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Can a Computer Really Model Cognition?
A Case Study of Six Computational Models of Infant Word Discovery

Eleanor Olds Batchelder (eleanor@roz.hunter.cuny.edu)
70 West 95th Street, Apt. 9H, New York, N.Y. 10025

Abstract

Prelinguistic infants must find a way to isolate meaningful
chunks from the continuous streams of speech that they hear.
This bootstrapping problem has recently been the focus of sev-
eral attempts to model the cognitive problem computationally.
How can we evaluate whether this kind of simulation is rele-
vant to the cognitive situation, and how can we compare diff-
erent computational approaches? 1 discuss my O-B algorithm,
a variable-length clustering procedure, and compare it with
five other models—three connectionist ones and two statistical
programs which use Minimum Description Length as a decision
metric. | show that the models differ in their similarity to
cognitive processes with respect to: a) the timing of inputs
and outputs; b) constraints on the incremental learning pro-
cess; ¢) clustering vs. dividing strategy; and d) whether the
goal is to find words or to leamn word-finding rules.

What Is a Model?

In one sense, any theory implies some model of reality. Ina
narrower sense, a verbal description is called a model when
it describes in detail some complex process, providing a ful-
ler context for empirical observations whose relationship is
not transparent. A computer program which simulates the
inputs and outputs of some behavior, and possibly the inter-
nal processing as well, is also a model. Each kind of model
has different strengths and weaknesses. The computer mod-
el has greater precision and enforces internal consistency,
but the narrative description can often be drawn closer to re-
ality and can include a wider range of relevant phenomena.

Models help increase our understanding by forcing us to
look at more aspects of the problem, or more closely, than
we might otherwise do, and they can generate new and test-
able hypotheses. But all models are at bottom a collection
of analogies, and both their power and their limitations stem
from this fact. Even a precise physical model, such as a
model railroad, is limited in realism by being much smaller
than the original. In evaluating a model, we must make ex-
plicit the various analogies involved, remembering that each
analogy is a human construct and all are imperfect.

What Is a Cognitive Computer Model?

Cognitive models depend on analogies with human mental
processes. In one sense, a cognitive computer model is by
definition unreasonable—computers are very unlike human
brains. What’s more, the single-purpose computer programs
we will discuss here are so far from the complex interactions
of human cognition that we will have to stretch our imagina-
tions even to tolerate the comparison. However, we hope
that by pushing the analogy as far as we can, we will be re-
warded by a heightened awareness and a sharper understand-
ing of the issues involved in cognition.

Cognitive models should be evaluated at least in part on
how well they simulate the cognitive process in question. In
this paper we will compare models that use different compu-
tational algorithms, and show that these involve different de-
grees of similarity to the infant’s mental processes.

In addition, learning models have special features that cog-
nitive process models do not. Realistic computational learn-
ing models should be unsupervised models—allowing the
computer to “learn” from examples by induction. Supervised
models present correctly analyzed instances to be learned,
and are useful to discover new ways of organizing the data
so as to achieve the output. Unsupervised models present
unanalyzed instances and require that the system discover
the correct analysis. Models which perform unsupervised
learning are also known as “self-organizing” and the resulting
structure is called “emergent.” The models we will look at
are mainly unsupervised, though some have supervised por-
tions.

Cognitive Models vs. Language Engineering

Modeling language in computers is also valued for perfor-
ming practical work in the world. Imitating cognitive func-
tions is an engineering goal as well as a scientific one, but
there are important differences between the two. In scienti-
fic modeling, all aspects of the model are evaluated for their
closeness to the human condition. In engineering projects,
however, only the outputs need to be realistic—the inputs
and the processes are not valued for themselves, but can be
anything that produces the best output. Therefore, workhorse
models will find supervised training just as acceptable as
unsupervised training, as long as the training data is readily
available and the ultimate output is of high quality.

In both scientific and engineering models, quantitative
evaluation is an important criterion, but it is less critical to
the cognitive enterprise. A few percentage points on a sin-
gle performance measure can affect the choice of algorithm
for a large production project, but the same comparison is
negligible when weighed against significant differences in
psychological reality.

In sum, engineering and cognitive goals and methods are
distinct, and the two are rarely effectively combined in the
same project. While there is some borrowing of techniques
back and forth, we should be clear about which is which. In
this paper, we have a cognitive goal rather than an engineering
one—to show that frequency information can be mobilized
in a cognitively realistic fashion.

On the other hand, one criterion of a successful cognitive
strategy is its effectiveness. So, we will present some quant-
itative results for the models, in order to demonstrate that
they are roughly equal in their raw segmentation power, and
then we will look in greater detail at qualitative criteria.
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The Infant Bootstrapping Problem

Infants hear long unbroken streams of speech, which must
be separated into chunks that can be attached to meaning:
e.g. the man in the moon
not: them anin them oon

By the end of the first year of life, the infant has started to
find words, and by 18 months or so, a vocabulary of about
50 words is achieved and the rudiments of linguistic know-
ledge are in place. Thus, we hypothesize that this first word-
finding process is a prelinguistic and temporary one, soon
replaced by more sophisticated techniques.

Linguistic explorations of this bootstrapping process have
suggested a number of possible sources of segmentation in-
formation, some of which are more available and/or useful
than others. Those least likely to be useful are: acoustic
cues to word boundaries (not very numerous); phonetic and
phonotactic cues (word-based, so require prior knowledge
of words); and one-word utterances (too few and not enough
variety). More likely to be helpful are: utterance boundar-
ies, which help focus attention on chunks at the edges as
word candidates; prosodic cues such as intonation, which
helps break up long utterances, and stress, which forms the
nucleus of a cluster of sounds; and distributional cues such
as cooccurrence frequency, which have been shown to be-
come more useful at the end of the first year (Jusczyk,1997).

None of these has been demonstrated to be adequate by it-
self, and it 1s probable that the child uses a combination of
several sources. We will consider here how much of the job
can be accomplished by distributional cues alone—informa-
tion about the frequency of recurring chunks.

Computational Models of Word Discovery

The lack of a purely linguistic explanation for this bootstrap-
ping problem has led to a burst of recent research on the in-
fluence of frequency on infant segmentation. The six compu-
tational models discussed here share an overall approach. In
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general, a text corpus is chosen and all word boundaries are
removed, then a computer program “reads™ the corpus and
gathers statistical observations to decide where to replace
the word boundaries, attempting to duplicate the original
text (the “standard™).

Of course, as a cognitive analog, this methodology is very
flawed. First, the criterion of matching some conventional
“word" standard can be justly criticized as not imitative of
infant cognition. Children famously use morphemes, words,
and phrases as basic units. So orthographic words are only
a rough measure of meaning-based segmentation.

Second, all the models use graphemes of some sort, rather
than sound waves, to represent the speech signal:

Orthography: look theres a boy with his hat

Phonemes: Uk D*z 6 b7 wIT hiz h&t
Although we know very little about how humans represent
language, and practically nothing about how human infants
do so, certainly it is not as orthography! However, decoding
actual sound signals is still beyond the ability of machines,
unless considerable linguistic knowledge 1s supplied.

We now review a number of computational models of the
infant’s segmentation process. They fall into three major
groups: connectionist networks; algorithms using the Mini-
mum Description Length principle; and frequency clustering
algorithms. As a benchmark, we add a “dumb default” bi-
gram technique.

First we will briefly describe each project, and give repre-
sentative quantitative results for them. We can hardly do jus-
tice to these projects in such a small space, so the reader is
referred to the original reports. Figure 1 shows recall and
precision rates in terms of cuts and of words from the respec-
tive papers (most algorithms only report one way or the
other). The cut metric is more precise, but the word metric
is more intuitive and linguistically useful. The rest of the
paper will discuss in greater detail their relative merits as
cognitive models—whether the strategies and processes they

Words as % of Standard

BIGRAMS

Supervised
Utterance boundaries
Mutual information

ALGORITHMS
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Edinburgh net
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Brent & Cartwright (DR)
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Figure 1: Reported quantitative performance of the various models, measured as number of cuts or words that match the stan-
dard. Notes: a) We show only the results due to distribution and utterance boundary information, omitting those from com-
bined cues (frequency statistics plus prosody or phonotactics). b) deMarcken (1997) does not provide comparable perform-
ance measures. c) All the results shown here are for English, since only the O-B algorithm reports cross-linguistic results.

121



use are plausible ones for infants, and whether the timing of
events is similar to that which is observed for infants.

Bigrams

The “dumb default,” against which more sophisticated tech-
niques can be gauged, is a variety of simple statistical proce-
dures which look only at two-character combinations. A
program computes the relevant statistic for each bigram type,
ranks the values, and chooses a cutoff point on which to
base segmentation decisions. Figure | shows results on a
33,000-word phonemic corpus from CHILDES (MacWhin-
ney, 1995) for several statistics, using a cutoff point chosen
to create the same number of words as in the standard.

* Word boundaries (supervised): Frequencies of bigrams
across standard word boundaries vs. within words are used
to segment the same text. This technique outperforms all
others, but it uses information not available to the child.

* Utterance boundaries: Frequency of bigram types occur-
ring before and after utterance boundaries.

« Mutual Information statistic for all bigram types (slight-
ly better than the alternatives of raw frequency or transition-
al probability)

Connectionist Models

Network, or connectionist, models from three laboratories
all used feature representations of phonemes (see Table |
for details). The text was presented as a stream, and the net-
works were asked to predict the next phoneme, gradually
learning to discriminate between phoneme pairs with high
vs. low cohesion. In the Edinburgh net, the amount of error
in this task was translated into the probability of a word
boundary (less error =more cohesion and less probability of
a boundary). In the other two nets, indicators of utterance
boundaries were supplied in the input along with phonemes
(supervised training), and one output unit reported the proba-
bility of a boundary after each phoneme.

* University of Rochester: Aslin. Woodward, LaMendola
& Bever (1996) tested whether a connectionist architecture
using moving triplets could generalize from utterance
boundanes (pauses) to word boundaries.

*University of Edinburgh: Cairns, Shillcock, Chater &
Levy (1997) ran a very large corpus on a simple recurrent
network (SRN) using no boundary information, but did not
get very good results. Among other differences between
this net and the others, they added “noise” to the input by
randomly flipping feature bits.

*University of Southern California (USC): Christiansen,
Allen & Seidenberg (in press) used utterance boundaries
like Rochester, but with a larger corpus and a SRN, and re-
ported similar results. We show here results without the use
of stress cues.

Minimum Description Length (MDL)

MDL is a quantitative metric used to evaluate how compactly
a particular lexicon represents a particular text. A computer
program trying to construct a “best” lexicon for a corpus
uses MDL to select the best one. An MDL-based model
must thus try many possible lexicons and evaluate each one,
generally a very computation-intensive process.
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* de Marcken (1996) used an optimizing approach to
avoid testing every possible lexicon. He demonstrated his
method on several large corpora, using standard orthography,
but he segmented hierarchically rather than creating a single
series of words. He cited recall rates of over 90%, but he
did not give precision rates to balance them against because
the number of units created (on several levels) was many
times the number of words in the standard.

* Brent & Cartwright (1996) tried all possible lexicons
exhaustively and were therefore limited to tiny corpora of
about 525 words. They used a phonemic representation of
the speech of mothers to infants, from the CHILDES data
(MacWhinney, 1995). The version reported here is called
DR; we omit discussion of later experiments which added
several types of phonotactic information.

The O-B Algorithm

Olivier (1968) and Wolff (1977) used similar, but independ-
ently developed, algorithms based on identifying as "words”
those variable-length clusters which appeared frequently.
Batchelder (1997) modified Olivier's algorithm to get the
O-B algorithm, which will represent the other two here. Each
utterance was parsed as it was received, using the best com-
bination of words according to the current lexicon. “Best”
was calculated as the most probable parse in light of experience
to date. The results of each parse were then used to revise
and extend the lexicon before proceeding to the next utterance.
This algorithm resembles the child's hypothesis testing:
Words are not discovered abruptly, but gradually become
more and more likely as evidence accumulates, or they may
fall from consideration if not much additional evidence is
encountered.

Table 1. Details of three network experiments (see text).
Note: USC inputs and outputs include 1 boundary unit and 2
stress units; they used a local representation for output of
phonemes (one bit for each phoneme).

Rochester  Edinburgh USC

Corpus of speech directed to child adult child
Size in words 1300 300,000 25,000
Size in segments (characters) <5000 1,000,000 73,947
Word Token/Type Ratio (TTR) 85 <25 30
Coding: # segment types ~44 45 36
# binary features (bits) 18 9 11
Training: Iterations 2-3 2 1
Total bits input <270,000 18,000,000 813,417
Utterance boundary training  superv. unsup. Superv.
Net architecture window of 3 SRN SRN
Tasks: Predict segment? yes yes yes
Predict boundary? yes no yes

Input units 54+1 9 11+1+2
Hidden units 30 60 80
Context units n.a. 60 80
Output units 1 27 36+1+2



The O-B algorithm begins with a lexicon of one-character
“words.” After a few utterances have been seen, two-charac-
ter words will appear, and so on, with words getting longer
and longer as learning proceeds. The average length of
word clusters can be constrained by an optimum-length
(“optlen”) parameter, which downgrades parses with overly
long words.

The O-B algorithm results shown here are from a corpus
of 75,000 words in standard orthography, both with and
without the optlen constraint.

Cognitive Comparison of Models
Table 2 provides a graphic summary of this discussion.

Timing of Inputs and Outputs

One measure of the cognitive reality of a model is how close-
ly it matches the timing of the original. Children receive in-
put continuously and, after a period of no apparent results,
begin to produce and understand words, one by one. Discov-
ery of a few primitive words is followed by more words and
more complex words, in a steady progression. Their learn-
ing process is incremental and continuous, with new inputs
modifying the results of learning so far. How do the compu-
ter algorithms measure up as incremental and continuous
processors?

= The MDL algorithm receives the worst score as an in-
cremental process. Both MDL models accept all input as a
single cvent and then process it repeatedly, finally produc-
ing a lexicon and a segmented version of the input. Proces-
sing consists of placing a trial set of word boundaries in the
text and evaluating the result in terms of the length and freg-
uency of the word types, then trying a new set of bounda-
ries, and so forth. Though the computation proceeds by sta-
ges, neither the input nor the output is continuous or incre-
mental:

The search algorithm... operates in batch mode, reading in

the entire input before segmenting any part of it. Clearly,

children do not work this way. Rather, they add to their
lexicons incrementally as new input becomes available.

(Brent & Cartwright, 1996:117)

It has been argued that, since the final result is the same, the
inefficiencies involved in incremental or staged outputs are
not justified (Ling, 1996) but we would like to be reassured
that, however inefficient, an incremental version is at least
possible. Brent has outlined an incremental version (Brent,
1997), but so far has not presented a working model.

The nature of the MDL algorithm itself would seem to
make this unlikely. MDL sets itself to find the best represen-
tation of a particular and finite set of data. It assumes a
close relationship between a particular text and its “best” lex-
icon. If the set of input data changes slightly, then a whole
new set of computations must be begun. MDL was not de-
signed for the human problem of keeping up with a continu-
ous stream of data, and it seems to be impossible in princi-
ple for it to do this.

* The O-B algorithm is the most cognitively realistic
model, with both input and output occurring incrementally
and synchronously. It processes each utterance as it is en-
countered and produces a segmented version as it goes along.

The lexicon is modified for each utterance, adding possible
words and continuing to gather evidence about their likeli-
hood.

O-B also resemblea the child in the gradual growth of the
words themselves. Although all word-spaces are removed
from the text before feeding it to the algorithm, nevertheless
the initial default segmentation is a series of single charact-
ers. Thus, even at the beginning of the process, a few small
“words” can be extracted, and the words get longer with ex-
perience, just as in the child’s learning process.

= The networks receive a mixed score. The input and pro-
cessing are continuous, with the internal weights changing
very gradually throughout the training process. The input is
presented phoneme by phoneme and, although some nets re-
process their input, this is presumably in imitation of “more
of the same” and is not in principle necessary to the learning
process.

The characteristics of the outputs in this respect is not
clearly apparent from the published reports. Recall that all
three nets had some graded output that was interpreted as
the probability of a boundary following each phoneme. There
seem to be two logical possibilities for the change in this out-
put as training proceeds, both of which could be described
as continuous but not incremental: (1) The likelihood of
each of many specific boundaries increases gradually and in
synchrony, so that at some point in the course of training a
large number of boundaries become recognizable at the same
time; or (2) a few boundary points are clearly identified
early in the process, with more and more added as training
proceeds. The first case is not incremental by any interpreta-
tion. The second case, though boundaries are discovered in-
crementally, produces no usable “words” until far along in
the training process. The first boundaries to be identified
are few and widely spaced, yielding unmanageable stretches
of language in between that are too complex to be accessible
to the infant as objects. Counterintuitively, the “words” get
smaller and smaller as experience and knowledge increase.

Constraints

All of the models make segmentation decisions by a quanti-
tative assessment of the relative cohesion between various
units or clusters. These cohesion metrics form a continuum
with no obvious point indicating a shift from a word-intemal
to a word-boundary condition. How does each algorithm
make that decision, and how does each compare with the
child’s process? What constrains or guides the learning pro-
cess in each case?

Two algorithms (Wolff, 1977, de Marcken, 1996) produce
a nested segmentation, with the most cohesive units on the
inside: [s[h{or]]t)[c[ut]]. This procedure avoids deciding
which letter groups represent morphs, which words, and which
phrases. In one sense, such a representation may be more
cognitive than rigid word boundaries. Certainly adults, and
probably even children, store complex lexical units, with
several hierarchical and coexisting levels.

* In the O-B algorithm, the “optlen’ parameter sets an up-
per limit on the built-in tendency for words to grow longer.
It does this with an evaluation metric that penalizes the use
of longer words when there are shorter suitable candidates.
This constraint is the analog of a developmental limitation,
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Table 2: Summary of cognitive evaluation as discussed.

OB  MDL  Nets Bigrams

Continuous input? yes no yes no
Continuous output?  yes no yes? no
Incremental? yes no no no
Constraint optlen MDL/hier ? optlen
Strategy cluster cluster  divide divide
Goal words words rules rules

the combination of the infant's small working memory and

the short life of the bootstrapping process.

The particular value of the “optlen” parameter used in
these experiments was the one calculated to produce the
same number of word tokens as in the standard, which sim-
plified scoring by bringing precision and recall closer toge-
ther. For the child there would be no such value, of course,
but by hypothesis a gradual working up from very small to
larger. In fact, the demonstration by the O-B algorithm that
such an incremental clustering process needs some constraint
can be seen as a result that confirms the “less is more™ hypo-
thesis of Newport (1990) and Elman (1993).

* In the networks, it 1s not clear what constrains the learn-
ing process. As mentioned in the previous section, we do
not know how the outputs changed over the training pro-
cess, and the authors did not report how they decided to ter-
minate training. In two cases, since the precision and recall
percentages were fairly close together, we can see that the
final state of the network produced roughly the same num-
ber of word divisions as in the standard (Rochester 86% of
the standard, USC 108%). The Edinburgh results, however,
showed that the number of divisions made by the network
was only 35% of the standard, a severe shortfall, and only
60% of these were correct (21% of the standard).

= The MDL algorithms are constrained by the tension be-
tween the length of the word type and its frequency. The
MDL principle tries to minimize the combined length of the
coded text and the lexicon, resulting in the avoidance of
both extremes: a long word which occurs rarely is penal-
ized, as is a very short word which occurs too frequently. In
the former case the lexicon entry is too long to result in net
savings for only a few occurrences. In the latter case, each
of the many occurrences will require an index reference that
is almost as long as the original word would have been.

MDL is derived from information theory and defines the
most efficient encoding of a text:

The MDL Principle is a well-motivated and theoretically

sound principle for data compression and estimation... As

a strategy of statistical estimation, MDL is guaranteed to

be near optimal. (Li & Abe 1996:1)

Brent & Cartwright extend this to the cognitive sphere:
...[Tlhe notion that the best segmentation of the input is
the one with the shortest representation can be interpreted
as a formalization of Occam’s Razor—the notion that the
best explanation of a set of observations (e.g., linguistic

inputs) is the simplest. (Brent & Cartwright, in press:
10f.)

It is not clear, however, that infant minds—or even adult
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minds—work according to such idealized principles. For
the human brain, where computation is slow and storage is
plentiful, there seems no justification for a scheme which
does a lot of work in order to save storage.

To carry the argument a bit further, we can say that MDL
and other compression schemes are an attempt to render
natural language—which is “natural” to the human mind—
more manageable by machines. The most efficient structure
for a computer is the least redundant one, but this is not a
characteristic of human language, which by its nature is highly
redundant,

Clustering vs. Dividing Strategies

With respect to overall strategy, the algorithms pattern into
two groups: The nets divide, while the MDL and O-B algo-
rithms cluster. The cluster approach looks for particularly
frequent and thus cohesive groups, and treats these as the ob-
jects of interest—words; boundaries between word clusters
are a side-effect of this process. The divide approach looks
for points of unusually low cohesion and treats these as divi-
sions, with words arising between these boundaries as a
side-effect of the process. As pointed out above, clustering
promotes the incremental growth of outputs, while dividing
frustrates it. An even more fundamental difference, perfect-
ly correlated with the cluster/divide dichotomy in our sam-
ple, is discussed in the next section.

Learning Words or Rules?

The cluster/divide difference in strategy is linked to a differ-
ence in the goal or endpoint of the process. O-B and MDL
are modeling the discovery of particular words, which are
then recognized as words and used again, while the nets are
modeling the discovery of how to discover words by moni-
toring relationships between phonemes and/or features. The
end product of the clustering process is a lexicon of word
types. The end product of the dividing process is a “know-
ledge” of the statistical regularities of word boundaries as
encoded in the hidden units of the networks.

As one indication of this focus on process rather than pro-
duct, all three networks “trained” on one body of data and
then “tested” using a held-out portion. This reflects the de-
signers’ view of their model as learning a skill, which is
then demonstrated on data distinct from that which was seen
in training. O-B and MDL, on the other hand, are engaged
in a self-organization of the phonemic stream, creating a lex-
icon and a parsed version of the input. Their goal is not the
ability to find new words in new input, but the knowledge
store which results directly from the particular input seen.

Which is cognitively more plausible? When we say that
children are “learning to segment language,” do we mean
that they are discovering meaning units one by one and
entenng them in the first mental lexicon? Or do we mean
that they are learning “rules,” or regularities, for segmenting
their native language into words? This contrast is sometimes
cast as two kinds of knowledge: rote vs. rule, “knowing
that” vs. “knowing how.”

There is a nice distinction here that is intimately related to
the child’s role as active learner. We must differentiate be-
tween the goal object of learning and the path by which it is



reached. Babies are not trying to learn rules or regularities,
but to communicate with those around them. To enter the
linguistic system, they use an artful combination of imita-
tion and analysis. Instinctively trying to minimize cffort
and maximize results, they learn to pay attention to the most
productive regularities, the most reliable cues.

So *rules,” in this sense of probabilistic regularities, are
being learned by the infant as a by-product of successful
hypotheses. That is, as more and more words are learned,
more and more regularities that led to their hypothesis can
be confirmed. This is the opposite of the usual sense of
“rule” in linguistics as something which generates linguistic
objects, rather than something which is induced from them.
Perhaps we can say that the words themselves are consciously
“known,” while the “rules” or cues that lead to successful
learning are the kind of implicit learning that we use without
conscious awareness (Cleeremans, 1993).

If so, undoubtedly infants are engaged in both “learning
what” and “learning how” simultaneously, but the first bears
fruit much sooner than the second. The project of learning
mature phonotactics, while certainly ongoing throughout this
period, is unlikely to lead to the first lexicon. As a result of
discovering the first group of words, the child’s linguistic
knowledge is greatly increased, and it is probable that the
first primitive methods of word discovery are soon discarded,
or at least vastly reorganized, on the way to the adult linguistic
system.

But is it possible that the connectionist nets, L0o, are learn-
ing actual words? How do we know that they are making
phonotactic discriminations, not lexical ones? On the one
hand, they create no lexicon, and their use of featural repres-
entations increases our perception of them as discriminating
on phonotactics. But they do evaluate the word boundaries
as output and not the rules which presumably find them.
Since “connectionist networks are notoriously hard to ana-
lyze” (Cleeremans, 1993:205) and we know of no empirical
test which can make the necessary distinction, we will ac-
cept the judgments of their designers:

The main empirical claim behind our approach is that sub-

regularities within a domain can be, and are, exploited to

the extent that they make useful predictions. In our case
the subregularity is phonotactics, the sublexical distribu-

tional regularities of phonology. (Cairns et al., 1997:142)

The most important outcome, however, was the presence

of significantly higher activation for word boundaries than

for within-word phoneme triplets. This indicates that, in

addition to learning phoneme triplets that preceded a

phrase/utterance boundary, the model also learned phon-

eme triplets that preceded a word boundary. (Aslin et al.,

1996:129)

In sum, as the goal of a bootstrapping task, learning words
seems more plausible than learning how to find words, so
the clustering algorithms have an edge in casting the prob-
lem in a more lifelike form, and the bigram and connection-
ist procedures are in this respect less cognitively realistic.

Conclusion

Various characteristics of the child’s cognitive processes dur-
ing early word segmentation can be paralleled in a cognitive
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computer model to a greater or lesser degree. The real gains
of the modeling exercise, however, are a clearer understand-
ing of the nature of the infant segmentation process, and a
greater appreciation for what a cognitive computer algori-
thm can show us and what it cannot.
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