

d1d2
‖M̂ − M0‖2F

� max

{

ν2(α ∨ σ)2 max
k,�

(πk· ∨ π·�)
r0d1d2 log d

n
, να2

√
log d

n

}

(4.4)

with probability at least 1 − 3d−1.

Proof of Theorem 4.1 Recall that Yit , jt = M0
it , jt

+ σξt = 〈Xt , M0〉 + σξt for t =
1, . . . , n. By the optimality of M̂ in (4.2), we have that

1

n

n∑

i=1

〈Xi , M̂ − M0〉2 ≤ 2σ

n

n∑

i=1

ξi 〈Xi , M̂ − M0〉 + μ(‖M0‖∗ − ‖M̂‖∗). (4.5)

For eachmatrix A ∈ R
d1×d2 , denote by u j (A) and v j (A) the left and right orthonor-

mal singular vectors of A, i.e., A = ∑r
j=1 σ j (A)u j (A)vTj (A), where r = rank(A)

and σ1(A) ≥ · · · ≥ σr (A) > 0 are the singular values of A. Let S1(A) and S2(A)

be, respectively, the linear span of {u j (A)} and {v j (A)}. Consequently, following the
proof of Theorem 3 in Klopp [20] we have

‖M0‖∗ − ‖M̂‖∗ ≤ ‖PM0(M̂ − M0)‖∗ − ‖P⊥
M0(M̂ − M0)‖∗, (4.6)

wherePA(B) = PS1(A)B+P⊥
S1(A)BPS2(A),P⊥

A (B) = P⊥
S1(A)BP⊥

S2(A), and PS denotes
the projector onto the linear subspace S.

(i) Looking at the inequality (4.5), it follows from (6.6) in Cai and Zhou [7] that
with probability greater than 1 − d−1,

1

n

n∑

i=1

〈Xi , M̂ − M0〉2 ≤ 24σ

√
R2d

n
+ μ

√
2r0‖M̂ − M0‖,
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which, together with (6.13) of Cai and Zhou [7], implies that with probability at least
1 − 3d−1,

1

2νd1d2
‖M̂ − M0‖2F ≤ 1

2
‖M̂ − M0‖2L2(�)

≤ max

⎧
⎨

⎩
μ
√
2r0‖M̂ − M0‖F + C1(α + σ)

√
R2d

n
, C2α

2 log d

n

⎫
⎬

⎭

≤ max

⎧
⎨

⎩
1

4νd1d2
‖M̂ − M0‖2F + 2νr0d1d2μ

2 + C1(α + σ)

√
R2d

n
, C2α

2 log d

n

⎫
⎬

⎭
,

where C5,C6 > 0 are absolute constants. This proves (4.3) by rearranging the con-
stants.

(ii) First we assume that the regularization parameterμ satisfiesμ ≥ 3‖�ξ‖, where
�ξ := n−1∑n

i=1 ξi Xi ∈ R
d1×d2 . By (4.6) and the inequality |〈A, B〉| ≤ ‖A‖ · ‖B‖∗

which holds for all matrices A and B where ‖A‖ is the spectral norm, the right-hand
side of (4.5) is bounded by

(
2σ‖�ξ‖ + μ

) ‖PM0

(
M̂ − M0

)
‖∗ + (

2σ‖�ξ‖ − μ
) ‖P⊥

M0

(
M̂ − M0

)
‖∗

≤ 5

3
μ‖PM0

(
M̂ − M0

)
‖∗ ≤ 5

3
μ
√
2r0‖M̂ − M0‖F (4.7)

whenever μ ≥ 3σ‖�ξ‖, where r0 = rank(M0).
Let ε1, . . . , εn be i.i.d. Rademacher random variables. Then, it follows from Lem-

mas 12 and 13 in Klopp [20] that with probability greater than 1 − 2d−1,

1

2νd1d2
‖M̂ − M0‖2F

≤ 1

2
‖M̂ − M0‖2L2(�)

≤ max

{
5

3
μ
√
2r0‖M̂ − M0‖F + C3να2r0d1d2(E‖�ε‖)2,C4α

2

√
log d

n

}

≤ max

[
1

4νd1d2
‖M̂ − M0‖2F + νr0d1d2

{
6μ2 + C3α

2(E‖�ε‖)2
}
,C4α

2

√
log d

n

]

,

where C3,C4 > 0 are absolute constants and �ε := n−1∑n
i=1 εi Xi .

It remains to consider the quantities ‖�ξ‖ and E‖�ε‖. For ‖�ξ‖ with Gaussian
multipliers ξ1, . . . , ξn , applying Lemma 5 in Klopp [20] yields that, for every n > 0,

‖�ξ‖ ≤ C5 max
(k,�)∈[d1]×[d2]

(πk· ∨ π·�)1/2
√
log d

n
+ C6

(log d)3/2

n
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holds with probability at least 1 − d−1, where C5,C6 > 0 are absolute constants.
Furthermore, by Corollary 8.2 in Mackey et al. [25],

E‖�ε‖ ≤ max
(k,�)∈[d1]×[d2]

(πk· ∨ π·�)1/2
√
3 log d

n
+ log d

n
.

Together, the previous three displays prove (4.4). ��
Remark 4.1 It is known that both the trace-norm and the max-norm serve as semidef-
inite relaxations of the rank. In the context of approximately low-rank matrix
reconstruction, we consider two types of convex relaxations for low-rankness. For
any α, R > 0, define the matrix classes

Mmax(α, R) =
{
M ∈ R

d1×d2 : ‖M‖∞ ≤ α, ‖M‖max ≤ R
}

(4.8)

and

Mtr(α, R) =
{
M ∈ R

d1×d2 : ‖M‖∞ ≤ α, (d1d2)
−1/2‖M‖∗ ≤ R

}
. (4.9)

For any integer 1 ≤ r ≤ min(d1, d2), set Mr(α, r) = {
M ∈ R

d1×d2 : ‖M‖∞
≤ α, rank (M) ≤ r} and note that Mr(α, r) ⊂ Mmax(α, αr1/2) ⊂ Mtr(α, αr1/2).
The following results [7] provide recovery guarantees for approximately low-rank
matrix completion in the sense that the target matrixM0 either belongs toMmax(α, R)

or Mtr(α, R) for some α, R > 0. As before, set d = d1 + d2.

(i) Assume that M0 ∈ Mmax(α, R) and ξ1, . . . , ξn are i.i.d. N (0, 1) random vari-
ables. Then, for a sample size 2 < n ≤ d1d2, the max-norm constrained least
squares estimator M̂max := argminM∈K(α,R)

1
n

∑n
t=1

(
Yit , jt − Mit , jt

)2 satisfies

‖M̂max − M0‖2L2(�) � (α ∨ σ)

√
R2d

n
+ α2 log d

n

with probability at least 1 − 3d−1.
(ii) Assume that M0 ∈ Mtr(α, R), ξ1, . . . , ξn are i.i.d. N (0, 1) random vari-

ables and that the sampling distribution � is uniform on X . Then, for a
sample size 2 < n ≤ d1d2, the trace-norm penalized estimator M̂tr :=
argminM :‖M‖∞≤α

1
n

∑n
t=1

(
Yit , jt −Mit , jt

)2+μ‖M‖∗ withμ � σ

√
log d
dn satisfies

1

d1d2
‖M̂tr − M0‖2F � (α ∨ σ)

√
R2d log d

n
+ α2 log d

n

with probability at least 1 − 3d−1.
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Remark 4.2 When the underlying matrix has exactly rank r , i.e., M0 ∈ Mr(α, r),
it is known that using the trace-norm regularized approach leads to a mean square
error of order O(n−1rd log d). Under the uniform sampling scheme, the trace-norm
regularizedmethod is themost preferable one as it achieves optimal rate of convergence
(up to a logarithmic factor) and is computationally attractive, although from a practical
point of view, the uniform sampling assumption is controversial. In comparison with
the result in Cai and Zhou [7], which is suboptimal under the uniform sampling scheme
and exact low-rank setting, here we established near optimal recovery results (up to a
logarithmic factor) under such a setting, and we can still guarantee recoveries under
non-uniform sampling schemes.

An important message we wish to convey is that, when learning in a non-uniform
world, the underlying sampling distribution also contributes to the recovery guarantee.
More specifically, Part (ii) of Theorem 4.1 sheds light on how the sampling distribution
affects the recovery error bound. The optimal rate of convergence in the class of low-
rank matrices is also achieved by M̂ when the sampling scheme is uniform. From
(4.3) and (4.4), we see that the actual performance of the hybrid estimator M̂ depends
heavily on the sampling distribution and so is the optimal choice of the regularization
parameter μ.

5 Numerical experiments

We compare the nuclear-norm, max-norm and hybrid regularizers for matrix com-
pletion on an iMac with Intel i5 Processor at 2.7GHz with 16GB memory. We test
different methods on simulated and real datasets. All the tuning parameters are chosen
by data splitting.

5.1 Simulated datasets

Wefirst test themethods on simulated data,wherewe consider three sampling schemes.
In the first scheme, the indices of observed entries are uniformly sampled without
replacement, while in the other two schemes, the indices are sampled non-uniformly.
Specifically, in all three schemes, we let the target matrix M0 be generated by M0 =
MLMT

R , where ML and MR are two dt × r matrices, and each entry is sampled
independently from a standard normal distribution N (0, 1). Thus, M0 ∈ R

dt×dt is a
rank r matrix. In all three settings, as listed in Tables 1, 2 and 3. we consider different
combinations of dimensions, ranks and sampling ratios (SR), where SR = n/d2t .
We compare the matrix recovery results using the nuclear-norm, max-norm penalized
estimators and the hybrid estimator. For the nuclear-norm approach, we compute the
estimator by adopting the accelerated proximal-gradient method discussed in Toh and
Yun [37]. For the max-norm and hybrid approaches, we compute the estimator by
solving problem (3.2) using Algorithm 3.2, where μ in (3.2) is set to 0 when we
compute the max-norm penalized estimator.

In Scheme 1, we uniformly sample the entries. In Schemes 2 and 3, we conduct
non-uniform sampling schemes in the following way. Denote by πk� the probability
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Table 1 Averaged relative error and running time in seconds for different methods under uniform sampling
scheme

σ dt (r, SR) Nuclear Max Hybrid

RE Time RE Time RE Time

0 500 (5, 0.10) 1.1 × 10−3 6.9 4.1 × 10−2 12.0 4.0 × 10−2 12.5

(5, 0.15) 7.7 × 10−4 7.0 3.8 × 10−2 11.1 2.9 × 10−2 13.4

(10, 0.10) 5.5 × 10−2 8.0 1.2 × 10−1 11.4 2.9 × 10−2 13.4

(10, 0.15) 1.3 × 10−3 8.6 3.8 × 10−2 11.7 2.3 × 10−2 12.0

1000 (5, 0.10) 8.8 × 10−4 44.8 2.9 × 10−2 110.4 1.9 × 10−2 115.1

(5, 0.15) 6.6 × 10−4 43.3 1.9 × 10−2 111.3 1.8 × 10−2 114.3

(5, 0.20) 5.5 × 10−4 44.6 1.8 × 10−2 112.4 6.7 × 10−3 120.0

(10, 0.10) 1.5 × 10−3 44.4 2.9 × 10−2 108.7 2.0 × 10−2 121.7

(10, 0.15) 1.0 × 10−3 45.8 2.0 × 10−2 112.8 1.3 × 10−2 117.8

(10, 0.20) 8.3 × 10−4 45.5 1.5 × 10−2 110.8 8.9 × 10−3 117.3

1500 (5, 0.10) 8.1 × 10−4 162.8 2.3 × 10−2 385.4 1.2 × 10−2 408.2

(5, 0.15) 6.3 × 10−4 158.3 1.7 × 10−2 396.9 1.1 × 10−2 406.6

(5, 0.20) 5.3 × 10−4 158.1 1.3 × 10−2 410.9 5.6 × 10−3 405.3

(10, 0.10) 1.3 × 10−3 165.9 2.0 × 10−2 413.8 1.5 × 10−2 413.3

(10, 0.15) 9.5 × 10−4 160.8 1.4 × 10−2 410.1 1.3 × 10−2 423.2

(10, 0.20) 7.8 × 10−4 161.0 1.2 × 10−2 395.1 7.0 × 10−3 398.2

0.01 500 (5, 0.10) 7.4 × 10−2 6.4 6.4 × 10−2 10.5 6.3 × 10−2 12.3

(5, 0.15) 5.4 × 10−3 6.4 4.8 × 10−2 11.4 4.3 × 10−2 13.1

(10, 0.10) 1.7 × 10−1 6.3 5.2 × 10−2 10.9 6.6 × 10−2 11.9

(10, 0.15) 7.8 × 10−2 6.5 4.0 × 10−2 11.2 4.8 × 10−2 14.2

1000 (5, 0.10) 4.8 × 10−2 47.1 3.9 × 10−2 101.7 3.6 × 10−2 119.8

(5, 0.15) 4.5 × 10−2 47.5 2.8 × 10−2 106.8 3.3 × 10−2 116.6

(5, 0.20) 4.7 × 10−2 47.6 2.6 × 10−2 117.3 2.6 × 10−2 119.8

(10, 0.10) 6.2 × 10−2 47.1 4.3 × 10−2 106.1 4.2 × 10−2 116.7

(10, 0.15) 4.9 × 10−2 47.2 3.3 × 10−2 105.9 3.0 × 10−2 120.2

(10, 0.20) 4.5 × 10−2 47.7 2.7 × 10−2 112.2 3.2 × 10−3 120.3

1500 (5, 0.10) 4.2 × 10−2 161.2 2.9 × 10−2 377.9 2.9 × 10−2 406.1

(5, 0.15) 4.1 × 10−2 167.5 2.4 × 10−2 408.7 2.8 × 10−2 409.3

(5, 0.20) 4.4 × 10−2 153.4 2.1 × 10−2 412.9 2.1 × 10−2 415.6

(10, 0.10) 5.0 × 10−3 166.9 3.3 × 10−2 397.2 3.3 × 10−2 404.6

(10, 0.15) 4.7 × 10−3 160.8 2.6 × 10−2 395.4 2.5 × 10−2 424.2

(10, 0.20) 4.3 × 10−3 150.6 2.1 × 10−2 401.9 2.0 × 10−2 380.7

Under noiseless and noisy settings, for the nuclear norm approach, we set μ = 1 × 10−4‖Y�‖F and
2 × 10−4‖Y�‖F . For the max-norm approach, we set λ = 2‖Y�‖F and 0.05‖Y�‖F . For the hybrid
approach, and we set λ = 0.01‖Y�‖F and 0.8‖Y�‖F , μ = 0.02λ and 1 × 10−4λ
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Table 2 Averaged relative error and running time in seconds for different methods using non-uniformly
sampled data as in Scheme 2

σ dt (r, SR) Nuclear Max Hybrid

RE Time RE Time RE Time

0 500 (5, 0.10) 7.4 × 10−1 7.6 2.2 × 10−1 12.5 1.2 × 10−1 15.8

(5, 0.15) 6.1 × 10−1 7.8 9.6 × 10−2 13.1 6.1 × 10−2 15.7

(10, 0.10) 7.7 × 10−1 7.5 2.1 × 10−1 12.9 1.6 × 10−1 16.1

(10, 0.15) 6.1 × 10−1 8.5 6.1 × 10−2 13.0 7.6 × 10−2 15.7

1000 (5, 0.10) 7.4 × 10−1 45.2 2.2 × 10−1 97.0 1.1 × 10−1 113.9

(5, 0.15) 6.1 × 10−1 48.2 1.2 × 10−1 104.0 4.3 × 10−2 113.1

(5, 0.20) 6.2 × 10−1 45.4 1.1 × 10−1 105.6 3.5 × 10−2 105.0

(10, 0.10) 7.5 × 10−1 45.8 1.9 × 10−1 97.3 8.8 × 10−2 113.8

(10, 0.15) 6.0 × 10−1 47.6 5.9 × 10−2 105.2 4.1 × 10−2 109.7

(10, 0.20) 6.0 × 10−1 44.6 6.1 × 10−2 108.8 4.3 × 10−2 108.2

1500 (5, 0.10) 7.5 × 10−1 143.2 2.3 × 10−1 388.7 1.0 × 10−1 372.3

(5, 0.15) 6.0 × 10−1 147.2 1.3 × 10−1 398.0 6.2 × 10−2 389.0

(5, 0.20) 6.0 × 10−1 138.5 1.1 × 10−1 397.6 2.2 × 10−2 358.8

(10, 0.10) 7.5 × 10−1 143.2 1.4 × 10−1 360.0 7.4 × 10−2 386.1

(10, 0.15) 6.0 × 10−1 142.3 5.9 × 10−2 392.3 2.8 × 10−2 380.2

(10, 0.20) 6.0 × 10−1 137.1 9.9 × 10−2 395.2 2.4 × 10−2 359.4

0.01 500 (5, 0.10) 7.4 × 10−1 7.5 2.2 × 10−1 15.1 1.3 × 10−1 16.2

(5, 0.15) 6.1 × 10−1 8.3 1.0 × 10−1 14.9 7.1 × 10−2 16.2

(10, 0.10) 7.7 × 10−1 8.7 2.4 × 10−1 15.5 1.7 × 10−1 16.2

(10, 0.15) 6.2 × 10−1 8.3 8.0 × 10−2 15.2 8.6 × 10−2 16.5

1000 (5, 0.10) 7.4 × 10−1 44.5 2.2 × 10−1 117.9 1.0 × 10−1 118.2

(5, 0.15) 6.1 × 10−1 47.0 1.2 × 10−1 116.9 5.2 × 10−2 120.8

(5, 0.20) 6.2 × 10−1 46.7 1.1 × 10−1 120.7 4.3 × 10−2 123.0

(10, 0.10) 7.5 × 10−1 45.6 2.0 × 10−1 117.3 9.3 × 10−2 122.9

(10, 0.15) 6.1 × 10−1 47.3 6.5 × 10−2 119.3 5.3 × 10−2 123.3

(10, 0.20) 6.1 × 10−1 46.3 6.3 × 10−2 123.2 5.0 × 10−2 120.5

1500 (5, 0.10) 7.5 × 10−1 152.6 2.3 × 10−1 395.6 7.2 × 10−2 396.9

(5, 0.15) 6.0 × 10−1 156.3 1.2 × 10−1 382.0 5.3 × 10−2 394.2

(5, 0.20) 6.0 × 10−1 162.4 1.1 × 10−1 396.3 3.0 × 10−2 398.2

(10, 0.10) 7.5 × 10−1 154.5 1.4 × 10−1 403.2 7.3 × 10−2 406.1

(10, 0.15) 6.0 × 10−1 158.7 5.9 × 10−2 396.5 4.3 × 10−2 399.1

(10, 0.20) 6.0 × 10−1 157.7 9.5 × 10−2 405.4 3.6 × 10−2 400.3

For the nuclear norm approach, we set μ = 2 × 10−4‖Y�‖F . For the max-norm approach, we set λ =
0.1‖Y�‖F . For the hybrid approach, and we set λ = 0.2‖Y�‖F , μ = 2 × 10−4λ
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Table 3 Averaged relative error and running time in seconds for the nuclear-norm andmax-norm penalized
matrix completion using non-uniformly sampled data as in Scheme 3

σ dt (r, SR) Nuclear Max Hybrid

RE Time RE Time RE Time

0 500 (5, 0.10) 7.4 × 10−1 7.2 2.6 × 10−1 14.7 1.9 × 10−1 17.8

(5, 0.15) 7.2 × 10−1 7.3 1.9 × 10−1 14.8 8.6 × 10−2 16.7

(10, 0.10) 8.0 × 10−1 7.3 3.9 × 10−1 13.9 3.2 × 10−1 17.6

(10, 0.15) 7.1 × 10−1 7.4 1.5 × 10−1 14.6 1.1 × 10−1 17.9

1000 (5, 0.10) 7.4 × 10−1 42.4 2.4 × 10−1 120.6 1.5 × 10−1 121.6

(5, 0.15) 7.1 × 10−1 42.1 1.9 × 10−1 115.7 7.9 × 10−2 119.9

(5, 0.20) 6.2 × 10−1 44.2 1.2 × 10−1 118.2 3.9 × 10−2 119.8

(10, 0.10) 7.5 × 10−1 42.9 1.9 × 10−1 110.5 1.3 × 10−1 119.9

(10, 0.15) 7.1 × 10−1 42.8 1.4 × 10−1 115.7 6.6 × 10−2 119.0

(10, 0.20) 6.0 × 10−1 44.1 7.0 × 10−2 118.7 3.7 × 10−2 119.6

1500 (5, 0.10) 7.5 × 10−1 142.1 2.4 × 10−1 391.7 1.6 × 10−1 380.7

(5, 0.15) 7.1 × 10−1 143.8 2.1 × 10−1 385.4 7.5 × 10−2 386.4

(5, 0.20) 6.0 × 10−1 146.6 1.1 × 10−1 385.0 2.9 × 10−2 387.9

(10, 0.10) 7.5 × 10−1 143.1 1.7 × 10−1 372.9 1.1 × 10−1 377.9

(10, 0.15) 7.1 × 10−1 144.2 1.6 × 10−2 390.4 3.9 × 10−2 388.5

0.01 500 (5, 0.10) 7.5 × 10−1 7.5 4.1 × 10−2 13.7 4.0 × 10−2 15.4

(5, 0.15) 7.2 × 10−1 7.8 3.8 × 10−2 13.7 2.9 × 10−2 15.1

(10, 0.10) 8.0 × 10−1 7.5 1.2 × 10−1 12.9 2.9 × 10−2 16.1

(10, 0.15) 7.1 × 10−1 7.8 3.8 × 10−2 13.8 2.3 × 10−2 16.3

(10, 0.20) 6.2 × 10−1 8.5 2.8 × 10−2 13.8 2.1 × 10−2 16.2

1000 (5, 0.10) 7.4 × 10−1 44.4 2.4 × 10−1 115.9 1.5 × 10−1 118.3

(5, 0.15) 7.1 × 10−1 45.6 1.9 × 10−1 117.6 7.7 × 10−2 119.1

(5, 0.20) 6.2 × 10−1 47.8 1.1 × 10−1 117.1 4.4 × 10−2 120.0

(10, 0.10) 7.5 × 10−1 44.6 2.0 × 10−1 112.3 1.4 × 10−1 118.0

(10, 0.15) 7.1 × 10−1 45.6 1.4 × 10−1 117.3 6.6 × 10−2 117.6

(10, 0.20) 6.1 × 10−1 48.3 7.0 × 10−2 113.4 4.7 × 10−2 119.4

1500 (5, 0.10) 7.5 × 10−1 148.2 2.4 × 10−1 381.7 1.6 × 10−1 386.9

(5, 0.15) 7.1 × 10−1 150.4 2.1 × 10−1 396.8 6.5 × 10−2 396.1

(5, 0.20) 6.0 × 10−1 156.2 1.1 × 10−1 396.9 3.2 × 10−2 390.0

(10, 0.10) 7.5 × 10−1 148.6 1.7 × 10−1 401.5 1.1 × 10−1 396.9

(10, 0.15) 7.1 × 10−1 151.4 1.6 × 10−1 405.3 4.8 × 10−2 389.2

(10, 0.20) 6.0 × 10−1 160.1 8.0 × 10−2 398.4 3.7 × 10−2 393.1

The parameters are chosen to be the same as those in Table 2
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that the (k, �)-th entry is sampled. For each (k, �) ∈ [dt ]×[dt ], let πk� = pk p�, where
we let pk (and p�) be

pk =

⎧
⎪⎨

⎪⎩

2p0 if k ≤ dt
10

4p0 if dt
10 < k ≤ dt

5

p0 otherwise,

for Scheme 2, and pk =

⎧
⎪⎨

⎪⎩

3p0 if k ≤ dt
10

9p0 if dt
10 < k ≤ dt

5

p0 otherwise,

for Scheme 3,

and p0 is a normalizing constant such that
∑dt

k=1 pk = 1.
In the implementation of Algorithm 1, we set the tuning parameter λ to be propor-

tional to ‖Y�‖F , as suggested by Toh and Yun [37], where Y� denotes the partially
observed matrix. From the theoretical analysis in Sect. 4, we have that the parameterμ
should be smaller than λ by a factor of about (d1d2)−1/2 = d−1

t in the hybrid approach.
To evaluate the matrix recovery results, we adopt the metric of relative error (RE)

defined by

RE = ‖M̂ − M0‖F
‖M0‖F ,

where M̂ is the output solution by the algorithm. We consider different settings of
dt , r and SR. We run simulations under each setting for five different instances. We
first consider the noiseless cases. The averaged relative errors and running times are
summarized in the upper halves of Tables 1, 2 and 3, corresponding to Schemes 1,
2 and 3, respectively. In Table 1, where uniformly sampled data is considered, we
find that the nuclear-norm approach obtains the best recovery results. Meanwhile, we
find that the hybrid approach performs significantly better than the pure max-norm
approach. This observation is consistent with the existing theoretical result that max-
norm regularization does not perform as well as nuclear-norm regularization if the
observed entries are indeed uniformly sampled, and the proposed hybrid approach
significantly boosts the performance of the max-norm regularized method without
specifying data generating schemes. In Tables 2 and 3, where non-uniform sampling
distributions are considered, we observe that both max-norm regularized and hybrid
approaches significantly outperform the nuclear-norm approach, especially when the
sampling ratio is low. This observation matches the theoretical analysis in Sect. 4 and
Cai and Zhou [7]. We also find that the hybrid approach always outperforms the max-
norm approach. This is because, while themax-norm approach is robust, the additional
nuclear norm penalization helps to fully utilize the underlying low-rank structure in
our generating schemes.

Next, we consider settings with noises, where we use the same sampling schemes
as in Schemes 1, 2 and 3, and for each sampled entry, we observe a noisy sample:

Yit , jt = M0
it , jt + σξt · ‖M0‖∞, where σ = 0.01 and ξt ∼ N (0, 1).

We report the averaged relative errors and running times in the lower halves of Tables
1, 2 and 3. As expected, under non-uniform sampling schemes, the max-norm and
hybrid approaches produce better recovery results than the nuclear-norm approach,
and the hybrid approach outperforms the max-norm approach. Surprisingly, we find
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Fig. 2 Relative Errors under different settings for the noisy case under Scheme 1 (uniform sampling)
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Fig. 3 Relative Errors under different settings for the noisy case under Scheme 2 (non-uniform sampling)

that under the uniform sampling scheme, the max-norm and hybrid approaches also
outperform the nuclear-norm approach in the noisy setting. These observations provide
further evidences that the max-norm and hybrid approaches are more robust to noises
and sampling schemes than the nuclear-norm approach in practice.

In addition, for the noisy setting,weplot how the relative errors decrease as sampling
ratios increase under the three schemes. Specifically, for SR = 0.08, 0.10, . . . , 0.22,
r = 3, 5, 10 and dt = 500 and 1000, we plot the averaged relative errors over five
repetitions in Figs. 2, 3 and 4. Under the uniform sampling scheme, Fig. 2 shows
that the nuclear-norm approach provides the best recovery results while the hybrid
approach performs much better than the max-norm approach. Under non-uniform
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Fig. 4 Relative Errors under different settings for the noisy case under Scheme 3 (non-uniform sampling)

sampling schemes, Figs. 3 and 4 demonstrate that the hybrid approach has the best
performance, while the nuclear-norm approach gives the poorest results.

5.2 Real datasets

In this subsection, we test our methods using some real datasets. We first consider the
well-known Jester joke dataset. This dataset contains more than 4.1 million ratings
for 100 jokes from 73,421 users, and it is publicly available through http://www.ieor.
berkeley.edu/~goldberg/jester-data/. The whole Jester joke dataset contains three sub-
datasets, which are: (1) jester-1: 24,983 users who rate 36 or more jokes; (2) jester-2:
23,500 users who rate 36 or more jokes; (3) jester-3: 24,938 users who rate between
15 and 35 jokes. More detailed descriptions can be found in Toh and Yun [37] and
Chen et al. [11], where the nuclear-norm based approach is used to study this dataset.

Due to the large number of users, as in Chen et al. [11], we randomly select nu
users’ ratings from the datasets. Since many entries are unknown, we cannot compute
the relative error as we did for the simulated data. Instead, we take the metric of the
normalized mean absolute error (NMAE) to measure the accuracy of the estimator
M̂ :

NMAE =
∑

( j,k)/∈� |M̂ jk − M0
jk |

|�|(rmax − rmin)
,

where rmin and rmax denote the lower and upper bounds for the ratings, respectively.
In the Jester joke dataset, the range is [−10, 10]. Thus, we have rmax − rmin = 20.

In each iteration, we first randomly select nu users, and then randomly permute
the ratings from the users to generate M0 ∈ R

nu×100. Next, we adopt the generating
scheme used in Scheme 2 in the previous subsection to generate a set of observed
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Table 4 Averaged normalizedmean absolute error and running time in seconds for different methods using
Jester joke dataset

Example (nu , SR) Nuclear Max Hybrid

NMAE Time NMAE Time NMAE Time

jester-1 (1000, 0.15) 0.210 4.82 0.197 110.55 0.200 87.13

(1000, 0.20) 0.209 4.83 0.194 111.79 0.203 89.98

(1000, 0.25) 0.204 5.12 0.188 111.36 0.197 89.02

(1500, 0.15) 0.210 5.93 0.194 302.47 0.201 250.07

(1500, 0.20) 0.206 6.08 0.192 307.70 0.195 255.29

(1500, 0.25) 0.204 6.39 0.185 305.91 0.194 254.66

(2000, 0.15) 0.212 7.06 0.192 647.25 0.196 566.84

(2000, 0.20) 0.208 7.30 0.188 671.73 0.192 547.89

(2000, 0.25) 0.205 7.45 0.183 640.75 0.192 558.02

jester-2 (1000, 0.15) 0.211 4.86 0.199 109.15 0.196 86.34

(1000, 0.20) 0.207 5.01 0.192 110.40 0.193 87.81

(1000, 0.25) 0.204 4.89 0.188 110.41 0.187 90.07

(1500, 0.15) 0.212 5.86 0.197 313.01 0.198 247.26

(1500, 0.20) 0.210 6.10 0.192 313.39 0.193 260.84

(1500, 0.25) 0.205 6.34 0.189 322.05 0.187 255.88

(2000, 0.15) 0.213 6.99 0.197 633.97 0.198 577.32

(2000, 0.20) 0.208 7.50 0.194 644.04 0.193 562.32

(2000, 0.25) 0.204 7.42 0.187 687.24 0.188 576.56

jester-3 (1000, 0.15) 0.227 4.27 0.221 97.82 0.218 83.18

(1000, 0.20) 0.220 4.41 0.212 103.28 0.212 84.02

(1000, 0.25) 0.221 4.54 0.213 105.48 0.212 84.90

(1500, 0.15) 0.225 5.47 0.218 272.30 0.215 237.38

(1500, 0.20) 0.220 5.54 0.212 280.34 0.212 240.19

(1500, 0.25) 0.218 5.69 0.208 284.05 0.211 241.21

(2000, 0.15) 0.226 6.46 0.216 585.71 0.218 521.87

(2000, 0.20) 0.222 6.59 0.217 606.53 0.212 525.93

(2000, 0.25) 0.218 6.70 0.211 614.04 0.210 526.78

For the nuclear norm approach, we set μ = 2 × 10−4‖YS‖F . For the max-norm approach, we set λ =
0.5‖YS‖F . For the hybrid approach, we set λ = 0.8‖YS‖F , μ = 1 × 10−4λ

indices �. Note that we can only observe the entry ( j, k) if ( j, k) ∈ �, and M0
j,k

is available. Thus, the actual sampling ratio is less than the input SR. We consider
different settings of nu and SR, and we report the averaged NMAE and running times
in Table 4 after running each setting five times. It can be seen that the max-norm and
hybrid approaches outperform the nuclear-norm approach in all cases. This provides
strong evidences that the proposed estimator and algorithm could be useful in practice.

Meanwhile, we observe that the running times for solving the max-norm penalized
optimization problems are significantly longer than that for solving the nuclear-
norm penalized problem. This is because solving max-norm penalized optimization
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Table 5 Averaged normalized
mean absolute error and running
time in seconds for different
methods using Movie-100K
dataset

SR Nuclear Max Hybrid

NMAE Time NMAE Time NMAE Time

0.10 0.243 108.4 0.231 266.8 0.232 292.2

0.15 0.235 112.5 0.222 274.9 0.223 288.9

0.20 0.233 112.1 0.213 263.4 0.220 286.2

0.25 0.223 123.8 0.208 285.5 0.215 294.7The parameters are chosen to be
the same as those in Table 4

Table 6 Averaged normalizedmean absolute error and running time in seconds for different methods using
Movie-1M dataset

n SR Nuclear Max Hybrid

NMAE Time NMAE Time NMAE Time

1500 0.10 0.248 154.7 0.235 377.6 0.236 409.2

0.15 0.238 154.1 0.222 318.3 0.229 410.9

0.20 0.233 153.9 0.216 329.8 0.223 401.9

0.25 0.225 210.7 0.208 473.3 0.218 506.2

2000 0.10 0.244 357.8 0.227 733.2 0.230 956.9

0.15 0.234 363.5 0.214 725.7 0.213 946.0

0.20 0.230 365.6 0.206 782.6 0.206 946.3

0.25 0.220 391.9 0.199 744.4 0.210 950.7

The parameters are chosen to be the same as those in Table 4

problems is intrinsically more difficult than solving nuclear-norm penalized ones.
Specifically, in Algorithm 1, the most computationally expensive step is to compute
a full eigenvalue decomposition of a matrix of size d1 + d2 by d1 + d2 during the
X -update step. As a comparison, in nuclear-norm regularized optimizations, we only
need to compute a singular value decomposition of a matrix of size d1 by d2. In the
Jester joke dataset, since d2 � d1, singular value decomposition takes the advantage
of a small d2, but the computational cost of the max-norm approach is dominated by
the large d1. In practical matrix completion problems, the computational efficiency is
sometimes not the top priority, but more attention is placed on reducing the recon-
struction error. Thus, depending on the specific application, the max-norm and hybrid
approaches provide useful complements to the nuclear-norm approach.

We also consider the MovieLens data. The dataset is available through http://www.
grouplens.org. We first implement the proposed methods on the Movie-100K dataset,
which contains 100,000 ratings for 1682 movies by 943 users. The ratings range
from rmin = 1 to rmax = 5. In this experiment, we first randomly permute the rows
and columns of the matrix, and then sample the observed entries as in Scheme 2 in
the previous subsection. Table 5 reports the averaged NMAE and running times of
different methods. Next, we implement the methods on the Movie-1M dataset. This
dataset contains 1,000,209 ratings of 3900 movies made by 6040 users. We randomly
select n users and n movies to conduct the tests, where n = 1500 or 2000. We report
the results in Table 6. From Tables 5 and 6, we observe that the max-norm and hybrid
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approaches lead to better matrix recovery results than the nuclear-norm approach in
all cases. In addition, we observe that the differences between running times of the
max-norm and nuclear-norm approaches are less significant than those in the Jester
joke problem. This is because d1 and d2 are of the same order in the MovieLens
example. Therefore, in practice, if the computational efficiency is the top priority, and
if d1 � d2 or d1 � d2, the nuclear-norm approach is preferable. While if controlling
the reconstruction accuracy attractsmore concern, we recommend the proposed hybrid
approach.

Remark 5.1 Note that the improvement from the hybrid and max-norm approaches
over the nuclear-norm approach is about 5%, which looks marginal. However, a 5%
improvement can be significant in practice as the nuclear-norm approach is widely
recognized as a highly efficient approach. In the earlier Netflix competition, it is
seen that the results from top teams (where nuclear-norm approach is used as part
of the algorithms) are all very close, and a 5% improvement can be significant
for practitioners. See http://www.research.att.com/articles/featured_stories/2010_05/
201005_netflix2_article.html?fbid=pgKJkRJ5mbi. In addition, though the nuclear-
norm approach is computationally more efficient, we note that in this particular
application, computation efficiency is not of the highest priority, and the modest sac-
rifice of computational cost is tolerable here.

6 Conclusions

We propose a new matrix completion method using a hybrid nuclear- and max-norm
regularizer. Compared with the standard nuclear-norm based approach, our method
is adaptive under different sampling schemes and achieves fast rates of convergence.
To handle the computational challenge, we propose the first scalable algorithm with
provable convergence guarantee. This bridges the gap between theory and practice of
the max-norm approach. In addition, we provide thorough numerical results to backup
the developed theory. This work paves the way for more potential machine learning
applications of max-norm regularization.

A possible future direction is to further improve the computational efficiency. The
most computationally expensive component in Algorithm 1 is the X -update step, in
which an eigenvalue decomposition is needed. By solving some approximate version
of this subproblem, it is possible to further boost the empirical performance and solve
problems of larger sizes.

7 Extensions

In this section, we consider solving the max-norm constrained version of the opti-
mization problem (2.3). In particular, we consider

min
M∈Rd1×d2

1

2

n∑

t=1

(
Yit , jt − Mit , jt

)2 + 〈M, I 〉, subject to ‖M‖∞ ≤ α, ‖M‖max ≤ R.

(7.1)
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This problem can be formulated as an SDP problem as follows:

min
Z∈Rd×d

1

2

n∑

t=1

(Yit , jt − Z12
it , jt )

2 + μ〈I, Z〉,

subject to ‖Z12‖∞ ≤ α, ‖diag(Z)‖∞ ≤ R, Z � 0.

(7.2)

Let the loss function be

L(Z) = 1

2

n∑

t=1

(
Yit , jt − Z12

it , jt

)2 + μ〈I, Z〉.

We define the set

P = {Z ∈ Sd : diag(Z) ≥ 0, ‖Z11‖∞ ≤ R, ‖Z22‖∞ ≤ R, ‖Z12‖∞ < α}.

Thus, we have an equivalent formulation of (7.2) below, which is more conducive for
computation:

min
X,Z

L(Z) + μ〈X, I 〉, subject to X � 0, Z ∈ P, X − Z = 0. (7.3)

We consider the augmented Lagrangian function of (7.3) defined by

L(X, Z;W ) = L(Z) + 〈W, X − Z〉 + ρ

2
‖X − Z‖2F , X ∈ Sd+, Z ∈ P,

where W is the dual variable. Then, it is natural to apply the ADMM to solve the
problem (7.3). At the t-th iteration, we update (X, Z;W ) by

Xt+1 = argmin
X∈Sd+

L(X, Zt ;Wt ) = �Sd+
{
Zt − ρ−1(Wt + μI )

}
,

Zt+1 = argmin
Z∈P

L(Xt+1, Z;Wt ) = argmin
Z∈P

L(Z) + ρ

2
‖Z − Xt+1 − ρ−1Wt‖2F ,

Wt+1 = Wt + τρ(Xt+1 − Zt+1),

(7.4)
The next proposition provides a closed-form solution for the Z -subproblem in (7.4).

Proposition 7.1 Denote the observed set of indices of M0 by � = {(it , jt )}nt=1. For
a given matrix C ∈ R

d×d , we have

Z(C) = argmin
Z∈P

L(Z) + ρ

2
‖Z − C‖2F , (7.5)
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where

Z(C) =
( Z11(C) Z12(C)

Z12(C)T Z22(C)

)

Z12
k� (C) =

⎧
⎨

⎩
�[−α,α]

(
Yk�+ρC12

k�
ρ

)
, if (k, �) ∈ S,

�[−α,α](C12
k� ), otherwise,

Z11
k� (C) =

{
�[−R,R]

(
C11
k�

)
if k �= �,

�[0,R]
(
C11
k�

)
if k = �,

Z22
k� (C) =

{
�[−R,R]

(
C22
k�

)
if k �= �,

�[0,R]
(
C22
k�

)
if k = �,

and �[a,b](x) = min{b,max(a, x)} projects x ∈ R to the interval [a, b].
We summarize the algorithm for solving the problem (7.2) below.

Algorithm 2 Solving max-norm optimization problem (7.2) by the ADMM

Initialize X0, Z0, W 0, ρ, λ.
Input: X0, Z0, W 0, Y�, λ, R, α, ρ, τ , t = 0.
while Stopping criterion is not satisfied. do
Update Xt+1 ← �Sd+

(Zt − ρ−1(Wt + μI )).

Update Zt+1 ← Z(Xt+1 + ρ−1Wt ) by (7.5).
Update Wt+1 ← Wt + τρ(Xt+1 − Zt+1).
t ← t + 1.

end while
Output: Ẑ = Zt , M̂ = Ẑ12 ∈ R

d1×d2 .
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