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1. Introduction 

Users Manual 
Version 2.3 

RGA is an interpreter for a special language designed for the analysis of 

reachability graphs, or control flow graphs, generated from Petri nets [PETE77]. 

Although in some cases the reachability graph can become too large to be tractable, 

or can even be infinite, many interesting problems exist whose reachability graphs 

are of reasonable size. In RGA, the user has access to the names of the places in 

the net, and to the states of the reachability graph. The structure of the graph is 

also available through functions which return the sets of successor or predecessor 

states of a state and the arcs connecting the states. The RGA language allows 

dynamic typing of identifiers, recursion, and function and operator overloading. 

Rather than providing a number of predefined analysis functions, RGA provides 

primitive functions which allow the user to conduct complex analyses with little 

programming effort. RGA is part of a suite of tools, called "P-NUT" (Petri Net 

UTilities), developed by the Distributed Systems group at UC Irvine. The P-NUT 

tools are intended to facilitate the analysis of concurrent systems described by Petri 

nets. 

In RGA, the user merely types an expression, and the interpreter evaluates 

it and prints the resulting value. For example, using the function nsucc which 

returns the number of successor states of a state, and the set of all states S, the 

user can write 

forall s in S [nsucc(s) > O] 

This expression will return true if for each state in the set s, the number of its 

successors is greater than zero. Thus this expression is a test for deadlock-freeness 

of the Petri net [AGER79]. 

Another test might be to determine if the net is conservative, that is, that 

tokens are never gained or lost [AGER79]. The function tokens(s) returns the sum 

of the tokens on all places in a state s. The first state in the graph is written #0, 

so the expression for net conservation might be 

forall s in S [tokens(#O) = tokens(s)] 

1 
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The following sections describe ·the properties of the interpreter for the lan:­

guage, the data types and expressions which exist in the language, and how the 

user may define functions using the primitive functions provided by the interpreter. 

Then some examples are given to show how the system may be used to answer more 

complex questions than can be answered using the primitive functions. Finally, 

some implementation issues are discussed and some conclusions are drawn. 

2 .. Execution Environment 
RGA is an interpreter, and thus its operation is similar to that of most LISP 

interpreters. Any expression which the user types is immediately evaluated, and 

that value is printed on the standard output. The expression is then thrown away, 

and the user is prompted again for another command. In addition to typing 

expressions, the user may define expressions to be evaluated later as functions. 

Expressions and function definitions may be read from a file as well as from the 

standard input. 

Unlike LISP, RGA has a number of distinct data types which it uses. But there 

is no explicit way to declare variables. In fact, all variables in the RGA language 

are dynamically typed when they are assigned values: an identifier or expression 

always represents a <value, type> pair. The user never explicitly deals with the 

type component, however. During execution, an identifier may have more than 

one value (and. therefore, type) associated with it simultaneously. These values 

are stored on an execution stack, and only the most recently bound value may be 

accessed at any time. 

Because identifiers need not be declared before their use, it is very easy to 

define functions. However, it also means that much of the type checking which 

needs to be performed must be delayed until execution time, since the types and 

values of identifiers used in a function definition will not be known at the time the 

function is defined. 

Three types of errors are possible using RGA. The first error type is a syntax 

error in an expression or command. This type of error results in the message 

"Command ignored." The second type of error is a run-time error, such as a type 

conflict or a division by zero. A run-time error usually results in an appropriate 

message's being printed, followed by a prompt. The execution stack is not "cleaned 

up" so that variables will have the values they had at the time of the error, 

facilitating debugging of defined functions. If user-defined functions were being 
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executed at the time of the error, a stack-back trace of function calls is printed. 

The final type of error is an internal error in the RGA interpreter, which should not 

happen under normal circumstances. Usually this type of error prints a message 

and produces a core image for debugging the interpreter. 

3. lexical Issues 
RGA is case sensitive. All command keywords and predefined function names 

are written in lower case. All identifiers which the user defines may be written 

in lower, upper, or mixed case. The user may not redefine a reserved language 

keyword, but predefined identifiers may be redefined, although that is not recom­

mended. In addition to the five predefined identifiers S, P, T, C, and A (described 

later), the reachability graph which is loaded during initialization will typically 

define a number of identifiers to be places and sets of places and transitions; these 

identifiers must follow the requirements for identifiers described below. 

An identifier is represented as an upper or lower case alphabetic letter, 

followed by zero or more letters, digits, single-quote characters, periods, and un­

derscores. A number is represented as an optional minus sign followed by one or 

more digits; floating point as well as integer values may be represented. 

A command to RGA is normally terminated by a newline character. Receiving 

this character will cause RGA t<;> perform the indicated function. For very long 

expressions or function definitions, a line may be terminated with a backslash(\) 

followed by a newline. This combination of two characters is treated as a single 

space character, so its only effect is to delimit other tokens. Multiple space and tab 

characters and comments are treated as a single space. Comments may be inserted 

using the conventions of the C and PL/I languages: /* comment text */. 

4. Expression Types and Execution Semantics 
This section describes the syntax and semantics of the expressions available 

in RGA, and it describes the built-in primitive functions which are available. It 

is divided into subsections which describe each of the different data types which 

the language supports and the functions which return those types. The commands 

which may be used to define new functions are described in Section 4, and a formal 

BNF description of the language is given in Appendix A. All expressions in the RGA 
language evaluate to a value whose type is either a state, an integer, a boofean, 

a transition, an arc (A), a floating point number, a character string, a set, or a 
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sequence. Identifiers can be assigned values of any of these types, and they will 

automatically take on the appropriate type. Strings are denoted by enclosing the 

characters of the string in double quotation marks. Floating point constants are 

indicated by the presense of a decimal point. The arithmetic operations which 

may be applied to integer values may also be applied to floating point values, but 

mixed argument types are not allowed. The built-in functions int and float may 

be used to convert between integer and floating point values. 

Normally, evaluating a place is interpreted to mean the integer number of 

tokens on that place within the context of a particular state. If no state is specified 

explicitly, then the place value will be returned instead. 

Calls to functions, both those which are predefined, and to those defined by 

the user, have the same syntax: 

id (list-of- expressions) 

where a list-of-expressions is a single expression, or multiple expressions separated 

with commas. If the function takes no arguments then the parentheses are omitted. 

When invoking a function, the expressions are evaluated from right to left in the 

current context, and then all the values are bound to the formal parameters, from 

left to right. Thus all parameters are passed by value, so they cannot be changed in 

any way by the called function unless it accesses them globally. Variable bindings 

are dynamically scoped. 

When evaluating a place identifier, as mentioned above, its value is the integer 

number of tokens on that place in a certain state of the control flow graph. To 

specify the state to use explicitly, the place identifier should be followed by a state­

valued expression in parentheses. 

There are four special expression operators whose type depends on their 

arguments, and which operate on expressions of all types. (1) The print function 

takes an arbitrary expression in parentheses, and it returns the value of that 

argument. It has a side-effect of printing the value returned on the standard 

output. (2) The infix assignment operator ": =" assigns the identifier on its left the 

<value, type> pair which results from evaluating the expression on its right. This 

operator is right-associative. Like print, the assignment operation also returns 

the value which has been evaluated. (3) The semicolon infix operator";" takes two 

expressions of arbitrary type. It evaluates the left expression and discards its value, 

if any, and then it returns the value of the right hand expression. The semicolon 
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operator is left-recursive in its evaluation. ( 4) Finally, the if expression allows for 

conditional execution of expressions. There are two forms of the if command: 

if boolean-expression then expression fi 

if boolean-expression then expression else expression fi 

The type and value returned by the if expression depends on what expression, if 

any, is executed. It is unique, however, in that it may not return a value at all 

if the boolean-expression in the first form evaluates to false. The only time that 

this form of the if expression can be used is as the left argument to a semicolon 

operator, which would discard any value returned. The else-less form is not 

allowed in any other situation, when a value is required. 

4.1. Integer Expressions 

Integer expressions follow the conventions of most modern programming lan­

guages. An integer value may be an integer constant, an identifier whose value is 

an integer, a place (when it is evaluated as the number of tokens on that place, as 

explained above), or an integer-valued function. A number of arithmetic functions 

are written in conventional infix notation: addition ( + ), subtraction (- ), multipli­

cation (*), division (/), modulo(%), and exponentiation (""). Unary negation is 

recognized. Parentheses can be used to control the evaluation of an expression; 

conventional precedence and left-to-right evaluation order otherwise hold. 

The following are the predefined integer-valued primitive functions. The 

argument types (states and sets) are described in later sections. 

int (float) 

tokens (state) 

marked (state) 

The expression float is evaluated, which ·should result in 
a floating point value. This value is then rounded to an 
integer value, which is returned as the value of the int 
function. There is a corresponding float function which 
converts values the other way. 

The total number of tokens on all places in a specified state. 
The state is given as an argument to the function, as to­
kens ( #0). An alternate way of writing this function is to 
put the state within vertical bars, as an absolute value. For 
example, l#il. 

Returns the number of places in the argument state which 
have at least one token on them. If marked(s)=tokens(s) 
then the state s is a safe state [AGER 79]. 



nsucc (state) 

n pred (state) 

card(s) 

capacity (place) 
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Returns the number of successor states of the argument 
state. If there are two or more arcs which lead to the same 
state, then nsucc will actually return the cardinality of the 
aout set rather than that of the succ set. 

Returns the cardinality of the ain set, as nsucc returns the 
cardinality of the aou t set. 

Returns the number of elements of a set or sequences, which 
is the single argument. 

Returns the capacity of a place as defined in the Petri net. 
Returns 0 when this information was not specified. 

4.2. Floating Point Expressions 

The arithmetic and relational operators described above may also be applied 

to floating point values. A floating point constant is differentiated from an integer 

constant by the presense of a decimal point. Standard exponential notation may 

also be used. Floating point and integer values may not be mixed in use with 

the arithmetic or relational operators. The built-in functions which return floating 

point values are: 

float(int) Converts the integer expression int to a floating point value. 

enable_time(trans) Returns the enabling time for a transition trans. Zero is 
returned for untimed Petri nets. 

firing_ time{trans) Returns the firing time for a transition trans. Zero is re­
turned for untimed Petri nets. 

prob (trans) 

atime(a) 

-aprob(a) 

Returns the probability of a transition trans as a floating 
point value. Returns 0.0 when a probability has not been 
assigned in the Petri net. 

Returns the time associated with an arc a in a timed reach­
ability graph as a floating point value. Returns 0.0 with 
untimed graphs. 

Returns the probability associated with an arc a in a timed 
reachability graph as a floating point value. Returns 0.0 with 
untimed graphs. 

4.3. Boolean Expressions 

As with other expressions, boolean expressions are built up from constants, 

infix operators, and predefined and user-defined function calls. The boolean con­

stants are the reserved words true and false. 

The infix boolean operators are the conventional arithmetic comparison tests: 

<, <=, >, >=, =, and ! =; equal may also be written ==, while not equal may 
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also be written as <>. The equal ·and not equal tests may be applied to any 

data types (places, states, sets, sequences, and booleans, as well as integer-valued 

expressions), while the other operators are restricted to integer, floating point, and 

string expressions. Of course, the = operation applied to boolean expressions is 

a logical equivalence test. Other infix boolean operators which apply to boolean 

expressions are implies, iff, and, and or. For convenience, these operators 

may also be written as=>,<=>, & and I, respectively. Both the and and or operators 

are "short-circuit" operators which evaluate the lefthand operand, and then only 

evaluate the righthand operand if necessary. Their precedence, from lowest to 

highest, is the logical relational operators implies and iff, which have neither left 

nor right associativity, and and or, which are left associative, and the arithmetic 

relational operators, which also have no associativity. The prefix unary operator 

not may be used to negate a logical expression. It has the precedence of arithmetic 

relational operators, so it is higher than the other logical operators. 

As a special case, places may be used as boolean values if they contain at most 

one token. This is for convenience when working with safe nets. When a boolean 

expression is expected, and a place name is found instead, then the number of 

tokens on that place is evaluated, and false is returned if it is zero, and true if it 

is one. 

Two of tll;e language's most important operators are forall and exists, the 

universal and existential quantifiers. Their syntax is the same, so only that of 

for all will be given: 

forall id in 8et-expres8ion [boolean-expre88ion] 

This expression is evaluated as follows. First, the current value of id is pushed 

on the execution stack, to be popped off when the for all expression is finished 

being evaluating. The global current state (the value of C) is also pushed and 

popped at the same time if the set is a set of states. Next, the set-expression is 

evaluated once and only once. The id is then looped through the elements of the 

set one at a time. If the id is a state, then the current state is set to be that state 

also. For each value of the id, the boolean-expression is evaluated. If for all values, 

the expression evaluates to true, then the whole expression returns that value. 

But if the expression ever evaluates to false, then execution of the loop is halted 

immediately and the for all expression returns false. 
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The exists expression is similar to forall, but with the logical tests re­

versed. It continues to evaluate the boolean expression until it exhausts all the 

elements of the set or until the expression evaluates to true. If the set is exhausted, 

then exists returns false, and otherwise, true. 

There are five primitive functions which return a boolean value. The first, in, 

determines whether a value is an element of a set or sequence. The remaining four 

are branching time temporal logic functions. Each of these four functions takes 

three arguments: a state q and two expressions f and g which are expected to 

return boolean values. These functions and their descriptions, were inspired by 

functions with the same names described in [FERN85]. 

in(item, s) 

all(q, f, g) 

inev(q, f, g) 

pot (q, f, g) 

some(q, f, g) 

The in function takes two arguments, an item of any type, and 
a set or sequence of items s. It returns true if the item is an 
element of the indicated set or sequence, and false otherwise. 

Returns true if for all states subsequent to state q, f is true as 
long as g is true. 

Returns true if for all successor states of state q, f is true 
sometime before g becomes false. 

Returns true if for some sequence of successor states of state q, 
f becomes true before g becomes false. 

Returns true if on some sequence of successor states of state q, 
f is true until g becomes false. 

Quite often, the third argument to the temporal logic functions will be the 

boolean constant true. For example, the expression 

forall s in allsucc(state) [expr] 

can be more quickly computed (especially when its result is false) usmg the 

expression 

all (state, expr, true) 

because the latter function performs a depth-first search over the successor set of 

state, stopping as soon as it discovers a state in which expr is false. 

As each of these functions is evaluated, part or all of the reachability graph 

will be traversed. The value of C will be set to each state visited in turn. This 

value may then be referenced in the boolean expressions f and g. 
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4.4. State, Place, and Transition Expressions 

State constants may be written as a pound sign (#) followed by an integer. 

The first state in a complete reachability graph is #0. Places can only be referred to 

through the identifiers defined in the original Petri net from which the reachability 

graph is derived, and through loop control identifiers in the forall and exists 

expressions, and the subset construct described in the following subsection. 

Unnamed transition constants are written as a dollar sign($) followed by an 

integer, with the first transition written as $0. Those which have been given a 

name in the Petri net will be identified by that name instead. 

A state in the reachability graph consists of a marking of the places of the 

net, a set of arcs to other states, and a set of arcs coming from other states. In 

addition, for timed nets, the state will contain remaining enabling and firing times 

for some of the transitions. This time information is returned by the ret and rft 

functions. The marking of the places in a state may be easily displayed using the 

showstate function: 

showstate(state) Returns the state argument, and prints its marked places as 
a side effect. If more than one token is on a place, the token 
count is shown in parentheses. 

4.5. Set and Sequence Expressions 

The set operations are probably the single most powerful feature of the 

language. Sets and sequences are composed of elements which must be of the 

same type. Any legal type is acceptable, including other sets and sequences; all 

the elements of a set or sequence must be of the same type. Although sets should 

be considered to be unordered, they are.always maintained in ascending numerical 

order for convenience in reading and comparing them. Sets do not contain duplicate 

elements, while sequences are ordered and may contain duplicates. A single set is 

either a set variable, a set constant, or a set function. 

Four predefined set variables exist: S, P, T, and A. The set S is the set of 

all states in the reachability graph, and P is similarly the set of all places in the 

original Petri net. Tis the set of all transitions in the Petri net potentially-firable 

from the initial state. A is the set of all arcs in the reachability graph. In addition 

to these four variables, any place or transition arrays defined in the Petri net will 

be represented in RGA as sets of places or transitions. 

Variables whose values are a set or sequence may be indexed to pick individual 

members of the set. The first element is numbered 0. Only variables may be 
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indexed in this manner. The index expression, which should evaluate to an integer, 

is given in parentheses following the identifier. 

A set constant is written as a list of expressions within curly braces {}. 

The list is written with the elements separated with commas. For convenience, 

a constant range of states may also be entered by giving the first state, " .. ", and 

the final state of the range. For example, the set consisting of states 1, 5 through 

10, and 12 could be written 

{#1, #5 .. #10, #12} 

The list of elements may be empty, resulting in the empty set. As a special case, an 

empty set may be used in the context of a set of any type without a type-conflict 

error. 

Another powerful way of specifying a set constant is the subset construct. 

It allows elements to be selected from a set using any boolean expression as the 

selection criterion. This construct is similar to a forall command, but it always 

loops through the entire set evaluating the boolean-expression for each element. 

Like the forall and exists statements, the id's value is pushed at the beginning 

of the loop and restored when the subset has been constructed. If the set-expression 

is a set of states, then the "current state" will also be pushed and popped, and set 

to each value along with the id. The set-expression is evaluated only once. The 

subset construct is written 

{id in set-expression I boolean-expression} 

Sequence constants are written just like set constants, except that their 

elements maintained in the order in which they were added to the sequence, and 

pairs of less-than ( «) and greater-than (>>) symbols are used to indicate the 

beginning and ending of the sequence, instead of open and close braces. 

It is recommended that set and sequence constants be used only in contexts 

where they will not be repeatedly evaluated, as within a loop or a recursive function, 

because they are relatively expensive to compute. If a constant is to be used 

in these situations, it should be evaluated .. once and the value assigned to some 

identifier. Then that identifier may be used in place of the constant. There are 
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several predefined functions which ,return sets as their values. Addition functions 

which return sequences will be discussed in the following subsection on arcs. 

ain(state) Returns the set of arcs whose destination state is the 
indicated state. 

aout (state) Returns the set of arcs whose source state is the indicated 
8tate. 

succ(8tate) The succ function takes a state expression as its argu­
ment. It returns the (possibly empty) set of immediate 
~uccessor states in the reachability graph of the specified 
state. 

pred(state) The pred function is similar to the succ function, but it 
returns the set of immediate predecessor states instead of 
the successor set. 

allsucc ( 8tate) Returns the set of all the successors of the indicated state, 
and recursively, all their successors. 

allpred(state) Returns the set of all the predecessors of the indicated 
state, and recursively, all their predecessors. 

input_places (trans) Returns the set of input places for a particular transition 
tran8. Since it is a set, places which have multiple arcs to 
tran& will appear only once. 

output_places ( tran&) Returns the set of output places for a particular transition 
trans. 

inhibitor_places( tran8l) Returns the set of places connected to trans via inhibitor 
arcs. 

union(s1, s2) The union function takes two sets or sequences st and 
&2 as its arguments. Both set/ sequences must consist of 
elements of the same type, or at least one must have zero 
cardinality. This function returns the set union of the 
two sets, or the concatenation of the two sequences in the 
order given. The infix plus operator ( +) may be written 
in place of the union function. 

intersection(.91, s2) This function is similar to the union function, but it 
returns the set intersection of its two arguments which 
must both be sets. The two arguments must both be sets 
of the same type, or at least one must be the empty set. 

setdiff (s1, s2) The setdiff command takes two arguments with the 
same restrictions as the intersection function. It re­
turns a copy of st minus any elements it has in ·common 
with s2. Elements of s2 which do no appear in .st are 
ignored. The setdiff function may be written using the 
infix minus ( - ) operator. 



set op (June, set) 

set (sequence) 

ret (s, trans) 

rft(s, trans) 

4.6. Arcs 
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The setop operator applies the function June, which must 
be a monadic function, to each element of the set. The 
results of the function executions are unioned into the re­
sulting set, which is returned as the value of the setop 
function. The function June may return values which 
are either individual elements or sets of elements; it may 
be either a user-defined function or one of the prede­
fined functions succ, pred, card, marked, nsucc, 
npred, src, dest, trans, allpred, allsucc, show­
state, conflict_set, atime, probability, capac­
ity, enable_time, firing_time, input_places, in­
hibitor_places, float, int, aprob, ain, aout, 
and output_places. 

The sequence will be converted to a set of the same type, 
eliminating duplicate elements. 

Returns a sequence of the remaining enabling time( s) for 
a transition trans within the context of a state s. For 
untimed reachability graphs, or when no enablings of the 
transition exist in the state, an empty sequence is re­
turned. 

Returns a sequence of the remaining firing time( s) for a 
transition trans within the context of a state s. For un­
timed reachability graphs, or when no instances of firings 
of the transition exist in the state, an empty sequence is 
returned. 

Arcs connect the states in the reachability graph. In the case of a timed 

reachability graph, an arc will consist of a from_ state, a to_state, a list of transitions 

beginning to fire (the tbegin sequence), and a list of transitions ending firing (the 

tend sequence). With an untimed net, the tbegin sequence will contain the one 

transition whose firing moves the Petri net from the from_state into the to_state, 

and the tend sequence will be empty. With timed nets, the tbegin and tend 

sequences will each contain zero or more transitions, possibly including duplicates. 

Arc co~stants are written as a quadruple of the source and destination states 

of the firing, and the tbegin and tend sequences. The components of the quadruple 

are written separated by commas, between square brackets. For example, [#0, 

#10, <<$10», «>>] is a firing of transition $10 taking the net from state #0 to 

state #10. It is a run-time error to evaluate an arc constant which does not exist 
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in the reachability graph. Four primitive functions exist which take arcs as their 

single argument and return the separate components of the arc: 

src (a) Returns the source state of a. 

dest (a) Returns the destination state of a. 

tbegin(a) Returns the sequence of transitions which begin firing with arc a. 

tend(a) Returns the sequence of transitions which end firing with arc a. 

5 .. User-Defined Functions 
Defining a function is similar to assigning a value to a v~riable. The primary 

difference is that the expression is not immediately evaluated. Instead, the parse 

tree which represents the expression is stored as the value of the identifier, with 

a special type indicating that the "value" of the identifier is an unevaluated ex­

pression tree. Whenever that identifier is subsequently evaluated, the expression 

tree is retrieved and evaluated, with its value being returned as the value of the 

identifier. Functions defined in this way may be written recursively; as in pure 

LISP, recursion is the primary mechanism for looping and flow control. 

To define a function, the ": : =" operator is used. Functions may be 

defined only at the top command level. If RGA is being used interactively, 

then defining a function will cause the message "ok" to be printed on the terminal. 

The list of formal parameters for the function, if any, is endosed in parentheses after 

the identifier and before the : : = operator. As with function calls, the parentheses 

are omitted if there are no parameters. Local variables, if any, of the function are 

listed within square brackets following the formal parameters. If there are no local 

variables, the brackets are omitted. The expression which defines the function is 

given to the right of the operator. At the top command level, the special command 

show id will print the definition of the id if it is a function. The full syntax of a 

function definition is given in Appendix A. 

Like other identifiers in the language, the arguments are given their types at 

the time they are bound to values, when the function is invoked. For example, 

assume the following trivial function definition: 

setx(v) ::= x:=v 

Then one may type setx(1) and the identifier x will be defined as having the v~ue 
of the integer constant 1. The setx function will also return the integer value 1, 
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since it expands to an assignment expression which has that value. Subsequently 

typing the command 

setx({s in S I nsucc(s)=O}) 

causes x to be assigned to the set of all deadlocked states. The previous value of 

x is thrown away. Note that the formal parameter v takes on values of different 

types dynamically. The existing value of v, if any, will still be valid when setx 

has returned. Incidently, it is the current dynamically scoped "global" value of x 

which is assigned in the above examples. 

6. Some Examples 
In the introduction, some expressions for net deadlock-freeness and net con­

servation are given. In this section, some more complex examples are given to 

illustrate the full power of the system. 

If the Petri net is safe, then each place will have at most one token on it 

(i.e., each place is 1-bounded [PETE77]). One might test for this condition with the 

expression 

forall s in S [forall p in P [p <= 1]] 

Note that the value of p in p <= 1 is p(s). There is a faster way to test for net 

safety, however: 

forall s in S [marked(s) = tokens(s)] 

This function works because the marked function returns the number of places 

which have at least one token on them for the state s. If any of these places has 

more than one token on it, then tokens(s) will be greater than marked(s). It is 

faster than the first expression because it avoids the doubly-nested loop and makes 

more use of primitive functions. 

In an untimed reachability graph, it is convenient to access the one transition 

whose firing is represented by an arc in the graph. Such a function could be defined 

as: 

trans(a)[tseq] ::= tseq := tbegin(a); tseq(O) 

Suppose one wishes to know the maximum value of the marked function over 

all the states in the graph. This could be obtained with the function shown in 



I• 
* Findmax returns the maximum value attained by marked() over all states. 
•I 

f indmax [max] : : =.\ 
max:=O; \ 
forall s in S [if marked(s) > max then max := marked(s) fi; true]; \ 
max 

Figure 1 

Function to find the maximum value of marked 

I• Return a sequence of transitions which are enabled in state s •/ 
enabled_in(s)[result,t] ::=\ 

result := <<>>;\ 
forall tin setop(tbegin, aout(s)) [result:=result+t; true];\ 
result 

I• Return a sequence of transitions which are firing in state s •/ 
firing_in(s)[result,t] ::= \ 

result := <<>>; \ 
forall tin T [forall x in rft(s,t) [result:=result+<<t>>; true]];\ 
result 

Figure 2 

Return the set of enabled transitions in state s 
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Figure 1. Notice the use of the semicolon operator to make the expression in the 

for all statement return a true value, thus guaranteeing that each state in S will 

be tested. The entire expression returns the maximum value found, max, which is 

a local variable of the function. 

The functions shown in Figure 2 return lists of transitions which are enabled in 

a particular state, or which are currently firing in some state. The lists are returned 

as sequences, since there can be more than one instance of a given transition in 

either catagory. The enabled_in function generates a set of all the transitions 

which begin firing on any output arc of the specified state s. It then appends all 

the sequences in this set into one sequence (result) and returns that value. 

The firing_in function finds all the transitions which have remaining firing 

times in state s. For each remaining firing time (even if it is zero), the transition 

is added to the result list. When all the transitions have thus been tested, the 

result sequence is returned as the value of the function. 

Now suppose that we wish to define a boolean function which returns true 

if a particular state can be reached from another state in the graph (see Figure 3). 



I• 
* Breadth-first search version of reachable 
•I , 

reachable(s, final)[morestates, tried] ::= \ 
s = final I \ 

/* 

(tried := emptyset := {}; \ 
try({s})) 

*For each sin nextset, test if final is in succ(s). 
* If not, iterate on all those successors. 
•I 

try(nextset) ::= \ 
morestates := emptyset; \ 
exists s in nextset [in(final, succ(s)) I \ 

card(morestates := union(morestates,succ(s))) < O] I \ 
card(morestates:=setdiff(morestates, tried:=union(tried, nextset))) > 0 & \ 

try(morestates) 

Figure 3 

Recursive Breadth-First Reachability Function 
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The definition given here is breadth first: it always has a set of states that it 

knows have already been checked, and one whose successors have not yet been 

checked. The function is actually divided into two parts, reachable (s, final) and 

try ( neztset). The reachable function is the top-level definition. It checks if the 

starting state, s, is the same as the desired state, final. If not, it initializes the set 

constant emptyset, which is used in the try function only for speed and clarity, 

and calls try. 

This pair of functions takes advantage of the the dynamic binding of RGA. 
The reachable function has two local variables morestates and tried. They are 

both actually locals of the pair of functions, since they are shared by both. If they 

were not locals of reachable, then any global value with the same name would 

·be lost by executing the reachable function. Morestates contains the next set of 

states to be tested by the try function; tried is the set of states whose successors 

have already been tested. 

The try function takes one argument: the set of states which have recently 

been tested against final ( neztset) whose successors now need to be checked. For 

each element of neztset, try compares its successors to final. This test can be 

made quickly since it uses only the built-in functions exists, in, and succ. If 

a match is found, try returns true. If all the matches fail, morestates will have 

been assigned the set of all the successors just tested. Any states in morestates 
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which are in the set tried are removed, and the cardinality of the resulting set is 

compared to zero. If it is zero, then try will return false since there are no more 

states whose successors have yet to be compared to final. Otherwise, try is invoked 

recursively to try the elements in moreJtateJ, with tried augmented with the set of 

states just tried. 

The allsucc function could have been used to determine the same function. 

If the matching successor is near the end of those tested by the above function, or 

if there is no match, it would be significantly faster than the reachable function 

given. But if the match occurs early in the search, then the above code could be 

significantly faster, since it would not bother to generate further successors. 

As a final example, suppose that all the states in the reachability graph have 

been partitioned in to two sets, good and bad. One might then wish to know the 

transition( s) which lead from the good to the bad states. The set of arcs between 

the two sets is expressed as 

arcs := intersection(setop(aout, good), setop(ain, bad)) 

The set of "critical" transitions (those which take the net from the "good" states 

to the "bad" ones [RAzo80]) is then given by the expression 

setop(trans, arcs) 

using the function trans defined above. 

7. Running RGA 
Typically, the user will enter a Petri net representation of the system to be 

analyzed in a symbolic notation. This symbolic representation is translated into 

the reachability graph via other programs, described elsewhere. 

If files are given on the command line, then each one is read in turn. RGA 

acts as if I dev /tty were always given after any other files given on the command 

line. As a special case, if no files are specified, RGA reads from stdin before reading 

from /dev/tty, to allow its input to be piped directly from another program. 

RGA expects its input to be a "canonical" Petri net followed by a "canonical" 

reachability graph, followed by expressions and/or commands, followed by end-of­

file. The formats of these "canonical" representations are described in separate 

documents. If RGA is reading from the terminal, then it prompts the user for each 

line. While reading a graph, the prompt is "*"; while reading commands, it is 
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">". Typically, RGA will be invoked with the name of a reachability graph on the 

command line. RGA will still read the expressions/commands from the user from 

/dev/tty. If the user wishes to input one or more files containing expressions, they 

can be listed on the command line following the reachability graph. The Petri net 

and its reachability graph could also be in separate files (although currently the 

P-NUT tools do not produce a separate reachability graph). 

It is possible to have RGA read expressions and/or commands from a file 

after it has begun reading from /dev/tty. When the end of the file is reached, 

it resumes reading commands from the previous input source, so input files may 

recursively "call" other input files. The command to read from a file is the "<a" 
character, followed by the name of the file to read. If the name of the file does 

not follow the lexical rules for an identifier in RGA, then it must be specified as a 

quoted string. If a command file defines global values, it is convenient to end such 

commands with the ; operator so that the values will not be printed as the file is 

interpreted. Command files may be conveniently input to RGA by specifying them 

on the command line following the name of the reachability graph file, as described 

above. 

There are two commands which may only be used at the top command level; 

they may not be used within defined functions. First, as mentioned previously, the 

user may print the definition of a function by issuing the show command followed 

by the name of the function. The formal 'parameters and local variables, if any, 

will be displayed in addition to the function's definition. The other command 

which may be used only at the prompting level is defining a function with the : : == 

command. 

8. Implementation and Performance 
The RGA program is written in the C programming language running on the 

4.2BSD UNixt operating system, running on a VAX-11/750 computer.t It has been 

ported to a number of other systems, including Apollo, Locus, and Sun. 

The RGA system implements a minimum number of primitive operations to 

allow all the different operations which were desired in the initial design of the 

system. It has been designed also to be extensible, since the user may define new 

functions in terms of the primitives. In particular, the ability to pass values to 

UNIX is a trademark of AT&T Bell Labs 
t VAX is a trademark of Digital Equipment Corporation 
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parameters of functions, and the existence of the semicolon operator and the if 

expression, were included expressly for extensibility purposes. 

But RGA was also written to be fairly efficient. Efficiency is necessary if large 

reachability graphs are to be handled, and the system will only really be useful if 

realistically-large graphs can be analyzed in a reasonable period of time. In the in­

terests of efficiency, some non-primitive operations which could be implemented as 

user-defined functions have been coded as primitive routines instead. For example, 

as a test, the primitive function nsucc was defined as ns (s) : : = card(aout (s)). 

By executing the primitive and then the defined function in a loop 75,705 times, 

the nsucc function was measured to be 4.17 times faster than the user-defined 

equivalent. More performance measurements are given in Appendix B. 

9. Conclusions and Future Work 
There is no way currently to pass a function as an argument, or to pass 

identifiers by-reference. This capability would be useful in defining certain general 

functions; the setop primitive is a special case example of its use. Functions 

without arguments would have to be called with an empty argument list, rather 

than with no argument list, as is presently the case. 

Perhaps future versions of RGA will overcome these problems if they prove 

to be serious. Other commonly-used functions may become primitives as they 

are identified. New primitives to make sequences more powerful also need to be 

identified and implemented. 



pendix 
NF rammer for R 

<formals> .. ( <list_of_exprs>) 
I 

<locals> :: [ <list_of_exprs>] 
I 

Language 

<definition> :: <ident> <formals> <locals> ::= <expr> 

<list_of_exprs> :: <expr> 
I <list_of _exprs> , <expr> 

<transition> .. $<number> 

seqstart :: << 

seqstop >> 

addop .. + 

mulop : : * 
I 
% 

lrelop ·· iff 

relop : : 

<sequence> .. 
I 
I 

implies 

= 
> 
>= 
< 
<= 
<> 
!= 

<seqstart> <list_of _elems> <seqstop> 
<seqstart> <seqstop> ·. · 
rat ( <state> , <state> ) 
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rft ( <state> '· <state> ) 

<set_or_seq> :: <set> 
I <sequence> 

<expr> :: <sequence> 
set ( <expr> ) 
atime ( <expr> ) 
aprob ( <expr> ) 
probability ( <expr> ) 
capacity ( <expr> ) 
float ( <expr> ) 
int ( <expr> ) 
enable_time ( <expr> ) 
firing_time ( <expr> ) 
input_places ( <expr> ) 
output_places ( <expr> ) 
<string_constant> 
<floating_ constant> 
<integer_constant> 
<identifier> := <expr> 
showstate ( <expr> ) 
true 
false 
[ <state> , <state> , <expr> , <expr> ] 
if <expr> then <expr> else <expr> f i 
if <expr> then <expr> f i 
<subset> 
print ( <expr> ) 
<expr> and <expr> 
<expr> or <expr> 
not <expr> 
forall <identifier> in <set_or_seq> [ <expr> ] 
exists <identifier> in <set_or_seq> [ <expr> ] 
( <expr> ) 
in ( <expr> , <set_or_seq> ) 
<expr> <relop> <expr> 
<expr> ; <expr> 
<expr> <lrelop> <expr> 
<expr> <addop> <expr> 
<expr> <mulop> <expr> 
<addop> <expr> 
<identifier> ( <list_of _exprs> ) 
tokens ( <state> ) 
I <state> I 
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I 
I 
I 
I 
I 
I 
I 
I 
I tend 
I 
I 

<state> .. . . 

card ( <set_or_~eq> ) 
marked ( <state> ) 
<expr> .. <expr> 
nsucc ( <state> ) 
npred ( <state> ) 
src ( <expr> ) 
dest ( <expr> ) 
tbegin ( <expr> ) 

( <expr> ) 
# <number> 
<identifier> 

<identifier> 
<identifier> ( <list_of _exprs> ) 
print ( <state> ) 
# <number> 
<identifier> Becomes <state> 

<state_range> :: #<number> .. #<number> 

<list_of _elems> 
I 
I 
I 

<setopfunc> :: 

:: <expr> 
<state_range> 
<list_of _elems> , <expr> 
<list_of _elems> , <state_range> 

succ 
pred 
ain 
aout 
tokens 
marked 
nsucc 
npred 
src 
de st 
tbegin 
tend 
allsucc 
allpred 
showstate 
conflict set 
a time 
a.prob 
probability 
capacity 
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<subset> : : 

<set> :: 

float 
int 
ret 
rf t 
enable_ time 
firing_ time 
input_places 
output_places 

succ ( <state> ) 
conflictset ( <expr> ) 
allsucc ( <expr> ) 
allpred ( <expr> ) 
pred ( <state> ) 
ain ( <state> ) 
aout ( <state> ) 
setop (<identifier> , <set>)­
setop ( <setopfunc> , <set> ) 
union ( <set> , <set> ) 
union ( <seqconst> , <seqconst> ) 
setdiff ( <set> , <set> ) 
intersection ( <set> , <set> ) 
{ <list_of _elems> } 
{ } 
{ <identifier> in <set> I <expr> } 

<identifier> 
<identifier> ( <list_of _exprs> ) 
<identifier> becomes <set> 
print ( <set> ) 
<subset> 
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end ix 

Some ance Measurements 

The table below contains some time and space measurements of the current 

implementation of RGA. The problem measured was the dining philosophers prob­

lem for a varying number of philosophers, between two and eight. For each number 

of philosophers, the number of states in the reachability graph and the time to load 

the reachability graph were measured. The time is divided into user and system 

CPU time, in seconds. In addition, the size of the interpreter in kilobytes was 

measured after loading the graph but before executing any tests. Finally, two 

typical problems were executed, testing for the safety of the net, and determining 

the set of states which can reach state zero (#0) after zero or more transition firings. 

The canreach function is a user-coded version of the allpred primitive. On the 

average, it is about 37% as fast as the primitive function. For each of these tests, 

the execution time minus the load time is given, in CPU seconds. 

Some Performance Measurements 
Dining n States Load Time RGA Size (Kb) Homing 

2 8 0.5 + 0.6 91 0.1 
3 26 0.8 + 0.6 103 0.2 
4 80 1.7 + 0.7 137 0.3 
5 242 4.4 + 1.2 227 1.4 
6 728 13.5 + 3.1 530 6.1 
7 2186 44.4 + 9.3 1605 34.6 
8 6560 153.l + 36.4 5526 455.6 

Figure 4 

Some Performance Measurements of RGA 
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