
UNIVERSITY OF CALIFORNIA,
IRVINE

Towards End-to-End Data Privacy: from Generation to Consumption

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Seoyeon Hwang

Dissertation Committee:
Professor Gene Tsudik, Chair

Professor Stanislaw Jarecki
Professor Athina Markopoulou

2024

© 2024 Seoyeon Hwang

Contents

LIST OF FIGURES vi

LIST OF TABLES viii

LIST OF ALGORITHMS ix

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.1 Summary of Research Contributions . 5
1.2 Acknowledgement of Collaborative Work . 6

2 PARseL: Towards a Verified Root-of-Trust over seL4 8
2.1 Introduction . 8
2.2 Background . 10

2.2.1 seL4 Microkernel [193] . 11
2.2.2 RA & HYDRA . 12
2.2.3 F ∗, Low ∗, and KaRaMeL . 13
2.2.4 HACL∗ Cryptographic Library [312] 15

2.3 Goals & Assumptions . 16
2.3.1 System Model . 16
2.3.2 Adversary Model . 17

2.4 Verified Root-of-Trust over seL4 (PARseL) 18
2.4.1 HYDRA & Its Limitations . 18
2.4.2 Design Rationale . 19
2.4.3 PARseL Design . 20
2.4.4 PARseL Execution Phases . 21

2.5 PARseL Implementation & Verification . 24
2.5.1 Implementation Details . 24
2.5.2 Formally Verification of PARseL Runtime Implementation 26
2.5.3 Secure Boot of seL4 and PARseL TCB 31
2.5.4 Evaluation . 31

ii

2.6 PARseL Security Analysis . 33
2.7 Discussion . 35
2.8 Related Work . 36
2.9 Summary . 37

3 Privacy-from-Birth: Protecting Sensed Data from Malicious Sensors with
VERSA 38
3.1 Introduction . 38
3.2 Preliminaries . 41

3.2.1 Scope & MCU-based devices . 41
3.2.2 GPIO & MCU Sensing . 43
3.2.3 VRASED . 44
3.2.4 LTL, Model Checking, & Verification 45

3.3 VERSA Overview . 47
3.4 MCU Machine Model . 50

3.4.1 Execution Model . 50
3.4.2 Hardware Signals . 52

3.5 PfB Definitions . 53
3.5.1 PfB Syntax . 55
3.5.2 Assumptions & Adversarial Model . 56
3.5.3 PfB Game-based Definition . 57

3.6 VERSA: Realizing PfB . 57
3.6.1 VERSA: Construction . 60
3.6.2 Encryption & Integrity of ER Output 62

3.7 Verified Implementation & Security Analysis 63
3.7.1 Sub-module Implementation & Verification 63
3.7.2 Sub-module Composition and VERSA End-To-End Security 66

3.8 Evaluation . 70
3.8.1 Toolchain & Prototype Details . 70
3.8.2 Hardware Overhead . 71
3.8.3 Runtime Overhead . 71
3.8.4 Verification Cost . 73
3.8.5 Comparison with Other Low-End Architectures: 74

3.9 Discussion & Limitation . 74
3.9.1 Clean-up after Program Termination 74
3.9.2 Data Erasure on Reset/Boot . 75
3.9.3 VERSA Limitations . 77

3.10 Related Work . 79
3.11 Summary . 81

4 Element Distinctness and Bounded Input Size in Private Set Intersection
and Related Protocols 82
4.1 Introduction . 82
4.2 Related Work & Background . 86

4.2.1 Private Set Intersection . 86

iii

4.2.2 PSI Variants . 86
4.2.3 PSI with Restrictions . 87
4.2.4 PSI with Multiset Input . 88
4.2.5 Zero-Knowledge Proofs . 89
4.2.6 Homomorphic Encryption . 90

4.3 Proving Element Distinctness . 90
4.3.1 Puzzle-Based PoED Construction . 91
4.3.2 Analysis of PoED-puzzle Protocol . 93

4.4 PSI with Element Distinctness Check . 94
4.4.1 Adversary Model . 94
4.4.2 Definition of AD-PSI . 94
4.4.3 A Construction for AD-PSI based on PoED-puzzle 96
4.4.4 Alternative AD-PSI and Modified Construction 100

4.5 AD-PSI Variants . 102
4.5.1 PSI-CA with Element Distinctness (AD-PSI-CA) 103
4.5.2 PSI-X with Element Distinctness (AD-PSI-X) 104
4.5.3 PSI-DT with Element Distinctness (AD-PSI-DT) 106

4.6 Completing Bounded-Size-Hiding-PSI . 106
4.7 Authorized PSI with Element Distinctness 109

4.7.1 AD-APSI Definition . 110
4.7.2 AD-APSI Construction . 112
4.7.3 Security Analysis . 113

4.8 Summary . 116

5 Communication-Efficient (Proactive) Secure Computation for Dynamic
General Adversary Structures and Dynamic Groups 117
5.1 Introduction . 118
5.2 The Need for Secure Computation for Dynamic Groups with Changing Spec-

ifications of the General Adversary Structures 121
5.3 Overview of Proactive MPC and Design Roadblocks 123

5.3.1 Blueprint of Proactive Secret Sharing (PSS) and Proactive MPC (PMPC)123
5.3.2 Roadblocks Facing PMPC for Dynamic General Adversary Structures

and Dynamic Groups . 125
5.4 Preliminaries . 126

5.4.1 Terms in Proactive Security . 127
5.4.2 Adversary Models . 129
5.4.3 Types of Security and Communication Models 130
5.4.4 Definitions in General Adversary Structures 131
5.4.5 Information Checking (IC) and Dispute Control 132

5.5 Proactivizing MPC Protocols for Dynamic General Adversary Structure and
Dynamic Groups . 133
5.5.1 Protocols for Additive MPC Scheme [170] 134
5.5.2 Additive PMPC Scheme for Dynamic GAS and Dynamic Groups . . 141
5.5.3 Protocols for MSP-based MPC Scheme [204] 148
5.5.4 MSP-based PMPC Scheme for Dynamic GAS and Groups 158

iv

5.5.5 Conversions between Additive and MSP-based MPC 164
5.6 Related Work in Proactive Secret Sharing and Proactive MPC 169
5.7 Summary . 171

6 Balancing Security and Privacy in Genomic Range Queries 172
6.1 Introduction . 172
6.2 Preliminaries . 175

6.2.1 Genomics . 175
6.2.2 Cryptographic Commitments . 178
6.2.3 Zero-Knowledge Range Proofs . 179
6.2.4 Homomorphic Encryption . 182

6.3 System & Security Models . 184
6.3.1 System Model . 184
6.3.2 Security Model . 184

6.4 Genomic Range Query Protocol . 186
6.4.1 Intuitive Approaches . 186
6.4.2 Proposed Approach . 187
6.4.3 Security Analysis . 189

6.5 Other Applications . 191
6.5.1 Size- and Position-Hiding Private Substring Matching Protocol (SPH-

PSM) [103] . 191
6.5.2 Secure SPH-PSM (S-SPH-PSM) . 192
6.5.3 Efficient & Secure SPH-PSM (ES-SPH-PSM) 193
6.5.4 Flexible, Efficient, & Secure SPH-PSM (FES-SPH-PSM) 196
6.5.5 Discussion . 197

6.6 Implementation . 198
6.6.1 Genomic Range Query Protocol . 198
6.6.2 SPH-PSM Variants . 199

6.7 Evaluation . 199
6.7.1 Synthetic Genomic Data Generation 200
6.7.2 Secure Genomic Range Queries . 200
6.7.3 SPH-PSM Variants . 201

6.8 Generalization to Sparse Integers . 204
6.8.1 Secure & Private Range Queries over Sparse Integers 205
6.8.2 Construction & Its Security . 206

6.9 Related Work . 207
6.9.1 Genomic Privacy . 208
6.9.2 Range Query Security . 210

6.10 Limitations and Future Work . 211
6.11 Summary . 212

7 Conclusion and Future Work 213

Bibliography 216

v

List of Figures

2.1 Example Functions in F ∗ . 13
2.2 Comparison of HYDRA (top) and PARseL Execution Levels on Boot (bottom-

left) and at Runtime (bottom-right) . 18
2.3 Sequence of PARseL Execution Phases on Boot (After Secure Boot Checks) . 22
2.4 Sequence of PARseL Execution Phases at Runtime 22
2.5 Simplified example seL4 API in original seL4 library (top), axiom in F ∗ (mid-

dle), and generated header file in C (bottom) 28
2.6 Assertion for Functional Correctness of Sign, equation (2.1) 29
2.7 Assertion for K and mmap invariance . 30
2.8 PARseL Performance while varying the number of spawned user processes

(excluding SP) . 32

3.1 System Architecture of an MCU-based IoT Device 41
3.2 MCU execution workflow with VERSA. 49
3.3 PfB interaction between Ctrl and Dev . 55
3.4 VERSA Architecture . 58
3.5 Verified Remote Sensing Authorization (VERSA) Scheme 59
3.6 Verified FSM for GPIO and eKR Read-Access Control (LTL (3.9)-(3.13) &

LTL (3.17)-(3.18)) . 64
3.7 Verified FSM for eKR Write-Access Control (LTL (3.19)) 64
3.8 ER Atomicity and Controlled Invocation FSM (LTL (3.14)-(3.16)) 65
3.9 Hardware overhead comparisons with other low-end security architectures. . 72
3.10 Runtime overhead of VERSA due to Verify 72
3.11 Sample sensing operation that reads GPIO input, encrypts it, and cleans up

its stack after execution. 76

4.1 The PoED-puzzle Protocol . 91
4.2 Ideal Functionality F for AD-PSI . 95
4.3 AD-PSI-puzzle Protocol . 96
4.4 Ideal Functionality F for Alternative AD-PSI 101
4.5 Alternative AD-PSI Protocol . 101
4.6 AD-PSI-Cardinality (AD-PSI-CA) Protocol 104
4.7 AD-PSI-Existence (AD-PSI-X) Protocol . 105
4.8 AD-PSI-Data Transfer (AD-PSI-DT) Protocol 107
4.9 Ideal Functionality FB for B-SH-PSI . 108

vi

4.10 Idea of B-SH-PSI with input bound [L,U]. msg1 and msg3 denote the first and
responding messages for the U-SH-PSI protocol, whereas the others denote the
messages for the alternative AD-PSI-puzzle protocol in Figure 4.5 109

4.11 All-Distinct Authorized PSI (AD-APSI) scheme. 113

5.1 Dynamic groups and GAS in two consecutive phases, w and w + 1 145

6.1 (Offline Phase) Digitizing Alice’s SNPs . 189
6.2 (Online Phase) Genomic Range Query between Alice and Tester (T) 189
6.3 Offline Phase of Secure SPH-PSM (S-PSH-PSM) 193
6.4 Online Phase of Secure SPH-PSM (S-SPH-PSM) 193
6.5 Offline Phase of Efficient & Secure SPH-PSM (ES-SPH-PSM) and Flexible,

Efficient, & Secure SPH-PSM (FES-SPH-PSM) 194
6.6 Online Phase of Efficient & Secure SPH-PSM (ES-SPH-PSM) 195
6.7 (Online Phase) Flexible, Efficient & Secure SPH-PSM (FES-SPH-PSM) . . . 196
6.8 T ’s Verification Time given the number of SNPs in the queried range 201
6.9 Computation time comparison between AH-ElGamal and Paillier for opera-

tions in SPH-PSM variants . 202
6.10 Total Runtime Comparison between Optimized vs. Original ES-SPH-PSM

and FES-SPH-PSM . 202
6.11 Offline Computation Cost Comparison for SPH-PSM and S-SPH-PSM 202
6.12 Online phase comparison of All SPH-PSM Variants 202
6.13 Comparison between multi-threaded and single-threaded results. 204
6.14 Proving xk < a states xw, for ∀w ≤ k is out of range. Similarly, proving

xk+j+1 > b states xw, for ∀w ≥ (k + j + 1) is out of range. 207
6.15 (Offline Phase) Authorizing Alice’s sparse integer set X from Auth 208
6.16 (Online Phase) Range query-response between Alice and Bob 208

vii

List of Tables

3.1 Notation used in Chapter 3 . 60
3.2 Hardware Overhead and Verification cost . 71

4.1 Cost Analysis of the PoED-puzzle Protocol 93
4.2 Cost Analysis of AD-PSI-puzzle Protocols. We present the cost of the alter-

native protocol in (·) only when it is different from the original cost. 102

5.1 Notations used in Chapter 5 . 133
5.2 Total Analysis of Protocols in Additive PMPC based on [170] 148
5.3 Total analysis of protocols in MSP-based PMPC scheme based on [204] . . . 164
5.4 Comparing existing proactive secret sharing (PSS) schemes; (*) Communica-

tion complexities in [48, 49] are amortized 170

6.1 Notation & Acronyms used in Chapter 6 . 176
6.2 Cost Analysis of Secure & Private Genomic Range Query Protocol 190
6.3 Comparisons of SPH-PSM variants . 191
6.4 Operation complexity of each SPH-PSM variant. 197
6.5 Data transfer complexity of each SPH-PSM variant. 197

viii

LIST OF ALGORITHMS

ix

ACKNOWLEDGMENTS

My Ph.D. journey was like navigating a lengthy tunnel. Initially excited, I envisioned myself
as a researcher, unaware of the hurdles ahead. Having thrilled years of learning how to do
research, I often felt lost in the pitch-black tunnel and tried to keep moving forward, groping
for the wall. Upon reaching my Ph.D. candidacy, I realized that the tunnel was U-shaped. I
could see the light from the exit, but it was still too far. After gradually stacking my progress
every year, now I’m almost reaching the end. Although uncertain about what lies beyond,
I’m confident I can confront challenges and persevere until the end. Looking back, one thing
remains clear: I could not have finished this journey without the invaluable support of the
amazing people listed below.

First, I sincerely appreciate my Ph.D. advisor, Gene Tsudik, for allowing me to start this
journey and waiting for me to grow with empowering support. He never hesitated to share
his insights and encouraged me with caring advice as my academic and personal mentor. I’d
also like to thank Stanislaw Jarecki for sparing his time for fun crypto-related conversation
and Athina Markopoulou for generously supporting our WiCyS student chapter at UCI. I
am honored to have them on my defense committee. I’m also thankful to the ICS Steckler
Family Endowed Fellowship for their generous support during my last year of Ph.D.

I cannot miss my early mentors in Korea, Hyang-Sook Lee, Sang-Ho Lee, and Jung Hee
Cheon. I would not have dreamed or started this journey without their support.

I am grateful to all my co-authors and collaborators who shared so many days and nights
and gave me constructive feedback: Norrathep Rattanavipanon, Ivan De Oliveira Nunes,
Sashidhar Jakkamsetti, Ercan Ozturk, Xavier Carpent, Yoshimichi Nakatsuka, Devriş İşler,
Elina Van Kempen, Zane Karl, Stanislaw Jarecki, Karim Eldefrawy, Rafail Ostrovsky, Moti
Yung, and, of course, Gene Tsudik.

I was fortunate to have amazing friends in the SPROUT lab at UCI: Norrathep Rat-
tanavipanon, Ivan De Oliveira Nunes, Ercan Ozturk, Yoshimichi Nakatsuka, Sashidhar
Jakkamsetti, Andrew Searles, Youngil Kim, Renascence Tarafder Prapty, Elina Van Kem-
pen, and Benjamin Terner. Special thanks to Gene for running a diverse collaborative lab
and planning fun events. Thank you all, and I will never forget all the fun moments!

I also thank all my friends I met in the U.S. and old friends in Korea for their encouragement
and understanding, allowing me to take a break from my career and rejuvenate.

Finally, I extend my heartfelt gratitude to my family for their unconditional love and en-
couragement throughout my journey. My parents, Young Joong and Hee Jeong, have always
believed in me and waited for me without imposing undue pressure. My big sis, Joo Yeon,
and little brother, Joon Hyeong, have always been proud of me. All of them had been my
bedrock while working abroad. My husband, Dayeol, has been there for me and has given
me strong support at every step of this journey. As I always tell you, I would not have come
this far without you. Thank you, and I love you.

x

VITA

Seoyeon Hwang

EDUCATION

Doctor of Philosophy in Computer Science 2024
University of California, Irvine Irvine, California

Master of Science in Computational Sciences 2021
University of California, Irvine Irvine, California

Master of Science in Mathematics 2016
Ewha Womans University Seoul, South Korea

Bachelor of Science in Mathematics & Information Security 2014
Ewha Womans University Seoul, South Korea

PROFESSIONAL EXPERIENCE

Research Scientist 2023–Present
Stealth Software Technologies, Inc. Los Angeles, California

Graduate Research Assistant 2020–2023
University of California, Irvine Irvine, California

Applied Scientist Intern in Cryptography Team 2021
Amazon.com (Remote) Seattle, Washington

Applied Scientist Intern in Cryptography Team 2020
Amazon.com (Remote) Seattle, Washington

Security Intern in Computer Science Laboratory 2019
Stanford Research Institute International Menlo Park, California

Junior Engineering Staff 2016–2017
Telecommunications Technology Association Gyeonggi-do, South Korea

NSR Cryptographic Skill Training Course 2015–2016
National Security Research Institute (NSR) Daejeon, South Korea

Intern 2013
Penta Security Systems Inc. Seoul, South Korea

Undergraduate Internship in Cryptography Lab 2013
Ewha Womans University Seoul, South Korea

Undergraduate Internships 2011,2012
Institute of Mathematical Science in Ewha Womans University Seoul, South Korea

xi

TEACHING EXPERIENCE

Teaching Assistant for Computer & Network Security (ICS 134) 2020
University of California, Irvine Irvine, California

Reader for Computer & Network Security (ICS 134) 2019
University of California, Irvine Irvine, California

Reader for Computer Security (CS 201P) 2019
University of California, Irvine Irvine, California

Reader for Boolean Algebra and Logic (ICS 6B) 2018
University of California, Irvine Irvine, California

REFEREED CONFERENCE PUBLICATIONS

Element Distinctness and Bounded Input Size in Pri-
vate Set Intersection and Related Protocols

2024

22nd Conference on Applied Cryptography and Network Security (ACNS)

PARseL: Towards a Verified Root-of-Trust over seL4 2023
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

Privacy-from-Birth: Protecting Sensed Data from Ma-
licious Sensors with VERSA

2022

IEEE Security and Privacy (S&P)

Communication-Efficient (Proactive) Secure Computa-
tion for Dynamic General Adversary Structures and Dy-
namic Groups

2020

Security and Cryptography for Networks (SCN)

REFEREED JOURNAL PUBLICATIONS

Balancing Security and Privacy in Genomic Range
Queries

2022

ACM Transactions on Privacy and Security (TOPS)

PAPERS IN SUBMISSION OR UNDER REVIEW

Publicly Verifiable Watermarking Protocol 2024

xii

Privacy-Preserving Identity Verification Methods for
Accountless Users via Private List Intersection and Its
Variants

2024

Proof of Participation in Federated Learning 2024

xiii

ABSTRACT OF THE DISSERTATION

Towards End-to-End Data Privacy: from Generation to Consumption

By

Seoyeon Hwang

Doctor of Philosophy in Computer Science

University of California, Irvine, 2024

Professor Gene Tsudik, Chair

Preserving data privacy is a formidable challenge in today’s interconnected and data-centric

world. Individuals are surrounded by “smart” devices that collect and generate massive

amounts of sensitive data. Moreover, organizations collect personalized data, including pri-

vate information, to provide more functionalities and better quality for their data-driven

services. Therefore, ensuring data privacy throughout its lifecycle, i.e., from generation to

consumption, is paramount.

To this end, this dissertation tackles several challenges to attain such end-to-end data privacy.

We first investigate lower-end devices to preserve data privacy from its generation, and

propose two secure architectures: one for mid-range devices with memory management unit

and the other for low-end devices with no security features. Then, we revisit cryptographic

computing, a promising privacy-enhancing technology for data in use, focusing on input

correctness, generalized adversary models, and challenges in real-world applications.

xiv

Chapter 1

Introduction

Private data generation has significantly increased due to the growing adoption of data-

driven applications. Individuals continuously produce substantial volumes of data across a

spectrum of applications, from the Internet of Things (IoT) and wearable devices to social

media platforms and e-commerce websites. Moreover, technological advancements such as

artificial intelligence, machine learning, and big data analytics propel data collection for

various purposes, including the targeted advertisement, personalized healthcare, and predic-

tive analytics. These applications enhance their functionalities and efficacy by harnessing

personalized data, predominantly composed of private information.

Such private data is being generated in an increasing number of interconnected devices,

emphasizing the critical need to maintain data privacy from its generation. As more devices

become interconnected, data breaches on one device can rapidly spread to others, resulting

in serious privacy invasions. For example, a smart home with a smart camera, doorbell,

and thermostat installed was hacked [270] through their Wi-Fi and smart camera, and the

hacker increased the temperature to 90 degrees and played vulgar music through the camera.

Such attacks are prevalent on IoT devices, including smart TVs, speakers, and even light

1

bulbs [296, 10, 12, 298]. These incidents highlight the importance of protecting data on such

end devices to guarantee data privacy from its generation.

Furthermore, given the impact of private data volume on service functionalities and quality,

many organizations are leveraging more data from their services and seeking collaborations.

For instance, a 2018 report [268] shows Google’s extensive data collection on user informa-

tion, aiming at providing advertisers with more tailored insights [212]. This trend has led to

substantial privacy concerns arising from the over-collected user data across many organiza-

tions [132, 201, 177], resulting in bad brand reputations as well as hefty fines [265, 264, 278]

mandated by privacy regulations such as the General Data Protection Regulation [244] and

the California Consumer Privacy Act [206]. Consequently, it is an inevitable challenge to

ensure data privacy while utilizing private data in computation.

Given these motivations, this thesis tackles several challenges to achieve data privacy from

its generation to consumption; i.e., end-to-end data privacy. The first half focuses on pre-

serving data privacy from generation, especially on the lower-end smart devices with simple

microcontroller units (MCU), and the second half enhances the privacy of data in use via

improving existing cryptographic computing techniques for real-world applications.

This thesis first delves into mid-range MCUs between the low-end and high-end systems,

which are used in various IoT/embedded devices with multiple functionalities. Due to their

compact sizes and low prices, these MCUs usually contain minimal security features, such

as memory management units (MMU) or memory protection units (MPU), which provide

virtual memory support and access control over specific memory regions. Although these

mid-range MCUs are more capable than low-end MCUs with a single core, they still lack com-

puting power and resources compared to high-end systems with microprocessors or system-

on-chips.

For such resource-constrained devices, many researchers have proposed various architectures

2

for remote attestation (RA), e.g., [252, 195, 238, 108, 158], to verify the software state of

a remote device, often incorporating robust computer-aided formal verification [108, 158].

However, these mostly focus on low-end MCUs and require some hardware modifications.

On the other end of the spectrum, isolated execution systems, e.g., [180, 93], implement RA

for user-level processes on high-end systems, such as desktops, laptops, and cloud servers,

with substantial dedicated hardware support. However, this support is unsuitable for mid-

range MCUs and complicates the formal verification of their design and implementation.

To fill this gap, we propose a secure RA architecture for the mid-range MCUs with MMU

over a formally verified microkernel seL4 and formally verify its security guarantees and

implementation.

Then, this thesis addresses low-end MCUs with no security features. These devices typically

run a single software directly on bare metal, i.e., without any microkernel or operating

systems. Since no isolations or fine-grained access control can be provided, ensuring data

privacy on such devices is crucial to prevent compromised software from leaking (private)

data. To provide these guarantees, we claim that the generated data must be protected from

its “birth", i.e., from the moment it is digitalized until it leaves the device. We formalize

this concept as Privacy-from-Birth (PfB) and propose a secure architecture for the low-end

MCUs that realizes PfB with formal verification. Note that while RA techniques provide a

passive root of trust by detecting violations or compromises after they occur, our approach

introduces an active root of trust, preventing unauthorized access to the sensed data on the

low-end devices.

For preserving the privacy of data in use, the second half of this thesis focuses on improv-

ing cryptographic computing techniques. Cryptographic computing is one of the leading

privacy-enhancing technologies for data in use1. This approach converts input data into

a cryptographically protected form, ensuring that no information can be learned from the
1Others include confidential computing and differential privacy. The former relies on hardware-based

isolation for computation, and the latter adds controlled noise to the dataset for individual privacy.

3

cryptographically protected data. It is considered the ultimate solution for remote data pro-

tection because of its strong guarantees based on mathematical hard problems. However, its

application in real-world scenarios is challenging, which is not only because of its high com-

putational cost. This thesis identifies other reasons and proposes how to improve existing

techniques to resolve/mitigate them.

First, we revisit secure multiparty computation (MPC), focusing on its security guarantees.

We focus on the fact that MPC does not consider input correctness while guaranteeing input

privacy and computation correctness. That is, it is guaranteed that the execution of a secure

MPC protocol does not leak any information about input data, i.e., input privacy, and

outputs the correct computation result over the input data, i.e., computation correctness.

However, it is not considered whether the input data is “correct” or “valid”, i.e., the correctness

of the input is typically not considered. This is critical, especially when a specific input

condition exists for computation. We investigate this issue using a special form of MPC,

private set intersection (PSI), with input size limits, i.e., a specific size within a range is

required to obtain the intersection result.

Next, we propose considering dynamic settings with advanced adversary models to apply

MPC in today’s complicated large distributed systems. Such large systems are managed by

specialists, focusing on security and reliability, and one of the commonly used management

strategies is moving target defense (MTD). It adds system changes to increase uncertainty

and complexity for attackers. Moreover, the specialists can manage each system entity so

that it can be rebooted to a clean state, reducing the chance of compromising everyone in

the systems. On the other hand, most MPC protocols characterize the adversary’s corrup-

tion capability with a threshold, i.e., an adversary can corrupt up to a threshold number of

parties. However, considering complex modern distributed systems, more generalized cor-

ruption scenarios need to be assumed rather than the number of corruptible parties. We

enhance existing MPC protocols to apply the features above.

4

Lastly, we explore the application of cryptographic techniques to a specific use case, genomic

tests, and claim to consider both security and privacy. Due to the nature of genomic data,

privacy has gained a lot of attention, and many researchers suggest applying various cryp-

tographic computing techniques for genomic privacy. On the other hand, although equally

important, genomic security, such as authenticity and integrity, is often assumed, while lack

of those may lead to wrong test results. Furthermore, considering the massive size of genomic

data, efficiency is essential for real-world applications. To this end, we propose to balance

security, privacy, and efficiency in range query-based genomic tests.

1.1 Summary of Research Contributions

To summarize, this dissertation makes the following contributions:

• For a verified RoT in mid-range MCUs, Chapter 2 provides PARseL, a provable attes-

tation RoT over a formally verified microkernel, seL4. We verify its security guarantees

via computer-aided formal verification and provide formally verified implementation;

• To maintain data privacy in low-end MCUs, Chapter 3 formalizes the notion of Privacy-

from-Birth (PfB) and presents VERSA, a verified remote sensing authorization archi-

tecture for low-end MCUs. We also formally verify that VERSA realizes PfB goals;

• For input correctness in PSI with input size limits, Chapter 4 constructs protocols to

avoid two types of malicious inputs, duplicated and fake elements, to bypass the lower-

bound requirement, and merges them with existing protocols for the upper-bounds;

• For advanced system and adversary models, Chapter 5 adds several protocols to ex-

isting MPC schemes so that they can adapt to the MTD with dynamically changing

participants and corruption scenarios; and

5

• Chapter 6 suggests ways to balance security and privacy in genomic range query test-

ings using cryptographic computing techniques and extends them to private substring

matching-based genomic testings;

1.2 Acknowledgement of Collaborative Work

All work presented in this thesis results from collaborative efforts and contributions. The

detailed contributions of the collaborators for each chapter follow.

Chapter 2 is based on the publication “PARseL: Towards a Verified Root-of-Trust over seL4

" [111]. While everyone was involved in designing the architecture, Sashidhar Jakkamsetti

mainly implemented the boot-time component and ran the evaluation over SabreLite [123].

Norrathep Rattanavipanon and Ivan De Oliveira Nunes provided valuable guidance on formal

verification, and Norrathep Rattanavipanon additionally shared his knowledge on seL4 and

HYDRA [135]. Gene Tsudik initiated the main idea of this project and provided insightful

guidance and feedback throughout the project.

Chapter 3 is based on the publication “Privacy-from-Birth: Protecting Sensed Data from

Malicious Sensors with VERSA" [112]. While everyone was involved in designing and for-

mally verifying the security, Ivan De Oliveira Nunes led the project and provided valuable

guidance on formal verification and low-end IoT devices throughout the project. Sashidhar

Jakkamsetti additionally contributed to the synthesis of the RTL description of Hardware-

Monitor and its deployment on the FPGA board. Gene Tsudik provided the initial idea of

this project and insightful feedback throughout the project.

Chapter 4 is based on the publication “Element Distinctness and Bounded Input Size in

Private Set Intersection and Related Protocols" [78]. While everyone was involved in protocol

constructions, Xavier Carpent contributed the PoED protocol, and Gene Tsudik provided

6

the main idea of the AD-APSI protocol. Xavier Carpent and Gene Tsudik gave constructive

feedback throughout the project.

Chapter 5 is based on the publication “Communication-Efficient (Proactive) Secure Compu-

tation for Dynamic General Adversary Structures and Dynamic Groups" [133]. This project

is part of the internship at SRI International, which was mainly led by Karim Eldefrawy.

Throughout the duration of the project, he gave valuable feedback on protocol contruc-

tions. Rafail Ostrovsky and Moti Yung provided constructive feedback on an extension to

MSP-based MPC and real-world motivation.

Chapter 6 is based on the publication “Balancing Security and Privacy in Genomic Range

Queries" [176]. This is an extended work from [124] to apply its main idea to the size-

and position-hiding private substring matching and sparse integer problems. Ercan Ozturk

provided valuable guidance on implementation and paper writing, and also contributed on

performance optimization. Gene Tsudik initiated the main idea to extend this project and

provided insightful feedback throughout the duration of the project.

7

Chapter 2

PARseL: Towards a Verified

Root-of-Trust over seL4

We propose to build a provable root-of-trust for attesting remote IoT/embedded devices

to ensure their software integrity and guarantee secure data generation. This chapter first

targets the mid-range devices, between the low-end and high-end devices, which usually run

multiple processes over an OS or a microkernel with memory management hardware. We

suggest a provable design over a formally verified microkernel, seL4, and verify its security

properties via computer-aided formal verification.

2.1 Introduction

Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) devices have become ubiquitous

in modern life, including households, workplaces, factories, agriculture, vehicles, and public

spaces. They often collect sensitive information and perform safety-critical tasks, such as

monitoring vital signs in medical devices or controlling traffic lights. Given their importance

8

and popularity, these devices are attractive targets for attacks, such as the Colonial Pipeline

attack in the American energy grid [138] and Ukraine power grid hack [305].

Attacks are generally conducted via software exploits and malware infestations that result in

device compromise. Remote Attestation (RA) is a security service for detecting compromises

on remote embedded devices. It allows a trusted entity (V rf) to assess the software integrity

of an untrusted remote embedded device (Prv). RA serves as an important building block

for other security services, such as proof of execution [110, 120], control-flow and data-flow

attestation [26, 121, 115, 304, 284, 149], and secure software updates [39, 113].

Many prior RA techniques (e.g., [108, 195, 67, 238]) focused on low-end devices, that run one

simple application atop “bare metal”. For example, SANCUS [238] is a pure hardware-based

RA architecture for low-end devices. Whereas, VRASED [108] is a hybrid (hardware/soft-

ware) RA architecture, while PISTIS [158] is a software-only one. All these architectures are

unsuited for higher-end devices that execute multiple user space processes in virtual memory.

At the other end of the spectrum, enclaved execution systems [180, 93] implement RA for

user-level sub-processes (called enclaves) on high-end systems, e.g., desktops, laptops and

cloud servers. However, they require substantial dedicated hardware support, thus making

this approach unsuitable for the comparatively resource-constrained mid-range devices that

we target in this work.

HYDRA [135] is an RA architecture aimed at mid-range devices. It does not require addi-

tional hardware support other than an (often present) memory management unit (MMU) and

a secure boot facility. HYDRA relies on a formally verified microkernel, seL4 [193], to provide

strong inter-process memory isolation. However, neither HYDRA’s implementation nor its

integration with seL4, is formally verified. Also, HYDRA implements both attestation and

untrusted application-defined functionalities in the same runtime process (see Sections 2.2.2

and 2.4.1). Thus, HYDRA’s trusted computing base (TCB) implementation is application-

9

dependent and, whenever an application changes, errors can be introduced within the TCB.

As a consequence, even if the RA component in HYDRA were verified, application bugs could

still undermine its security due to the lack of guaranteed isolation. Unfortunately, moving

away from this model also introduces non-trivial architectural challenges (see Section 2.4.2),

requiring a clean-slate trust model.

Motivated by the above, this work re-visits HYDRA trust model and proposes PARseL:

Provable Attestation Root-of-Trust over seL4 Microkernel – a design that separates user-

dependent components from the RA TCB. This new model addresses the aforementioned

challenges, leading to proper isolation, and facilitates formal verification. Specifically, we use

formal verification to prove security properties for the (now isolated) root-of-trust in PARseL.

Proven properties include memory safety, functional correctness, and secret independence.

We then deploy and evaluate PARseL verified C implementation (atop seL4) on a commodity

prototyping board, SabreLite [123]. PARseL implementation is publicly available at [33].

Organization: Section 2.2 overviews background, followed by our goals and assumptions in

Section 2.3. PARseL design is presented in Section 3.6 and its implementation details are in

Section 2.5, along with formal verification. PARseL security analysis follows in Section 2.6

and limitations are discussed in Section 2.7. Finally, this chapter concludes with the related

work overview in Section 2.8.

2.2 Background

This section provides background information on seL4, RA, and formal verification tools.

Given familiarity with these topics, it can be skipped with no loss of continuity.

10

2.2.1 seL4 Microkernel [193]

seL4 is a member of the L4 family of microkernels. Functional correctness of its implemen-

tation, including the C code translation [275], is formally verified, i.e., the behavior of seL4

C implementation strictly adheres to its specification. To provide provable memory isolation

between processes, seL4 implements a capability-based access control model. A capability is

an unforgeable token that represents a set of permissions that define what operations can be

performed on the associated object at which privilege level. This enables fine-grained access

control by granting or revoking specific permissions to individual components or threads.

Also, user-space applications cannot directly access or modify their own capabilities, be-

cause each capability is stored in Capability Space (CSpace) which is managed by seL4. User

applications interact with seL4 through system calls and operate on their capabilities indi-

rectly. Since seL4 enforces strict access control and authorization checks for system calls,

seL4 retains the ultimate authority over capabilities and their allocation, revocation, and

manipulation.

As a micro-kernel, seL4 provides minimal functionality to user-space applications. For exam-

ple, inter-processes’ data sharing requires the establishment of inter-process communication

(IPC) by invoking endpoint objects, that act as general communication ports. Each endpoint

is given a capability by assigning it a unique identifier, called a “badge”, which identifies the

sender process during communication. Each process is represented in seL4 by its Thread

Control Block object which includes its associated CSpace and Virtual-address Space (VS-

pace) and (optionally) an IPC buffer. CSpace contains the capabilities owned by the process.

VSpace represents the virtual memory space of the process, defining the mappings between

virtual addresses (used by the process) and physical memory. IPC buffer is a fixed region of

memory reserved for IPC. To send or receive messages, a process places them in its message

registers which are put in the IPC buffer. Then, it invokes capabilities within its CSpace via

system calls, such as seL4_Send and seL4_Recv or combinations/variants, such as seL4_Call,

11

seL4_Reply, or seL4_ReplyRecv.

2.2.2 RA & HYDRA

As mentioned earlier, the goal of RA is for a trusted V rf to securely assess the software

integrity of an untrusted remote device, Prv. To do so, V rf issues a unique challenge to

Prv. Upon its receipt, Prv computes an authenticated measurement of its software state.

This measurement also includes V rf ’s challenge and it is computed using either a Prv-V rf

shared secret or a Prv-unique private key for which V rf knows the corresponding public

key. Prv returns the measurement to V rf which authenticates it and decides on Prv’s state

(i.e., compromised or not).

To the best of our knowledge, the only relevant prior result that attempted to fuse RA with

seL4 is HYDRA [135]. It operates in three phases: Boot, seL4 Setup, and Attestation. In

Boot phase, Prv executes a ROM-resident secure boot procedure that verifies seL4 binary.

Upon verification, Prv loads all executables into RAM and passes control to the kernel.

In seL4 Setup phase, the kernel sets up the user space and initializes the first process,

attestation process (AP). The kernel then hands control to AP after assigning all capabilities

for all available memory locations to AP and verifying AP’s binary. AP is then responsible

for spawning all user processes with lower scheduling priorities and user-defined capabilities,

initializing the network interface, and waiting for subsequent attestation requests. Finally,

in the Attestation phase (which comprises the rest of the runtime), upon receiving a V rf -

issued attestation request for a particular user-space process, AP computes an HMAC [53] of

the memory region of that process, using a symmetric key pre-shared with V rf , and returns

the result to V rf .

HYDRA AP implements several system functions that are unrelated to RA functionality.

While this approach simplifies Boot and seL4 Setup phases, it also makes HYDRA verification

12

challenging. We further discuss this in Section 2.4.1.

2.2.3 F ∗, Low ∗, and KaRaMeL

F ∗ [285] is a general-purpose functional programming language with an effect system facil-

itating program verification. Developers can write a program and its specifications in F ∗,

representing that program’s computational and side effects, and then formally verify that

it adheres to those specifications using automated theorem-proving techniques. The type

system of F ∗ includes dependent types, monad effects, refinement types, and the weakest

precondition calculus, which together allow describing precise and compact specifications for

programs using Hoare logic [171]. For example, Figure 2.1 shows two simple functions in

F ∗. While both take an integer as input and output its absolute value, abs_pos “requires”

the input integer to be positive as pre-condition and “ensures” that the result equals the

absolute value of x as post-condition. The pre-condition of abs_pos can be instead written

with refinement type input: (x : int {x > 0}). Both have the Pure effect, meaning that

they are stateless functions, guaranteeing deterministic results and no side effects. Tot is a

special type of Pure with no pre-condition, i.e., it is defined for all possible values of input

so that it terminates and returns an output.

1 let abs (x : int) : Tot int
2 = if x >= 0 then x else -x
3
4 let abs_pos (x : int) : Pure int
5 (requires x > 0) (ensures fun y -> y = abs x) = x

Figure 2.1: Example Functions in F ∗

To support stateful programs, F ∗ provides ST effect with the form:

ST (a:Type) (pre:s→Type) (post:s→a→s→Type)

This means: for a given initial memory “h0:s” that satisfies pre-condition “(pre h0) is true”,

a computation “e” of type “ST a (requires pre) (ensures post)” outputs a result “r:a”

13

and updates existing memory to final memory “h1:s”, which satisfies the post-condition

“(post h0 r h1) is true”.

One notable feature of F ∗ is machine integers and arithmetic operations on them. Machine

integers model (un)signed integers with a fixed number of bits, e.g., uint32, int64, and

FStar.Int.Cast module offers conversions between these types. Using machine integers

ensures that input and computation result values fit in the given integer bit-width. In

addition, one can express their secrecy level, denoted by ‘PUB’ or ‘ SEC’. The former are

considered public and can be safely shared, while the latter are considered secret, i.e., F ∗

guarantees no leaks for them. Specifically, it prevents information leakage from timing side-

channels and clears all memory that contains SEC-level integers when they are no longer

needed.

Low ∗ [258] is a subset of F ∗, targeting a carefully curated subset of C features, such as the C

memory model with stack- and heap-allocated arrays, machine integers, C string literals, and

a few system-level functions from the C standard library. To support these features, Low ∗

refines the memory model in F ∗ by adding a distinguished set of regions modeling C call stack

– so-called hyper-stack memory model. For modeling C stack-based memory management

mechanism, Low ∗ introduces a region called tip to represent the currently active stack frame

and relevant operations, such as push and pop. Low ∗ also introduces the Stack effect with

the form below, to ensure that the stack tip remains unchanged after any pushed frame is

popped and the final memory is the same as the initial memory:

Stack a pre post = ST a (requires pre) (ensures

(λ h0 r h1 → post h0 r h1 ∧

(tip h0 = tip h1) ∧ (∀ x. x ∈ h1 ⇔ x ∈ h0)))

Programmers writing code in Low ∗ can utilize the entire F ∗ for proofs and specifications.

This is because proofs are erased at compile-time and only low-level Low ∗ code is left and

14

compiled to C code. Verified Low ∗ programs can be efficiently extracted to readable and

idiomatic C code using the KaRaMeL [5] compiler tool (previously known as KreMLin).

KaRaMeL implements a translation scheme from a formal model of Low ∗, λow∗, to CompCert

Clight [61]: a subset of C. This translation preserves trace equivalence with respect to the

original F ∗ semantics. Thus, it preserves the functional behavior of the program without

side channels due to memory access patterns that could be introduced by the compiler.

The resulting C programs can be compiled with CompCert or other C compilers (e.g., GCC,

Clang).

2.2.4 HACL∗ Cryptographic Library [312]

HACL∗ [312] is a formally verified cryptographic library written in Low ∗ and compiled to

readable C using KaRaMeL. Each cryptographic algorithm specification is derived from the

published standard and covers a range of properties, including:

• Memory safety : verified software never violates memory abstractions so that it is free

from common vulnerabilities due to reads/writes from/to invalid memory addresses,

e.g., buffer overflow, null-pointer dereferences, and use-after-free.

• Type safety : software is well-typed and type-related operations are enforced, i.e., HACL∗

code respects interface, and all the operations are performed on the correct types of

data.

• Functional correctness : input/output of the software for each primitive conform to

simple specifications derived from published standards.

• Secret independence: observations of the low-level behavior, such as execution time or

accessed memory addresses, are independent of secrets used in computation, i.e., the

implementation is free of timing side-channels.

15

2.3 Goals & Assumptions

2.3.1 System Model

We consider Prv to be a mid-range embedded device equipped with an MMU and a secure

boot facility1. Devices in this class include I.MX6 Sabre Lite [123] and HiFive Unleashed [279]

(on which seL4 is fully formally verified [271]). Following seL4 verification axioms, Prv is

limited to one active CPU core, i.e., it schedules multiple user-space processes, though only

one process is active at a time. We assume that secure boot is correctly enabled prior to

device deployment.

PARseL TCB consists of seL4 micro-kernel, the first process loaded by the micro-kernel in

user-space, called Root Process (RP), and Signing Process (SP), also in user-space (details in

Section 3.6). V rf wants to use RA to establish a secure channel with a particular attested

user-space process. To facilitate this, PARseL attestation response can also include a unique

public key associated with the attested process. V rf can then use the secure channel to

communicate sensitive data with the attested process, after verifying its integrity via RA.

PARseL provides a static root of trust for measurement of user-space process, i.e., the binary

of processes are measured at their loading time. This is plausible because PARseL, by design,

enforces that no new user process is spawned during runtime and no modifications on code

occur without rebooting the device. On the other hand, PARseL design allows the user-

process updates without modifying PARseL TCB. However, any updates require the device

to reboot to re-measure the updated programs, which limits the scalability. We further

discuss this limitation and possible alternatives in Section 2.7.

PARseL design is agnostic to the choice of cryptographic primitives. In fact, PARseL can
1Although common in mid-range embedded devices, secure boot requirement can be relaxed with weaker

adversary model where Adv does not have physical access to Prv and the initial deployment of seL4 and
PARseL TCB on Prv is trusted.

16

support both (1) symmetric-key cryptography where Prv and V rf share a master secret

from which a subsequent symmetric key can be derived, or (2) public-key cryptography

where Prv has a private signing key whose public counterpart is securely provisioned to

V rf . In both cases, the required keys can be hard-coded as part of the PARseL TCB prior

to Prv deployment.

2.3.2 Adversary Model

Based on the RA taxonomy in [27], four main types of Adv are:

1. Remote: exploits vulnerabilities in Prv software and injects malware over the network;

2. Local: controls Prv’s local communication channels; may attempt to learn secrets

leveraging timing side-channels;

3. Physical non-intrusive: has physical access to Prv and attempts to overwrite its soft-

ware through legal programming interfaces (e.g., via J-TAG/replacing an SD card).

4. Physical intrusive: performs invasive physical attacks, physical memory extraction,

firmware tampering, and invasive probing, e.g., via various physical side-channels.

We consider all except (4), protection against which can be obtained via standard physical

security measures [260]. This assumption is in line with related work on trusted hardware

architectures for embedded systems [252, 67, 108, 195]. In terms of capabilities, if Adv

compromises a user-space process in Prv, it takes full control of that user-space process, i.e.,

it can freely read and write its memory and diverge its control flow. We assume user-space

processes as untrusted and therefore compromisable, except for PARseL TCB. Finally, we

assume that Adv can trigger interrupts at any time.

17

(a) HYDRA Execution Levels

(b) PARseL on Boot
(c) PARseL at Runtime

Figure 2.2: Comparison of HYDRA (top) and PARseL Execution Levels on Boot (bottom-
left) and at Runtime (bottom-right)

2.4 Verified Root-of-Trust over seL4 (PARseL)

This section starts out by describing HYDRA and identifying its shortcomings. It then

justifies our approach and discusses how PARseL realizes it.

2.4.1 HYDRA & Its Limitations

As mentioned above, HYDRA is composed of Boot, seL4 Setup, and Attestation phases. AP is

the very first user-space process to run after seL4 Setup. As such, AP possesses all capabilities

for all available memory and system resources. It is responsible for creating and managing

all other processes, ensuring proper configuration of capabilities, and performing RA.

18

We argue that this design results in an excessive and application-dependent TCB. First,

formally verifying the implementation of AP is extremely challenging since it requires a gi-

ant manual proof effort that might not be achievable in practice. However, without formal

verification, there is no guarantee that AP is vulnerability-free and correct. Since AP has all

user-space capabilities, its compromise would lead to a breach of all seL4 isolation guarantees

provided. Even assuming the feasibility of AP formal verification, process-spawning compo-

nent of AP strictly depends on the specific user application configuration. This is so that AP

can properly assign custom (user-defined) access control configurations to each application

process. Thus, whenever an application changes, AP implementation needs to be adjusted

accordingly. Doing so modifies the AP’s previously verified TCB. It is clearly infeasible to

re-verify AP implementation for all possible application-dependent configurations.

2.4.2 Design Rationale

To enable verifiability, the TCB size at runtime must be reduced, by identifying and removing

unnecessary functionalities from the privileged AP process. HYDRA AP functionalities are:

1○ Spawning all user processes with memory/capability settings;

2○ Communication with V rf over the network interface for RA;

3○ Attestation of all user processes;

First, we observe that including 2○ in the TCB yields no benefit since the security of RA does

not depend on the availability/integrity of the communication interface. Thus, we move this

functionality out of the TCB and handle Prv ↔ V rf communication in a separate user-

space process. Second, 1○ performing initialization tasks that are not needed at runtime

(i.e., post-boot). Third, further sub-dividing 3○:

3○-(a) Measuring (reading) the code binary for each user process;

19

3○-(b) Signing the measurement with a private key and a challenge from V rf ;

3○-(a) can be also done once, assuming that the code does not change post-boot (as men-

tioned in Section 2.3.1). Thus, these components can be terminated after completion, at

boot time, which effectively limits these components’ exploitable time window to boot time.

Also, 1○ can be sub-divided into:

1○-(a) Storing access control capabilities for all processes to be spawned;

1○-(b) Spawning the user processes based on given access control capabilities;

To separate all user-dependent components from the TCB, a separate user process can

perform 1○-(a) and communicate with AP for 1○-(b). Or it can be even just a configuration

file that AP can read from. Finally, 3○-(b) must be active at runtime to process RA requests

from V rf , which represents the only potential remaining entry point for Adv. To close

this gap, this operation can be assigned to a tiny dedicated process, called Signing Process

(SP). Due to its small size and independence of user-defined components, verifying SP is now

relatively easier.

2.4.3 PARseL Design

Combining all the above, Figure 2.2 shows PARseL execution levels at boot- and at run-

time, as compared to HYDRA. PARseL subdivides seL4 user-space into two execution levels:

Privileged and Unprivileged. We refer to the privileged initial user process as Root Process

(RP) which has a thread (for the roles of 1○-(b) and 3○-(a)), called Process Spawning &

Measuring Thread (PSMT). In contrast, the processes at the unprivileged level have restricted

capabilities assigned by RP. Unprivileged processes include Initial User Process (IUP) (for

1○-(a)), SP, and user-defined processes (UP-s). Capabilities of any process at the unprivileged

level do not allow access to any memory not explicitly assigned to that process. RP (including

20

PSMT) and IUP are terminated at the end of boot phase, and only UP-s and SP remain during

run-time, as shown in Figure 2.2c.

2.4.4 PARseL Execution Phases

PARseL has seven execution phases in total: three on boot and four at runtime. The three

phases in the boot-time are as follows:

(Secure) Boot: The boot-loader verifies, loads, and passes control to, seL4. Thereafter,

seL4 verifies the integrity of PARseL TCB, i.e., the software that runs in RP, and

passes control to RP, once verification succeeds.

Process Spawn: RP spawns PSMT as a thread. PSMT spawns IUP as an unprivileged process

and establishes an IPC channel with it. Once spawned, IUP sends the configuration

of user processes and their process ID-s (PID-s) to PSMT via IPC. Upon receiving a

request, PSMT spawns a new process according to received capabilities. It also ensures

that these capabilities are valid, not containing the write capability for its own code

segment. Finally, it spawns and sets up an IPC channel with SP. Once all processes are

spawned, PSMT sets up an IPC endpoint for each user process, assigns a unique badge

for each endpoint, and associates this unique badge with PID.

Measurement: While spawning each user process, PSMT also measures (via hashing) its

code segment, and stores the results in measurement map (mmap) with the PID as the

lookup key. Once all measurements are complete, PSMT sends the entire mmap to SP

through IPC, and RP (including PSMT) is terminated.

Then at runtime, once Prv is booted and in a steady state, it repeatedly executes the

remaining four phases:

21

Figure 2.3: Sequence of PARseL Execution Phases on Boot (After Secure Boot Checks)

Figure 2.4: Sequence of PARseL Execution Phases at Runtime

22

Listen: SP listens to receive messages from user processes through the endpoint set up in

the boot phase.

Request: Once a user process, UP, receives an attestation request from V rf with a fresh

challenge, Chal, UP transmits the request to SP through IPC system calls. The request

message includes Chal and the public key of UP, pk.

Sign: Upon receiving a request, SP identifies the sender process, UP, from the activated

endpoint badge and derives PID
2. It then retrieves UP’s measurement mUP from mmap

using PID and signs mUP along with the request message using its secret key, K. i.e.,

The signature is computed as:

σ := Sign(K, Hash(Chal||pk||mUP)) (2.1)

Response: SP responds σ to UP via IPC. UP forwards σ and pk to V rf . Finally, after

successful σ verification, V rf establishes a secure channel with UP using received pk.

Figures 2.3 and 2.4 show the aforementioned PARseL execution phases on boot and at run-

time, respectively.
2Note that seL4 guarantees that UP cannot forge its own endpoint badge. Therefore, the attested UP is

the same process that provides pk to SP.

23

2.5 PARseL Implementation & Verification

2.5.1 Implementation Details

Implementation of Root Process (RP)

Once seL4 passes control to RP, RP initializes user space by creating necessary boot-time

objects, such as CSpace, VSpace, and a memory allocator. Then, it initializes PSMT by

creating a new thread control block object, a memory frame for its IPC buffer, a new page

table, and a new endpoint object. Next, RP maps the page table and IPC buffer frame into

the VSpace and configures a badge for the endpoint and thread control block priority. RP

then sets up the thread-local storage (for its own storage area) and spawns PSMT. Finally, it

waits for PSMT to complete and send ACK.

Implementation of Process Spawning Thread (PSMT)

Once spawned, PSMT creates SP by assigning it a new set of virtual memory, configuring it

with two endpoints, and associating a unique badge for each endpoint. SP uses one endpoint

for IPC with SP and the other for UP-s. PSMT similarly creates IUP, establishes an IPC

between itself and IUP, and spawns IUP. Then, PSMT waits for a request from IUP.

A request includes all the specifications of UP to be spawned, such as PID, binary location,

and capabilities to system resources. Once receiving the request, PSMT first ensures that the

requested capabilities do not contain the write capability to UP’s binary and then initializes

UP accordingly. Next, PSMT computes its measurement, using a hash algorithm (e.g., SHA2-

256 [280]) in HACL∗, and stores it in mmap in order. PSMT uses a counter to make sure the

number of spawned processes does not exceed the size of mmap and assigns a badge based on

the counter to make it unique per UP endpoint. Finally, PSMT spawns UP and waits for the

24

next request. Once receiving the “Done” signal from IUP, PSMT sends the entire mmap to SP

via IPC, waits for IUP to finish its tasks (if any), and sends an ACK to RP.

Implementation of Initial Process (IUP)

In PARseL, all the user process information is consolidated into a configuration file at

compile-time. IUP first parses this file and loads its information to a local object. Then, for

each UP, IUP sends a spawn request to PSMT with its PID, and waits for an acknowledgment.

After all the UP-s are spawned, IUP sends the “Done” signal to PSMT and finishes its remain-

ing tasks (if any), before terminating itself. Note that if IUP contains no tasks other than

requesting to spawn UP-s, then PSMT can directly read the configuration file and spawn user

processes, instead of having a separated IUP.

Implementation of Signing Process (SP)

SP has two roles: (1) collecting all the UP-s measurements from PSMT at boot-time, and (2)

repeatedly processing RA requests at runtime. Once SP is spawned by PSMT during boot-time,

SP uses seL4 system calls to receive the entire mmap via IPC in the following way:

1. Using seL4_Recv(), SP listens for measurement message (PID, m) from PSMT’s badge.

2. SP uses seL4_GetMR() to unmarshal the message and copies (PID, m) to mmap.

3. Using seL4_Reply(), SP sends ’0’ (as a ACK).

This process is repeated until all the measurements are received from PSMT. In the following

section, we describe the verified implementation of SP’s runtime phase.

25

2.5.2 Formally Verification of PARseL Runtime Implementation

We describe the implementation of runtime PARseL TCB in Low ∗, with verified properties,

and how to convert it to C code, preserving the verified properties, using KaRaMeL.

Verifying Properties

Recall that SP runs the infinite loop of (Listen, Request, Sign, Response) phases (see Sec-

tion 2.4.4). To verify SP, we prove the following invariant properties for this infinite loop:

functional correctness, memory safety, and secret independence.

Functional correctness ensures that each loop iteration performs all the functionalities as

intended. In this context, it means each iteration of SP correctly computes the signature

according to Equation (2.1) for the given input and returns the computed result without

modifying SP internal states. Memory safety and secret independence guarantee that no

additional information beyond the signature result is leaked from SP. This applies to both

memory-based leakages as well as timing side channels. In Section 2.6, we show that these

three properties are sufficient to provide secure RA in PARseL.

Runtime SP Implementation in Low ∗ and C

To prove these properties, we first specify all seL4 APIs used by SP in Low ∗. Then, we im-

plement the Low ∗ code for all SP execution phases and integrate it with the Low ∗-specified

seL4 APIs and HACL∗ verified cryptographic functions. Next, we formally verify the com-

bined implementation via Low ∗ memory model, intermediate assertions, and post-condition

of the SP execution. Finally, we convert the final Low ∗ code to C using the verified KaRaMeL

compiler.

26

[Specifying seL4 APIs in Low ∗] While SP is implemented in Low ∗, the functional cor-

rectness of seL4 implementation (including system calls) is verified with a different formal

specification language called Isabelle/HOL [239]. Hence, we represent them as axioms, using

the construct ‘assume val’ in F ∗. F ∗ type checker accepts the given assumption without

attempting to verify it, and these axioms are converted to ‘extern’ in the generated C code.

We specify the input/output of each seL4 system call with required type definitions.

For example, Figure 2.5 shows in order, the original C code for a system call, seL4_GetMR

from seL4 APIs, corresponding Low ∗ implementation as an axiom, and the generated C code

using KaRaMeL. seL4_GetMR has an integer input i and simply outputs the i-th element

of msg array in seL4_IPCBuffer with type seL4_Word. Including the new type seL4_Word

for uint643, all the definitions or structs in seL4 (lines 1-12 of original C code) are properly

converted into Low ∗ (lines 1-17 of Low ∗ code). Note that since there is no concept of the

global variable in functional programming, all global variables or structs used in SP are

represented in state type (lines 5-7 of Low ∗ code), initialized in st_var (lines 8-15) and

defined in function st (lines 16-17). Once the Low ∗ axiom is compiled with KaRaMeL,

generated C code only contains one line of declaration (line 12 of generated C code) without

implementation. The rest of seL4 system calls used in SP, seL4_Recv, seL4_Reply, and

seL4_SetMR, are similarly written as axioms.

[Writing SP in Low ∗, combining HACL∗ library] The Sign phase is implemented using

cryptographic operations in HACL∗ which is also implemented in Low ∗ and formally verified

according to their specification. Thus, three HACL∗ functions for concatenation, hash, and

sign, are integrated into one signing function for Equation (2.1). We use HMAC [53] for the

symmetric signing algorithm with SHA2-256 [280] hash function and EdDSA [57] for the

asymmetric one. Runtime SP with the four execution phases is implemented by combining
3It is defined either uint32 or uint64 depending on the underlying architecture, and the example code is

shown with uint64 seL4_Word.

27

1 #define _seL4_int64_type long long int
2 typedef unsigned _seL4_int64_type seL4_Uint64;
3 typedef seL4_Uint64 seL4_Word;
4 typedef struct seL4_IPCBuffer_ {
5 seL4_Word msg[seL4_MsgMaxLength]; // seL4_MsgMaxLength = 120
6 } seL4_IPCBuffer __attribute__((__aligned__(sizeof(struct seL4_IPCBuffer_))));
7 extern __thread seL4_IPCBuffer *__sel4_ipc_buffer;
8 __thread __attribute__((weak)) seL4_IPCBuffer *__sel4_ipc_buffer;
9 LIBSEL4_INLINE_FUNC seL4_IPCBuffer *seL4_GetIPCBuffer(void)

10 {
11 return __sel4_ipc_buffer;
12 }
13 LIBSEL4_INLINE_FUNC seL4_Word seL4_GetMR(int i)
14 {
15 return seL4_GetIPCBuffer()->msg[i];
16 }

1 type seL4_Word = uint64
2 noeq type seL4_IPCBuffer = {
3 msg : mbuffer seL4_Word 120;
4 }
5 noeq type state = {
6 ipc_buffer: ipc:seL4_IPCBuffer;
7 }
8 let st_var: state =
9 let msg = B.gcmalloc HS.root (I.u64 0) 120ul in

10 let ipc_buffer = {
11 msg = msg;
12 } in
13 {
14 ipc_buffer = ipc_buffer;
15 }
16 val st (_:unit):state
17 let st _ = st_var
18 assume val seL4_GetMR
19 (i : size_t)
20 : Stack seL4_Word
21 (requires fun h0 -> (size_v i < 120) /\ (size_v i >= 0))
22 (ensures fun h0 a h1 -> B.(modifies loc_none h0 h1) /\ a == B.get h1 (st ()).ipc_buffer.msg (v i))

1 typedef uint64_t seL4_Word;
2 typedef uint64_t *seL4_IPCBuffer;
3 typedef struct state_s
4 {
5 uint64_t *ipc_buffer;
6 } state;
7 state st_var;
8 state st()
9 {

10 return st_var;
11 }
12 extern uint64_t seL4_GetMR(uint32_t i);

Figure 2.5: Simplified example seL4 API in original seL4 library (top), axiom in F ∗ (middle),
and generated header file in C (bottom)

28

this signing function and the seL4 axioms.

First, to receive/send a message through the IPC buffer or store intermediate computation

results, we need some local C arrays in Low ∗. For representing C arrays, Low ∗ provides the

Buffer module. In Low ∗, a buffer is a reference to a sequence of memory with a starting

index and a length. We use alloca (or create from HACL∗) for stack allocation, and

retrieve/update the buffer contents using index/upd with the proper indices.

Then, since the Sign phase is in between two seL4 system calls for Request and Response

phases, proper type conversions are required. Specifically, seL4 system calls use the type

seL4_Word and HACL∗ functions require the uint8 input type. To safely convert back and

forth between uint8 buffer and seL4_Word buffer (with big-endian), we use uints_to_bytes_be

and uints_from_bytes_be of the Lib.ByteBuffer module in HACL∗.

[Formal Verification] To verify the functional correctness of runtime SP, we first specify

necessary pre-/post-conditions for each seL4 axiom. For example, the Low ∗ code in Figure 2.5

shows that the function seL4_GetMR correctly returns with the i-th element of msg array in

seL4_IPCBuffer (line 22). Also, some properties are needed to be specified to verify that SP

internal states are not modified. In Figure 2.5, the post-condition B.(modifies loc_none

h0 h1) indicates that no locations are modified from seL4_GetMR function call (line 22).

Next, we insert an assertion detailed in Figure 2.6 after the Sign phase to ensure the func-

tional correctness of the signing function, i.e., it correctly computes the signature according

to Equation (2.1).

1 // h0 is the initial memory state and h1 is the state right after the signing function call, using ST.get ()
2 assert (B.as_seq h1 sign_result_u8 ==
3 Spec.Ed25519.sign (B.as_seq h0 s.sign_key)
4 (Spec.Agile.Hash.hash alg
5 (Lib.Sequence.concat #uint8 #64 #32
6 (Lib.Sequence.concat #uint8 #32 #32
7 (B.as_seq h chal) (B.as_seq h pk))
8 (B.as_seq h measurement_process))
9)

10);

Figure 2.6: Assertion for Functional Correctness of Sign, equation (2.1)

29

Finally, we check the invariance of K and mmap throughout the SP execution via intermediate

assertions and the post-condition of the runtime SP function. Similar to the assertion above,

it compares the K and mmap contents in the memory (h) after executing each function call

with the ones in the initial memory (h0), specified in Figure 2.7. This invariance along

with the post-conditions of seL4 APIs and the assertion in Figure 2.6 implies the functional

correctness of runtime SP.

1 assert (B.as_seq h0 s.mmap == B.as_seq h s.mmap);
2 assert (B.as_seq h0 s.sign_key == B.as_seq h s.sign_key);

Figure 2.7: Assertion for K and mmap invariance

For memory safety, we first implement all SP components with Stack effect, which prevents

any memory leakage due to deallocated heap regions. We also check the “liveness” and

“disjointness” of all buffers before they are referenced (via live and disjoint clauses),

which prevents stack-based memory corruption. The former guarantees that a buffer must

be properly initialized and not de-allocated (so “live") before it is used, whereas the latter

ensures that all buffers used in SP are located in separate memory regions without any

overlap. Lastly, we specify a post-condition for every function in SP to ensure that it modifies

only the intended memory region. This can be done through the modifies clause with the

form of modifies s h0 h1, which ensures that the memory h1 after the function call may

differ from the initial memory h0 (before the function call) at most regions in s, i.e., no

regions outside of s are modified by the function execution. For example, in Figure 2.5,

seL4_GetMR function ensures not to modify any memory location (with ‘loc_none’) in its

post-condition (line 22).

Finally, for the secret independence, we use the same technique employed by HACL∗. We use

the secret machine integers for private values (i.e., K), including all intermediate values, and

do not use any branch on those secret integers. This ensures that the execution time or the

accessing memory addresses are independent of the secret values so that the implementation

is timing side-channel resistant.

30

[Generating C code using KaRaMeL] Finally, we carefully write a build system and

generate readable C code from our verified Low ∗ code using KaRaMeL. It takes an F ∗

program, erases all the proofs, and rewrites the program from an expression language to a

statement language, performing optimizations. If the resulting code contains only Low ∗ code

with no closures, recursive data types, or implicit allocations, then KaRaMeL proceeds with

a translation to C.

KaRaMeL generates a readable C library, preserving names so that one not familiar with

F ∗ can review the generated code before integrating it into a larger codebase. For example,

the refinement type (b: B.buffer uint32 B.length b = n) in Low ∗ is compiled to a C

declaration (uint32_t b[n]), while referred to via (uint32_t *) as C pointer.

2.5.3 Secure Boot of seL4 and PARseL TCB

Similar to HYDRA, PARseL relies on a secure boot feature to protect against a physical Adv

attempting to re-program seL4 and PARseL TCB when Prv is offline. In HYDRA, this feature

works by having a ROM boot-loader validate seL4 authenticity before loading it. Once seL4

is running, it authenticates the user-space TCB by comparing it to a benign hash value,

hard-coded within the seL4 binary. Since HYDRA TCB is user-dependent, updating a user

application implies a software update not only to the TCB but also to the seL4 binary that

stores the TCB referenced hash value, which can be inconvenient in practice. Conversely,

PARseL TCB is user-independent, allowing user applications to be updated directly without

the need to modify PARseL TCB or seL4 binary.

2.5.4 Evaluation

Our source code including verification proofs is available at [33].

31

Figure 2.8: PARseL Performance while varying the number of spawned user processes (ex-
cluding SP)

Evaluation Setup

To demonstrate the practicality of PARseL, we developed our prototype on a commercially

available hardware platform: SabreLite [123] – on which seL4 is fully verified [271] including

all proofs for functional correctness, integrity, and information flow. SabreLite features an

ARM Cortex-A9 CPU core (running at 1 GHz), with RAM of size 1 GB, and a microSD

card slot (which we use to boot and load PARseL image). PARseL is implemented on seL4

version 12.0.1 (latest at the time of writing). Besides seL4 IPC kernel APIs, RP uses seL4

Runtime, seL4 Utils, and seL4 Bench user-space libraries (offered by seL4 Foundation) to

implement PSMT process spawning procedure.

PARseL Performance

Figure 2.8 depicts the performance of PARseL on SabreLite. The left sub-figure shows the

boot-time performance of RP and PSMT, and the right one shows the run-time performance of

SP (using either HMAC or EdDSA). Reported results are averaged over 50 iterations. The

size of each spawned process is ≈ 0.4 MB.

32

RP takes constant 40 ms (40 million cycles @ 1 GHz), as it initiates the device and spawns

PSMT, independent of the number of UP-s spawned. The time taken for PSMT increases linearly

to the number of UP-s, as expected because PSMT loads, measures, and spawns each UP

sequentially. Spawning each 0.4 MB UP takes ≈ 150 ms. Concretely, when there are 3 UP-s,

the boot-time of PARseL is 1.3s.

Using HMAC requires significantly fewer cycles than using EdDSA, due to its relatively

expensive operations in the latter. SP time to attest using EdDSA is 282 ms while using

HMAC is 1.2 ms (when there is one UP running on the device). As the number of UP-s increase,

the time taken for SP also increases. This is due to frequent kernel context switching, as seL4

(fully verified implementation) uses only one core.

PARseL TCB size

PARseL TCB contains 3.9K lines of C code, including 0.6K lines for RP + PSMT (excluding

the seL4 user-space libraries), and 3.3K lines for SP. Out of 3.3K lines of SP, 3.2K lines are

verified, including 3K lines from HACL∗ EdDSA and 0.2K lines from SP run-time attestation

function. PARseL TCB compiled binary has 1.5 MB.

2.6 PARseL Security Analysis

To argue PARseL security with respect to the adversary model in Section 3.5.2, we start by

formulating PARseL security goal.

Security Definition: Let B be an arbitrary software binary selected by V rf . In the context

of a static root of trust for measurement of user-level processes, an RA scheme is considered

secure if and only if V rf is able to use the RA scheme to establish a secure channel with program

33

P, where:

* P is an isolated user-level process running on the correct Prv;

* At boot time, P was loaded with the V rf -selected binary B;

Security Argument: Assuming that V rf uses pk, included in σ (recall Equation 2.1), to

establish the secure channel, Adv can attempt to circumvent PARseL security by:

(1) Loading the Right Software on the Wrong Device. Adv can load process PAdv

with the expected binary B on a different device (PrvAdv), also equipped with an instance

of PARseL. Then, Adv forwards V rf ’s request (intended to the original Prv) to PrvAdv.

PrvAdv inadvertently issues a PARseL attestation response that matches software B (loaded

on PAdv). However, as the secret key K is unique to each Prv, V rf would not accept the

received σ, thereby refusing to establish the secure channel.

(2) Loading the Wrong Software on the Right Device. Adv can load a user-space

process on the correct Prv but with an incorrect/malicious binary BAdv. This can be accom-

plished with physical access to Prv or by exploiting a vulnerability on a user-space process

to perform persistent code injection, re-booting Prv thereafter. In either case, σ would be

signed with the expected secret key K. However, mmap would be updated at boot to reflect

BAdv, i.e., the hash result mUPAdv
. Consequently, V rf would refuse to establish a secure

channel with a process on Prv loaded with BAdv ∕= B.

(3) Loading the Wrong Software on the Wrong Device. It follows from both argu-

ments above that this option is infeasible to Adv due to the mismatches on both secret key

K and measurement mUPAdv
.

Therefore, PARseL satisfies the security definition above.

This argument assumes confidentiality of K. In PARseL, this is supported through formal

verification of SP functional correctness, secret independence, and memory safety. It also

34

assumes that each process is appropriately measured at boot. In PARseL, this is implemented

by PSMT when computing mmap. The association of pk with the correct mUP is guaranteed

by seL4 badge assignments. Finally, the scheme relies on inter-process isolation for SP and

any attested process P , once the secure channel is established. The latter is inherited from

seL4 provable isolation.

2.7 Discussion

Limitations: Only PARseL runtime TCB is verified. The integrity of PARseL boot time

TCB is ensured via secure boot, while the correct implementation of secure boot/boot TCB

are assumed. Furthermore, PARseL measures processes at boot time. Thus, RP configures

a write-xor-execution memory permission to prevent a user process from modifying its own

code. By default, although seL4 guarantees strong inter-process isolation, it gives each

process full control of its own code/data segments. Due to this write-restriction, PARseL

does not support run-time updates to user-level processes. Currently, benign updates must be

done physically and require rebooting the device (in order to measure the updated program

on boot). However, we believe that any software update framework compatible with seL4

(e.g. [39]) can be used to alongside PARseL for remote updates. The only requirement

then would be to reboot the device after the update, so that PARseL re-measures all UP-s

including the new updated UP.

(Unexpected) Termination of UP does not cause any issues because no other user process

can transfer the signature (from V rf) on behalf of another process to SP. In V rf ’s view, no

response will arrive (in a certain amount of time) so it can deduce that UP or Prv are no

longer running. This is similar to any RA protocol.

SP Stack Erasure is obviated in PARseL because SP is never terminated at run-time and

35

seL4’s inter-process isolation guarantees that only SP has access to its own stack.

2.8 Related Work

RA: techniques can be classified into SW-based, HW-based, and hybrid (HW/SW co-

design) architectures. Although SW-based methods such as [190, 274, 208, 152] require

minimal overall costs, they rely on strong assumptions about precise time-based checksum,

which is mostly unsuitable for the IoT ecosystem with the multi-hop network. HW-based

methods [238, 290, 198], on the other hand, rely on some additional hardware support for

RA, e.g., some dedicated hardware components [290], or extension of existing instruction

sets [180], which introduce cost and other barriers, especially for low-end and mid-range

devices. Hybrid approach [108, 195, 67, 114] is considered to be more suitable for IoT

ecosystems because it aims for minimal hardware changes while keeping the same security

levels as HW-based RA. Using the hybrid RA as a building block, many security services

have been also suggested, such as proof of execution [110, 120], control-flow and data-flow at-

testation [26, 121, 115, 116, 304, 284, 149], and secure software updates [39, 109, 113]. Since

PARseL also provides a hybrid RA, it can be also used for such security services. Several

recent papers on hybrid RA/RA-based security services [110, 108, 109, 113, 114] provide for-

mal verification of their suggested architectures/implementations. They use model checking

with temporal logic to verify their implementations while they use theorem proving to show

that their proved properties are sufficient for their security goal(s).

Verfied security applications in F ∗: [9] lists all the papers that apply F ∗ in security and

cryptography, including HACL∗ [312]. DICE∗ [287] is a notable paper related to PARseL,

which proposes a verified implementation of Device Identifier Composition Engine (DICE),

an industry-standard measured boot protocol, for low-cost IoT devices. Similar to PARseL,

it has layered architecture with static components whose implementations are verified over

36

Low ∗. The main difference is how to guarantee the K confidentiality. DICE enforces the

access control to the master secret key by locating it in a read-only and latchable memory so

that only a hardware reset can disable/restore access to it. The first hardware layer (called

DICE engine) only has access to the secret, and it authenticates the next layer (L0) and

derives the secret for L0 from its master secret and L0 measurement. This ensures the same

derived secret only when L0 firmware is not compromised. Once received control, L0 uses

this secret to derive a unique key pair from its secret and the next-layer firmware (L1) for L1

attestation and secure key exchange. Although PARseL assumes a secure boot for correct

seL4 deployment, both PARseL and DICE∗ present verified implementations for the static

root of trust for embedded devices, with different ways of guaranteeing the access control.

Architectures/applications over seL4: After being released in 2009 [194], seL4 has been ac-

tively implanted and used in both academia and industries in various domains, including

automotive [21], aviation [92], and medical devices [263]. Apart from massive research from

the Trustworthy Systems group in UNSW Sydney, many projects such as [135, 248] leverage

their architecture atop seL4.

2.9 Summary

This chapter presented PARseL, a provable attestation root-of-trust over seL4 for mid-range

IoT/embedded devices. We implemented PARseL on SabreLite and demonstrated its overall

feasibility and practicality. In addition, we formally verified the runtime component of

PARseL with respect to functional correctness, memory safety, and secret independence,

using the Low ∗ tool-chain. Our source code including verification proofs is available at [33].

37

Chapter 3

Privacy-from-Birth : Protecting Sensed

Data from Malicious Sensors with VERSA

Now, this chapter moves on to the low-end devices that usually run a single core and single

process over the bare metal. Due to the lack of security features, such as secure boot, MMU,

and MPU, we claim that the privacy of data generated from such devices must be ensured

“from birth” so that the data can be protected even if the device software is compromised. We

formalize this notion and propose a secure architecture realizing it with formal verification.

3.1 Introduction

As mentioned in Section 2.1, increasing number of IoT/embedded devices become pervasive

in many aspects of everyday life, and they also represent increasingly attractive attack targets

for exploits and malware. In particular, low-end (cheap, small, and simple) micro-controller

units (MCUs) are designed with strict cost, size, and energy limitations, and therefore,

it is hard to offer any concrete guarantees for tasks performed by these MCUs. This is

38

due to their lack of sophisticated security and privacy features, compared to higher-end

computing devices, such as smartphones or general-purpose IoT controllers, e.g., Amazon

Echo or Google Nest. As MCUs increasingly permeate private spaces, exploits that abuse

their sensing capabilities to obtain sensitive data represent a significant privacy threat.

Over the past decade, the IoT privacy issues have been recognized and explored by the

research community [297, 291, 210, 310, 257]. Many techniques (e.g., [236, 203]) were de-

veloped to secure sensor data from active attacks that impersonate users, IoT back-ends,

or servers. Another research direction focused on protecting private data from passive in-

network observers that intercept traffic [288, 34, 35, 36] or perform traffic analysis based

on unprotected packet headers and other metadata, e.g., sizes, timings, and frequencies.

However, security of sensor data on the device which originates that data has not been

investigated. We consider this to be a crucial issue, since all software on the device can be

compromised and leak (exfiltrate) sensed data. Whereas, aforementioned techniques assume

that sensing device runs the expected benign software.

We claim that in order to solve this problem, privacy of sensed data must be ensured “from

birth”. This corresponds to two requirements: (1) access to sensing interfaces must be strictly

controlled, such that only authorized code is allowed to read data, (2) sensed data must be

protected as soon as it is converted to digital form. Even the simplest devices (e.g., motion

sensors, thermostats, and smart plugs) should be protected since prior work [86, 234, 283, 186]

amply demonstrates that private – and even safety-critical – information can be inferred

from sensed data. It is also well-known that even simple low-end IoT devices are subject to

malware attacks. This prompts a natural question: Can privacy of sensed data be guaranteed

if the device software is compromised? We refer to this guarantee as Privacy-from-Birth (PfB).

Some previous results considered potential software compromise in low-end devices and pro-

posed methods to enable security services, such as remote verification of device software state

(remote attestation) [252, 238, 108, 32, 67, 195], proofs of remote software execution [110],

39

control- & data-flow attestation [120, 26, 121, 304, 284, 116, 115], as well as proofs of remote

software updates, memory erasure, and system reset [109, 31, 39].

Regardless of their specifics, such techniques only detect of violations or compromises after

the fact. In the context of PfB , that is too late since leakage of private sensed data

likely already occurred. Notably, SANCUS [238] specifically discusses the problem of access

control to sensor peripherals (e.g., GPIO) and proposes attestation of software accessing (or

controlling access to) these peripherals. However, this only allows detection of compromised

peripheral-accessing software and does not prevent illegal peripheral access.

To bridge this gap and obtain PfB , we construct the Verified Remote Sensing Authorization

(VERSA) architecture. It provably prevents leakage of private sensor data even when the

underlying device is software-compromised. At a high level, VERSA combines three key

features: (1) Mandatory Sensing Operation Authorization, (2) Atomic Sensing Operation

Execution, and (3) Data Erasure on Boot (see Section 3.3). To attain these features, VERSA

implements a minimal and formally verified hardware monitor that runs independently from

(and in parallel with) the main CPU, without modifying the CPU core. We show that

VERSA is an efficient and inexpensive means of guaranteeing PfB .

This work makes the following contributions:

• Formulates PfB with a high-level specification of requirements, followed by a game-

based formal definition of the PfB goal.

• Constructs VERSA, an architecture that guarantees PfB .

• Implements and deploys VERSA on a commodity low-end MCU, which demonstrates

its cost-effectiveness and practicality.

• Formally verifies VERSA implementation and proves security of the overall construction,

hence obtaining provable security at both architectural and implementation levels.

VERSA implementation and its computer proofs are publicly available in [25].

40

3.2 Preliminaries

Figure 3.1: System Architecture of an MCU-based IoT Device

3.2.1 Scope & MCU-based devices

This work focuses on low-end CPS/IoT/smart devices with low computing power and meager

resources. These are some of the smallest and weakest devices based on low-power single-core

MCUs with only a few kilobytes (KB) of program and data memory. Two prominent exam-

ples are Atmel AVR ATmega and TI MSP430: 8- and 16-bit CPUs, respectively, typically

running at 1-16MHz clock frequencies, with ≈ 64KB of addressable memory.

Figure 3.1 illustrates a generic architecture representing such MCUs. The CPU core and

the Direct-Memory Access (DMA) controller access memory through a bus.1 Memory can

be divided into 5 logical regions: (1) Read-only memory (ROM), if present, stores critical

software such as a bootloader, burnt into the device at manufacture time and not modifi-

able thereafter; (2) program memory (PMEM), usually realized as flash, is non-volatile and

stores program instructions; (3) interrupt vector table (also in flash and often considered as
1DMA is a hardware controller that can read/write to memory in parallel with the CPU.

41

part of PMEM), stores interrupt configurations; (4) data memory (DMEM), usually imple-

mented with DRAM, is volatile and used to store program execution state, i.e., its stack and

heap; and, (5) peripheral memory region (also in DRAM and often considered as a part of

DMEM), contains memory-mapped I/O interfaces, i.e., addresses in the memory layout that

are mapped to hardware components, e.g., timers, UART, and GPIO. In particular, GPIO

are peripheral memory addresses hardwired to physical ports that interface with external

circuits, e.g., analog sensors/circuits.

We note that small MCUs usually come in one of two memory architectures: Harvard and

von Neumann. The former isolates PMEM and DMEM by maintaining two different buses

and address spaces, while the latter keeps both PMEM and DMEM in the same address

space and accessible via a single bus.

Low-end MCUs execute instructions in place, i.e., directly from flash memory. They have

neither memory management units (MMUs) to support virtualization/isolation, nor memory

protection units (MPUs). Therefore, privilege levels and isolation used in higher-end devices

and generic enclaved execution systems (e.g., Intel SGX [180] or MIT SANCTUM [93]) are

not applicable.

We believe that a PfB -agile architecture that is sufficiently inexpensive and efficient for such

low-end devices can be later adapted to more powerful devices. Whereas, going in the op-

posite direction is more challenging. Furthermore, simpler devices are easier to model and

reason about formally. Thus, we believe that they represent a natural starting point for the

design and verification of a PfB -agile architecture. To this end, our prototype implementa-

tion of VERSA is integrated with MSP430, due in part to public availability of an open-source

MSP430 hardware design from OpenCores [151].2

2Nevertheless, the generic machine model and methodology of VERSA are applicable to other low-end
MCUs of the same class, e.g., Atmel AVR ATmega.

42

3.2.2 GPIO & MCU Sensing

A GPIO port is a set of GPIO pins arranged and controlled together, as a group. The MCU-

addressable memory for a GPIO port is physically mapped (hard-wired) to physical ports

that can be connected to a variety of external circuits, such as analog sensors and actuators,

as shown in Figure 3.1. Each GPIO pin can be set to function as either an input or output,

hence called "general purpose". Input signals produced by external circuits can be obtained

by the MCU software by reading from GPIO-mapped memory. Similarly, egress electric

signals (high or low voltage) can be generated by the MCU software by writing (logical 1 or

0) to GPIO-mapped memory.

Remark: “GPIO-mapped memory” includes the set of all software-readable memory regions

connected to external sensors. In some cases, this set may even include multiple physical

memory regions for a single physical pin. For instance, if a given GPIO pin is also equipped

with an Analog-to-Digital Converter (ADC), a GPIO input could be reflected on different

memory regions depending on whether the ADC is active or inactive. All such regions are

considered “GPIO-mapped memory” and we refer to it simply as GPIO. Using this definition,

in order to access sensor data, software running on the MCU must read from GPIO.

We also note that various applications require different sensor regimes [19]: event-driven,

periodic, and on-demand. Event-driven sensors report sensed data when a trigger event

occurs, while periodic sensors report sensor data at fixed time intervals. On-demand (or

query-driven) sensors report sensor data whenever requested by an external entity. Although

we initially consider on-demand sensing, as discussed in Section 3.3, the proposed design is

applicable to other regimes.

43

3.2.3 VRASED

VRASED [108] is a verified hybrid (hardware/software) RA architecture for for low-end

MCUs. It comprises a set of (individually) verified hardware and software sub-modules; their

composition provably satisfies formal definitions of RA soundness and security. VRASED

software component implements the authenticated integrity function computed over a given

“Attested Region” (AR) of Prv’s memory. VRASED hardware component assures that its

software counterpart executes securely and that no function of the secret key is ever leaked.

In short, RA soundness states that the integrity measurement must accurately reflect a

snapshot of Prv’s memory in AR, disallowing any modifications to AR during the actual

measurement. RA security defines that the measurement must be unforgeable, implying

protection of secret key K used for the measurement.

In order to prevent DoS attacks on Prv, the RA protocol may involve authentication of the

attestation request, before Prv performs attestation. If this feature is used, an authentication

token must accompany every attestation request.3 For example, in VRASED, V rf computes

this token as an HMAC over Chal, using K. Since K is only known to Prv and V rf , this

token is unforgeable. To prevent replays, Chal is a monotonically increasing counter, and

the latest Chal used to successfully authenticate V rf is stored by Prv in persistent and

protected memory. In each attestation request, incoming Chal must be greater that the

stored value. Once an attestation request is successfully authenticated, the stored value is

updated accordingly.

VRASED software component is stored in ROM and realized with a formally verified HMAC

implementation from the HACL* cryptographic library [312], which is used to compute:

H = HMAC(KDF (K, Chal), AR), where KDF (K, Chal) is a one-time key derived from the

received Chal and K using a key derivation function.
3By saying “this feature is used”, we mean that its usage (or lack thereof) is fixed at the granularity of a

V rf -Prv setting, and not per single RA instance.

44

As discussed later in Section 3.6, in VERSA, VRASED is used as a means of authorizing a

binary to access GPIO.

3.2.4 LTL, Model Checking, & Verification

Our verification and proof methodologies are in-line with prior work on the design and

verification of security architectures proving code integrity and execution properties for the

same class of MCUs [108, 110, 114, 29]. However, to the best of our knowledge, no prior

work tackled formal models and definitions, or designed services, for guaranteed sensed data

privacy. This section overviews our verification and proof methodologies that allow us to

later show that VERSA achieves required PfB properties and end-goals.

Computer-aided formal verification typically involves three steps. First, the system of inter-

est (e.g., hardware, software, or communication protocol) is described using a formal model,

e.g., a Finite State Machine (FSM). Second, properties that the model should satisfy are

formally specified. Third, the system model is checked against formally specified properties

to guarantee that the system retains them. This can be done via Theorem Proving [216] or

Model Checking [90]. We use the latter to verify the implementation of system sub-modules,

and the former to prove new properties derived from the combination (conjunction) of ma-

chine model axioms and sub-properties that were proved for the implementation of individual

sub-modules.

In one instantiation of model checking, properties are specified as formulae using Linear

Temporal Logic (LTL) and system models are represented as FSMs. Hence, a system is

represented by a triple: (σ, σ0, T), where σ is the finite set of states, σ0 ⊆ σ is the set of

possible initial states, and T ⊆ σ × σ is the transition relation set, which describes the set

of states that can be reached in a single step from each state. Such usage of LTL allows

representing a system behavior over time.

45

Our verification strategy benefits from the popular model checker NuSMV [89], which can

verify generic hardware or software models. For digital hardware described at Register

Transfer Level (RTL) – which is the case in this work – conversion from Hardware Description

Language (HDL) to NuSMV models is simple. Furthermore, it can be automated [182] as the

standard RTL design already relies on describing hardware as FSMs. LTL specifications are

particularly useful for verifying sequential systems. In addition to propositional connectives,

such as conjunction (∧), disjunction (∨), negation (¬), and implication (→), LTL extends

propositional logic with temporal quantifiers, thus enabling sequential reasoning. In this

paper, we are interested in the following LTL quantifiers:

• Xφ – neXt φ: holds if φ is true at the next system state.

• Gφ – Globally φ: holds if for all future states φ is true.

• φ U ψ – φ Until ψ: holds if there is a future state where ψ holds and φ holds for all states prior to that.

• φ W ψ – φ Weak until ψ: holds if, assuming a future state where ψ holds, φ holds for all states prior to

that. If ψ never becomes true, φ must hold forever. Or, more formally: φ W ψ ≡ (φ U ψ)∨ G(φ).

• φ B ψ – φ Before ψ: holds if the existence of state where ψ holds implies the existence of at least one

earlier state where φ holds. Equivalently: φ B ψ ≡ ¬(¬φ U ψ).

NuSMV works by exhaustively enumerating all possible states of a given system FSM and

by checking each state against LTL specifications. If any desired specification is found not

to hold for specific states (or transitions between states), the model checker provides a trace

that leads to the erroneous state, which helps correct the implementation accordingly. As

a consequence of exhaustive enumeration, proofs for complex systems that involve complex

properties often do not scale due to the so-called “state explosion” problem. To cope with it,

our verification approach is to specify smaller LTL sub-properties separately and verify each

respective hardware sub-module for compliance. In this process, our verification pipeline

automatically converts digital hardware, described at RTL using Verilog, to Symbolic Model

Verifier (SMV) [227] FSMs using Verilog2SMV [182]. The SMV representation is then fed

to NuSMV for verification. Then, the composition of LTL sub-properties (verified in the

model-checking phase) is proven to achieve a desired end-to-end implementation goal, also

46

specified in LTL. This step uses an LTL theorem prover [131].

In our case, we show that the end-to-end goal of VERSA, in composition with VRASED, is

sufficient to achieve PfB via cryptographic reduction from the formal security definition of

VRASED. These steps are discussed in detail in Section 3.7.

3.3 VERSA Overview

VERSA involves two entities: a trusted remote controller (Ctrl) and a device (Dev). We expect

Ctrl to be a relatively powerful computing entity, e.g., a home gateway, a backend server or

even a smartphone. VERSA protects sensed data on Dev by keeping it (and any function

thereof) confidential. This implies: (1) controlling GPIO access by blocking attempted

reads by unauthorized software, and (2) keeping execution traces (i.e., data allocated by

GPIO-authorized software) confidential. Therefore, access to GPIO is barred by default.

GPIO is unlocked only for benign binaries that are pre-authorized by Ctrl. Whenever a

binary is deemed to be authorized on Dev, VERSA creates for it an ephemeral isolated

execution environment and permits its one-time execution. This isolated environment lasts

until execution ends, which corresponds to reaching the legal exit point of the authorized

binary. Therefore, by including a clean-up routine immediately before the legal exit, we

can assure that all execution traces, including all sensitive information, are erased. Any

attempt to interrupt, or tamper with, isolated execution causes an immediate system-wide

reset, which erases all data traces.

We use the term “Sensing Operation”, denoted by S, to refer to a self-contained and logically

independent binary (e.g., a function) that is responsible for processing data obtained through

one or more reads from GPIO.

VERSA achieves PfB via three key features:

47

[A] Mandatory Sensing Operation Authorization requires explicit authorization issued by

Ctrl before any Dev software reads from GPIO. Recall that access to GPIO is blocked by

default. Each authorization token (ATok) coming from Ctrl allows one execution of a specific

sensing operation S, although a single execution of S can implement several GPIO reads.

ATok has the following properties:

1. It can be authenticated by Dev as having been issued by Ctrl; this includes freshness;

2. It grants privileges only to a specific S to access GPIO during its execution; and

3. It can only be used once.

Ctrl can authorize multiple executions of S by issuing a batch of tokens, i.e., ATok1, ..., ATokn,

for up to n executions of S. Although supporting multiple tokens is unnecessary for on-

demand sensing, it might be useful for periodic or event-driven sensing regimes discussed in

Section 3.2.2.

[B] Atomic Sensing Operation Execution ensures that, once authorized by Ctrl, S is executed

with the following requirements:

1. S execution starts from its legal entry point (first instruction) and runs until its legal

exit point (last instruction). This assumes a single pair of entry-exit points;

2. S execution can not be interrupted and its intermediate results cannot be accessed by

external means, e.g., via DMA controllers; and

3. An immediate MCU reset is triggered if either (1) or (2) above is violated.

[C] Data Erasure on Reset/Boot works with [B] to guarantee that, sensed data (or any

function thereof) obtained during S execution is not leaked due to errors or violations of

security properties, which cause MCU reset per item (3) above. This feature must guarantee

that all values that remain in RAM after a hard reset and the subsequent boot process, are

erased before any unprivileged software can run. While some architectures already provide

memory erasure on boot, for those MCUs that do not do so, it can be obtained by calling

48

Figure 3.2: MCU execution workflow with VERSA.

a secure RAM erasure function at boot time, e.g., as a part of a ROM-resident bootloader

code. We discuss this further in Section 3.9.

At a high level, correct implementation of aforementioned three features suffices to obtain

PfB , because:

• Any compromised/modified binary can not access GPIO since it has no authorization

from Ctrl.

• Any authorized binary S must be invoked properly and run atomically, from its first,

and until its last, instruction.

• Since S is invoked properly, intended behavior of S is preserved. Code reuse attacks

are not possible, unless they occure as a result of bugs in S implementation itself. Ctrl

can always check for such bugs in S prior to authorization; see Section 3.5.2.

• S runs uninterrupted, meaning that it can erase all traces of its own execution from

the stack before passing control to unprivileged applications. This guarantees that no

sensor data remains in memory when S terminates.

• VERSA assures that any violation of aforementioned requirements causes an MCU reset,

triggering erasure of all data memory. Therefore, malware that attempts to interrupt

S before completion, or tamper with S execution integrity, will cause all data used by

S to be erased.

49

Support for Output Encryption: S might process and use sensor data locally as part of

its own execution, or generate some output that needs to be returned to Ctrl. In the latter

case, encryption of S output is necessary. For this reason, VERSA supports the generation of

a fresh key derived from ATok (thus implicitly shared between Ctrl and S). This key is only

accessible to S during authorized execution. Hence, S can encrypt any data to be exported

with this key and ensure that encrypted results can only be decrypted by Ctrl.

Since we assume that the encryption function is part of S, it cannot be interrupted (or tam-

pered with) by any unprivileged software or external means. Importantly, the encryption key

is only accessible to S (similar to GPIO) and shielded from all other software. Furthermore,

the choice of the encryption algorithm is left up to the specific S implementation.

Figure 3.2 illustrates MCU execution workflow discussed in this section.

3.4 MCU Machine Model

3.4.1 Execution Model

To enable formal specification of PfB guarantees, we formulate the MCU execution model

in Definition 3.1. It represents MCU operation as a discrete sequence of MCU states, each

corresponding to one clock cycle – the smallest unit of time in the system. We say that the

subsequent MCU state is defined based on the current MCU state (which includes current

values in memory/registers, as well as any hardware signals and effects, such as external

inputs, actions by DMA controller(s), and interrupts) and the current instruction being

executed by the CPU core. Similarly, the instruction to be executed in the next state is

determined by the current state and the current instruction being executed.

For example, an arithmetic instruction (e.g., add or mult) causes the program counter

50

Definition 3.1 (MCU Execution Model).

1 – Execution is modeled as a sequence of MCU states S := {s0, ..., sm} and a sequence of instructions
I := {i0, ..., in}. Since the next MCU state and the next instruction to be executed are determined by the
current MCU state and the current instruction being executed, these discrete transitions are denoted as
shown in the following example:

(s1, ij) ← EXEC(s0, i0); (s2, ik) ← EXEC(s1, ij); ... (sm,⊥) ← EXEC(sm−1, il)

The sequence I represents the physical order of instructions in memory, which is not necessarily the order
of their execution. The next instruction and state are also affected by current external inputs, current
data-memory values, and current hardware events, e.g., interrupts or resets, which are modeled as
properties of each execution state in S. The MCU always starts execution (at boot or after a reset) from
state s0 and initial instruction i0. EXEC produces ⊥ as the next instruction if there is no instructions
left to execute.

2 – State Properties as Sets: sets are used to model relevant execution properties and character-
ize effects/actions occurring within a given state st. We are particularly interested in the behaviors
corresponding to the following sets:

1. READ: all states produced by the execution of an instruction i that reads the value from memory
to a register.

2. WRITE: all states produced by the execution of an instruction i that writes the value from a
register to memory.

3. DMAR: all states produced as a result of DMA reading from memory.
4. DMAW : all states st produced as a result of DMA writing to memory.
5. IRQ: all states st where an interrupt is triggered.
6. RESET: all states st wherein an MCU reset is triggered.

Note that these sets are not disjoint, i.e., st can belong to multiple sets. Also, the aforementioned
sets do not aim to model all possible MCU behaviors, but only the ones relevant to PfB. Finally, we
further subdivide sets that model memory access into subsets relating to memory regions of interest. For
example, considering a contiguous memory region M = [Mmin,Mmax], READM is a subset of READ
containing only the states produced through EXEC of instructions that read from the memory region M.
We use the same notation to refer to other subsets, e.g., WRITEM, DMAR

M, and DMAW
M.

Definition 3.2 (Hardware Model).
M denotes a contiguous memory region within addresses Mmin and Mmax in physical memory of
Dev, i.e., M := [Mmin,Mmax]. s represents the system execution state at a given CPU cycle.

Program counter & instruction execution:
G :{[X(s) ← EXEC(s, ik) ∧ ik ∈ M)] → (PC ∈ M)} (3.1)

Memory Reads/Writes:
G :{X(s) ∈ READM → (Ren ∧Daddr ∈ M)} (3.2)

G :{X(s) ∈ WRITEM → (Wen ∧Daddr ∈ M)} (3.3)

G :{(X(s) ∈ DMAR
M ∨X(s) ∈ DMAW

M) → (DMAen ∧DMAaddr ∈ M)} (3.4)

Interrupts (irq) and Resets:
G :{s ∈ IRQ ↔ irq} (3.5)

G :{s ∈ RESET ↔ reset} (3.6)

51

(PC) to point to the subsequent address in physical memory. However, an interrupt (which

is a consequence of the current MCU state) may occur and deviate the normal execution

flow. Alternatively, a branching instruction may be executed and cause PC to jump to some

arbitrary instruction that is not necessarily located at the subsequent position in the MCU

flash memory.

To reason about events during the MCU operation, we say that each MCU state can belong

to one or more sets. Belonging to a given set implies that the state has a given property of

interest. Definition 3.1 introduces six sets of interest, representing states in which memory

is read/written by CPU or DMA, as well as states in which an interrupt or reset occurs.

3.4.2 Hardware Signals

We now formalize the effects of execution, modeled in Definition 3.1, to the values of con-

crete hardware signals that can be monitored by VERSA hardware in order to attain PfB

guarantees. Informally, we model the following simple axioms:

[A1] PC: contains the memory address containing the instruction being executed at a given

cycle.

[A2] CPU Memory Access: Whenever memory is read or written, a data-address signal

(Daddr) contains the address of the corresponding memory location. A data read-enable

bit (Ren) must be set for a read access and a data write-enable bit (Wen) must be set

for a write access.

[A3] DMA: Whenever a DMA controller attempts to access the main memory, a DMA-

address signal (DMAaddr) contains the address of the accessed memory location and a

DMA-enable bit (DMAen) must be set.

[A4] Interrupts: When hardware interrupts or software interrupts happen, the irq signal

is set.

52

[A5] MCU reset: At the end of a successful reset routine, all registers (including PC) are

set to zero before restarting software execution. The reset handling routine cannot

be modified, as resets are handled by MCU in hardware. When a reset happens, the

corresponding reset signal is set. The same signal is also set when the MCU initializes

for the first time.

This model strictly adheres to MCU specifications, assumed to be correctly implemented by

the underlying MCU core.

Definition 3.2 presents formal specifications for aforementioned axioms in LTL. Instead of

explicitly quantifying time, LTL embeds time within the logic by using temporal quantifiers

(see Section 3.2). Hence, rather than referring to execution states using temporal variables

(i.e., state t, state t + 1, state t + 2), a single variable (s) and LTL quantifiers suffice to

specify, e.g., “current”, “next”, “future” system states (s). For this part of the model, we are

mostly interested in: (1) describing MCU state at the next CPU cycle (X(s)) as a function

of the MCU state at the current CPU cycle (s), and (2) describing which particular MCU

signals must be triggered in order for X(s) to be in each of the sets defined in Definition 3.1.

LTL statements in Definition 3.2 formally model axioms [A1]-[A5], i.e., the subset of MCU

behavior that is relevant to, and sufficient for formally verifying, VERSA. LTL (3.1) models

[A1], (3.2) and (3.3) model [A2], and each (3.4), (3.5), and (3.6) models [A3], [A4], and

[A5], respectively.

3.5 PfB Definitions

Based on the specified machine model, we now proceed with the formal definition of PfB .

53

Definition 3.3 (Syntax: PfB scheme).
A Privacy-from-Birth (PfB) scheme is a tuple of algorithms [Authorize,Verify,XSensing]:

1. AuthorizeCtrl(S, · · ·): an algorithm executed by Ctrl taking as input at least one executable S and
producing at least one authorization token ATok which can be sent to Dev to authorize one
execution of S with access to GPIO.

2. VerifyDev(S,ATok, · · ·): an algorithm (with possible hardware-support), executed by Dev, that
takes as input S and ATok. It uses ATok to check whether S is pre-authorized by Ctrl and
outputs ⊤ if verification succeeds, and ⊥ otherwise.

3. XSensingDev(S, · · ·): an algorithm (with possible hardware-support) that executes S in Dev, pro-
ducing a sequence of states E := {s0, ..., sm}. It returns ⊤, if sensing successfully occurs during
S execution, i.e., ∃s ∈ E such that (s ∈ READGPIO) ∧ (s /∈ RESET)); it returns ⊥, otherwise.

Remark: In the parameter list, (· · ·) means that additional/optional parameters might be included
depending on the specific PfB construction.

Definition 3.4 (PfB Game-based Definition).
3.4.1 Auxiliary Notation & Predicate(s):

• Let K be a secret string of bit-size |K|; λ be the sec. param., determined by |K|, i.e., λ = Θ(|K|);
• Let atomicExec be a predicate evaluated on some sequence of states S and some software – i.e.,

some sequence of instructions I.
– atomicExec(S := {s1, ..., sm},I := {i0, ..., in}) ≡ ⊤ iff the following hold; otherwise, ⊥.

1. Legal Entry Instruction: The first execution state s1 in S is produced by the exe-
cution of the first instruction i0 in I.
i.e., (s1 ← EXEC(i0, s∗)) ∨ (s1 ∈ RESET), where s∗ is any state prior to s1.

2. Legal Exit Instruction: The last execution state sm in S is produced by the execution
of the last instruction in in I.
i.e., (sm ← EXEC(in, sm−1)) ∨ (sm ∈ RESET).

3. Self-Contained Execution: For all sj in S, sj is produced by the execution of an
instruction ik in I, for some k.
i.e., (sj ← EXEC(ik, sj−1)) ∨ (sj ∈ RESET), for some ik ∈ I.

4. No Interrupts, No DMA: For all sj in S, sj is neither in the IRQ or DMA. i.e.,
[(sj /∈ IRQ) ∧ (sj /∈ DMA)] ∨ (sj ∈ RESET).

3.4.2 PfB-Game: The challenger plays the following game with Adv:
1. Adv is given full control over Dev software state, implying Adv can execute any (polynomially

sized) sequence of arbitrary instructions {iAdv
0 , ..., iAdv

n }, inducing the associated changes in Dev’s
sequence of execution states;

2. Adv has oracle access to polynomially many calls to Verify. Adv also has access to the set of
software executables, SW := {S1, ..., Sl}, and the set of all corresponding authorization “tokens”,
T := {ATok1, ...,ATokl}, ever produced by any prior Ctrl calls to Authorize up until time t. i.e.,
ATokj ← Authorize(Sj , ...), for all j.

3. Let U ⊂ T be the set of all “used” authorization tokens up until time t, i.e., ATokj ∈ U, if a call
to XSensing(Sj , ...) returned ⊤ up until time t; Let P be the set of “pending” (issued but not used)
authorization tokens, i.e., P := T \ U.

4. At any arbitrary time t, Adv wins if it can perform an unauthorized or tampered sensing
execution, i.e.:
– Adv triggers an XSensing(SAdv, ...) operation that returns ⊤, for ∀SAdv /∈ SW, or
– Adv triggers (S,⊤) ← XSensing(Sj , ...) such that atomicExec(S,Sj) ≡⊥, for some Sj ∈ SW

and ATokj ∈ U .

3.4.3 PfB-Security: A scheme is considered PfB-Secure iff, for all PPT adversaries Adv, there exists
a negligible function negl such that:

Pr[Adv,PfB-Game] ≤ negl(l)

54

3.5.1 PfB Syntax

A PfB scheme involves two parties: Ctrl and Dev. Ctrl authorizes Dev to execute some

software S which accesses GPIO. It should be impossible for any software different from

S to access GPIO data, or any function thereof (see Definition 3.4). Ctrl is trusted to

only authorize functionally correct code. The goal of a PfB scheme is to facilitate sensing-

dependent execution while keeping all sensed data private from all other software.

Definition 3.3 specifies a syntax for PfB scheme composed of three functionalities: Authorize,

Verify, and XSensing. Authorize is invoked by Ctrl to produce an authorization token, ATok,

to be sent to Dev, enabling S to access GPIO. Verify is executed at Dev with ATok as input,

and it checks whether ATok is a valid authorization for the software on Dev. If and only

if this check succeeds, Verify returns ⊤. Otherwise, it returns ⊥. The verification success

indicates one execution of S granted on Dev via XSensing. XSensing is considered successful

(returns ⊤), if there is at least one MCU state produced by XSensing where a GPIO read

occurs without causing an MCU reset, i.e., (s ∈ READGPIO) ∧ ¬(s ∈ RESET). Otherwise,

XSensing returns ⊥. That is, XSensing models execution of any software in the MCU and

its return symbol indicates whether a GPIO read occurred during its execution. Therefore,

invocation of XSensing on any input software that does not read from GPIO returns ⊥.

Figure 3.3 illustrates a benign PfB interaction between Ctrl and Dev.

DevCtrl

(2) Verify

(3) Execute

(1) Authorization

(4) Result (Optional)

Figure 3.3: PfB interaction between Ctrl and Dev

55

3.5.2 Assumptions & Adversarial Model

We consider an adversary, Adv, that controls the entire software state of Dev, including

PMEM (flash) and DMEM (DRAM). It can attempt to modify any writable memory (in-

cluding PMEM) or read any memory, including peripheral regions, such as GPIO, unless

explicitly protected by verified hardware. It can launch code injection attacks to execute

arbitrary instructions from PMEM or even DMEM (if the MCU architecture supports execu-

tion from DMEM). It also has full control over any DMA controllers on Dev that can directly

read/write to any part of the memory independently of the CPU. It can induce interrupts to

pause any software execution and leak information from its stack, or change its control-flow.

We consider Denial-of-Service (DoS) attacks, whereby Adv abuses PfB functionality in order

to render Dev unavailable, to be out-of-scope. These are attacks on Dev availability and not

on sensed data privacy.

Executable Correctness: we stress that VERSA aims to guarantee that S, as specified by

Ctrl, is the only software that can access and process GPIO data. Similar to other trusted

hardware architectures, PfB does not check for lack of implementation bugs within S; thus

it is not concerned with run-time (e.g., control-flow and data-only) attacks. As a relatively

powerful and trusted entity Ctrl can use various well-known vulnerability detection methods,

e.g., fuzzing [85], static analysis [94], and even formal verification, to scrutinize S before

authorizing it.

Physical Attacks: physical and hardware-focused attacks are considered out of scope. We

assume that Adv cannot modify code in ROM, induce hardware faults, or retrieve Dev’s se-

crets via side-channels that require Adv’s physical presence. Protection against such attacks

can be obtained via standard physical security techniques [260]. This assumption is in line

with related work on trusted hardware architectures for embedded systems [252, 108, 195, 67].

56

3.5.3 PfB Game-based Definition

Definition 3.4 starts by introducing an auxiliary predicate atomicExec. It defines whether a

particular sequence of execution states (produced by the execution of some software S) ad-

heres to all necessary execution properties for Atomic Sensing Operation Execution discussed

in Section 3.3.

In atomicExec (in Definition 3.4.1), conditions 1-3 guarantee that a given S is executed

as a whole and no external instruction is executed between its first and last instructions.

Condition 4 assures that DMA is inactive during execution, hence protecting intermediate

variables in DMEM against DMA tampering. Additionally, malicious interrupts could be

leveraged to illegally change the control-flow of S during its execution. Therefore, condition

4 stipulates that both cases cause atomicExec to return ⊥.

PfB -Game in Definition 3.4.2 models Adv’s capabilities by allowing it to execute any se-

quence of (polynomially many) instructions. This models Adv’s full control over software

executed on the MCU, as well as its ability to use software to modify memory at will. It can

also call Verify any (polynomial) number of times in an attempt to gain an advantage (e.g.,

learn something) from Verify executions.

To win the game, Adv must succeed in executing some software that does not cause an MCU

reset, and either: (1) is unauthorized, yet reads from GPIO, or (2) is authorized, yet violates

atomicExec predicate conditions during its execution.

3.6 VERSA: Realizing PfB

VERSA runs in parallel with the MCU core and monitors a set of MCU signals: PC, Daddr,

Ren, Wen, DMAen, DMAaddr, and irq. It also monitors ERmin and ERmax, the boundary

57

Figure 3.4: VERSA Architecture

memory addresses of ER where S is stored; these are collectively referred to as “META-

DATA”. VERSA hardware module detects privacy violations in real-time, based on aforemen-

tioned signals and METADATA values, causing an immediate MCU reset. Figure 3.4 shows

the VERSA architecture. For quick reference, MCU signals and memory regions relevant to

VERSA are summarized in Table 3.1. To facilitate specification of VERSA properties, we

introduce the following two macros:

Read_Mem(i) ≡ (Ren ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)

Write_Mem(i) ≡ (Wen ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)

representing read/write from/to a particular memory address i by either CPU or DMA.

For reads/writes from/to some continuous memory region (composed of multiple addresses)

M = [Mmin,Mmax], we instead say Daddr ∈ M to denote that Daddr = i ∧(i ≥ Mmin)∧(i ≤

Mmax). The same holds for notation DMAaddr ∈ M.

58

Construction 1. VERSA instantiates a PfB = [Authorize,Verify,XSensing] scheme as follows:
– K is a symmetric key pre-shared between Ctrl and VRASED secure architecture in Dev;

1. AuthorizeCtrl(S): Ctrl produces an authorization message M := (S, Chal,ATok), where S is
a software, i.e., a sequence of instructions {i1, ..., in}, that Ctrl wants to execute on Dev;
Chal is a monotonically increasing challenge; and ATok := HMAC(KDF (Chal,K),S) is an
authentication token computed as below. Ctrl sends M to Dev. Upon receiving M, Dev is expected
to parse M, find the memory region for S, and execute Verify (see below).

2. VerifyDev(ER,ATok, Chal): calls VRASED functionality [108] on memory region ER :=
[ERmin, ERmax] to securely compute σ as below. If σ = ATok, output ⊤; O.w., output ⊥.

σ := HMAC(KDF (Chal,K), ER) (3.7)

3. XSensingDev(ER): starts execution of software in ER by jumping to ERmin (i.e., setting PC
= ERmin). A benign call to XSensing with input ER is expected to occur after one successful
computation of Verify for the same ER region and contents therein. Otherwise, VERSA hardware
support (see below) will cause the MCU to reset when GPIO is read. XSensing produces E :=
{s0, ..., sm}, the set of states produced by executing ER, and outputs ⊤ or ⊥ as follows:

XSensing(ER) =

󰀫
(E,⊤), if ∃s ∈ E such that (s ∈ READGPIO) ∧ (s /∈ RESET)

(E,⊥), otherwise
(3.8)

4. HardwareMonitor: At all times, VERSA verified hardware enforces all following LTL properties :

A – Read-Access Control to GPIO:
G : {(Read_Mem(GPIO) ∧ ¬(PC ∈ ER)) → reset} (3.9)

G : {[(PC = ERmax) ∨ reset] → (¬Read_Mem(GPIO) ∨ reset) W (PC = iAuth)} (3.10)
B – Ephemeral Immutability of ER and METADATA

G : {(PC = iAuth) ∧ (Write_Mem(ER) ∨Write_Mem(METADATA)) → reset} (3.11)

G : {((Write_Mem(ER) ∨Write_Mem(METADATA)

→ (¬Read_Mem(GPIO) ∨ reset) W (PC = iAuth))}
(3.12)

[Optional] G : {((Write_Mem(ER) ∨Write_Mem(METADATA)

→ (¬Read_Mem(eKR) ∨ reset) W (PC = iAuth))}
(3.13)

C – Atomicity and Controlled Invocation of ER:
G : {¬reset ∧ (PC ∈ ER) ∧ ¬X(PC ∈ ER) → (PC = ERmax) ∨ X(reset)} (3.14)

G : {¬reset ∧ ¬(PC ∈ ER) ∧ X(PC ∈ ER) → X(PC = ERmin) ∨ X(reset)} (3.15)

G : {(PC ∈ ER) ∧ (irq ∨DMAen) → reset} (3.16)

[Optional] Read/Write-Access Control to Encryption Key (Kenc) in eKR:

G : {(Read_Mem(eKR) ∧ ¬(PC ∈ ER)) → reset} (3.17)

G : {[(PC = ERmax) ∨ reset] → (¬Read_Mem(eKR) ∨ reset) W (PC = iAuth)} (3.18)

G : {[Write_Mem(eKR) ∧ ¬(PC ∈ V R)] → reset} (3.19)

Remark: [Optional] properties are needed only if support for encryption of outputs is desired.

Figure 3.5: Verified Remote Sensing Authorization (VERSA) Scheme

59

Table 3.1: Notation used in Chapter 3

Notation Description

PC Current program counter value
Ren 1-bit signal that indicates if MCU is reading from memory
Wen 1-bit signal that indicates if MCU is writing to memory
Daddr Memory address of an MCU memory access
DMAen 1-bit signal that indicates if DMA is active
DMAaddr Memory address being accessed by DMA, when active
irq 1-bit signal that indicates if an interrupt is happening
reset Signal that reboots the MCU when set to logic ‘1’
ER A configurable memory region where the sensing operation S is stored, ER =

[ERmin, ERmax]

METADATA Metadata memory region; contains ERmin and ERmax

ATok Fixed memory region from which Verify reads the authorization token when called
GPIO Memory region that is mapped to GPIO port
V R Memory region storing Verify code which instantiates VRASED software and its hardware

protection
iAuth A fixed address in ROM , only be reachable (i.e., PC = iAuth) by a successful Verify call

(i.e., Verify returns ⊤)
eKR (Optional) memory region for the encryption key Kenc necessary to encrypt the S output

(relevant to sensed data)

3.6.1 VERSA: Construction

Recall the key features of VERSA from Section 3.3. To guarantee Mandatory Sensing Op-

eration Authorization and Atomic Sensing Operation Execution, VERSA constructs PfB =

(Authorize,Verify,XSensing) algorithms as in Construction 1.

Authorize: To authorize S, Ctrl picks a monotonically increasing Chal and generates ATok :=

HMAC(KDF (Chal,K),S) (this follows VRASED authentication algorithm – see VERSA Verify

specification below). ATok is computed over S with a one-time key derived from K and Chal,

where K is the master secret key shared between Ctrl and Dev.

Verify: To securely verify that an executable S’, installed in ER, matches authorized S,

Dev invokes VRASED4 to compute σ := HMAC(KDF (Chal,K),S ′). Verify outputs ⊤, iff

σ = ATok. In this case, PC reaches a fixed address, called iAuth. Otherwise, it outputs ⊥.
4Dev and Ctrl act as Prv and V rf in VRASED respectively.

60

In the rest of this section, we use “authorized software" to refer to software located in ER, for

which Verify(ER, ATok) outputs ⊤. Whereas, “unauthorized software" refers to any software

for which Verify(ER, ATok) outputs ⊥.

XSensing: When XSensing (ER) is invoked, PC jumps to ERmin, and starts executing the

code in ER. It produces a set E of states by executing ER, and outputs ⊤, if there is at

least one state that reads GPIO without triggering an MCU reset. Otherwise, it outputs ⊥.

HardwareMonitor: VERSA HardwareMonitor is verified to enforce LTL specifications (3.9)–

(3.19) in Construction 1.

A – Read-Access Control to GPIO is jointly specified by LTLs (3.9) and (3.10). LTL

(3.9) states that GPIO can only be read during execution of ER (PC ∈ ER), requiring

an MCU reset otherwise. LTL (3.10) forbids all GPIO reads (even those within ER execu-

tion) before successful computation of Verify on ER binary using a valid ATok. Successful

Verify computation is captured by condition PC = iAuth. A new successful computation of

Verify(ER, ATok) is necessary whenever ER execution completes (PC = ERmax) or after

reset/boot. Hence, each legitimate ATok can be used to authorize ER execution once.

B – Ephemeral Immutability of ER and METADATA is specified by LTLs (3.11)-

(3.13). From the time when ER binary is authorized until it starts executing, no modifi-

cations to ER or METADATA are allowed. LTL (3.11) specifies that no such modification

is allowed at the moment when verification succeeds (PC = iAuth); LTL (3.12) requires

ER to be re-authorized from scratch if ER or METADATA are ever modified. Whenever

these modifications are detected (Write_Mem(ER)∨Write_Mem(METADATA)) further

reads to GPIO are immediately blocked (¬Read_Mem(GPIO) ∨ reset) until subsequent

re-authorization of ER is completed (... W (PC = iAuth)). LTL (3.13) specifies the same

requirement in order to read VERSA-provided encryption key (Kenc) which is stored in mem-

ory region eKR. This property is only required when support for encryption of outputs is

61

desired.

C – Atomicity & Controlled Invocation of ER are enforced by LTLs (3.14), (3.15),

and (3.16). They specify that ER execution must start at ERmin and end at ERmax.

Specifically, they use the relation between current and next PC values. The only legal PC

transition from currently outside of ER to next inside ER is via PC = ERmin. Similarly, the

only legal PC transition from currently inside ER to next outside ER is via PC = ERmax.

All other cases trigger an MCU reset. In addition, LTL (3.16) requires an MCU reset

whenever interrupts or DMA activity is detected during ER execution. This is done by

simply checking irq and DMAen signals.

We note that XSensing relies on the HardwareMonitor to reset the MCU when violations to

ER atomic execution are detected. Upon reset all data is erased from memory. However,

when execution of S completes successfully VERSA does not trigger resets. In this case, S is

responsible for erasing its own stack before completion (reaching of ER its last instruction).

We discuss how this self-clean-up routine can be implemented as a part of S behavior in

Section 3.9.

3.6.2 Encryption & Integrity of ER Output

As mentioned in Section 3.3, after reading and processing GPIO inputs, S might need to

encrypt and send the result to Ctrl. VERSA supports encryption of this output, regardless

of the underlying encryption scheme. For that purpose, Verify implementation derives a

fresh one-time encryption key (Kenc) from K and Chal. To assure confidentiality of Kenc, the

following properties are required for the memory region (eKR) reserved to store Kenc:

1. eKR is writable only by Verify (i.e., PC ∈ V R); and

2. eKR is readable only by ER after authorization.

62

LTLs (3.17)-(3.19) and (3.13) specify the confidentiality requirements of Kenc. In sum,

these properties establish the same read access-control policy for eKR and GPIO regions.

Therefore, only authorized S is able to retrieve Kenc.

3.7 Verified Implementation & Security Analysis

3.7.1 Sub-module Implementation & Verification

VERSA sub-modules are represented as FSMs and individually verified to hold for LTL

properties from Construction 1. They are implemented in Verilog HDL as Mealy machines,

i.e., their output is determined by both their current state and current inputs. Each FSM

has a single output: a local reset. VERSA global output reset is given by the disjunction

(logic OR) of all local reset-s. For simplicity, instead of explicitly representing the output

reset value for each state, we use the following convention:

1. reset is 1 whenever an FSM transitions to RESET state;

2. reset remains 1 while on RESET state;

3. reset is 0 otherwise.

Note that all FSMs remain in RESET state until PC = 0 which indicates that the MCU

reset routine finished.

Fig. 3.6 illustrates the VERSA sub-module that implements read-access control to GPIO

and eKR (when applicable). It guarantees that such reads are only possible when they

emanate from execution of authorized software S contained in ER. It also assures that no

modifications to ER or METADATA occur between authorization of S and its subsequent

execution. The Verilog implementation of this FSM is formally verified to adhere to LTLs

(3.9)-(3.13) and (3.17)-(3.18). It has 3 states: (1) rLOCK, when reads to GPIO (and

63

Figure 3.6: Verified FSM for GPIO and eKR Read-Access Control (LTL (3.9)-(3.13) & LTL
(3.17)-(3.18))

Figure 3.7: Verified FSM for eKR Write-Access Control (LTL (3.19))

possibly eKR) are disallowed; (2) rUNLOCK, when such reads are allowed to ER; and (3)

RESET . The initial state (after reset or boot) is RESET , and it switches to rLOCK state

when PC = 0. It switches to rUNLOCK when PC = iAuth (with no reads to GPIO and

eKR), indicating that Verify was successful. Note that rUNLOCK transitions to RESET

when reads are attempted from outside ER, thus preventing reads by any unauthorized

software. Once PC reaches ERmax, indicating that ER execution has finished, the FSM

transitions back to rLOCK. Also, any attempted modifications to METADATA or ER in

rUNLOCK state bring the FSM back to rLOCK. Note that rUNLOCK is only reachable

after authorization of ER, i.e., PC = iAuth.

The FSM in Figure 3.7 enforces LTL (3.19) to protect eKR from external writes. It has two

64

Figure 3.8: ER Atomicity and Controlled Invocation FSM (LTL (3.14)-(3.16))

states: (1) wUNLOCK, when writes to eKR are allowed; and (2) RESET . At boot/after

reset (PC = 0), this FSM transitions from RESET to wUNLOCK. It transitions back to

RESET state whenever writes to eKR are attempted, unless these writes come from Verify

execution (PC ∈ V R).

Figure 3.8 shows the FSM verified to enforce ER atomicity and controlled invocation: LTLs

(3.14)-(3.16). It has five states; notER and midER correspond to PC being outside and

within ER (not including ERmin and ERmax), respectively. firstER and lastER are states

in which PC points to ERmin and ERmax, respectively. The only path from notER to

midER is via firstER. Likewise, the only path from midER to notER is via lastER. The

FSM transitions to RESET whenever PC transitions do not follow aforementioned paths.

It also transitions to RESET (from any state other than notER) if irq or DMAen signals

are set.

65

3.7.2 Sub-module Composition and VERSA End-To-End Security

To demonstrate security of VERSA according to Definition 3.4, our strategy is two-pronged:

A) We show that LTL properties from Construction 1 are sufficient to imply that GPIO

(and eKR) is only readable by S and any XSensing operation that returns ⊤ (i.e.,

performs sensing) is executed atomically. The former is formally specified in Defini-

tion 3.6, and the latter in Definition 3.5. For this part, we write an LTL computer

proof using SPOT LTL proof assistant [131].

B) We use a cryptographic reduction to show that, as long as item A holds, VRASED

security can be reduced to VERSA security according to Definition 3.4.

Definition 3.5. Atomic Sensing Operation Execution:

G{ (PC ∈ ER) → [(PC ∈ ER) ∧ ¬irq ∧ ¬DMAen] W [(PC = ERmax) ∨ reset] }
∧ G{ ¬reset ∧ ¬(PC ∈ ER) ∧ X(PC ∈ ER) → X(PC = ERmin) ∨ X(reset) }

Definition 3.6. Mandatory Sensing Operation Authorization:

G{ (Read_Mem(GPIO) ∧ ¬reset) → (PC ∈ ER) } ∧
󰁱
(PC = iAuth) ∧

󰀋
(PC = iAuth) →

[¬Write_Mem(ER) ∧ ¬Write_Mem(METADATA) ∧ (Write_Mem(eKR) → (PC ∈ V R))] U (PC = ERmin)
󰀌

󰁲
B

󰀋
Read_Mem(GPIO) ∧ ¬reset

󰀌

The intuition for this strategy is that, to win PfB -game in Definition 3.4, Adv must either

break the atomicity of XSensing (which is in direct conflict with Definition 3.5) or execute

XSensing with unauthorized software and read GPIO without causing an MCU reset. Defini-

tion 3.6 guarantees that the latter is not possible without a prior successful call to Verify. On

the other hand, Verify is implemented using VRASED verified architecture, which guarantees

the unforgeability of ATok. Hence, breaking VERSA requires either violating VERSA verified

guarantees or breaking VRASED verified guarantees, which should be infeasible to any PPT

Adv. To this end, we derive the following theorems showing the security of VERSA.

For the rest of this section, we first describe VERSA end-to-end implementation goals cap-

66

Theorem 3.1. Definition 3.2 ∧ LTL 3.14, 3.15, 3.16 → Definition 3.5

Theorem 3.2. Definition 3.2 ∧ LTL 3.9, 3.10, 3.11, 3.12, 3.15, 3.19 → Definition 3.6

Theorem 3.3. VERSA is secure according to the PfB-game in Definition 3.4, as long as VRASED is
a secure RA architecture according to VRASED security game from [108].

tured by LTLs in Definitions 3.5 and 3.6 as well as their relation to VERSA high-level features

discussed in Section 3.3. Then, we prove the Theorems 3.1, 3.2, and 3.3 according to this

proof strategy.

[Definition 3.5] states that it globally (always) holds that ER is atomically executed

with controlled invocation. That is, whenever an instruction in ER executes (PC ∈ ER),

it keeps executing instructions within ER (PC ∈ ER), with no interrupts and no DMA

enabled, until PC reaches the last instruction in ERmax or an MCU reset occurs. Also,

if an instruction in ER starts to execute, it always begins with the first instruction in

ERmin. This formally specifies the Atomic Sensing Operation Execution feature discussed in

Section 3.3.

[Definition 3.6] globally requires that whenever GPIO is successfully read (i.e., without a

reset), this read must come from the CPU while ER is being executed. In addition, before

this read operation, the following must have happened at least once:

(1) Verify succeeded (i.e., PC = iAuth);

(2) From the time when PC = iAuth until ER starts executing (i.e., PC = ERmin), no

modification to ER and METADATA occurred; and

(3) If there was any write to eKR from the time when PC = iAuth, until PC = ERmin, it

must have been from Verify, i.e., while PC ∈ V R.

This formally specifies the intended behavior of the Mandatory Sensing Operation Autho-

rization feature, discussed in Section 3.3.

67

Now, we show that VERSA is a secure PfB architecture according to Definition 3.4, as long

as (a) the sub-properties in Construction 1 hold (Theorem 3.1, 3.2) and (b) VRASED is a

secure remote attestation (RA) architecture according to the VRASED security definition

in [108] (Theorem 3.3). Informally, part (a) shows that if the machine model and all LTLs

in Construction 1 hold, then the end-to-end goals for secure PfB architecture are met,

while this does not include the goal of prevention of forging authorization tokens. Part

(b) handles the latter using a cryptographic reduction, i.e., it shows that an adversary

able to forge the authorization token (with more than negligible probability) can also break

VRASED according to the RA-game, which is a contradiction assuming the security of

VRASED. Therefore, Theorems 3.1-3.3 prove that VERSA is a secure PfB architecture as

long as VRASED is a secure RA architecture.

For part (a), computer-checked LTL proofs are performed using SPOT LTL proof assis-

tant [131]. These proofs are available at [25]. We present the intuition behind them below.

Proof of Theorem 3.1 (Intuition). LTL (3.15) states the legal entry instruction requirement,

while LTL (3.14) states the legal exit instruction requirement in atomicExec. Also, since LTL

(3.14) states that ERmax is the only possible exit of the ER without a reset, it implies self-

contained execution of ER. Lastly, LTL (3.16) enforces MCU reset if any interrupt or DMA

occurs, which naturally prevents interrupts and DMA actions, as required by atomicExec.

These imply the LTL in Definition 3.5 which stipulates that execution of ER must start with

ERmin and stays within ER with no interrupts nor DMA actions, until PC reaches ERmax

(causing a reset otherwise).

Proof of Theorem 3.2 (Intuition). Definition 3.6 (i) requires at least one successful verifi-

cation of ER before GPIO can be read successfully (without triggering a reset); and (ii)

disallows modifications to ER, METADATA, and Kenc (other than by V R) in between

ER verification subsequent ER execution. LTLs (3.9) and (3.10) state that PC must be

within ER to read GPIO and disallow GPIO reads by default (including when MCU reset

68

occurs) and after the execution of ER is over (PC = ERmax). Also, LTL (3.10) requires

(re-)authorization (PC = iAuth) of ER after the execution of ER is over (PC = ERmax).

LTL (3.12) disallows GPIO reads until the (re-)verification whenever ER or METADATA

are written. LTL (3.11) disallows changes to ER and METADATA at the exact time when

verification succeeds. LTL (3.15) guarantees that the execution of ER starts with ERmin

and LTL (3.19) guarantees that only the V R code can modify the value in eKR. Thus, these

are sufficient imply Definition 3.6.

For part (b), we construct a reduction from the security game of VRASED in [108] to

the security game of VERSA according to the Definition 3.4. i.e., The ability to break the

PfB -game of VERSA allows to break the RA-game of VRASED, and therefore, as long as

VRASED is a secure RA architecture according to the RA-game, VERSA is secure according

to the PfB -game.

Proof of Theorem 3.3. Denote by AdvPfB, an adversary who can win the security game in

Definition 3.4 against VERSA with more than negligible probability. We show that if such

AdvPfB exists, then it can be used to construct AdvRA that wins the RA-game with more

than negligible probability.

Recall that, to win the PfB -game, AdvPfB must trigger ⊤ as a result of XSensing, which means

it reads the sensed data without MCU reset. From the PfB -game step 4 in Definition 3.4, it

can be done in either of the following two ways:

Case1. AdvPfB executes a new, unauthorized software SAdv causing XSensing(SAdv) → ⊤;

or

Case2. AdvPfB breaks the atomic execution of an authorized, but not yet executed software,

Sj, so that it causes XSensing(Sj) → (E,⊤) such that atomicExec(E,Sj) ≡⊥.

Recall that for the instruction set Ij of Sj and a set Ej of execution states , to have

atomicExec(Ij, Ej) ≡⊥, at least one of four requirements in Definition 3.4.1 must be false.

69

Note that the atomic sensing operation execution goal in Definition 3.5 rules out the prob-

ability of Case2. Specifically, LTL (3.15) enforces 1), while 2) and 3) are guaranteed by

LTL (3.14). Lastly, 4) is covered by LTL (3.16).

For Case1, i.e., to trigger ⊤ by running XSensing, AdvPfB needs to read GPIO without

causing an MCU reset. Recall that the Mandatory Sensing Operation Authorization in

Definition 3.6 requires Verify (with input executable in ER) to succeed at least once before

reading GPIO. According to VERSA construction, AdvPfB causes Verify(ER, ATok∗, Chal∗) to

output ⊤, where ER contains SAdv which is an unauthorized software, ATok∗ is a valid issued

(but never used) token, and Chal∗ is its corresponding challenge. Since Verify function is

implemented using VRASED to compute HMAC of Chal and ER, such AdvPfB can be directly

used as AdvRA to win the RA-game of VRASED. Thus, assuming secure RA architecture

VRASED, this is a contradiction, which implies the security of VERSA according to the

PfB -game.

3.8 Evaluation

In this section, we discuss VERSA implementation details and evaluation. VERSA source

code and verification/proofs are publicly available at [25].

3.8.1 Toolchain & Prototype Details

VERSA is built atop OpenMSP430 [151]: an open source implementation of TI-MSP430

[179]. We use Xilinx Vivado to synthesize an RTL description of HardwareMonitor and

deploy it on Diligent Basys3 prototyping board for Artix7 FPGA. For the software part

(mostly to implement Verify), VERSA extends VRASED software (which computes HMAC

over Dev memory) to include a comparison with the received ATok (See Section 3.8.3 for

70

extension details). We use the NuSMV model checker to formally verify that HardwareMonitor

implementation adheres to LTL specifications (3.9)-(3.19). See Section 3.8.4 for details on

the verification setup and costs.

3.8.2 Hardware Overhead

Table 3.2 reports on VERSA hardware overhead, as compared to unmodified OpenMSP430

and VRASED. Similar to other schemes [108, 110, 238, 252], we consider hardware overhead

in terms of additional Look-Up Tables (LUTs) and registers. Extra hardware in terms of

LUTs gives an estimate of additional chip cost and size required for combinatorial logic,

while extra hardware in terms of registers gives an estimate of memory overhead required by

sequential logic in VERSA FSMs. Compared to VRASED, VERSA requires 10% additional

LUTs and 2% additional registers. In actual numbers, it adds 255 LUTs and 50 registers to

the underlying MCU as shown in Table 3.2.

Table 3.2: Hardware Overhead and Verification cost

Architecture Hardware Reserved Verification
LUTs Regs RAM (bytes) LoC #(LTLs) Time (s) RAM (MB)

OpenMSP430 1854 692 0 - - - -
VRASED 1891 724 2332 481 10 0.4 13.6
VERSA + VRASED 2109 742 2336 1118 21 13956.4 1059.1

3.8.3 Runtime Overhead

VERSA requires any software piece seeking to access GPIO (and Kenc) to be verified. Con-

sequently, runtime overhead is due to Verify computation which instantiates VRASED. This

runtime includes: (1) time to compute σ from equation 3.7; (2) time to check if σ = ATok;

and (3) time to write Kenc to eKR, when applicable. Naturally the runtime overhead is

dominated by the computation in (1) which is proportional to the size of ER.

71

(a) Additional HW overhead (%) in the number
of Look-Up Tables

(b) Additional HW overhead (%) in the number
of Registers

Figure 3.9: Hardware overhead comparisons with other low-end security architectures.

Figure 3.10: Runtime overhead of VERSA due to Verify

72

We measure Verify cost on three sample applications: (1) Simple Application, which reads

32-bytes of GPIO input and encrypts it using One-Time-Pad (OTP) with Kenc; (2) Motion

Sensor – available at [7] – which continuously reads GPIO input to detect movements and

actuates a light source when movement is detected; and (3) Temperature Sensor – adapted

code from [14] to support encryption of its outputs – which reads ambient temperature via

GPIO and encrypts this reading using OTP. We prototype using OTP for encryption for the

sake of simplicity noting that VERSA does not mandate a particular encryption scheme. All

of these sample applications also include a self-clean-up code executed immediately before

reaching their exit point to erase their stack traces once their execution is over.

Figure 3.10 shows Verify runtimes on these applications. Assuming a clock frequency of

10MHz (a common frequency for low-end MCUs), Verify runtime ranges from 100 − 200

milliseconds for these applications. The overhead is linear on the binary size.

3.8.4 Verification Cost

Formal verification costs are reported in Table 3.2. We use a Ubuntu 18.04 desktop machine

running at 3.4GHz with 32GB of RAM for formal verification. Our verification pipeline

converts Verilog HDL to SMV specification language and then verifies it against the LTL

properties listed in Construction 1 using the NuSMV model checker (per Section 3.2). VERSA

verification requires checking 11 extra invariants – LTLs (3.9) to (3.19) – in addition to

VRASED LTL invariants. It also incurs higher run-time and memory usage than VRASED

verification. This is due to two additional 16-bit hardware signals (ERmin, ERmax) which

increase the space of possible input combinations and thus the complexity of model checking

process. However, verification is still manageable in a commodity desktop – it takes around

5 minutes and consumes 340MB of memory.

73

3.8.5 Comparison with Other Low-End Architectures:

To the best of our knowledge, VERSA is the first architecture related to PfB . However,

to provide a point of reference in terms of performance and overhead, we compare VERSA

with other low-end trusted hardware architectures, such as SMART [252], VRASED [108],

APEX [110], and SANCUS [238]. All these architectures provide RA-related services to

attest integrity of software on Dev either statically or at runtime. Since PfB also checks

software integrity before granting access to GPIO, we consider these architectures to be

related to VERSA.

Figure 3.9 compares VERSA hardware overhead with the aforementioned architectures in

terms of additional LUTs and registers. Percentages are relative to the plain MSP430 core

total cost.

VERSA builds on top of VRASED. As such, it is naturally more expensive than hybrid RA

architectures such as SMART and VRASED. Similar to VERSA, APEX also monitors exe-

cution properties and also builds on top of RA (in APEX case, with the goal of producing

proofs of remote software execution). Therefore, VERSA and APEX exhibit similar over-

heads. SANCUS presents a higher cost because it implements RA and isolation features in

hardware.

3.9 Discussion & Limitation

3.9.1 Clean-up after Program Termination

While VERSA guarantees the confidentiality of sensing operations, it requires the authorized

executable S to erase its own stack/heap before its termination. This ensures that unautho-

74

rized software can not extract and leak sensitive information from S execution and allocated

data. Erasure in this case can be achieved via a single call to libc’s memset function with

start address matching the base of S stack and size equal to the maximum size reached by

S execution.

The maximum stack size can be determined manually by counting the allocated local vari-

ables in small and simple S implementations. To automatically determine this size in more

complex S implementations, all functions called within S must update the highest point

reached by their respective stacks. Figure 3.11 shows a sample application that reads 32 bytes

of sensor data, encrypts this data using VERSA one-time key Kenc, and cleans-up the stack

thereafter. Line 12 is S entry point (ERmin). S first saves the stack pointer to STACK_MIN

address. Then, the application function is called, in line 17. application implements

S intended behavior. After the application is done, the clean up code (lines 51-53) is

called with STACK_MIN as the start pointer and size of 32 + 4 bytes (32 bytes for data

variable (in line 39) and 4 bytes for stack metadata).

3.9.2 Data Erasure on Reset/Boot

Violations to VERSA properties trigger an MCU reset. A reset immediately stops execution

and prepares the MCU core to reboot by clearing all registers and pointing the program

counter (PC) to the first instruction of PMEM. However, some MCUs may not guarantee

erasure of DMEM as a part of this process. Therefore, traces of data allocated by S (including

sensor data) could persist across resets.

In MCUs that do not offer DMEM erasure on reset, a software-base Data Erasure (DE) can

be implemented and invoked it as soon as the MCU starts, i.e., as a part of the bootloader

code. In particular, DE can be implemented using memset (similar to lines 51-53) with

constant arguments matching the entirety of the MCU’s DMEM.DE should be immutable

75

Figure 3.11: Sample sensing operation that reads GPIO input, encrypts it, and cleans up its
stack after execution.

76

(e.g., stored in ROM) which is often the case for bootloader binaries. Upon reset, PC must

always point to the first instruction of DE. The normal MCU start-up proceeds normally

after DE execution is completed.

3.9.3 VERSA Limitations

Shared Libraries

to verify S, Ctrl must ensure that S spans one contiguous memory region (ER) on Dev. If

any code dependencies exist outside of ER, VERSA will reset the MCU according to LTL

(3.16). To preclude this situation, S must be made self-contained by statically linking all of

its dependencies within ER.

Atomic Execution & Interrupts

per Definition 3.4, VERSA forbids interrupts during execution of XSensing. This can be

problematic, especially on a Dev with strict real-time constraints. In this case, Dev must

be reset in order to allow servicing the interrupt after DMEM erasure. This can cause a

delay that could be harmful to real-time settings. Trade-offs between privacy and real-time

constraints should be carefully considered when using VERSA. One possibility to remedy this

issue is to allow interrupts as long as all interrupt handlers are: (1) themselves immutable

and uninterruptible from the start of XSensing until its end; and (2) included in ER memory

range and are thus checked by Verify.

77

Possible Side-channel Attacks

MSP430 and similar MCU-s allow configuring some GPIO ports to trigger interrupts. If one

of such ports is used for triggering an interrupt, Adv could possibly look at the state of Dev

and learn information about GPIO data. For example, suppose that a button press mapped

to a GPIO port triggers execution of a program that sends some fixed number of packets over

the network. Then, Adv can learn that the GPIO port was activated by observing network

traffic. To prevent such attacks, privacy-sensitive quantities should always be physically

connected to GPIO ports that are not interrupt sources (these are usually the vast majority

of available GPIO ports). Other popular timing attacks related to cache side-channels and

speculative execution, are not applicable to this class of devices, as these features are not

present in low-end MCUs.

Flash Wear-Out

VERSA implements Verify using VRASED. As discussed in Section 3.2.3, the authentication

protocol suggested by VRASED requires persistent storage of the highest value of a monoton-

ically increasing challenge/counter in flash. We note that flash memory has a limited number

of write cycles (typically at least 10,000 cycles [23, 18]). Hence, a large number of successive

counter updates may wear-out flash causing malfunction. In VRASED authentication, the

persistent counter stored in flash is only updated following successful authentication of Ctrl.

Therefore, only legitimate requests from Ctrl cause these flash writes, limiting the capability

of an attacker to exploit this issue. Nonetheless, if the number of expected legitimate calls

to Verify is high, one must select the persistent storage type or (alternatively) use different

flash blocks once a given flash block storing the counter reaches its write cycles’ limit. For

a more comprehensive discussion of this matter, see [37].

78

VERSA Alternative Use-Case:

VERSA can be viewed as a general technique to control access to memory regions based on

software authorization tokens. We apply this framework to GPIO in low-end MCUs. Other

use-cases are possible. For example, a VERSA-like architecture could be used to mark a

secure storage region and grant access only to explicitly authorized software. This could

be useful if Dev runs multiple (mutually distrusted) applications and data must be securely

shared between subsets thereof.

3.10 Related Work

There is a considerable body of work (overviewed in Section 3.1) on IoT/CPS privacy. How-

ever, to the best of our knowledge, this paper is the first effort specifically targeting PfB ,

i.e., sensor data privacy on potentially compromised MCUs. Nonetheless, prior work has

proposed trusted hardware/software co-designs – such as VERSA – offering other security

services. We overview them in this section.

Trusted components, commonly referred to as Roots of Trust (RoTs), are categorized as

software-based, hardware-based, or hybrid (i.e., based on hardware/software co-designs).

Their usual purpose is to verify software integrity on a given device. Software-based RoTs [190,

274, 273, 272, 148, 209, 152] usually do not rely on any hardware modifications. However,

they are insecure against compromises to the entire software state of a device (e.g., in cases

where Adv can physically re-program Dev). In addition, their inability to securely store

cryptographic secrets imposes reliance on strong assumptions about precise timing and con-

stant communication delays to enable device authentication. These assumptions can be

unrealistic in the IoT ecosystem. Nonetheless, software-based RoTs are the only viable

choice for legacy devices that have no security-relevant hardware support. Hardware-based

79

methods [247, 290, 199, 267, 226, 225, 238] rely on security provided by dedicated hardware

components (e.g., TPM [290] or ARM TrustZone [38]). However, the cost of such hardware is

normally prohibitive for low-end MCUs. Hybrid RoTs [252, 110, 108, 67, 195] aim to achieve

security equivalent to hardware-based mechanisms, yet with lower hardware costs. They

leverage minimal hardware support while relying on software to reduce additional hardware

complexity.

Other architectures, such as SANCTUM [93] and Notary [43], provide strong memory iso-

lation and peripheral isolation guarantees, respectively. These guarantees are achieved via

hardware support or external hardware agents. They are also hybrid architectures where

trusted hardware works in tandem with trusted software. However, we note that such

schemes are designed for application computers that support MMUs and are therefore un-

suitable for simple MCUs.

In terms of functionality, such embedded RoTs focus on integrity. Upon receiving a request

from an external trusted Verifier, they can generate unforgeable proofs for the state of the

MCU or that certain actions were performed by the MCU. Security services implemented by

them include: (1) memory integrity verification, i.e., remote attestation [252, 238, 108, 32,

67, 195]; (2) verification of runtime properties, including control-flow and data-flow attesta-

tion [110, 120, 26, 121, 304, 284, 116, 115, 149]; and (3) proofs of remote software updates,

memory erasure, and system-wide resets [109, 31, 39]. As briefly mentioned in Section 3.1,

due to their reactive nature, they can be used to detect whether Dev has been compromised

after the fact, but cannot prevent the compromised entity from exfiltrating private sensor

data. VERSA, on the other hand, enforces mandatory authorization before any sensor data

access and thus prevents leakage even when a compromise has already happened.

Formalization and formal verification of RoTs for MCUs have gained attention due to the

benefits discussed in Sections 3.1 and 3.2. VRASED [108] implemented a verified hybrid RA

scheme. APEX [110] built atop VRASED to implement and formally verify an architecture

80

for proofs of remote execution of attested software. PURE [109] implemented provably se-

cure services for software update, memory erasure, and system-wide reset. Another recent

result [70] formalized and proved the security of a hardware-assisted mechanism to prevent

leakage of secrets through timing side-channels due to MCU interrupts. Inline with the afore-

mentioned work, VERSA also formalizes its assumptions along with its goals and implements

the first formally verified design assuring PfB .

3.11 Summary

We formulated the notion of Privacy-from-Birth (PfB) and proposed VERSA: a formally

verified architecture realizing PfB . VERSA ensures that only duly authorized software can

access sensed data even if the entire software state of the sensor is compromised. To at-

tain this, VERSA enhances the underlying MCU with a small hardware monitor, which is

shown sufficient to achieve PfB . The experimental evaluation of VERSA publicly available

prototype [25] demonstrates its affordability on a typical low-end IoT MCU: TI MSP430.

81

Chapter 4

Element Distinctness and Bounded

Input Size in Private Set Intersection

and Related Protocols

This chapter shows when the lack of input correctness matters in MPC (see Chapter 5 for

the details), with a special case, PSI, with input size limits. It suggests how to prove benign

inputs to obtain the result, without revealing them to the other party. This motivates

checking the input validity as a security guarantee in MPC with input conditions.

4.1 Introduction

Private Set Intersection (PSI) is a special case of secure multi-party computation (MPC) that

computes the intersection of the private input sets, without revealing any information about

the set elements outside the intersection. It attracted a lot of attention from various privacy-

preserving applications, such as contact tracing [130, 286], online targeted advertising [181],

82

genomic testing [197], botnet detection [233], TV program history matching [187], private

contact discovery [118, 160], and private matchmaking [309].

Due to its functionalities applicable to numerous real-world applications, there has been a

long line of work in PSI and its variants (details in Section 4.2), starting from the earliest

forms in 1980s [228, 277]. While most PSI protocols reveal the input sizes as part of the

protocol, Ateniese et. al. [42] constructed the first PSI variant – Size-Hiding PSI (SH-PSI)

– that allows one party (Client) to learn the intersection while keeping its input set size

private against the other party (Server). Building upon this size-hiding property, Bradley

et. al. [66] and Cerulli et. al. [80] suggested upper-bounding Client’s input set size to prevent

it from learning too much information about Server’s input set.

This work started from a related question: lower-bounding Client’s input set size while

keeping it private. Suppose that Server requires Client to have at least l elements in its

input set to run the PSI protocol with Server’s set. This requirement might be useful in social

network settings, such as Facebook and LinkedIn, where a popular/prominent user would

agree to connect to another user only if the latter has at least l genuine friends/followers to

e.g., block the stalkers who keep creating bogus accounts and requesting to connect.

If we relax the size-hiding property, it seemed straightforward to lower-bound Client input

size: Server simply checks whether the Client set size (revealed as part of the PSI interac-

tion) is ≥ l, and if not, aborts the protocol. However, this only works if Client is honest. A

dishonest Client can bypass this requirement by (1) generating and using fake set elements,

and/or (2) duplicating its genuine set elements. Then, since PSI protocols typically obfus-

cate (often by blinding) Client set elements, Server cannot distinguish between the genuine

and fake input elements.

One intuitive way to mitigate this misbehavior is via auditing: a trusted third party (TTP)

regularly verifies the Client input by examining the transcripts of PSI protocol and looking

83

for duplicate or spurious elements. However, this would be too late since the dishonest

Client already obtained the intersection.

To deal with the type-(1) misbehavior, so-called Authorized PSI (APSI) techniques [105,

106, 299] have been proposed. This is achieved with an offline TTP that pre-authorizes

Client input by signing each element. Later, during PSI interaction, Server (implicitly or

explicitly) verifies these signatures without learning Client input. This way, Client cannot

obtain signatures of spurious elements, and thus, cannot learn the intersection using fake

elements. However, APSI protocols cannot cope with the type-(2) misbehavior, i.e., Client

can still bypass the requirement by using duplicated (TTP-authorized) signed elements. This

prompts a natural question:

Can Client prove that each of its private input elements is not duplicated,

i.e., all input elements are distinct while keeping them private?

To answer this question, we first investigate if current PSI protocols can detect duplicates (see

Section 4.2.4). A few prior results [59, 192] proposed Private Multiset1 Intersection (PMI)

protocols which allow multiset inputs. However, we note that their goal is different because

it outputs the intersection multiset, not the intersection set, which yields more information

than PSI, e.g., the number of occurrences (i.e., multiplicities) of common elements.

Then we show how to prove element distinctness in two-party settings, whereby one party

convinces the other that its input elements are all distinct, without revealing any information

about them. We use the term element distinctness (a.k.a. element uniqueness) problem from

the computational complexity theory: given n numbers x1, ..., xn, return “Yes” if all xi’s are

distinct, and “No” otherwise. To the best of our knowledge, there is no prior work in the

two-party settings where one party proves element distinctness of its private input to the

other party. We call this Proofs of Element-Distinctness (PoED).
1Recall that a multiset allows duplicate elements, while a set does not.

84

We propose a concrete PoED construction by generalizing the two billiard balls problem,

which can be an independent interest. Using this PoED construction as a building block,

we propose a new PSI variant, called All-Distinct Private Set Intersection (AD-PSI), and

its construction. Informally speaking, AD-PSI allows Client to learn the intersection only

if all of its input elements are distinct. It additionally guarantees that Client learns no

information, not even Server input size, if it uses any duplicates as input.

Then, we extend AD-PSI to three PSI variants where using duplicates can be more problem-

atic: (1) AD-PSI-Cardinality (AD-PSI-CA) that outputs the cardinality of the intersection;

(2) Existential AD-PSI (AD-PSI-X) that outputs whether the intersection is non-empty;

and (3) AD-PSI with Data Transfer (AD-PSI-DT) that transfers associated data along with

the intersection; only when Client inputs all distinct elements. Finally, we construct a

Bounded-Size-Hiding-PSI (B-SH-PSI) protocol with both upper and lower bound on Client

input, combining our AD-PSI with prior work on upper-bounded size-hiding PSI (U-SH-

PSI) [66, 80]. This also shows the applicability of PoED and AD-PSI.

Note that the protocols above work where Client cannot generate fake elements, and to

expand Client’s capabilities to both type-(1) and type-(2) misbehavior, including a TTP

is unavoidable. To fill this gap, we lastly present an All-Distinct Authorized PSI (AD-

APSI) protocol that prevents both duplicate and spurious elements by ensuring the validity

of Client input. We specify desired security properties for AD-APSI and prove that the

proposed protocol satisfies them.

To summarize, the contributions of this work are:

• A PoED protocol with security analysis;

• Definition of AD-PSI and concrete construction with security proofs;

• Three AD-PSI variants: AD-PSI-CA, AD-PSI-X, AD-PSI-DT;

• Extension of U-SH-PSI to B-SH-PSI with both upper and lower bounds on Client

85

input set size; and

• Definition of AD-APSI and concrete construction with security proofs;

Organization: After overviewing related work and preliminaries in Section 4.2, Section 4.3

presents a PoED construction and its analysis. Then, Section 4.4 provides the definition and

a construction of secure AD-PSI protocol, followed by the variants in Section 4.5. Section 4.6

shows a B-SH-PSI construction atop U-SH-PSI, and Section 4.7 presents an AD-APSI pro-

tocol and its security proofs.

4.2 Related Work & Background

4.2.1 Private Set Intersection

PSI in two-party computation is an interaction between Client and Server that computes

the intersection of their private input sets. A long line of work on PSI can be classified

according to the underlying cryptographic techniques: (1) Diffie-Hellman key agreement [66,

105, 174, 228, 277]; (2) RSA [104, 106, 107]; (3) cryptographic accumulators [42, 106]; (4)

oblivious transfer (or oblivious pseudorandom function) [82, 164, 167, 184, 196, 237, 249,

256, 251, 253, 254, 255, 261]; (5) Bloom filter [117, 129, 250, 255]; (6) oblivious polynomial

evaluation [97, 144, 146, 165, 192]; and (7) generic multiparty computation [129, 173, 255,

88, 219]. This work considers the one-sided PSI where Client learns the result. Most efficient

protocols incur O(n) computation/communication costs, where n is the input set size.

4.2.2 PSI Variants

Some PSI variants reveal less information than the actual intersection. For example, PSI-

CA [104, 117, 130, 266, 292] outputs only the cardinality of the intersection, and PSI-

86

X [77] outputs a one-bit value reflecting whether the intersection is non-empty. On the

other hand, some reveal more information, such as associated data for each intersecting

element [106, 308] or additional private computation results (e.g., sum or average) along with

the intersection [181, 229, 202, 219]. The latter is more interesting because of their realistic

applications, such as statistical analysis for, e.g., advertisement conversion rate [181], of

intersecting data.

4.2.3 PSI with Restrictions

Certain PSI variants place conditions for Client to obtain the result. For example, threshold

PSI (t-PSI) reveals the intersection only if the cardinality of the intersection meets a Server-

set threshold value [146, 150, 162, 254, 308, 309], and its variants, such as t-PSI-CA or t-

PSI-DT (also called, threshold secret transfer) [308], reveals the intersection or additional

data only when the threshold restriction is met or reveals only the cardinality, otherwise.

Zhao and Chow [308] extend this to PSI with a generic access structure so that Client can

learn the result only when the intersection satisfies a certain structure. Also, they build the

below/over t-PSI [309] such that Client can reconstruct the secret key used by Server only

when the threshold condition is met, which inspires some steps in our protocols.

On the other hand, Bradley et. al. [66] first suggest the Bounded-Size-Hiding-PSI which

restricts the Client input, i.e., Client learns the intersection only if the size of its input does

not exceed a Server-set upper bound in the random oracle model, and later Cerulli et al.

[80] improve it to be secure in the standard model. Compared to the other PSI literature

that naturally reveals the input set sizes during the computation, [66] and [80] also hide

cardinality information. We note that there has been no PSI variant that places a lower

bound (or both lower and upper bounds) on Client input.

87

4.2.4 PSI with Multiset Input

We now consider how current PSI protocols handle multisets. Note that adversary models

in PSI literature do include malicious input. Loosely speaking, Honest-but-Curious (HbC)

(a.k.a. semi-honest) adversaries try to learn as much as possible while honestly following

the protocol, whereas malicious adversaries arbitrarily deviate from the protocol. However,

according to Lindell and Pinkas [211], such adversaries can not be prevented from refusing

to participate in a protocol, supplying arbitrary input, or prematurely aborting a protocol

instance. Since PSI security is generally based on sets, multisets can be viewed as malicious

inputs. PSI protocols do not offer security against multiset inputs. i.e., Security against

malicious adversaries does not mean that multiset inputs are “automatically" handled.

It turns out that some PSI protocols are incompatible with multiset inputs because they

assume set input, i.e., distinctness of all elements. For example, [59] and [173] obliviously

sort elements and compare the adjacent elements to compute the intersection by checking

for equality [173] or erasing each element once [59]. Thus, these protocols output incorrect

results with multiset inputs. Furthermore, PSI protocols based on Cuckoo hashing [144, 256,

254, 255] can encounter unexpected errors with multiset inputs. Cuckoo hashing maps each

input element into a hash table using some hash functions such that each bin contains at

most one element. Since the hash of the same input value is always the same, duplicates

can cause an infinite loop (to find an available bin) or result in a waste of resources, e.g.,

repeating steps until a certain threshold and increasing the stash size.

There exist some PSI protocols that either enforce input element distinctness or are compat-

ible with multiset inputs. For example, the party creates a polynomial that has roots on its

input values in [97, 146, 192] to perform oblivious polynomial evaluation, which by nature

filters the duplicates. [250] also guarantees the set input by a new data structure, called

PaXoS, which disables encoding any non-distinct elements. On the other hand, the security

88

of [164, 184] is unaffected by duplicates because it uses an oblivious pseudo-random function

to obtain some (random-looking) numbers for its private elements and then compare the

received messages.

Our work focuses on PSI protocols incompatible with multiset inputs and suggests adding

some simple steps to ensure the element distinctness of private input.

4.2.5 Zero-Knowledge Proofs

The notion of Zero-Knowledge Proof (ZKP) is first introduced by [156] which is the zero-

knowledge interactive proof system. Informally, an interactive proof system for a language

L is defined between a prover (Prv) and a verifier (V rf) with a common input string x and

unbiased coins, where Prv tries to convince V rf that x is indeed in L while keeping their

coin tosses private. It must be complete, i.e., for any x ∈ L, V rf accepts, and sound, i.e., for

any x /∈ L, V rf rejects no matter what Prv does. The interactive proof is zero-knowledge if

given only x, V rf could simulate the entire protocol transcript by itself without interacting

with Prv. A proof-of-knowledge [142, 54] is an interactive proof where Prv tries to convince

V rf that it has “knowledge” tying the common input x, which requires the completeness and

knowledge extractibility (stronger notion of soundness) properties. Knowledge extractibility

(a.k.a.validity) is that for any Prv who can make V rf accept its claim with non-negligible

probability, there exists an efficient program K called knowledge extractor, such that K can

interact with Prv and output a witness w of the statement x ∈ L. Zero-Knowledge Proof

of Knowledge (ZKPoK) adds the zero-knowledge property on top of them. Compared to

ZKP, ZKPoK keeps the one-bit information (whether x ∈ L or not) private from V rf , thus

realizing “zero”-knowledge.

89

4.2.6 Homomorphic Encryption

Homomorphic encryption (HE) is a special type of encryption that allows users to perform

certain arithmetic operations on encrypted data such that results are meaningfully reflected

in the plaintext. It is called Fully Homomorphic Encryption (FHE) when a HE supports

both unlimited addition and multiplication of ciphertexts. Whereas, a scheme that supports

a limited number of operations of either type is called Somewhat Homomorphic Encryption

(SWHE) and a scheme that supports only one operation type is called Partially Homo-

morphic Encryption (PHE). There are many PHE schemes such as [91, 96, 100, 136, 155,

242, 232, 240, 189, 262]. For example, ElGamal encryption scheme [136] is a well-known

PHE supporting multiplication, and a variant of ElGamal [96] having gm instead of m and

Paillier [242] are well-known PHE schemes supporting addition.

4.3 Proving Element Distinctness

We first define Proofs of Element-Distinctness (PoED) in the two-party settings where Prv

proves element distinctness of its private input elements to V rf . i.e., PoED is an interactive

proof system, where Prv tries to convince V rf that its input C := [c1, ..., cn] consists of

distinct elements, without revealing any other information about each ci. As a result, V rf

accepts or rejects the Prv’s claim. Following the notation for ZKPoK introduced by [73],

PoED is denoted as:

PK{C | ei = f(ci) for each ci ∈ C, and ci ∕= cj for ∀ci, cj ∈ C such that i ∕= j},

where f is a function that “hides" ci so that V rf does not learn any information about ci

from ei, while it “binds" ci to ei so that Prv cannot change ci once ei is computed, e.g., via

randomized encryption or cryptographic commitments.

90

Proving Element Distinctness with λ Puzzles

Public: G = 〈g〉, a group with operator ·, and λ: a sec. param.
pk : the public key of Prv, while correlated sk kept private

Prv (C = [c1, ..., cn]) V rf (⊥)

for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ...,λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(u)

Ek := πk(e1,k, ..., en,k)

for k = 1, ...,λ : E1, ..., Eλ key ← H(π1, ...,πλ)

Determine π′
k s.t.

Decsk(Ek) = π′
k(C)

key′ ← H(π′
1, ...,π

′
λ)

key′ return Accept, if key = key′

return Reject, otherwise

Figure 4.1: The PoED-puzzle Protocol

4.3.1 Puzzle-Based PoED Construction

The main idea starts from the well-known two billiard balls problem, where Prv has two

billiard balls, and (honest) V rf is color-blind. To convince V rf that two balls have different

colors, the following “puzzle" is repeated k times:

1. Prv puts a ball in each hand of V rf

2. V rf puts both hands behind its back and decides (at random) whether to switch the

balls or not

3. V rf shows the balls to Prv

4. Prv declares whether a switch occurred

5. If Prv answers incorrectly, V rf concludes that Prv cheated

If Prv answers correctly k times, V rf concludes that, with probability 2−k, the balls have

different colors.

Extending this problem to many balls, we construct a PoED protocol and call it PoED-puzzle

protocol. Instead of the color-blind V rf , Prv encrypts each element with its public key under

91

an encryption scheme satisfying the ciphertext indistinguishability (IND) property. Since all

IND-secure encryption schemes are non-deterministic, Prv can hide the information about

the input elements.

To form the puzzles such that V rf can generate while Prv can solve only when all input

elements are distinct, PoED-puzzle needs a PHE scheme over a cyclic group G2 of prime

order with a generator g. i.e., Assume that each of Prv input values is a group element in

G, or we can assume a deterministic map that maps each input value ci to a group element

in G. Since any PHE allows V rf to re-randomize received ciphertexts by multiplying the

encryption of the unit element u ∈ G (under Prv’s public key), this computation gives a new

ciphertext of the same plaintext without learning/requiring anything about the plaintext.

Finally, V rf chooses a random permutation π from Pn, the set of all permutations of length

n, and shuffles the re-randomized ciphertexts with π, as if it “switches or not" in the two

billiard balls problem. Once it receives a puzzle, Prv decrypts each ciphertext with its private

key, determines the permutation π′ that shuffles original elements to received elements, and

forwards π′ to V rf . V rf accepts if π′ = π.

There is a probability that Prv can solve the puzzle without having all distinct elements.

In the worst case, when Prv uses only one duplicate, Prv can correctly solve the puzzle

with 50% probability. To make the cheating probability low, the puzzle should be repeated

λ times, such that 1/2λ becomes negligible.

Since each puzzle is independent, V rf can hash the puzzles (using a suitable cryptographic

hash function H) and check this hash value, instead of repeating this three-message exchange

multiple times for each puzzle. This reduces the number of communication rounds and

associated delays. Figure 4.1 presents the PoED-puzzle protocol described above.
2We sometimes denote G as a subgroup of Z∗

p whose prime order is known, which will be explicitly
indicated in such case.

92

Table 4.1: Cost Analysis of the PoED-puzzle Protocol

Computation Cost

Operation \ Entity Prv V rf
Offline Online Online

Encryption n 0 λn
Decryption 0 λn 0

Modular multiplication 0 0 λn
Random permutations (of length n) 0 0 λ
Cryptographic hash (input length) 0 λn λn

Equality check 0 0 1

Group Communication Cost
C (λ+ 1)n

{0, 1}κ 1

4.3.2 Analysis of PoED-puzzle Protocol

Theorem 4.1. Assuming an IND-secure PHE scheme (Enc,Dec) over a cyclic group G,

a secure cryptographic hash function H : {0, 1}∗ → {0, 1}κ, and the statistical security

parameter λ, the PoED-puzzle protocol described in Section 4.3.1 is a secure PoED protocol.

(Sketch Proof) Completeness is straightforward because only one correct permutation π exists

for distinct elements, and honest Prv can easily determine π after decrypting the cipher-

texts. For the knowledge extractability, the private key of the underlying encryption scheme

can be seen as the witness. Suppose Prv does not know the private key. Then, by the IND

and homomorphic property, re-randomized and shuffled ciphertexts from V rf are indistin-

guishable from random strings in the ciphertext space. Furthermore, after decryption, the

probability of having duplicates and solving the puzzle correctly is at most 2−λ which is set

to be negligible by the security parameter λ. Lastly, zero-knowledgeness naturally follows

from the IND property, since all V rf can observe are the ciphertexts encrypted by an IND

secure PHE.

Table 4.1 summarizes the computation and communication complexities of the PoED-puzzle

protocol with λ puzzles. C is denoted by the ciphertext space of Enc and H generates a

κ-bit hash result. Overall, both complexities are O(λn), where n is the Prv input size.

93

4.4 PSI with Element Distinctness Check

Using PoED as a building block, we propose a new variant of PSI that requires all the input

elements to be distinct, which we call All-Distinct Private Set Intersection (AD-PSI).

4.4.1 Adversary Model

Among the two parties participating in the computation, Client and Server, we consider

Server to be HbC while Client can be malicious. This assumption is reasonable in real-

life scenarios because Server is the one who provides the service to Client, and multiple

barriers (e.g., law/regulation, security systems for their data, and loss of trust deriving loss

of customers) exist for them to be malicious. However, Client typically maintains less secure

systems and much less data than Server, so they may be eager to learn more from Server’s

large dataset. Note that we consider a stronger guarantee than normal malicious security in

PSI literature, as now we aim to enforce the input correctness for Client.

4.4.2 Definition of AD-PSI

We define AD-PSI directly instead of defining PSI and adding features. We follow the defi-

nitions of client and server privacy in related work [145, 146, 153, 164]. Let V iewΠ
A∗(C,S,λ)

denotes a random variable representing the view of adversary A∗ (acting as either Client or

Server) during an execution of Π on inputs C and S and the security parameter λ.

Definition 4.1 (All-Distinct Private Set Intersection (AD-PSI)). consists of two algo-

rithms: {Setup, Interaction}, where:

• Setup: an algorithm selecting global/public parameters;

• Interaction: a protocol between Client and Server on respective inputs: a multiset

94

C = [c1, ..., cn] and a set S = {s1, ..., sm}, resulting in Client obtaining the intersection

of the two inputs;

An AD-PSI scheme satisfies the following properties:

• Correctness: At the end of Interaction, Client outputs the exact intersection of two

inputs only when the elements in C are distinct. It outputs ⊥, o.w.

• Server Privacy: For every PPT adversary A∗ acting as Client, we say that a AD-PSI

scheme Π guarantees the server privacy if there exists a PPT algorithm PC such that

{PC(C, C ∩ S,λ)}(C,S,λ)
c≈ {V iewΠ

A∗(C,S,λ)}(C,S,λ)

i.e., on each possible pair of inputs (C,S,λ), Client’s view can be efficiently simulated

by PC on input (C, C ∩ S,λ).

• Client Privacy: For every PPT adversary A∗ acting as Server, we say that a AD-PSI

scheme Π guarantees the client privacy if there exists a PPT algorithm PS such that

{PS(S,λ)}(C,S,λ)
c≈ {V iewΠ

A∗(C,S,λ)}(C,S,λ)

i.e., on each possible pair of inputs (C,S,λ), Server’s view can be efficiently simulated

by PS on input (S,λ).

We note that the security definition above is equivalent to the generic “real-vs-ideal" world

simulation definition in the semi-honest model, as shown in [153], with the ideal functionality

F below:

1. Wait for an input multiset C = [c1, .., cn] from Client.

2. Wait for an input set S = {s1, ..., sm} from Server.

3. Give output (|S|, C ∩ S) to Client if C includes all distinct elements, or (|S|), otherwise.

4. Give output (|C|) to Server.

Figure 4.2: Ideal Functionality F for AD-PSI

95

According to the definition above, we propose a construction using PoED-puzzle protocol,

so-called AD-PSI-puzzle, in the following section.

4.4.3 A Construction for AD-PSI based on PoED-puzzle

AD-PSI-puzzle protocol starts with the PoED-puzzle protocol, i.e., Client encrypts each

input element in G (or the mapped values for each input element to G with a public map)

under a PHE and sends the ciphertexts to Server, and Server generates a secret key key,

derived from multiple puzzles that shuffle re-randomized ciphertexts with random permuta-

tions. The underlying PHE scheme must now be multiplicatively homomorphic (instead of

any PHE) for the correct computation below.

AD-PSI based on PoED-puzzle (AD-PSI-puzzle)

Public: (p, g, h,G) where G = 〈g〉, a subgroup of Z∗
p of prime order q,

λ : statistical secur ity parameter, pk : Prv’s public key,
Private: sk : Prv’s secret key correlated to pk

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ...,λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(1)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ...,πλ)

R ∈R Z∗
p

for i = 1, ..., n :

êi := eRi (= ei · ... · ei)
for j = 1, ...,m :

for k = 1, ...,λ :
E1, ..., Eλ, (ê1, ..., ên),

(t1, ..., tm)
tj := SEnc(key,H′(sRj))

Determine π′
k s.t.

Decsk(Ek) = π′
k(C)

key′ ← H(π′
1, ...,π

′
λ)

for j = 1, ...,m : t′j := SD ec(key′, tj)

for i = 1, ..., n : di := H′(Decsk(êi))

return {ci ∈ C | di ∈ {t′1, ..., t′m}}

Figure 4.3: AD-PSI-puzzle Protocol

For computing the intersection without revealing the other elements, Server hides Client’s

96

ciphertexts and its own input values with the same random element R ∈ Z∗
p. i.e., Server

first homomorphically exponentiates Client elements with R by eRi , which is defined by R

homomorphic operations, for each ei = Enc(ci), ∀i (by multiplying ei R times or directly

exponentiating R3). For its input values, Server computes sRj for each sj ∈ S so that if some

ci and sj match, then the randomized cRi and sRj can also be matched. Then, it hashes each

sRj using a cryptographic hash function H ′ and encrypts them under a symmetric encryption

scheme with a key key ∈ {0, 1}κ, i.e., tj := SEnc(key,H ′(sRj)). Thus, unless Client can

derive the correct key, it cannot decrypt/learn any information about Server elements.

When receiving the messages from Server, Client first derives the symmetric key key′ by

solving all the puzzles, as in PoED-puzzle. Then, using the derived key, Client decrypt tj’s,

obtains {t′j := H ′(sRj)}j, and compares them with d′is, the hash values of the decryption of

re-randomized ciphertexts, i.e., di := H ′(cRi) for all i. Finally, Client outputs all ci’s such

that di matches for some tj.

The protocol described above is depicted in Figure 4.3.

Theorem 4.2. Assuming the hardness of the decisional Diffie-Hellman problem, the pro-

tocol described in Figure 4.3 is a secure AD-PSI scheme, satisfying the Definition 4.1 in

ROM.

Proof. Correctness: For an honest Client with distinct input elements, only one per-

mutation πk exists such that πk(C) = Dec(Ek). This is because the decryption results

remain the same after the re-randomization due to the homomorphic property of the ElGa-

mal scheme on multiplication. Thus, honest Client derives the same permutations as the

ones Server used, and the derived key′, the hash of these permutations, is equal to key.

Client gets the Server’s tags, {t′j = H ′(sRj)}j by symmetric-decrypting each of them. Since

3Usually, exponentiation of the underlying plaintext can be done more efficiently than multiplying the
ciphertext R times. For example, in ElGamal, encryption of x is Enc(x) = (gr, xhr) for some random r,
and exponentiating to c can be done either Enc(x) · ... · Enc(x) = (gR, xchR) = Enc(xc) or Enc(x)c =
(gcr, xchcr) = Enc(xc).

97

di = H ′(Dec(êi)) = H ′(Dec(eRi)) = H ′(cRi), with overwhelming probability (due to the colli-

sion resistance of the cryptographic hash functions), we have t′j = di ⇔ sRj = cRi ⇔ sj = ci.

Therefore, Client obtains correct intersection {ci}i∈I , with I := {i | di ∈ {t′1, ..., t′w}} with

distinct input elements.

On the other hand, we show that clients with duplicated elements in their input cannot

obtain the intersection with overwhelming probability. Let’s look at the case where a cor-

rupted Client has the highest probability of successfully cheating, i.e., with C = [c1, ..., cn]

with (n − 1) distinct items and one duplicate. Without loss of generality, let’s say c1 = c2,

and the others are all distinct. In this case, the probability that Client obtains the intersec-

tion is the same as that of Client guesses λ correct permutations, so 2−λ, which is negligible

with a sufficiently large λ.

Client Privacy: Assume that Server is corrupted. Showing the client privacy is relatively

easy: it only sends to Server the encryption of the element in its set. Assuming two input

sets with the same sizes, if the adversary corrupting Server can distinguish whether Client

used which set as an input, then it can be used for IND-CPA of the ElGamal encryption sys-

tem. Since it is well-known that the ElGamal encryption system is semantically secure [137]

assuming the hardness of the decisional Diffie-Hellman problem, which is reduced to DLP, the

adversary cannot distinguish which set is used as well as learn anything about the Client’s

set elements.

Server Privacy: Assume that Client is corrupted, denoted by Client∗. To claim server

privacy, we need to show that the Client’s view can be efficiently simulated by a PPT

algorithm SimC. The simulator SimC can be constructed as follows:

1. SimC builds two tables T = ((π1, ..., πλ), k) and T ′ = (m,h′) to answer the H and H ′

queries, respectively.

98

2. After getting the message (G, p, g, h) and {ei}ni=1 of a corrupted real-world client

Client∗, SimC picks λ random permutations from Pn and n random numbers ri,j

from Z where i = 1, ..., n for each j = 1, ...,λ. Then, SimC re-randomizes and shuffles

{ei}ni=1 by multiplying (gri,j , hri,j) to each ei’s for i = 1, ..., n, say ei,j, and applying the

permutation πj to {ei,j}ni=1, for each j, say Ej := πj(e1,j, ..., en,j).

3. Also, SimC picks random R ∈ Z, and exponentiates each component of ei’s, i.e.,

êi := eRi = (eRi,1, e
R
i,2) for i = 1, ..., n. SimC also picks m random elements from M, say

u1, ..., um.

4. SimC encrypts each uj using SymE with the key, key := H(π1, ..., πλ), i.e., tj :=

SymE(key, uj), and replies {Ek}λk=1, {êi}ni=1, {tj}mj=1 to Client∗.

5. Then, SimC answers the H,H ′ queries as follows:

– For each query (π1, ..., πλ) to H, SimC checks if ∃ ((π1, ..., πλ), key) ∈ T and returns

key if so. Otherwise, SimC picks a random key ∈R K and checks if ∃((π′
1, ..., π

′
λ), key

′) ∈

T such that key′ = key. If so, output fail1 and aborts. Otherwise, it adds

((π1, ..., πλ), key) to T and returns key to Client∗ as H(π1, ..., πλ).

– For each query m to H ′, SimC checks if (m,h′) ∈ T ′. If so, SimC returns h′.

Otherwise, SimC picks a random h′ ∈R M, and checks if ∃(m′′, h′′) in T ′ where

h′′ = h′ and m′′ ∕= m. If so, SimC outputs fail2 and aborts. Otherwise, SimC adds

(m,h′) to T ′ and returns h′ to Client∗ as H ′(m).

This finishes the construction SimC. The ideal-world server Server that interacts with the

ideal function f , which answers the queries from SimC as the ideal-world client Client, gets

⊥ from f , and the real-world server Server which interacts with Client∗ in the real protocol

also outputs ⊥. We now argue that Client∗’s view in the interaction with Server and with

SimC constructed as above are indistinguishable. The Client∗’s view is different only if one

of the following happens:

• fail1 occurs: This happens if ∃(Q′ := (π′
1, ..., π

′
λ), key

′) such that key′ = key but

99

Q′ ∕= Q existing in T , for a randomly chosen key from K for the query Q = (π1, ..., πλ)

to H. This means a collision of H is found, i.e., H(Q) = H(Q′) where Q ∕= Q′. This

occurs with negligible probability by the collision resistance of H.

• fail2 occurs: This happens if there exists the entry (m′′, h′′) such that h′′ = h′ but

m′′ ∕= m existing in T ′, for a randomly chosen h′ from M for the query m to H ′. This

means a collision of H ′ is found, i.e., H ′(m′′) = H ′(m) where m′′ ∕= m. This happens

with negligible probability due to the collision resistance of H ′.

Since all events above happen with negligible probability, Client∗’s views in the real protocol

with the real-world server Server can be efficiently simulated by SimC in the ideal world.

Though we define AD-PSI such that it does not reveal whether C satisfies the element

distinctness or not to Server, this one-bit information may be favored by Server to save its

computing resources. In the following section, we discuss this alternative definition and an

idea of modifying the AD-PSI-puzzle protocol.

4.4.4 Alternative AD-PSI and Modified Construction

Checking the distinctness of C before proceeding to the next steps may be preferable by

Server with a large set S because the rest computation cost is linear to |S|. Whereas,

Client may be reluctant as it reveals whether Client used all distinct elements to Server,

i.e., a trade-off between client privacy and server efficiency. For this alternative design, AD-

PSI Correctness can be defined with Server outputs (|C|, b) in Definition 4.1 instead, where

b is a boolean result of whether C satisfies the element distinctness. Likewise, F is modified

as below:

To meet this definition, the AD-PSI-puzzle protocol (in Figure 4.3) can be modified as in

100

1. Wait for an input multiset C = [c1, .., cn] from Client. Abort if C includes any duplicates.

2. Wait for an input set S = {s1, ..., sm} from Server.

3. Give output (|S|, C ∩ S) to Client.

4. Give output (|C|) to Server.

Figure 4.4: Ideal Functionality F for Alternative AD-PSI

Figure 4.5. i.e., Before the intersection computation phase, Server first sends all the puzzles

to Client and proceeds to the next phase only if Client corrects all puzzles. Although this

modification increases the number of communication rounds, Server can save its computa-

tion resources for the clients who do not cheat and have enough elements (by size checking)

and use this one-bit information in another application (See Section 4.6).

AD-PSI-puzzle Alternative

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ...,λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(1)

for k = 1, ...,λ : E1, ..., Eλ Ek := πk(e1,k, ..., en,k)

π′
k s.t. Decsk(Ek) =π′

k(C) key ← H(π1, ...,πλ)

key′ ← H(π′
1, ...,π

′
λ)

key′
Abort if key′ ∕= key

R ∈R Z∗
p

êi := eRi , ∀i ∈ [1, n]

for i = 1, ..., n : {êi}i, {tj}j , tj := H′(sRj), ∀j ∈ [1,m]

di := H′(Dec(êi))

return {ci ∈ C | di ∈ {t1, ..., tm}}

Figure 4.5: Alternative AD-PSI Protocol

Table 4.2 summarizes the computation and communication complexities of the AD-PSI-

puzzle protocols with λ puzzles. We denote the cost of the alternative protocol in parentheses

only when it has a different cost from the original one. HE denotes the partial homomorphic

encryption scheme, and SE denotes the symmetric encryption scheme used in the protocol(s).

CΠ represents the ciphertext space of a scheme Π and cryptographic hash functions H and

H ′ generate a κ-bit and κ′-bit hash result, respectively. Overall, both complexities are

101

Table 4.2: Cost Analysis of AD-PSI-puzzle Protocols. We present the cost of the alternative
protocol in (·) only when it is different from the original cost.

Computation Cost of AD-PSI-puzzle (and its alternative)

Operation Entity Client Server
Offline Online Online

HE.Encryption n 0 λn
HE.Decryption 0 (λ+ 1)n 0

Modular Multiplication 0 0 (λ+R)n
Random number generation (in Z∗

p) 0 0 1
Random permutations (of length n) 0 0 λ

Cryptographic hash of input length λn 0 1 1
of input length |M| 0 n m

Equality check 0 0 0 (1)
Involvement check (i.e., if a ∈ A) 0 n 0

SE.Encryption 0 0 m (0)
SE.Decryption 0 m (0) 0

Group Communication Cost
CHE (λ+ 2)n
CSE m

{0, 1}κ 0 (1)
{0, 1}κ′

0 (m)
#(rounds) 1 (2)

O(λn + m), where n is the Client input size (including duplicates, if any) and m is the

Server input size.

4.5 AD-PSI Variants

As mentioned in Sections 4.1 and 4.2.4, duplication can be more problematic in PSI vari-

ants that give additional/restricted information. In this section, we further discuss how

duplication can leak more information and propose a solution for each variant using AD-

PSI. Although the solutions are simple, we provide the figures for each protocol for better

presentation.

Note that we follow the convention in PSI literature and do not consider the information

leakage after multiple executions, which will naturally reveal more than the one they are

supposed to disclose in a single execution. For example, when Client deliberately adjusts

its input elements to PSI-X and the protocol outputs ‘No’ in the previous rounds and ‘Yes’

102

in the next round, then Client learns that the exact element added in the last round is in

the Server set. Though this is interesting, we consider it as a future work.

4.5.1 PSI-CA with Element Distinctness (AD-PSI-CA)

Recall that PSI-CA outputs only the cardinality of the intersection set. Suppose Client uses

a single element as input to PSI-CA. In that case, although it is not malicious behavior,

Client can learn if that exact element is in S, which is more information than it is supposed

to know. Furthermore, repeating PSI-CA with different single elements can eventually learn

the intersection set or the entire S if the message space is small enough. To prevent this,

Server may want to restrict the minimum input set size as l and check if |C| > l during the

computation phase.

However, Client still can bypass this simple check by duplicating a single element n times

where n is greater than l. Although Server does not abort as the Client set size n is larger

than l, the PSI-CA result with this input will be either ‘0’ or ‘1’, which reveals if the single

element is in S or not. Thus, the simple size check is not enough, and Server needs a way

to check the element distinctness of C, which we call AD-PSI-Cardinality (AD-PSI-CA).

The definition of AD-PSI-CA is similar to the one of AD-PSI, except that (|S|, |S ∩ C|)

is the Client output for correctness, and what the ideal functionality gives to Client as

output. This feature can be added by modifying the AD-PSI-puzzle protocol as follows:

Server additionally chooses a random permutation π and sends the permuted ciphertexts

êi := eRπ(i) instead of êi := eRi . Since the ciphertexts are randomized with R by Server, and

Client does not know π, now Client cannot match the di’s to the original ci’s. Furthermore,

AD-PSI-puzzle guarantees that Client cannot solve the puzzle correctly with overwhelming

probability when using duplicated inputs. Therefore, Client learns |C∩S|, only when it uses

all distinct input elements.

103

AD-PSI-CA

Public: (p, g, h,G) whe re G = 〈g〉, a subgroup of Z∗
p of order q,

λ : statistical sec urity parameter, pk : Prv’s public key,
Private: sk : Prv’s secret key correlated to pk

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ...,λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(u)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ...,πλ)

R ∈R Z∗
p,π ∈R Pn

for i = 1, ..., n :

êi := eRπ(i)

for j = 1, ...,m :

for k = 1, ...,λ :
E1, ..., Eλ, (ê1, ..., ên),

(t1, ..., tm)
tj := SEnc(key,H′(sRj))

Determine π′
k s.t.

Decsk(Ek) = π′
k(C)

key′ ← H(π′
1, ...,π

′
λ)

for j = 1, ...,m : t′j := SDec(key′, tj)

for i = 1, ..., n : di := H′(Decsk(êi))

return |di | di ∈ {t′1, ... , t′m}|

Figure 4.6: AD-PSI-Cardinality (AD-PSI-CA) Protocol

4.5.2 PSI-X with Element Distinctness (AD-PSI-X)

PSI-X outputs minimal information, only the boolean result of whether the intersection of

two private input sets is non-empty. Likewise, although Server decides on a lower-bound

restriction on the size of C, Client can obtain more information than the boolean result by

using a small input set because if the result is ‘1’ (i.e., intersection exists), each element is

in S with the probability of 1/|C|. Server, thus, may have more motivation to restrict the

size of C to reduce this probability.

One way to construct a AD-PSI-Existence (AD-PSI-X) protocol is to add our PoED phase

to the FHE-based PSI-X protocol. The basic idea of the FHE-based PSI-X protocol is to

encrypt each element under an FHE over G that satisfies Add(Enc(a), Enc(b)) = Enc(a+ b)

104

and Mult(Enc(a), Enc(b)) = Enc(a ∗ b). Then, compute the subtraction of every pair of C

and S, and multiply all subtractions (with a random number) so that the decryption result

can be zero if any of the pairs match. i.e., It computes the encryption of R ·Πi,j(ci − sj) for

a random R, which becomes the encryption of zero if any pair of ci and sj matches. The

recent benchmark [157] on FHE libraries shows that the addition can be done within 100

ms while multiplication requires about 1 second over the integer encoding in many libraries,

such as Lattigo [24], PALISADE [22], SEAL [191], and TFHE [178]. The PoED phase can

be easily added: Server can add the shuffling phase before the PSI-X steps and just encrypt

the final message with the key derived from the puzzles as in the PoED-puzzle protocol.

AD-PSI-X

Public: (p, g, h,G) whe re G = 〈g〉, a subgroup of Z∗
p of order q,

λ : statistical sec urity parameter, pk : Prv’s public key,
Private: sk : Prv’s secret key correlated to pk

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n : for j = 1, ...,m :

eci := Encpk(ci) esj := Encpk(sj)(ec1, ..., ecn)

for k = 1, ...,λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := eci · Encpk(1)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ...,πλ)

ê := 1

for ∀i, j :

ˆei,j := Add(eci, (esj)
−1)

ê = Mult(ê, ei,j)

for k = 1, ...,λ : E1, ..., Eλ, t̂ t̂ := SEnc(key, êR), R ∈ Z∗
p

Determine π′
k s.t.

Dec(Ek) = π′
k(C)

key′ ← H(π′
1, ...,π

′
λ)

t := SDec(key′, t̂)

return YES, if Dec(t) = 0, or NO, otherwise

Figure 4.7: AD-PSI-Existence (AD-PSI-X) Protocol

105

4.5.3 PSI-DT with Element Distinctness (AD-PSI-DT)

PSI-DT transfers additional data associated with the intersecting elements. Since this gives

more data other than the intersection, when Server restricts the Client input size, Client

without enough elements may have more motivation to cheat and bypass the restriction

to obtain them. AD-PSI with data transfer (AD-PSI-DT) is defined similarly to AD-PSI,

except it outputs (|S|, I := S ∩ C, {Dj}sj∈I) for Client.

An AD-PSI-DT protocol can be constructed as follows: It is the same as AD-PSI-puzzle pro-

tocol until randomizing Client ciphertexts. Then, for Server input elements, Server com-

putes one more hash (or a one-way function) H ′′ that maps k-bit messages to k-bit messages,

and encrypts them under the key derived from the puzzles, i.e., tj := SEnc(key,H ′′(s′j)),

where s′j := H ′(sRj). For the associated data to transfer, Server encrypts each Dj using the

pre-image of H ′′, i.e., D′
j := SEnc(s′j, Dj), and sends them along with the other messages.

This prevents Client from trying all decryption results as key to decrypt the associated data.

Receiving the messages from Server, Client performs the same steps to learn the intersec-

tion as AD-PSI. To obtain the associated data, Client uses the matching di’s for its own

(randomized) values to decrypt and get the data. Security for the non-intersecting elements

follows the security of AD-PSI, and the one-way property of H ′′ and the security of the

underlying symmetric encryption scheme guarantee the security of the associated data.

4.6 Completing Bounded-Size-Hiding-PSI

As mentioned in Section 4.2.3, Bounded-Size-Hiding-PSI was introduced in [66], extending

the concept of Size-Hiding-PSI (SH-PSI) from [42] by adding an upper bound on the size

of Client input set C, |C|. For clarification, we denote this primitive by Upper-bounded-

SH-PSI (U-SH-PSI). Now we propose a Bounded-Size-Hiding-PSI (B-SH-PSI) protocol with

106

AD-PSI-DT

Public: (p, g, h,G) whe re G = 〈g〉, a subgroup of Z∗
p of ord er q,

λ : statistical security parameter, pk : Prv’s public ke y,
Private: sk : Prv’s secret key correlated to pk,

C = (c1, ..., cn),S = {(s1, D1), ..., (sm, Dm)}
Client (C) Server (S)
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ...,λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(1)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ...,πλ)

R ∈R Z∗
p

for i = 1, ..., n :

êi := eRi

for j = 1, ...,m :

s′j := H′(sRj)

tj := SEnc(key,H′′(s′j))

for k = 1, ...,λ :
E1, ..., Eλ, (ê1, ..., ên),

(t1, ..., tm), (D′
1, ..., D

′
m)

D′
j := SEnc(s′j , Dj)

Determine π′
k s.t.

Decsk(Ek) = π′
k(C)

key′ ← H(π′
1, ...,π

′
λ)

for j = 1, ...,m : t′j := SDec(key′, tj)

for i = 1, ..., n : di := H′(Decsk(êi))

return {(ci, Dj) | ci ∈ C such that H′′(di) = t′j for some j ∈{1, ...,m}

and Dj := SDec(di, D
′
j) for such j}

Figure 4.8: AD-PSI-Data Transfer (AD-PSI-DT) Protocol

complete, both lower and upper, bounds on |C|.

In B-SH-PSI, Server publishes its restriction rules, L for lower bound and U for upper

bound, for |C|. i.e., Server wants Client to obtain the intersection only when L ≤ |C| ≤ U .

On the other hand, Client wants to hide its input size as well as any information about its

elements from Server. Figure 4.9 shows the ideal functionality FB for B-SH-PSI described

above.

We construct a B-SH-PSI protocol using U-SH-PSI and the AD-PSI-puzzle protocols as

building blocks and briefly present it in Figure 4.10. To enforce that Client cannot learn

107

1. Wait for input C = [c1, ..., cn] from Client.

2. Wait for input S = {s1, ..., sm} from Server.

3. Abort if C does not contain at least L distinct elements, or |C| > U . Give the output
(|S|, C ∩ S) to Client only if L ≤ |C| ≤ U .

4. Give output b to Server, where b is the boolean value of whether |C| ≥ L.

Figure 4.9: Ideal Functionality FB for B-SH-PSI

any information about the intersection without satisfying both upper- and lower-bound re-

quirements, we need the alternative AD-PSI-puzzle protocol (in Section 4.4.4) that reveals

the one-bit information if C satisfies the lower-bound or not.

Recall that Client cannot obtain the next message from Server with overwhelming proba-

bility if CL includes duplicates. Also, since Server can see the size of CL during the AD-PSI

phase, it can just abort (or send an error message to Client) if CL does not satisfy the lower

bound L. Otherwise, Server stores this size |CL| and sends some puzzles for AD-PSI to

Client. The honest Client can enclose the first message (the accumulator for the rest of the

elements in C, i.e., C∗ := C \CL), msg1, along with the key′ derived from the given puzzles. If

key′ is correct, Server proceeds to the steps for U-SH-PSI using msg1 and the upper bound,

U ′ := (U − |CL|), or aborts, otherwise. Client obtains I1 := CL ∩ S from the response for

AD-PSI (denoted by msg2 in Figure 4.10), and I2 := C∗ ∩ S from the one for U-SH-PSI

(denoted by msg3 in Figure 4.10), which are combined to the final result, I := I1 ∪ I2.

The security and efficiency of the idea above rely on the ones of underlying AD-PSI and U-SH-

PSI protocols. The AD-PSI phase guarantees that C satisfies the lower bound L. Although

there is no duplicate check in the U-SH-PSI phase, Client does not have the motivation

for duplicating the elements because Client can learn the result only when |C∗| ≤ U ′ (i.e.,

duplicates limit Client more, especially when |C| is close to U).

108

Overview of B-SH-PSI
Client(C = [c1, ..., cn]) Server(S = {s1, ..., sm}, L, U)

Select CL ⊆ C s.t. |CL| ≥ L Publish L,U (with certs)

and c′i ∕= c′j , for ∀c′i, c′j ∈ CL Set empty table T with (id, size)

Select C∗ ⊆ C s.t. (C \ CL) ⊆ C∗

ei := Enc(ci), ci ∈ CL E := {ei}i If |E| < L : Abort

Generate puzzles
puzzles key := H(puzzles)

key′, msg1 If key′ ∕= key : Abort

Proceed steps for U-SH-PSI
Compute the outputs, msg2,msg3

I1 from msg2, I2 from msg3
(i.e., I1 = CL ∩ S, and I2 = C∗ ∩ S)
return I := I1 ∪ I2

Figure 4.10: Idea of B-SH-PSI with input bound [L,U]. msg1 and msg3 denote the first and
responding messages for the U-SH-PSI protocol, whereas the others denote the messages for
the alternative AD-PSI-puzzle protocol in Figure 4.5

4.7 Authorized PSI with Element Distinctness

So far, we have seen multiple PSI and its variant protocols that check the duplicity of input

values. However, as noted in Section 4.1, malicious Client can still bypass these duplicity

checks by generating random inputs instead of duplicating valid inputs. And what is the

meaning of “valid" inputs? To examine if Client uses valid inputs, including a trusted third

party (TTP) who signs on valid inputs and later audits and punishes any invalid inputs is

inevitable. i.e., Authorized PSI (APSI) that not only checks the element distinctness but

also the validity of the input values. This section presents two versions of APSI: (v1) stateful

APSI, where TTP tracks Client input values, and (v2) stateless APSI, where TTP does not

save/track any information about Client input values.

109

4.7.1 AD-APSI Definition

Adopting the definitions of APSI from the related work [105, 106, 281, 299] and referring

to the definitions of general two-party computation from [139, 153], secure AD-APSI can be

defined as below. Let REALΠ
A(z),P (C, S,λ) be the output of honest party and the adversary

A corrupting P (either Client or Server) after a real execution of an AD-APSI protocol Π,

where Client has input (potentially multi)set C, Server has input set S, A has auxiliary

input z, and the security parameter is λ. Let IDEALF
Sim(z),P (C,S,λ) be the analogous

distribution in an ideal execution with a trusted party who computes the ideal functionality

F defined below.

Definition 4.2 (All-Distinct Authorized PSI (AD-APSI)). is a tuple of three algorithms:

{Setup, Authorize, Interaction}, where

• Setup: an algorithm selecting global/public parameters;

• Authorize: a protocol between Client and TTP resulting in Client committing to its

input, C = [c1, ..., cn], and TTP issuing authorizations, one for each element of C; and

• Interaction: a protocol between Client and Server on respective inputs: a (multi)set C

and a set S, resulting in Client obtaining the intersection of two inputs;

An AD-APSI scheme satisfies the following properties:

• Correctness: At the end of Interaction, Client outputs the exact intersection of two

inputs, only when the elements in C are all distinct and authorized by TTP. Otherwise,

Client outputs ⊥;

• Server Privacy: Client learns no information about the subset of S that is not in the

intersection, except its size. More formally, an AD-APSI scheme securely realizes the

server privacy in the presence of malicious adversaries corrupting Client if for every

110

real-world adversary A, there exists a simulator Sim such that, for every C, S, and

auxiliary input z,

{REALΠ
A(z),Client(C,S,λ)}λ

c≈ {IDEALF
Sim(z),Client(C,S,λ)}λ

• Client Privacy: Server learns no information about Client input elements, except

its size, authorization status, and element distinctness. More formally, an AD-APSI

scheme securely realizes the client privacy in the presence of malicious adversaries

corrupting Server if for every real-world adversary A, there exists a simulator Sim

such that, for every C, S, and z,

{REALΠ
A(z),Server(C,S,λ)}λ

c≈ {IDEALF
Sim(z),Server(C,S,λ)}λ

where the ideal functionality F is defined as follows:

• Authorize : (F forwards the messages between Client and TTP and remembers the

authorized elements for Client)

1. Wait for an authorization request from Client, requesting TTP to authorize an

element c

2. Forward the request to TTP who either accepts or rejects it

3. If TTP accepts, it forwards the messages from TTP to Client and remembers that

TTP has authorized c for Client. Otherwise, it replies abort to Client

• Interaction : (F receives input elements from Client and Server and outputs the

intersection to Client, only when Client inputs are all distinct and authorized, while

giving Client input size and verification result (for authorization and duplication) to

Server)

1. Wait for an input (multi)set C = [c1, .., cn] from Client

2. Wait for an input set S = {s1, ..., sm} from Server

111

3. While sending |C| to Server, send abort to Client if C includes (1) any unau-

thorized element, or (2) duplicated elements. Otherwise, compute the intersection

of C and S and send (|S|, C ∩ S) to Client. It also sends b to Server, where b is

the result(s) for verifying the existence of (1) (and (2) in stateless version) above

with their cardinality(ies).

For clear notation, we denote the functionalities above as FAuth and F∩.

4.7.2 AD-APSI Construction

The main idea is from the double spending detection in [84]. i.e., TTP first divides each

input value into two factors, where these factors are not revealed to anyone except Client.

For the stateful TTP, the factors can be computed by choosing a random value in Z∗
p as the

first factor and calculating the rest. For the stateless TTP, the first factor is computed so

that it is unique per element value, e.g., with a pseudo-random function PRF (under TTP’s

secret key) for each element in C, and the second factor is calculated by dividing the element

with the first factor. Then, the TTP signs a message such that it can be easily re-computed

by a third party while not revealing each factor so that anyone with the message can verify

the signature with the TTP’s public key.

In the online phase, Client sends GC, the pre-computed values that effectively hide two

factors for each input value, and Σ, all the signatures given by TTP. Then, Server first

verifies each signature with a newly-computed message with GC and aborts if any signature

verification fails. In the stateless TTP version, Server additionally checks if there are any

same elements in GC and aborts if so. If all passed, Server now proceeds to the intersection

computation phase, similar to the other PSI protocols. i.e., It first chooses a random number

R to hide its elements, and computes tj, which can be also pre-computed. Then, Server

exponentiates each gei,1 to the same R so that Client can compute the same form, compare,

112

and obtain the intersection result. Figure 4.11 shows the aforementioned offline and online

phases with stateful and stateless TTP options, with an example form of message, mi :=

H(gei,1 , gei,2) for each ci = ei,1∗ei,2 (mod p) in C. In the offline phase, Client can pre-compute

GC once it receives all the factors from TTP, or TTP can also send GC along with the others,

which is the trade-off between communication cost and Client’s computation cost.

AD-APSI Offline Phase with v1) Stateful and v2) Stateless TTP

Public: (p, g,G) where G = 〈g〉, a subgroup of Z∗
p of order q, PK : TTP’s public key

Private: K : TTP’s secret key, SK : TTP’s private key, paired with PK

TTP Client (C = [c1, ..., cn])

for ∀i : C
v1) Abort if ∃cj ∈ C, s.t. cj = ci, j ∕= i.

Otherwise, ei,1 ∈R Z∗
p,

v2) ei,1 = PRFK(ci, ‘Client′)

ei,2 = ci/ei,1 (mod p)

σi = SignSK(H(gei,1 , gei,2)) {(ei,1, ei,2,σi)}ni=1

Compute
GC := {(gei,1 , gei,2)}ni=1

AD-APSI Online Phase with v1) Stateful and v2) Stateless TTP

Public: (p, g,G) where G = 〈g〉, a subgroup of Z∗
p of or der q, PK : TTP’s public key

Client (C = [ci]i, EC = [(ei,1, ei,2)]i Server (S = [s1, ..., sm])

Σ = {σi}i, GC = [(g ei,1 , gei,2)]i)

GC ,Σ For ∀i :

V erfPK(H(gei,1 , gei,2),σi) =
? 1

Abort, if not
v2) Abort if ∃gi = gj ∈ GC for i ∕= j

R ∈R Z∗
p

tj := H′(gsjR), j = 1,,m

êi := (gei,1)R, i = 1, ..., n{tj}j , {êi}i
di := H′(êi

ei,2)

return {ci|di ∈ {tj}j}

Figure 4.11: All-Distinct Authorized PSI (AD-APSI) scheme.

4.7.3 Security Analysis

Theorem 4.3. The protocol described in Section 4.7.2 is a secure AD-APSI scheme, sat-

isfying Definition 4.2 in ROM.

113

Proof. Correctness: For an honest Client with all authorized and distinct elements, the

stateful TTP generates authentic signatures for each element so that Server can verify

the signatures correctly. For the stateless TTP, instead of tracking all the input values of

Client, TTP generates unique and deterministic factors of the input. Thus, Server can tell

when Client uses duplicated elements as the corresponding elements in GC are the same.

When Server replies, Client outputs the exact intersection of C and S because, for ci = sj,

di := H ′(êi
ei,2) = H ′((gei,1R)ei,2) = H ′(gciR) = H ′(gsjR) = tj. Therefore, duplicated elements

in C are caught by either the stateful TTP or Server (when TTP is stateless), unauthorized

(i.e., not signed by TTP) elements are caught by Server, and honest Client obtains the

exact intersection of the two input sets.

For server and client privacy, we show that the distribution of protocol execution in the

real world is computationally indistinguishable from the output from interaction with F in

the ideal world, assuming the same corrupted party (either Client or Server). Since the

interaction between Server and Client is during the online phase for Interaction, it is

compared with F∩ (recall Definition 4.2), assuming C is authorized with FAuth.

Server Privacy: Assume that Client is corrupted, denoted by Client∗. We show that the

distribution of Client∗ outputs in the real world can be efficiently simulated by a PPT SimC

constructed as below.

1. SimC builds two tables T1 = ((m1,m2), h) and T2 = (m,h′) to answer the H and H ′

queries, respectively.

2. After getting the messages GC := {gi,1, gi,2}i and Σ of a corrupted real-world client,

Client∗, SimC verifies the received signatures with respect to each H(gi,1, gi,2) via Verf

and TTP’s public key. If any of those fails, it aborts. (Likewise, for the stateless

version, SimC also checks the duplicates in GC and aborts if any.

114

3. Otherwise, SimC picks m random elements, u1, ..., um, in G and computes tj := H ′(uj)

for j = 1, ...,m. It also picks a random R, computes {êi = gRi,1}i, and replies {êi}i and

{tj}m to Client∗.

4. For each query to H and H ′, SimC answers as follows:

• For each query (m1,m2) to H, SimC checks if exists((m1,m2), h) ∈ T1 and returns

h if so. Otherwise, SimC picks a random h (from the same space as other values)

and checks if exists((m̃1, m̃2), h̃) ∈ T1 such that h = h̃. If so, output fail1

and abort. Otherwise, it adds ((m1,m2), h) to T1 and returns h to Client∗ as

H((m1,m2)).

• For each query m to H ′, SimC checks if exists(m,h′) ∈ T2 and returns h′ if so.

Otherwise, SimC picks a random h′ (from the same space as other values) and

checks if exists(m̃, h̃) ∈ T2 such that h′ = h̃. If so, output fail2 and abort.

Otherwise, it adds (m,h′) to T2 and returns h′ to Client∗ as H ′(m).

This finishes the SimC construction. The Client∗’s view in the interaction with SimC above

is different from the view in the real-world interaction with the real server, Server, only if

fail1 or fail2 happen. However, due to the collision resistance property of cryptographic

hash functions H,H ′, they occur with negligible probability. Thus, Client∗’s view when

interacting with Server can be efficiently simulated by SimC in the ideal world. For the

outputs, the ideal-world server Server that interacts with F∩, which answers the queries

from SimC as the ideal-world Client, Client, receives (|C, b) from F∩. On the other hand,

the real-world (honest) server Server that interacts with Client∗ in the real protocol also

outputs (learns) (|C, b). i.e., Server interacting with SimC and Server interacting with

Client∗ yield the identical outputs.

Client Privacy: Similarly, we assume a corrupted server, Server∗, and show that Server∗’s

view in the real world can be efficiently simulated by a PPT simulator, SimS , constructed

115

as below. Intuitively, SimS sits between F∩ and Server∗, and interacts with both in such a

way that Server∗ is unable to distinguish protocol runs with SimS from real-world protocol

runs with Client. First, SimS builds tables T1 and T2, and answers similarly to SimC above

for H and H ′ queries. Then, for inputs, since Client and TTP communicate offline before

the online phase, the authorized elements for Client are made available to SimS . SimS

uses a subset of authorized elements during the simulation to emulate Client’s behavior. If

Server∗ does not abort and reply ({tj}j, {êi}i), SimS checks if êiei,2 ∈ {tj}j. If so, SimS

adds si := ei,1ei,2 (mod p) in S, and otherwise, adds a dummy element in Z∗
p in S. Then,

SimS plays the role of the ideal-world server, Server, using S to respond to the queries

from the ideal client (Client). Since SimS uses the authorized inputs, Server∗’s view in the

interaction with SimS is identical to the view in the interaction with honest Client in the

real world. Also, the output of the ideal-world client Client that interacts with F∩, which

answers the queries from SimS as the ideal-world Server, Server, is identical to the output

of the real-world Client interacting with Server∗ as (|S, C ∩ S), only when all inputs in C

are authorized and distinct.

4.8 Summary

This chapter suggested checking the input validity in PSI with input size limits. We identified

two malicious behaviors to bypass the lower-bound limit: using duplicated and spurious

elements. To prevent these, we proposed to prove the element distinctness of private input

and applied it to a new PSI variant, AD-PSI, that additionally checks the “set-ness" of private

input with potential duplicates. We also discussed AD-PSI variants, AD-PSI-CA, AD-PSI-

X, and AD-PSI-DT, where duplicates cause more information leakage without PoED, and

proposed a B-SH-PSI scheme with both upper and lower bounds on the client input size.

Lastly, we presented AD-APSI that assesses both misbehaviors, involving two types of TTP.

116

Chapter 5

Communication-Efficient (Proactive)

Secure Computation for Dynamic

General Adversary Structures and

Dynamic Groups

This chapter suggests enhancing system and adversary models in MPC for today’s complex

large distributed systems. We first explore current MPC protocols secure against adversaries

with general corruption capabilities, and extend them to be secure against mobile adversaries,

i.e., proactively secure. We then add protocols to handle dynamically changing computation

groups and dynamic corruption scenarios, to adapt to the system changes in MTD.

117

5.1 Introduction

Secure Multiparty Computation (MPC) is a general primitive consisting of several protocols

executed among a set of parties, and has motivated the study of different adversary models

and various new settings in cryptography [154, 83, 259, 241, 99, 52, 98, 56, 169, 48]. For

groups with more than two parties, i.e., the multiparty setting, secret sharing (SS) is often

an underlying primitive used in constructing MPC; SS also has other applications in secure

distributed systems and protocols used therein [76, 168, 143, 79, 46, 126, 127, 128].

In typical arithmetic MPC, the underlying SS [276, 58] is of the threshold type scheme,

i.e., a dealer shares a secret s among n parties such that an adversary that corrupts no

more than a threshold t of the parties (called corruption threshold) does not learn anything

about s, while any t + 1 parties can efficiently recover it. MPC protocols built on top of

SS allow a set of distrusting parties P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly

compute (in a secure distributed manner) a function f(x1, x2, . . . , xn) while guaranteeing

the correctness of its evaluation and the privacy of inputs for honest parties. The study

of secure computation was initiated by [301] for two parties and [154] for three or more

parties. Constructing efficient MPC protocols withstanding stronger adversaries has been

an important problem in cryptography and witnessed significant progress since its inception,

e.g., [55, 83, 259, 183, 99, 98, 56, 241, 48, 49].

Enforcing a bound on adversary’s corruption limit is often criticized as being arbitrary for

protocols with long execution times, especially when considering the so-called “reactive"

functionalities that continuously run a control loop. Such reactive functionalities become

increasingly important, as MPC is adopted to resiliently implement privacy-sensitive control

functions in critical infrastructures such as power grids or command-and-control in dis-

tributed network monitoring and defense infrastructure. In those two cases, one should ex-

pect resourceful adversaries to continuously attack parties/servers involved in such an MPC,

118

and given enough time, vulnerabilities in underlying software will eventually be found.

An approach to deal with the ability of adversaries to eventually corrupt all parties is the

proactive security model [241]. This model introduced the notion of a mobile adversary

motivated by the persistent corruption of parties in an MPC protocol. A mobile adversary

can corrupt all parties in a distributed protocol during the execution of said protocol, but

with the following limitations: (i) only a constant fraction (in the threshold setting) of parties

can be corrupted during any round of the protocol; (ii) parties periodically get rebooted to

a clean initial state, guaranteeing a small fraction of corrupted parties, assuming that the

corruption rate is not more than the reboot rate1. The model also assumes that an adversary

cannot predict or reconstruct the randomness used by parties in any uncorrupted period of

time, as demarcated by rebooting.

In most (standard and proactive) MPC literature, the adversary’s corruption capability is

characterized by a threshold t (out of the n parties). More generally, however, the adversary’s

corruption capability could be specified by a so-called general adversary structure (GAS), i.e.,

a set of potentially corruptible subsets of parties. Even more generally, it can be specified by

a set of corruption scenarios, one of which the adversary can choose (secretly). For instance,

each scenario can specify a set of parties that can be passively corrupted and a subset that

can even be actively corrupted. Furthermore, such scenarios may change over time, thus

effectively rendering the GAS describing them to itself be dynamically evolving. There are

currently no proactive MPC protocols efficiently handling such dynamic general specifications

of adversaries, especially when the group of parties performing MPC is dynamic.

Our main objective is to address a setting that is as close as possible to the complex dynamic

reality of today’s distributed systems. We accomplish this by answering the following ques-

tion: Can we design a communication-efficient proactively secure MPC (PMPC) protocol for
1In our model, rebooting to a clean state includes global information, e.g., circuits to be computed via

MPC, identities of parties in the computation, and access to secure point-to-point channels and a broadcast
channel.

119

dynamic groups with security against dynamic general adversary structures?

Contributions: We answer the above question in the affirmative. One of our main contribu-

tions is to build a set of protocols to efficiently convert back and forth between two different

MPC schemes for GAS; this process is often called share conversion. Specifically, we consider

an MPC scheme based on additive secret sharing and another MPC scheme based on Mono-

tone Span Programs (MSP). The ability to efficiently and securely convert between these

MPCs enables us to construct the first communication-efficient structure-adaptive proactive

MPC (PMPC) protocol for dynamic GAS settings. We note that all existing proactive secret

sharing and PMPC protocols can only handle (threshold) adversary structures that describe

sets of parties with cardinality less than a fraction of the total number of parties.

Given the large number of “moving parts" and complexity of PMPC protocols and the

additional complexity for specifying them for GAS, we start from a standard (i.e., non-

proactive) MPC protocol with GAS and extend it to the proactive setting for static groups

and then dynamic groups. Note that MPC protocols typically extend secret sharing and

perform computations on secret shared inputs, we thus focus the discussion in this work on

MPC with the understanding that results also apply to secret sharing.

As part of the proactive protocols, we support the following three functionalities: refreshing

shares that reconstruct the same secret, recovering shares of parties who lost them or were

rebooted from a clear state, and redistributing new shares of the same secret to another

group of parties. This implies that we can also deal with dynamic sets of parties, where

parties can be eliminated and added (i.e., start with a recovery of their shares in a refresh

phase). Also, we can deal with settings where the entire set of parties changes, and existing

secret shared data has to be moved to a new set of parties with a possibly new specification

of the GAS they should protect against. This original set of parties then redistributes the

shared secrets to the new set (which may or may not have some overlap with the original

set).

120

Organization: First, we emphasize why we need secure computation for dynamic groups

and GAS. In Section 5.3, we overview the typical blueprint of PSS and PMPC and briefly dis-

cuss the roadblocks/challenges facing constructing communication-efficient structure-adaptive

PMPC protocols for these settings. Section 5.4 contains necessary preliminaries and speci-

fications of underlying network/communication models, adversary models, and some other

basic building blocks required in the rest of the chapter. We then describe the details of the

new protocols developed in this work and their security proofs in Section 5.5. Finally, we

compare our work to related work in Section 5.6 and conclude this chapter.

5.2 The Need for Secure Computation for Dynamic Groups

with Changing Specifications of the General Adver-

sary Structures

Large networked systems, such as public clouds, private clouds and companies’ computer

infrastructure, are managed for security and reliability by specialists who employ tools, mea-

surements, and reporting systems (including AI tools nowadays). These specialists maintain

such large systems while facing changes and failures. This methodology of managing large

systems is known as DevOps which is a set of practices that combines software development

(Dev) and information-technology operations (Ops) that aims to shorten the systems de-

velopment life cycle and provide continuous delivery with high software quality and system

reliability [215]. In particular (starting with Google), the profession of such people per-

forming these tasks is called Site Reliability Engineering (SRE). Some of the responsibilities

of SRE include: (1) Reducing organizational silos (separate sections of engineers to create

joint coherent responsibilities in large systems with various elements cooperating); (2) Ac-

cepting failure as normal (and reacting to failures such as security breaches, overloading of

121

subsystems, etc., managing system configuration with responsiveness and agility); (3) Im-

plementing gradual changes (long-term maintenance based on past issues and future needs

as they come or envisioned); (4) Leveraging tooling and automation (as the large system

needs to be controlled remotely, effectively this cannot be performed manually, and control

tools are needed); and (5) Measuring everything (constantly monitoring the needs and acting

according to the data while keeping statistics on the performance of systems).

A modern information security concept in managing large systems and defending against

threats is moving target defense (MTD), which is the method of controlling change across

multiple system dimensions to increase uncertainty and apparent complexity for attackers,

reduce their window of opportunity, and increase the costs of their probing and attack efforts.

MTD assumes that perfect security is unattainable and adds system changes as increased

challenges to the potential attacker.

One can view an SRE team getting information about and reacting to a system’s suspicious

behavior (at some parts of the network) and employing analysis that dictates configuration

change. One can also view the team as occasionally and proactively, for the sake of im-

plementing an MTD strategy, calling the network of servers to rearrange itself differently

than the current setting in the (general) scenarios we consider. This would correspond to

changing the specification of the general adversary structure being protected against. When

the team manages the configuration, they employ a secure and authenticated control and

command system over servers, they can notify servers to reconfigure and organize their dis-

tributed data according to some protocol and dictated parameters, and certain servers do

reboot from clean state. In our treatment, we assume that such a system is available in our

underlying secure computation system and we augment existing configuration tools with the

ability to manage and dynamically change the underlying “secret sharing" settings among

the network’s servers.

122

5.3 Overview of Proactive MPC and Design Roadblocks

5.3.1 Blueprint of Proactive Secret Sharing (PSS) and Proactive

MPC (PMPC)

PMPC protocols [241, 48] are usually constructed on top of (linear) secret sharing schemes,

and involve alternating compute and refresh (and reboot/reset) phases. The refresh phases

involve distributed re-randomization of the secret shares and deleting old ones to ensure

that a mobile adversary does not obtain enough shares (from the same phase) that can allow

them to violate secrecy of the shared inputs and intermediate compute results. A PMPC

protocol usually consists of the following six sub-protocols:

1. Share: allows a dealer (typically one of the parties) to share a secret s among n parties;

2. Reconstruct: allows parties to reconstruct a shared secret s using the shares they

collectively hold;

3. Refresh: is executed between two consecutive phases, w and w + 1, and generates

new shares for phase w+1 that encode the same secret as, but are independent of the

shares in phase w, and erases the old shares;

4. Recover: allows parties that lost their shares (due to rebooting/resetting or other

reasons) to obtain new shares encoding the same secret s with the help of other online

parties;

5. Add: allows parties holding shares of two secrets, s and t, to obtain shares encoding

the sum, s+ t; and

6. Multiply: allows parties holding shares of two secrets, s and t, to obtain shares en-

coding the product, s · t.

123

The overall operation of a standard PMPC protocol is as follows: First, each party uses the

Share sub-protocol to securely distribute its private inputs among the n parties (including

itself). The function to be computed on parties’ inputs is transformed into a public arithmetic

circuit. The circuit is composed of multiple layers (the depth of the circuit), where each

consists of a set of Add and Multiply gates computed via the corresponding sub-protocols

one layer at a time. At the end of each circuit layer2, shares of all nodes can be refreshed via

the Refresh protocol and old shares are deleted; refreshing and deleting old shares ensure

that different shares collected by the adversary at different phases can not be used together

to reconstruct the secret shared inputs and intermediate and final results of the computation.

In addition, during refresh phases, some nodes are randomly reset/rebooted, these then use

the Recover protocol to obtain new shares encoding the same shared secrets corresponding to

the current state of the PMPC computation, i.e., the output of the current circuit layer and

any shared values that will be needed in future layers. When the (secret shared) output of

the final layer of the computation is produced, parties use Reconstruct protocol to compute

the final output in the clear (or towards whichever nodes are supposed to obtain it).

To deal with dynamic groups, where parties can leave, or new parties can join the group,

the following additional sub-protocol Redistribute is required:

7. Redistribute: is executed between two consecutive protocol phases, w and w+1, and

allows parties in a new group (in phase w + 1) to obtain new shares that encode the

same secret as the shares in phase w.

In addition, we observe that the specifics of the secret sharing-based encoding underlying

the PMPC protocol largely dictate the communication-efficiency. This is an issue that is

often overlooked and that does not appear when one only considers the threshold adver-

sary structure as opposed to GAS. For example, if one considers an additive secret sharing
2Or after several layers, or at the end of one execution of a circuit of reactive functionalities executing in

a loop. In this work, we do not specify when parties should refresh shares, we just develop the protocol to
accomplish this.

124

scheme similar to the one used in the MPC protocol in [224], and if the adversary struc-

ture one should protect against is the threshold one, then there is an exponential blowup

in the share size compared to a monotone span program (MSP) based scheme. Thus, any

protocols that require transmitting such shares encoded additively, e.g., multiplication, re-

covery, or redistribution of shares, is going to be inefficient compared to an MSP-based

one. A communication-efficient protocol should thus be structure-adaptive when consider-

ing evolving GAS, this means that if the set of parties performing the MPC receives (from

an administrator) a request to adapt to a new GAS, for which it is known that another

(secret sharing) encoding scheme is more efficient, they need to convert. We stress that this

is different than the Redistribute protocol, which re-shares a shared secret but with the

same secret sharing scheme. We require a non-trivial additional protocol to perform such a

conversion:

8. Convert: is executed between two consecutive protocol phases, w and w+1, and allows

parties in a new group defined by a new GAS (in phase w + 1) to obtain new shares

under a different secret sharing scheme that encodes the same secret as the shares in

phase w (under the old secret sharing scheme and the old GAS).

5.3.2 Roadblocks Facing PMPC for Dynamic General Adversary

Structures and Dynamic Groups

Starting with appropriate SS and MPC protocols for GAS, the following is to be addressed

to develop a communication-efficient PMPC scheme for dynamic groups and GAS:

1. Design convert protocols to be structure-adaptive: Given that we are considering set-

tings with changing GAS, and given that some (secret sharing) encoding schemes un-

derlying MPC results in different communication complexities, we design new efficient

protocols (secure against GAS) to convert between different secret-sharing schemes.

125

We consider converting from an additive sharing to an MSP-based sharing, and in the

opposite direction. Such conversion protocols may be of independent interest.

2. Design refresh and recover protocols to “proactivize" the underlying SS scheme: This

enables parties to re-randomize the shares in a secure, distributed manner. To enable

rebooted/reset parties to recover their shares and not to lose shared inputs or interme-

diate results of the computation over time, rebooted parties have to be able to recover

shares with the help of the rest of the parties.

3. Design a redistribute protocol for settings with dynamic groups: In such settings, parties

can leave and newly join the group performing the computation, which results in the

GAS, as well as the number of parties in the group, changing over time. One has to

redistribute new shares to parties in the new group which encode the same secret as the

shares in the previous group, but also needs to prevent departing parties from using

their shares to obtain any information about the secret.

4. Efficient communication in all protocols: All the involved protocols should be efficient,

e.g., ideally have a linear dependence on the specification of adversary structures and

the number of parties, or at least (a low) polynomial. We note that in this work, we

do not attempt to minimize the descriptions of the adversary structures, i.e., the size

of specifications of some structures may be exponential in the number of parties n.

5.4 Preliminaries

This section provides the preliminaries required for the rest of this chapter. We first provide

terminology used in proactive security and types of security, communication, and adversary

models in MPC literature. Then we discuss the underlying models and security guarantees

we consider in our work and review the information checking and dispute control schemes

used in the MPC protocols [170, 204] on which we build our protocols.

126

5.4.1 Terms in Proactive Security

Let P = {P1, ..., Pn} be a set of n participating parties to compute a function f over a

finite field F. We adopt the previous formalization of the proactive security model from

[30, 48, 134]. Briefly speaking, a proactive protocol proceeds in phases, and a phase consists

of a number of consecutive rounds. Two types of phases, refresh and operational, alternate,

where a refresh phase re-randomizes the shares, and an operational phase performs the

computations. Finally, a stage is a larger notion than a phase, consisting of three phases:

an opening refresh phase, an operational phase, and a closing refresh phase – i.e., each

refresh phase is not only the closing of one stage, but also the opening of another stage.

If an adversary corrupts a party during an operational phase, the adversary is given the

view of the party starting from its state at the beginning of the current operational phase.

Otherwise, if the corruption is made during a refresh phase, the adversary gets the view in

both stages, u and u+ 1, that include the refresh phase as the closing and the opening and

the party is assumed to be corrupted for the stage u+ 1. Detailed definitions are presented

below.

Phases The rounds of a proactive protocol are grouped into phases φ1,φ2, . . . : a phase

φ consists of a sequence of consecutive rounds, and every round belongs to exactly one

phase. There are two types of phases: refresh phases and operation phases. The phases

alternate between refresh and operation phases; the first and the last phase of the protocol

are both operation phases. Each refresh phase is furthermore subdivided into a closing period

consisting of the first k rounds of the phase, followed by an opening period consisting of the

final ℓ− k rounds of the phase, where ℓ is the total number of rounds in the phase.

In non-reactive MPC, the number of operation phases can be thought to correspond to the

depth of the circuit to be computed in the MPC. Intuitively, each operation phase serves to

compute a layer of the circuit to be computed, and each refresh phase serves to re-randomize

127

the data held by parties such that combining the data of corrupt parties across different

phases will not be helpful to an adversary.

Stages A stage σ of the protocol consists of an opening period of a refresh phase, followed

by the subsequent operation phase, followed by the closing period of the subsequent refresh

phase. In the case of the first and last stages of a protocol, there is an exception to the

alternating “refresh-operation-refresh” format: the first stage starts with the first operation

phase and the last stage ends with the last operation phase. Thus, a stage spans (but does

not cover) three consecutive phases, and the number of stages in a protocol is equal to its

number of operation phases. (∵ For a protocol Π, if the number of phases in Π is #(φ) =

m, then the number of operation phases in Π is #(op) = ⌈m
2
⌉ and the number of stages in

Π is #(σ) = m−3
2

+2 = m+1
2

. Since m = 2m′ +1 for some m′ ∈ N, #(op) = #(σ) = m′ +1.)

Stage Changes The adversary A can trigger a new stage at any point during an operation

phase by sending a special message newstage to all parties. Upon receiving the newstage

message, the parties initiate a refresh phase.

Corruptions If a party Pi is corrupted by the adversary A during an operation phase of

a stage σj, then A learns the view of Pi starting from his state at the beginning of stage

σj. If the corruption is made during a refresh phase between consecutive stages σj and σj+1,

then A learns Pi’s view starting from the beginning of stage σj. Moreover, in the case of

corruption during a refresh phase, Pi is considered corrupt in both stages σj and σj+1.

Finally, if Pi is corrupted during the closing period of a refresh phase in stage σj, A may

decide to decorrupt him. In this case, Pi is considered to be no longer corrupted in stage

σj+1 (unless A corrupts him again before the end of the next closing period). A de-corrupted

party Pi immediately rejoins the protocol as an honest party: if Pi was passively corrupted,

then it rejoins with the correct state according to the protocol up to this point; or if Pi was

actively corrupted, then it is restored to a clean default state (which may be a function of the

128

current round). Note that in restoring a party to the default state, its randomness tapes are

overwritten with fresh randomness: this is important since, otherwise, any once-corrupted

party would be deterministic to the adversary.

Erasing State In our model, parties erase their internal state (i.e., the content of their

tapes) between phases. The capability of erasing state is necessary in the proactive model:

if an adversary could learn all previous states of a party upon corruption, then achieving

security would be impossible, since throughout a protocol execution a proactive adversary

would be able to learn the state of all parties in certain rounds.

5.4.2 Adversary Models

An adversary’s capability can be described by a corruption type and an adversary structure.

The adversary structure, denoted by ∆ (details in Section 5.4.4), is a set of subsets of parties

that are potentially corruptible by an adversary. i.e., The adversary can choose a set of

parties in ∆ and corrupt all the parties listed in the set. The corruption types are classified

as passive corruption, active corruption, and both, where each type means as follows:

Passive Corruption Passive adversaries (also called honest-but-curious (HBC) adversaries)

can eavesdrop on all the views of corrupted parties, whereas they cannot forge the pro-

cess that parties should follow. i.e., The corrupted parties should follow the protocol

as described.

Active Corruption Active adversaries can take full control of the corrupted parties and

make them behave arbitrarily from the protocol. i.e., They can forge the messages of

corrupted parties as well as eavesdrop on all of their views.

From the MPC literature, the adversaries’ capabilities can be categorized as follows.

129

Threshold Adversary Models In the classic t-threshold MPC, adversaries are assumed

to be able to either passively or actively corrupt up to t parties. i.e., The adversary

structure in the t-threshold model is the set of all subsets of P which size is at most t.

General Adversary Models General adversary structures (GAS) extend this threshold

setting to non-threshold models. The adversary can actively corrupt a subset of parties

and passively corrupt another subset of parties. Sometimes, it is classified as general

adversary models and mixed general adversary models as follows: The former has

adversaries who can either passively corrupt or actively corrupt the parties, while the

latter has adversaries who can do both passive corruption and active corruption. In

this work, we collectively describe both models as general adversary models.

This work considers GAS, which is more general and flexible compared to the threshold

models and applicable to various cases, e.g., when a special combination of parties is needed

for computation, or when some of the parties are authorized, et cetera.

5.4.3 Types of Security and Communication Models

MPC literature distinguishes between two types of security, perfect (or information-theoretic)

security and cryptographic security. Protocols with information-theoretic security can with-

stand an adversary with unrestricted computing power, while protocols with cryptographic

security restrict an adversary’s computing power and assume certain assumptions about the

hardness of some computational problems, e.g., factoring large integers or computing dis-

crete logarithms. In this work, we consider protocols with unconditional security for both

passive and active adversaries.

For communication models, the literature considers either synchronous or asynchronous mod-

els. In asynchronous communication models, there are no guarantees about data transmission

130

between sender and receiver. In contrast, synchronous communication models guarantee that

any pair of parties can communicate over a bilateral secure channel. That is, when a sender

sends data to a receiver, the receiver is guaranteed to get data in certain times. The syn-

chronous communication models sometimes include a broadcast channel which guarantees

the consistency of received values. We consider a synchronous network of n parties connected

by an authenticated broadcast channel and point-to-point channels. Note that without this

setting, we do not guarantee the information-theoretic security.

5.4.4 Definitions in General Adversary Structures

Let 2P denote the set of all the subsets of P . A subset of 2P is called qualified if parties in the

subset can reconstruct/access the secret, while a subset of 2P that parties in the set obtain

no information about the secret is called ignorant. Every subset of P is either qualified or

ignorant. The secrecy condition is stronger: even if any ignorant set of parties holds any

kind of partial information about the shared value, they must not obtain any additional

information about the shared value.

The access structure Γ is the set of all qualified subsets of P and the secrecy structure Σ is

the set of all ignorant subsets of P . Naturally, Γ includes all supersets of each element in it

(so often called monotone access structure), while Σ includes all subsets of each element in

it. We call such minimum or maximum sets as basis structure and denote it with 󰁨·. i.e., the

basis access structure 󰁨Γ is the set of all minimal subsets in Γ, and the basis secrecy structure

󰁨Σ is the set of all maximal subsets in Σ.

As a generalization of specifying threshold adversaries’ capabilities by a corruption type

(passive or active) and a threshold t, an adversary can be described by a corruption type

and an adversary structure ∆, where ∆ ⊆ Σ is a set of subsets of parties that can be

potentially corrupted. Note that the adversary structure in t-threshold SS is the set of all

131

subsets of P of at most t parties and GAS extends this to non-threshold models. A GAS

includes all of these structures, (Γ,Σ,∆), and the adversary is specified by Σ and ∆. The

(Σ,∆)-adversary denotes the adversary that can passively corrupt some parties in a set A

and actively corrupt some parties in a set B, where A ∈ ∆ and (A ∪B) ∈ Σ.

5.4.5 Information Checking (IC) and Dispute Control

Information checking (IC) is used in some MPC literature to prevent active adversaries from

announcing wrong values through corrupted parties. It is a three-party protocol among a

sender Ps, a receiver Pr, and a verifier Pv. When Ps sends a message m to Pr, Ps also encloses

an authentication tag to Pr while giving a verification tag to Pv through private channels.

Whenever any disagreement about what Ps sent to Pr occurs, Pk acts as an objective third

party and verifies the authenticity of m to Pr. The MPC protocols in this work use different

variants of IC, but the common idea is to check if all the points that Pr and Pv have lie on

the polynomial of degree 1. Note that this can be naturally extended to the polynomial of

degree l, where l is the number of secrets in a batch of sharing, as in [204]. An IC scheme

consists of two protocols, called Authenticate and Verify, where Authenticate generates

valid tags for participating parties with respect to the input value, and Verify verifies the

input value with the input tags.

MPC protocols also use the dispute control to deal with the detected cheaters. Each party

Pi locally maintains two lists: a list Di of parties that Pi distrusts, and the list D of pairs

of parties in dispute with each other. These lists are empty when the protocol begins, and

whenever any dispute arises between two parties Pi and Pj (for example, Pi insists that Pj

is lying), the pair {Pi, Pj} is added to the dispute list D. Since all disputes are broadcasted,

each party Pi has the same list D while maintaining its own list Di. After Pj is added to Di,

Pi behaves in all future invocations of the protocol for authentication and verification with

132

Pj as if it fails, whether this is the case or not. Some MPC schemes also maintain a list C of

parties that everyone agrees are corrupted.

5.5 Proactivizing MPC Protocols for Dynamic General

Adversary Structure and Dynamic Groups

As mentioned in Section 5.3, our PMPC protocols build on two MPC protocols with different

underlying secret sharing schemes. One is an MPC protocol [170] based on additive secret

sharing, and the other [204] is based on a monotone span program (MSP) with multiplication.

For convenience, in the rest of the chapter, we call the former as additive MPC and the latter

as MSP-based MPC. Both guarantee unconditional security against active Q2 adversaries.

Q2 means no two sets in ∆ cover the entire set of parties; i.e., for ∀A,B ∈ ∆, P ∕⊆ A ∪ B.

Table 5.1 summarizes the notations we use in this chapter.

Notation Explanation
P = {P1, ..., Pn} a set of participating parties in a protocol

(Γ,Σ,∆) the access/secrecy/adversary structures in a GAS
S a sharing specification describing how shares are distributed

w,w + 1 a phase (number)
[s]w a sharing of a secret s in phase w, i.e., a set of shares of s
F a finite field
D the (public) list of pairs of parties who are in dispute with each other
Di a (local) list of parties that Pi distrusts
C the (public) list of parties that everyone agrees to their corruptness
M a matrix from a MSP 󰁦M = (F,M, ρ, r)3
a a vector (with bold texts)
Mi a matrix of rows of M assigned to Pi according to an indexing function
MA a matrix of rows of M assigned to all Pi ∈ A according to an indexing function
〈 , 〉 the inner product
A \B the set difference of A and B, i.e., the set of elements in A but not in B

a
$←− F randomly chosen element a from the finite field F

Table 5.1: Notations used in Chapter 5

This section first presents the additive PMPC and MSP-based PMPC schemes with our new

additional protocols to “proactivize" each MPC scheme. We formalize the base protocols of
3Detailed definitions of components of MSP are provided in Section 5.5.4.

133

[170] and [204] in Sections 5.5.1 and 5.5.3, and provide our new protocols in Sections 5.5.2 and

5.5.4. For proactivizing an MPC scheme, we develop two new main protocols, called Refresh

and Recover, and add one more protocol, called Redistribute, for dynamic groups. The

resulting PMPC is composed of 6 protocols, Share, Reconstruct, Add, Multiply, Refresh,

and Recover, or 7 in the dynamic groups case when including Redistribute. For clarifica-

tion, we denote each protocol with superscripts, A or M, for additive PMPC and MSP-based

PMPC, respectively. Note that the complexity of additive PMPC protocols depends on |󰁨Σ|

and n, while that of MSP-based PMPC protocols depends on d and n, where n is the num-

ber of participating parties, |󰁨Σ| is the size of the set of all maximal subsets in the secrecy

structure, and d is the number of rows of the MSP matrix.

Then, in Section 5.5.5, we develop share conversion protocols between those schemes to

enable one to adapt/change the utilized protocols according to the dynamic GAS. As we

mentioned in Section 5.2, this is necessary and important because one can become more

communication-efficient than the other depending on the circumstances. For instance, con-

sidering the upper bound on d is about |󰁨Σ|2.7 [204], the MSP-based MPC is more expensive

than the additive MPC, but d can also be low as n = |P| in some cases, which makes the

MSP-based MPC more communication-efficient.

5.5.1 Protocols for Additive MPC Scheme [170]

We build our additive PMPC protocol on top of Hirt and Tschudi’s unconditional MPC [170]

based on additive secret sharing.

Assuming n participating parties P = {P1, ..., Pn}, parties want to share a sharing of a secret

s according to the sharing specification S. Any ∆-private sharing specification, which means

for every Z ∈ ∆, ∃S ∈ S such that S ∪ Z = ∅, can be used to securely share a secret, and

we adopt one from [224], S = (S1, ..., Sk), where Si = P \ Ti for 󰁨Σ = {T1, ..., Tk}, the set of

134

all maximal subsets in Σ.

Information Checking

In [170], they use an IC scheme for dealing with active adversaries, consisting of AuthenticateA

and VerifyA. AuthenticateA(Ps, Pr, Pv,m) is for a sender Ps to distribute the authen-

tication tag of m to a receiver Pr and the verification tag of m to a verifier Pv, and

VerifyA(Ps, Pr, Pv,m
′, tags) is for Pj to request Pv to verify the value m′ with an authenti-

cation tag and a verification tag.

For any pair of two parties (Ps, Pv), it is assumed that a fixed secret value, denoted by

αs,v ∈ F \ {0, 1}, is known by the parties. A vector (s, y, z,α) is 1-consistent if there exists

a polynomial f of degree 1 over F such that f(0) = s, f(1) = y, f(α) = z. And a value

s is called (Ps, Pr, Pv)-authenticated, if Pr knows s and some authentication tag y and Pv

knows a verification tag z such that (s, y, z,αs,v) is 1-consistent. The vector (y, z,αs,v)

is denoted by As,r,v(s). The protocol AuthenticateA allows Pi to securely (Pi, Pj, Pk)-

authenticate the value s. If Pk is honest and s is known to the honest parties {Pi, Pj},

then AuthenticateA(Pi, Pj, Pk, s) either securely (Pi, Pj, Pk)-authenticate s or aborts with

error probability at most 1/|F|.

[170] Protocol AuthenticateA(Pi, Pj, Pk, w, s) −→ (y, z) or ⊥

Input: Pi and Pj holding s, Pk ∈ P, a phase w, and a value s
Output: a pair of authentication tag y and verification tag z, or aborted

1. Pi randomly chooses (y, z) ∈ F2 and (s′, y′, z′) ∈ F3 such that (s, y, z,αi,k) and (s′, y′, z′,αi,k)
are 1-consistent, and sends (s′, y, y′) to Pj and (z, z′) to Pk.

2. Pk broadcasts random value r ∈ F.
3. Pi broadcasts s′′ := rs+ s′ and y′′ := ry + y′.
4. Pj checks if the forwarded values s′′, y′′ are correct by comparing s′′ =? rs+s′ and y′′ =? ry+y′

and broadcasts OK/NOK. If NOK is broadcasted, then Pj adds Pi to the list Dj , and the

135

protocol is aborted, which outputs ⊥.
5. Pk checks if (s′′, y′′, rz+z′,αi,k) is 1-consistent. If it is, then Pk sends OK to Pj . Otherwise, Pk

sends (αi,k, z) to Pj and adds Pi to the list Dk. When Pj receives (αi,k, z), Pj adjusts y such
that (s, y, z,αi,k) is 1-consistent.

6. Pj outputs y as the authentication tag and Pk outputs z as the verification tag.

Assuming that Pk knows a candidate s′ or a (Pi, Pj, Pk)-authenticates value s and Pj wants

to prove the authenticity of s′, VerifyA allows the parties to authenticate s′ with their tags.

If Pk and Pj are honest parties knowing s′ = s, Pk will output s in VerifyA, or output ⊥

otherwise, except with error probability at most 1/(F− 2).

[170] Protocol VerifyA(Pi, Pj, Pk, w, s
′, Ai,j,k(s)) −→ s or ⊥

Input: a candidate value s′ known to Pj and Pk for a (Pi, Pj , Pk)-authenticated value s,
a phase w, and the authentication for s, Ai,j,k(s) = (y, z,αi,k), where Pj has the authen-
tication tag y, and Pk has the verification tag z

Output: s or ⊥
1. Pj sends y to Pk.
2. Pk checks if (s′, y, z,αi,k) is 1-consistent and outputs s′ if it is.

Otherwise, Pk adds Pj to the list Dk and outputs ⊥.

As the parties use local dispute control, even though the adversary has at most n2 attempts

to cheat, the total error probability of arbitrarily many instances of each protocol is at most

O(n2/|F|), which is independent of secrecy structure.

Secret Sharing

Secret sharing consists of Share and Reconstruct protocols, where Share generates a shar-

ing of an input secret and Reconstruct collectively reconstructs the secret from the input

sharing. i.e., A secret value s is shared among P through ShareA and any qualified subgroup

136

B of P can reconstruct the secret by ReconstructA.

In ShareA protocol, a dealing party randomly chooses k−1 values in F, sets the k-th value as

s−
󰁓k−1

i=1 si, and sends each i-th value to every player in Si. Then multiple AuthenticateA

are invoked to generate the IC tags. Note that the sharing of s is linear and does not leak

any information about s without the whole set of sharing.

[170] Protocol ShareA(w, s,P) −→ [s]w

Input: a phase w, a secret value s, and a set P of parties who receives the shares
Output: k shares of s in phase w

1. A dealing party PD chooses k − 1 random integers, s1, ..., sk−1
$←− F, and sets the k-th share as

sk := s−
󰁓k−1

i=1 si.
2. For all i ∈ {1, ..., k}, do the following:
3. PD sends si to every party in Si.
4. ∀Pa, Pb ∈ Si and ∀Pc ∈ P invoke AuthenticateA(Pa, Pb, Pc, si). If any result was aborted,

PD broadcasts si, the parties in Si replace their share, and ∀Pa, Pb ∈ Si and ∀Pc ∈ P set the
forwarded value si as the authentication and verification tags.

5. The parties in P collectively output [s].

On the other hand, In ReconstructA, parties in B verify the forwarded values of each share

from the others using VerifyA and reconstruct the secret value by locally adding all the

verified share values. The value for sq forwarded from Pj to Pk is denoted by s
(j,k)
q . It

is shown in [170] that the following protocol securely reconstructs s to the parties in B if

Q2(S,∆) is met. i.e., For ∀Z1, Z2 ∈ ∆, ∀S ∈ S, S ∕⊆ Z1 ∪ Z2.

[170] Protocol ReconstructA(w, [s], B) −→ s or ⊥

Input: a phase w, a sharing of s (collectively), and a set B of participants in reconstruction

137

Output: s or aborted
1. For all q ∈ {1, ..., k}, do the following:
2. Every party in Sq sends sq to each party in B.
3. For all Pj ∈ Sq and Pk ∈ B,

4. VerifyA(Pi, Pj , Pk, w, s
(j,k)
q , Ai,j,k(sq)) is invoked for ∀Pi ∈ Sq. If Pk outputs s

(j,k)
q in each

invocation, Pk accepts it as value for sq.
5. Each Pk ∈ B outputs ⊥ if he never accepted in Step 4.
6. Each party in B locally adds up the accepted shares and outputs the sum.

Addition and Multiplication

Assuming the shares for the values s and t are shared among P , adding s and t can be done

naturally without any interaction among n parties. Due to the linearity, each party can

locally add two shares and set it as the new share for s+ t. i.e., [s+ t] = {(s+ t)1, ..., (s+ t)k}

where (s+ t)i; = si + ti.

[170] Protocol AddA(w, [s], [t]) −→ [s+ t]

Input: phase w, shares of s, and shares of t
Output: new shares of s+ t

Precondition: Two values s =
󰁓k

i=1 si and t =
󰁓k

i=1 ti are shared
Postcondition: s+ t is shared independently

1. Each party Ph locally adds each share of s to the share of t and keep the result as a share of
s+ t. i.e., (s+ t)i; = si + ti for each i ∈ {i ∈ {1, ..., k}|Ph ∈ Si}.

On the other hand, it is quite tricky and requires a lot of communication to securely form

the share of (s ∗ t) among n parties, as s · t =
󰁓k

i=1

󰁓k
j=1(si · ti). To securely form the

share of (s ∗ t) among n parties, where s and t are pre-shared through ShareA protocol,

participating parties need to perform the protocol MultiplyA below. Each party computes

the local product (sp ∗ sq) for all sp and sq that the party holds, and shares it. Then, they

138

perform a probabilistic check in each loop to identify corrupted parties. For privacy, the

multiplication of random values is used instead of actual multiplying values.

[170] Protocol MultiplyA(w, [x], [y]) −→ [xy]

Input: a phase w, a sharing of x, and a sharing of y, collectively
Output: a sharing of xy

1. Set M = ∅ and invoke RandomTripleA(w,M).
2. If the protocol outputs M ′, then repeat Step 1 with M ′. Otherwise, use the output as random

multiplication triple ([a], [b], [c]) such that c = ab.
3. Each party locally computes [dx] := [x]− [a] and [dy] := [y]− [b].
4. parties invoke ReconstructA(w, [dx],P) and ReconstructA(w, [dy],P) to get dx and dy, and

locally compute dxdy + dx[b] + dy[a] + [c] and set it as the share of xy.

The protocol MultiplyA uses RandomTripleA as a subprotocol to obtain a random multi-

plication triple ([a], [b], [c]) such that c = ab, and compute the sharing of xy by computing

xy = ((x−a)+a)((y−b)+b) = (dx+a)(dy+b) = dxdy+dxb+dya+ab = dxdy+dxb+dya+c.

In RandomTripleA, IZ(i) denotes the set of pairs of shares assigned to Pi, i.e., IZ(i) :=

{(p, q)|Pi = minP(P ∈ (Sp ∩ Sq) \ Z)}, for some Z ∈ ∆.

[170] Protocol RandomTripleA(w,M) −→ ([a], [b], [c]) or M ′

Input: a phase w, and a set of (identified) malicious parties M
Output: a random multiplication triple ([a], [b], [c]) or a set M ′ such that M ⊊ M ′

1. Parties generate random shared values [a], [b], [b′], [r] by summing up shared random values (one
from each party) for each value.

2. BasicMultiplyA([a], [b],M) is invoked to compute (([c1], ..., [cn]), [c]) and BasicMultiplyA([a], [b′],M)

139

is invoked to compute (([c′1], ..., [c′n]), [c′]).
3. ReconstructA(w, [r],P) is invoked and each party gets the value r.
4. Each party locally computes [e] := r[b] + [b′].
5. ReconstructA(w, [e],P) is invoked and each party gets the value e.
6. Each party locally computes [d] := e[a]− r[c]− [c′].
7. ReconstructA(w, [d],P) is invoked and each party gets the value d.
8. If d = 0, each party collectively outputs ([a], [b], [c]). Otherwise, reconstruct the sharings

[a], [b], [b′], [c1], ..., [cn], [c
′
1], ..., [c

′
n] and output M ′ := M ∪ {Pi : rci + c′i ∕=

󰁓
(p,q)∈I(i) r(apbq) +

(apb
′
q)}.

The protocol BasicMultiplyA in RandomTripleA computes the sharing of c = ab, where

the inputs are the sharings of two values, [a] and [b] and a set of malicious parties M . It

also outputs the sharing of the shares ci’s of c such that [c] =
󰁓n

i=1[ci], if no more actively

corrupted parties exist in P \M as below.

[170] Protocol BasicMultiplyA(w, [a], [b],M) −→ ([c1], ..., [cn]), [c]) or ⊥

Input: a phase w, sharings of a and b, and a set of (identified) malicious parties M
Output: ([c1], ..., [cn]) and [c] =

󰁓n
i=1[ci], if no party in P \M actively cheats

1. For all Sq such that Sq ∩M ∕= ∅,
2. Every party in Sq sends their holding values for aq and bq to each other.

3. For all Pj , Pk ∈ Sq, VerifyA(Pi, Pj , Pk, w, a
(j,k)
q , Ai,j,k(aq)) and VerifyA(Pi, Pj , Pk, w, b

(j,k)
q , Ai,j,k(bq))

are invoked for ∀Pi ∈ Sq. If Pk outputs a
(j,k)
q (or b

(j,k)
q , respectively) in each invocation, Pk

accepts it as value for aq (or bq).If all output ⊥, the protocol is aborted.
4. a) Each party Pi ∈ P \M locally computes and shares ci =

󰁓
(p,q)∈I(i) apbq, where I(i) :=

{p, q)|Pi = minP (P ∈ Sp ∩ Sq)}.
b) Each party Pi ∈ M sets the sharing of ci as (ci, 0, ..., 0) where ci =

󰁓
(p,q)∈I(i) apbq, and

∀Pj , Pk set corresponding tags as yj = [ci]j , zj = [ci]j , for j = 1, ..., k.
i.e., The tags are (ci, ci) only for [ci]1 and the rest is (0, 0) for all [ci]j .

5. Parties in P collectively output ([c1], ..., [cn]) and [c] =
󰁓n

i=1[ci].

140

5.5.2 Additive PMPC Scheme for Dynamic GAS and Dynamic Groups

To make this additive MPC scheme to be a PMPC that can also handle dynamic groups, we

build three protocols: RefreshA, RecoverA, and RedistributeA.

RefreshA protocol periodically refreshes or re-randomizes the shares in a distributed manner.

This can be done naturally by every party’s sharing zero and locally adding all the received

shares to the current holding share. The execution of this protocol does not reveal any

additional information about the secret, as only the shares of zeros are communicated.

Protocol RefreshA(w, [s]) −→ [s]w+1

Input: a phase w and a sharing of s
Output: new sharing of s in phase w + 1, [s]w+1

1. Every party Pi in P invokes ShareA(w, 0,P). (in parallel)
2. Each party adds all shares received in Step 1 to shares of s and sets the result as the new share

of s in phase w + 1.
3. parties in P collectively output [s]w+1.

Theorem 5.1. (Correctness and Secrecy of RefreshA) When RefreshA terminates, all par-

ties receive new shares encoding the same secret as old shares with error probability n4|S|/|F|,

and cannot obtain any information about the secret by the protocol execution. It requires

|S|(7n4 + n2) log |F| bits of communication and broadcasts |S|((3n4 + n) log |F|+ n3) bits.

Proof. Because of the linearity of the authentication, each party can locally set up the

corresponding authentication tag y and verification tag z. Let ri,q be the q-th share of zero

from Pi. Then, for [s]wq := (sq, Ai,j,k(sq)), the new q-th share of s in phase w + 1 is [s]w+1
q =

(s′q, Ai,j,k(s
′
q)), where s′q = sq+

󰁓n
i=1 ri,q and Ai,j,k(s

′
q) = (ysq+

󰁓n
i=1 yri,q , zsq+

󰁓n
i=1 zri,q ,αi,k).

Also, since every party shares the sharing of zero, the new sharing of s also reconstructs the

141

same value s as follows:

h󰁛

q=1

s′q =
h󰁛

q=1

(sq +
n󰁛

i=1

ri,q) =
h󰁛

q=1

sq +
h󰁛

q=1

n󰁛

i=1

ri,q =
h󰁛

q=1

sq +
n󰁛

i=1

h󰁛

q=1

ri,q = s+
n󰁛

i=1

0 = s

In addition, each q-th share is verified with Ai,j,k(s
′
q) = (y′, z′,αi,k) because (s′q, y

′, z′,αi,k) is

1-consistent for ∀Pi, Pj ∈ Sq and ∀Pk ∈ B for ∀B ∈ Γ. i.e.,

(f + F)(0) = f(0) + F (0) = sq +
h󰁛

q=1

ri,q = s′q,

(f + F)(1) = f(1) + F (1) = ysq +
n󰁛

i=1

yri,q = y′, and

(f + F)(αi,k) = f(αi,k) + F (αi,k) = zsq +
n󰁛

i=1

zri,q = z′

As every party in P invokes ShareA, they communicate n ∗ Cost(ShareA) bits.

For RecoverA protocol, we construct two sub-protocols, ShareRandomA and RobustReshareA.

ShareRandomA generates a sharing of a random element r in F and parties in the same Si

receive the i-th share of r for each i, but the value of r is not revealed to anyone. Since each

iteration requires O(|Sq|2 log |F|) broadcast bits for each q and each |Sq| is less than n, it

broadcasts at most O(|S|n2 log |F|) bits among parties and no communications is required.

Protocol ShareRandomA(w,P) −→ [r]w

Input: a phase w and a set of participating parties P

142

Output: a sharing [r] of a random number r, shared among P
1. For each Sq ∈ S = {S1, ..., Sk} :
2. Each party Pi ∈ Sq generates a random number rqi and broadcast it among all parties in Sq.
3. Each Pi ∈ Sq locally adds up all values received in Step 2 and sets it as rq.

4. The parties in P collectively output [r], where r =
󰁓k

q=1 rq.

RobustReshareA allows parties in PR ∈ Γ to receive a sharing of an input random number

r (with the value of r) from the parties in PS, where everyone in PS knows the value of r.

Distributing one sharing of r is non-trivial in the active adversary model because we cannot

trust one party who might be corrupted. Let Honest := {P \ A | A ∈ ∆}, where ∆ is the

set of all maximal subsets in ∆. Since the adversary can corrupt one set of parties in ∆ in

each phase, there exists at least one set in Honest which includes the honest parties only in

that phase. The main idea is to find such a set by repeating to share and reconstruct for

each party’s holding value for r. At the end of the protocol, parties in PR can set a sharing

of r and also know the value of the random number r.

Protocol RobustReshareA(w, r,PS,PR) −→ [r]w

Input: a phase w, a random number r, a set PS of parties sending r, and a set PR of receiving
parties, where PR ∈ Γ

Output: a sharing of r in phase w, [r]w

1. Every party in PS executes ShareA(w, r,PR) according to the sharing specification SR on PR.
Let [r](i) be the sharing of r that Pki ∈ PS shares.

2. Parties in PR invoke ReconstructA([r](i),PR), for each i = 1, 2, ..., |PS |.
Let r(i) be the output of each invocation.

3. Each party chooses a set H ∈ Honest such that ∃v, v = r(i) for all Pki ∈ H. If multiple such
sets exist, choose the minimal set including Pi with lower id, i.

4. Output the sharing of r from the party Pi in H with the minimum id, i.
i.e. Output [r] ← [r](min), where min := minPi∈H{i}.

The security of RobustReshareA relies on the security of ShareA and ReconstructA, as the

143

rest is executed locally. For complexities, as both protocols ShareA and ReconstructA are

invoked for each party in PS and |Honest| = |∆| ≤ |Σ| = |S|, the total communication and

broadcast complexities of RobustReshareA is O(|S|n3+|PS||S|n3+|Honest|) = O(|PS||S|n3).

The total analysis of all additive PMPC protocols is shown in Table 5.2, with PS denoting

a set of sending parties, which is less than n.

Using these, RecoverA allows rebooted/reset parties to obtain new shares for the same secret

s with the assistance of other parties. Let R ⊂ P be a set of parties who need to recover their

shares. Note that P \R must still be in Γ to output a new sharing of s because, otherwise, it

contradicts the definition of the access structure. It needs the condition Q1(Sq,Z), which is

already a necessary condition for the protocol ReconstructA. The main idea is as follows: a

sharing of unknown random value r is generated among entire parties in P by ShareRandomA

and the parties in P \ R holding the shares of s re-share the value r′ = r + s and a sharing

of r′ to entire parties. Then, all parties, including R, can compute the new shares of s by

computing [r′]− [r].

Protocol RecoverA(w, [s], R) −→ [s]w+1 or ⊥

Input: a phase w, a sharing of s, and a set of rebooted parties R
Output: new sharing of s in phase w + 1, [s]w+1, or aborted

1. Parties in P invoke ShareRandomA(w,P) to generate a sharing [r] of r, where r is a random in F.
2. Each party in P \R invokes AddA(w, [r], [s]) to share the sharing of r + s.
3. ReconstructA(w, [r + s],P \R) is invoked and every party in P \R gets r′ := r + s.
4. RobustReshareA(w, r′,P \R,P) is invoked, and each party in P gets [r′].
5. Each party computes [r′]−[r] by executing AddA(w, [r′],−[r]), where −[r] is the additive inverses

of the shares in F.

Theorem 5.2. (Correctness and Secrecy of RecoverA) If S and Z satisfy Q1(S,Z), the

protocol RecoverA allows a set ∀R ∈ ∆ of rebooted parties to recover their shares encoding the

same secret with error probability O((n−|R|)|S|n3/|F|+(n−|R|)|S|n2/(|F|−2)), and does not

144

reveal any additional information about the secret. It communicates O((n− |R|)|S|n3 log |F|)

bits and broadcasts O((n− |R|)|S|n3 log |F|) bits.

Proof. Correctness: Since all parties in P hold both sharings of r and r′ and by the lin-

earity of additive sharing, each party’s locally computing value is [r′]− [r] = [r+ s] + [−r] =

[(r + s) − r] = [s]. As ReconstructA terminates with error probability n2|S|/(|F| − 2) and

RobustReshareA has error probability O(|PS||S|n3/|F| + |PS||S|n2/(|F| − 2)), the protocol

RecoverA successfully ends with error probability O((n− |R|)|S|n3/|F|+(n− |R|)|S|n2/(|F|−

2)). Secrecy: As each party locally adds its holding share of r and the share of s without

reconstructing r or s, all they can see is each sharing of r′ and the reconstructed value r′.

Since r is a random shared element in F, r′ = r+s is also random in F, and it does not reveal

any information about s without reconstructing r. Each party can sync the sharing of r′ by

RobustReshareA. Communication: Recall that the protocol ShareRandomA communicates

|S|n values in F and also broadcasts |S|n values in F, the protocol RobustReshareA commu-

nicates/broadcasts O(|PS||S|n3) values in F, and the protocol ReconstructA communicates

|S|(n3+n2) values in F without broadcasting. Therefore, the total communication complex-

ity is |S|n2 + |S|(n3 + n2) + O((n− |R|)|S|n3) = O((n− |R|)|S|n3), and the total broadcast

complexity is |S|n2 +O((n− |R|)|S|n3) = O((n− |R|)|S|n3).

Phase w

(P ,Γ,Σ,∆, S)

P = {P1, ..., Pn}
S = {S1, ..., Sk}

Phase (w + 1)

(P ′,Γ′,Σ′,∆′, S′)

P ′ = {P1, ..., Pm}
S′ = {S ′

1, ..., S
′
k′}

Figure 5.1: Dynamic groups and GAS in two consecutive phases, w and w + 1

To handle dynamic groups and GASs, assume that the participating parties and structures

are given as in Figure 5.1. As mentioned in Section 5.2, these phase information is specified by

a trusted third party. RedistributeA allows new participating parties to obtain a sharing

145

of the same secret as the previous phase according to the new GAS. The idea is quite

intuitive because of the repetitive sharing properties, which is to double-share the sharing

of a secret from the previous participating group to the new group. Note that the protocol

RedistributeM we will show in the next section has different, non-trivial ideas and reduced

complexities.

Protocol RedistributeA(w, s) −→ [s]w+1

Input: phase w and a secret s
Output: shares of s in phase w + 1

Precondition: parties in P share [s]w for a secret s
Postcondition: parties in P ′ share [s]w+1 encoding the same secret s

1. For each Si ∈ S:
2. Each party Py in Si forwards its holding value [si]y for si to every party in Si who is supposed

to hold the same share (over the secure channel).
3. VerifyA(PS , PR, PV , w, [si]y, AS,R,V (si)) is invoked for all PR, PV ∈ Si, ∀PS ∈ Si. If PV

outputs [si]y in each invocation, PV accepts it as value for si. Denote vi as the accepted
value for si, for each i.

4. Each party Py ∈ Si runs ShareA(w + 1, vi,P ′) according to S′.
5. For each S′

j ∈ S′:
6. Each party in S′

j holds {vij}ki=1. For each vij , all PR, PV ∈ S′
j invoke VerifyA(PS , PR, PV , w, vij ,

AS,R,V (vij)) for ∀PS ∈ S′
j and accept the output value as vij .

7. Each party in S′
j sums up all k values accepted in step 6 and sets it as new j-th share of s.

i.e., s′j :=
󰁓k

i=1 vij .

Theorem 5.3. (Correctness and Secrecy of RedistributeA) By executing RedistributeA,

new participating parties receive a sharing of the same secret as the old shares with er-

ror probability ((|S|n3 + |S′|m3)/(|F| − 2) + nm3|S′|/|F|) and it does not reveal any addi-

tional information about the secret. It communicates O(|S||S′|nm3 log |F|) bits and broadcasts

O(|S||S′|nm3 log |F|) bits, where S and S′ denote the sets for sharing specification in two con-

secutive phases and n,m are the number of parties in each participating group, i.e., n = |P|

and m = |P ′|. Assuming n = m and |S| = |S′|, communication/broadcast complexities are

O(|S|2n4 log |F|).

146

Proof. Correctness: The new sharing reconstructs the same secret s, as

󰁓k′

j=1 s
′
j =

󰁓k′

j=1

󰁓k
i=1 vij =

󰁓k
i=1

󰁓k′

j=1 vij =
󰁓k

i=1 vi =
󰁓k

i=1 si = s.

For error probability, as the error probability of VerifyA is 1/(|F|−2) and the one of ShareA

is n3|S|/|F|, the protocol RedistributeA outputs new sharing of s with error probability

|S|n3Err(VerifyA) +max|Si|Err(ShareA) + |S′|m3Err(VerifyA) = (|S|n3 + |S′|m3)/(|F| −

2)+nm3|S′|/|F|. Secrecy: Each party forwards their share to the parties who are supposed

to have the same share, Step 1 does not reveal additional information about the share.

Steps 3 to 6 reply on the secrecy of the protocols VerifyA and ShareA, and Step 7 is local

computation, which does not reveal any. Communication: In Step 1, each party in Si sends

their share value to each other, so they communicate O(max|Si|2 log |F|) bits for each i =

1, ..., |S|. Thus, the total communication complexity is O(|S|(n2 log |F|+ n3Cost(VerifyA) +

nCost(ShareA))+|S′|(n3Cost(VerifyA))) = O(|S||S′|nm3 log |F|) bits and the total broadcast

is |S|nCost(ShareA) = O(|S||S′|nm3 log |F|) bits. When we assume n = m and |S| = |S′| for

simplicity, the communication/broadcast complexities become O(|S|2n4 log |F|).

Note that the function of RecoverA can be naturally substituted with RedistributeA with

the same participating groups and the same sharing specification, but using our RecoverA

protocol is more efficient as it has linear complexity in |S|, while RedistributeA has quadratic

complexities in |S|. Table 5.2 shows the total analysis of communication and broadcast

complexities with error probability for each protocol in our additive PMPC scheme. In

the table, R denotes the set of parties who need to recover their shares, and we assume

m = n and |S′| = |S| for Redistribute. With that assumption, the total complexities

for the static group (without Redistribute) are less than the complexities for Multiply

and remain linear in |S|, but for dynamic groups (with Redistribute), communication and

broadcast complexities are quadratic in |S|.

147

Additive PMPC based on [170]

Protocol Communication
Cost (bits)

Broadcast
Cost (bits)

Error Probability
for Protocol Failure

Information
Checking

AuthenticateA [170] 7 log |F| 3 log |F|+ 1 1/|F|
VerifyA [170] log |F| - 1/(|F|−2)

Secret
Sharing

/ MPC

ShareA [170] O(|S|n3 log |F|) O(|S|n3 log |F|) n3|S|/|F|
ReconstructA [170] O(|S|n3 log |F|) - n2|S|/(|F|−2)
AddA [170] - - -
BasicMultiplyA [170] O(|S|n4 log |F|) O(|S|n4 log |F|) O(n4|S|/|F|)
RandomTripleA [170] O(|S|n4 log |F|) O(|S|n4 log |F|) O(n4|S|/|F|)
MultiplyA [170] O(|S|n5 log |F|) O(|S|n5 log |F|) O(n5|S|/|F|)

Our
Additional
Protocols

RefreshA O(|S|n4 log |F|) O(|S|n4 log |F|) n4|S|/|F|
ShareRandomA - O(|S|n2 log |F|) -

RobustReshareA O(|PS ||S|n3 log |F|) O(|PS ||S|n3 log |F|) O(|S|(|PS |n3/|F|+
|PS |n2/(|F|−2)))

RecoverA O((n−|R|)|S|n3 log |F|) O((n−|R|)|S|n3 log |F|) O((n−|R|)n3|S|/|F|
+(n−|R|)n2|S|/(|F|−2))

RedistributeA O(|S|2n4 log |F|) O(|S|2n4 log |F|) O(|S|n3/(|F|−2)
+n4|S|/|F|)

Total
Additive PMPC for

Static groups O(|S|n5 log |F|) O(|S|n5 log |F|)
Additive PMPC for
Dynamic groups O(|S|2n5 log |F|) O(|S|2n5 log |F|)

Table 5.2: Total Analysis of Protocols in Additive PMPC based on [170]

5.5.3 Protocols for MSP-based MPC Scheme [204]

Lampkins and Ostrovsky [204] presented an unconditionally secure MPC protocol based on

Monotone Span Program (MSP) secret sharing against any Q2-adversary, which has linear

communication complexity in the size of multiplicative MSP. We build our MSP-based PMPC

protocol on top of their MPC protocol, without increasing the complexity in terms of the size

of MSP, d. As in Table 5.1, a vector is denoted with bold texts.

Definition 5.1. (F,M, ρ,a) is called a monotone span program, if F is a finite field, M is

a d×e matrix over F, ρ : {1, 2, ..., d} → {1, 2, ..., n} is a surjective indexing function for each

row of M , and a ∈ Fe\0 is a (fixed) target vector, where 0 = (0, ..., 0) ∈ Fe. (F,M, ρ,a, r) is

called a multiplicative MSP, if (F,M, ρ,a) is a MSP and r is a recombination vector, which

means the vector r satisfies the property that 〈r,Mb ∗ Mb′〉 = 〈a, b〉 · 〈a, b′〉, for all b, b′,

where ∗ is the Hadamard product and · is the inner product.

The target vector a can be any vector in Fe\0; we use a = (1, 0, ..., 0)t ∈ Fe for convenience,

as in [204]. Let f : {0, 1}n → {0, 1} be a monotone function. A MSP (F,M, ρ, a) is

said to compute f if for all nonempty set A ⊂ {1, ..., n}, f(A) = 1 ⇔ a ∈ ImM t
A, i.e.,

148

∃λA such that M t
AλA = a. Also, a MSP (F,M, ρ, a) computing f is said to accept Γ if

B ∈ Γ ⇔ f(B) = 1. Note that any given MSP computes a monotone Boolean function f ,

defined f(x1, ..., xn) = 1 ⇔ a ∈ ImM t
A where A = {1 ≤ i ≤ n|xi = 1}, and it is well known

that any monotone Boolean function can be computed by an MSP.

Information Checking

[204] uses a variant of [51] for information checking, which is described below. They use

an extension field G over F such that the field G has minimal size satisfying |G| ≥ d|F|, to

allow the sender to produce tags for messages of length at most d. Note that κ is a security

parameter, PS is the sender, PR is the receiver, and PV is the verifier.

[204] Protocol AuthenticateM(PS, PR, PV , w, s) −→ (y, z) or ⊥

Input: PS and PR both knowing s, PV , a phase w, and a vector of secret values
s = (s(1), ..., s(l)) ∈ Fl such that l ≤ d

Output: a pair of tags (y, z), where y = {yi}κi=1 is a set of authentication tags and z = {zi}κi=1

is a set of verification tags, or aborted (⊥)
1. PS picks 2κ random elements y1, ..., yκ, u1, ..., uκ ∈ G.
2. For each i = 1, ...,κ, PS determines vi such that the (l + 2) points, (0, yi), (1, s(1)), ..., (l, s(l)),

(ui, vi) lie on a polynomial of degree l over G.
3. PS sends y1, ..., yκ to PR and z1, ..., zκ to PV , where zi = (ui, vi) for each i.
4. PV partitions the set {1, ...,κ} into two sets I and I of almost equal size (||I| − |I|| ≤ 1), and

sends {zi}i∈I to PR.
5. PR checks if the (l+ 2) points, (0, yi), (1, s(1)), ..., (l, s(l)), (ui, vi) lie on a polynomial of degree

l, for each zi. PR broadcasts NOK if any of these checks fails, or OK, otherwise.
6. Only if PR broadcasts NOK in Step 5, the following are executed:

a) PR picks one zi that failed the check and broadcasts (i, zi).
b) PS and PV broadcast zi for i received in Step a).
c) Based on the values broadcasted in Step a) and b), a pair {Pi, Pj} of parties is added to the

dispute list D, where Pi, Pj are two parties over PS , PR, PV such that their broadcasted values
are different. The protocol is aborted.

7. Output {yi}κi=1 as authentication tags and {zi}κi=1 as verification tags.

149

When AuthenticateM succeeds, PR receives the messages and authentication tags, and PV

receives verification tags, which give no information about the messages. On the other hand,

VerifyM allows PV to verify the authenticity of the messages that PR requested.

[204] Protocol VerifyM(PS, PR, PV , w, s′, (y, z)) −→ s′ or ⊥

Input: a phase w, a candidate vector s′ for s = (s(1), ..., s(l)) ∈ Fl, the authentication tag y
PR that has, and the verification tag z that PV has

Output: s or ⊥
1. PR sends s′ = (s′(1), ..., s′(l)) and authentication tags y = {yi}i∈I to PV .

2. PV broadcasts OK and outputs s′, if the points (0, yi), (1, s
(1)), ..., (l, s(l)), (ui, vi) form a poly-

nomial of degree l, for any i ∈ I. Otherwise, PV broadcasts NOK, and the protocol is aborted.

As shown in [204], the communication complexity of AuthenticateM is O(κ log d), and the

one of VerifyM is O(l+κ log d), with negligible error probability less than κ/(d(2κ− 1)− 1).

Secret Sharing and Dispute Control

In [204], a dealer generates multiple secrets, and only one pair of authentication and verifica-

tion tags is generated for the multiple secrets. To fairly compare with the additive SS in which

a dealer shares one secret per protocol execution, we present a naturally reduced version of

ShareM protocol, where a dealer shares one secret per protocol execution. For clarifying, we

call the original SS scheme in [204] as ShareMultipleM and ReconstructMultipleM and the

reduced version as ShareM and ReconstructM. We only present ShareM and ReconstructM

protocols below.

The protocol ShareM uses a subprotocol called BasicShareM to deal with active adversaries.

BasicShareM [95] is a basic secret sharing protocol using an MSP with matrix M of size

d × e. After a protocol execution, each party not in dispute with dealing party PD will get

150

the shares of a secret s, while the parties in dispute with PD will receive the all-zero vectors

as their shares, called Kudzu share [51].

[95, 204] Protocol BasicShareM(w, s) −→ [s]w

Input: a phase w and a secret value s ∈ F
Output: the sharing of s in phase w

1. A dealing party PD constructs a vector b := (s, r2, ..., re) ∈ Fe, where ri
$←− F such that all

parties in DD will receive the all-zero vectors as their shares.
2. PD computes s = Mb, where M is the MSP corresponding to ∆.
3. PD sends sj = Mjb to each Pj ∕∈ DD, where Mj denotes the matrix collecting all the rows

assigned to Pj , i.e., all i’s such that ρ(i) = j.

In ShareM, one more list C is used for dispute control. The list C is a set of parties known

by all parties to be corrupted. i.e., The list D maintains the parties in each dispute list Di

for all i, and some of them move to the list C when all parties agree their being corrupted.

[204] Protocol ShareM(w, s,P) −→ [s]w

Input: a phase w, a secret value s ∈ F, and a group P of parties receiving shares
Output: the sharing of s in phase w

1. A dealing party PD chooses n extra random values, u(1), ..., u(n), then invokes (n+1) BasicShareM

(in parallel) for each {u(i)}ni=1 and s.
2. For each pair PR, PV ∕∈ DD such that {PR, PV } ∕∈ D, AuthenticateM(PD, PR, PV ,vR) is in-

voked, where vR := (sR,u
(1)
R , ...,u(n)

R). Note that each sR and u(i)
R is a vector of length dR so

that the length of the vector vR is dR ∗ (n+ 1).
3. For each PV ∕∈ DD, the followings are performed (in parallel):
4. PV chooses a random vector r ∈ F and broadcasts it.

5. Each party Pi ∕∈ DD sends his share of r ∗ si+u(V)
i to PV . Recall that si := Mib, where b is

a random vector in Fe with first component s, and u(V)
i is similarly defined.

6. If the shares received in Step 5 form a consistent sharing, PV broadcasts OK. Otherwise,
PV broadcasts NOK. i.e., PV accepts if the sharing is a vector in the span of the matrix MG ,
where G = P − C.

7. For the lowest PV who broadcast NOK in Step 6, the following are executed:
a) PD broadcasts each share of r ∗ sk + u(V)

k for k = 1, ..., n.

151

b-1) If this sharing is not in Span(MG), then each party adds PD to his list Di,
i.e., PD is added to C, and the protocol is aborted.

b-2) Otherwise, there is a share of some party Pi ∕∈ DD which is different from the one broad-
casted by PD. PV broadcasts (accuse, Pi, PD, vi, vD), where vi is the share sent by Pi and
vD is the value of the share sent by PD for i-th share.

c) If Pi disagrees with the value vi broadcasted by PV , then Pi broadcasts (dispute, Pi, PV)
so that the pair {Pi, PV } is added to D, and the protocol is aborted.

d) If PD disagrees with the value vD broadcasted by PV , then PD broadcasts (dispute, PD, PV),
the pair {PD, PV } is added to D, and the protocol is aborted.

e) If neither Pi nor PD complained in the previous steps, then {Pi, PD} is added to D and the
protocol is aborted.

8. Otherwise, the parties in P collectively output [s] := {s1, ..., sn} with {[u(i)]}ni=1.

ReconstructM allows parties in ∀B ∈ Γ to reconstruct the secret shared using ShareM.

[204] Protocol ReconstructM(w, [s]) −→ s or ⊥

Input: a phase w and a sharing of s (collectively), shared by PD

Output: s or aborted
1. Each party in G := P \ C holding a non-Kudzu share of [s] broadcasts its share.
2. If the shares broadcast in Step 1 and Kudzu shares form a consistent sharing, i.e. they are

in Span(MG), then the protocol terminates with the output of 〈λG , [s]G〉, where λG is a vector
satisfying M t

GλG = a and [s]G is the recomposition vector with respect to the indexing function
ρ with all the shares of parties in G.

3. If the shares broadcast in Step 1 are inconsistent, i.e., not in Span(MG), then PD broadcasts
the index i of each party he accuses of sending an incorrect share.

4. If PD did not broadcast an index in Step 3, or if the remaining shares after removing the shares
that PD accused are still inconsistent, or if the set of parties in dispute with PD is no longer in
∆, then PD is added to C.

5. If PD ∕∈ C, do the following:
5.a) For each party Pi accused by PD in Step 3, parties invoke Verify(PD, Pi, Pk, w,vi, tags)

for each party Pk ∕∈ Di ∪Dj , where vi = (si,u
(1)
i , ...,u(n)

i) as defined in Step 2 of ShareM.
5.b) For any Pi who sent a share to Pk that was different than the share broadcast in Step 1,

Pk broadcasts (accuse, i) and {Pk, Pi} is added to the list D.
5.c) If Pk ∕∈ Di rejects in Step 5.a, then {Pk, Pj} is added to the list D. Otherwise, {PD, Pk} is

added to D.
5.d) If the shares of parties not in C (after some parties are added to C) and the Kudzu shares

form a consistent sharing, then those shares are used to reconstruct s. Otherwise, PD is
added to C and proceed to Step 6.

6. If PD ∈ C, do the following:
6.a) For all Pj holding non-Kudzu shares and for all Pk ∕∈ Dj , the parties invoke VerifyM(PD, Pj , Pk,

152

w,vj , tags), where vj = (sj ,u
(1)
j , ...,u(n)

j).
6.b) For any Pj who sent a share to Pk that is different than the share broadcast in Step 1,

Pk broadcasts (accuse, j) and {Pk, Pj} is added to the list D.
6.c) The shares of parties not in C are used to reconstruct s as in Step 2.

In Step 2, the correctness holds when B ∈ Γ ⇔ f(B) = 1, which means there is some vector

λB such that M t
BλB = a. Therefore, 〈λB, [s]B〉 = 〈λB,MBb〉 = 〈M t

BλB,b〉 = 〈a,b〉 = s,

as a = (1, 0, ..., 0) and b = (s, r2, ..., re). Throughout the steps in Reconstruct, parties can

detect all the potentially corrupted parties. Note that parties cannot reconstruct the secret

value when the remaining parties in G are no longer in Γ.

For LC-ReconstructM, we add more explanations about the assumptions and how this pro-

tocol works in detail in addition to the one in [204] as it is not trivial. Intuitively, each party

first broadcasts its share of q and reconstructs the value q if all broadcast shares are consis-

tent. However, if they are inconsistent, they divide it into small chunks and see which parties

sent the wrong values. Since the IC scheme does not satisfy the linearity, parties holding

tags of two shared secrets cannot locally compute the right tag for the linear computation of

two secret values. To be specific, authentication tags can be computed locally by adding two

existing authentication tags because an authentication tag is defined as the y-intercept of a

function. However, verification tags cannot be computed locally as the X coordinate value of

each tag is randomly chosen. Hence, the probability of having the same X coordinate values

for two verification tags is very low. That is, even though one party knows two verification

tags (u, v) and (u′, v′) for function (of same degree) f and f ′, respectively, (u+ u′, v + v′) is

not on f + f ′ and he cannot locally compute (u, v + f ′(u)) or (u′, f(u′) + v′) without know-

ing f or f ′. For these reasons, the protocol LC-Reconstruct uses the “divide-and-conquer"

method to find the parties who sent the wrong shares when the shares of q are inconsistent.

Now, let us see the assumptions and settings of this protocol. Assume that each party

Pj shared lj secrets, s(j,1), s(j,2), ..., s(j,lj), and parties want to compute the total summation

153

of multiple linear combinations of these lj secrets for each Pj. i.e., parties in P want to

reconstruct the value q, where q := q(1)+ ...+q(n) and q(j) :=
󰁓lj

i=1 a
(j)
i s(j,i) for some a

(j)
i ∈ F,

i = 1, ..., lj for each j = 1, ...,m. Note that m can be up to n. For instance, if P1 shares l1

secret values, s(1,1), ..., s(1,l1), P2 shares l2 secret values, s(2,1), ..., s(2,l2), and P3 shares l3 secret

values, s(3,1), ..., s(3,l3) (i.e., j = 3), then we are assuming that the parties in P = {P1, ..., Pn}

want to reconstruct q = q(1) + q(2) + q(3), where q(1) :=
󰁓l1

i=1 a
(1)
i s(1,i), q(2) :=

󰁓l2
i=1 a

(2)
i s(2,i),

and q(3) :=
󰁓l3

i=1 a
(3)
i s(3,i).

[204] Protocol LC-ReconstructM(w, [q]) −→ q or ⊥

Input: a phase w and locally computed sharing of q (collectively), [q] = {q1, ...,qn}, where
q = q(1) + ...+ q(n) and each q(j) is a linear combination of lj secrets shared by Pj ,
i.e., q(j) :=

󰁓lj
i=1 a

(j)
i s(j,i) for some a

(j)
i ∈ F and {s(j,i)}lji=1: secrets shared by Pj .

Note that [s(j,i)] = {s(j,i)1 , ..., s(j,i)n } is a sharing of i-th secret that Pj shared.
Output: q or aborted

1. Each Pi ∕∈ C broadcasts its share qi of [q].
2. a) If the sharing broadcast in Step 1 is consistent (i.e., in Span(MG)), then q is reconstructed

by 〈λG , [q]G〉 and the protocol terminates, where [q]G is the recomposition vector with all the
shares qi’s for Pi ∈ G.

b) Otherwise, each Pi ∕∈ C broadcasts its share q(j)
i of [q(j)], for each Pj .

3. a) If any party Pi broadcasted values such that qi ∕=
󰁓n

j=1 q(j)
i , then all such parties are added

to C and the protocol terminates.
b) Otherwise, for the lowest j such that the shares of [q(j)] broadcasted in Step 2.b are incon-

sistent, do one of the followings depending on Pj ∕∈ C or not.
4. If Pj ∕∈ C, do the followings:

a) Pj broadcasts (accuse, i) for Pi he thinks to have sent an incorrect share.
b) Since [q(j)] is a linear combination of sharings generated by Pj , the parties internally know

that [q(j)] =
󰁓lj

k=1 a
(j)
k [s(j,k)], where each [s(j,k)] was generated with Share and each a

(j)
k is

non-zero. From lj sharings a(j)1 [s(j,1)], a
(j)
2 [s(j,2)], ..., a

(j)
lj

[s(j,lj)], Pi accused in Step 4.a broad-

casts his shares of
󰁓⌊lj/2⌋

k=1 a
(j)
k [s(j,k)] and

󰁓lj
k=⌊lj/2⌋+1 a

(j)
k [s(j,k)], i.e.,

󰁓⌊lj/2⌋
k=1 a

(j)
k s(j,k)

i and
󰁓lj

k=⌊lj/2⌋+1 a
(j)
k s(j,k)

i .
c) If Pi’s two broadcasted shares in Step 4.b do not match up with the previously sent share of

their sum (e.g., q(j)
i for the first round), then Pi is added to C and the protocol terminates.

d) Pj broadcasts which of shares broadcasted in Step 4.b he disagrees with. If this is a single
sharing a

(j)
k [s(j,k)], then parties proceed to Step 4.e. Otherwise, parties return to Step 4.b

with the sharings Pj disagreed with. i.e., If Pj disagrees with some sum a
(j)
k1

[s(j,k1)] + ...+

a
(j)
k2

[s(j,k2)], then parties repeat Step 4.b to Step 4.d with a
(j)
k1

[s(j,k1)], ..., a
(j)
k2

[s(j,k2)] instead

154

of a(j)1 [s(j,1)], ..., a
(j)
lj

[s(j,lj)].

e) At this point, Pi broadcasted its share a
(j)
k s(j,k)

i of a(j)k [s(j,k)] for some k and Pj broadcasted
that he disagrees with this share. For each PV /∈ Dj∪Di, parties invoke VerifyM(Pj , Pi, PV , w,vi, tags),
where vi = (s(j,k)i ,u(1)

i , ...,u(n)
i) as in Step 2 in ShareM protocol.

f) If the shares sent from Pi to PV in VerifyM do not match with the share of a(j)k [s(j,k)], then
PV broadcasts (accuse, i), and {Pi, PV } is added to D.

g) {Pi, PV } is added to D for each PV /∈ Di who rejected in the invocation of VerifyM in Step
4.e, or {Pj , PV } is added to D for each PV who accepted it.

h) At this point, all parties are in dispute with either Pi or Pj and by the Q2 property of ∆,
one of Di or Dj is no longer in ∆. If Di /∈ ∆, Pi is added to C, and if Dj /∈ ∆, Pj is added
to C. Then, the protocol terminates.

5. If Pj ∈ C, do the followings:
a) Since [q(j)] is a linear combination of sharings generated by Pj , the parties internally know

that [q(j)] =
󰁓lj

k=1 a
(j)
k [s(j,k)], where each [s(j,k)] was generated with ShareM and each a

(j)
k is

non-zero. From lj sharings a
(j)
1 [s(j,1)], a

(j)
2 [s(j,2)], ..., a

(j)
lj

[s(j,lj)], each party Pi /∈ C broadcasts

its shares of
󰁓⌊lj/2⌋

k=1 a
(j)
k [s(j,k)] and

󰁓lj
k=⌊lj/2⌋+1 a

(j)
k [s(j,k)], i.e.,

󰁓⌊lj/2⌋
k=1 a

(j)
k s(j,k)

i and
󰁓lj

k=⌊lj/2⌋+1 a
(j)
k s(j,k)

i .
b) Any party Pi whose sum of two broadcasted shares in Step 5.a does not match up with the

previously sent share of their sum (e.g. q(j)
i for the first round) is added to C and the protocol

terminates.
c) At this point, one of the two shares broadcasted in Step 5.a is inconsistent. If this is a single

sharing a
(j)
k [s(j,k)], then parties proceed Step 5.d. Otherwise, if this is some sum a

(j)
k1

[s(j,k1)]+

...+ a
(j)
k2

[s(j,k2)], then parties return to Step 5.a with a
(j)
k1

[s(j,k1)], ..., a
(j)
k2

[s(j,k2)] instead of

a
(j)
1 [s(j,1)], ..., a

(j)
lj

[s(j,lj)].

d) Parties invoke ReconstructM(w, [s(j,k)]) for the single sharing a
(j)
k [s(j,k)] decided in Step 5.c,

but skip Step 1, as they already broadcasted their shares. As a result of ReconstructM, a
new party is added to C and the protocol terminates.

Note that if m parties only shared one secret s(i,1) for each party Pi, then each q(j)
i of [q(j)]

is already a single sharing, i.e., q = q(1) + ... + q(m) where q(j) = a(j)s(j,1). Therefore, they

can directly jump to Step 4.e or Step 5.d according to whether Pj /∈ C or not.

Addition and Multiplication

By the linearity of the shares, addition can be done naturally without any communication

or broadcast as below.

155

[204] Protocol AddM(w, [s], [t]) −→ [s+ t]

Input: phase w, shares of s, and shares of t
Output: new shares of s+ t

Precondition: Two values s and t are shared with ShareM

Postcondition: s+ t is shared independently
1. Each party Pi locally adds each share of s to the share of t and keep the result as a share of

s+ t. i.e., (s+t)i := si + ti ∈ Fdi , for each i = 1, ..., n.

The protocol Generate-RandomnessM generates l random elements, which are publicly known

in P . This is used in Generate-Multiplication-TriplesM protocol for error detection.

[204] Protocol Generate-RandomnessM(w, l) −→ r(1), ..., r(l)

Input: a phase w and the non-negative integer l
Output: publicly known l random elements in F

1. Every party Pi /∈ C chooses l random values r(1,i), ..., r(l,i).
2. Each Pi invokes ShareMultipleM(w, r, Pi), where r := (r(1,i), ..., r(l,i)) to verifiably share these

l random values.
3. Parties in P call LC-ReconstructM(w, [r(j)]) l times in parallel, to reconstruct l random values,

r(1), ..., r(l), where r(j) :=
󰁓

Pi /∈C r
(j,i).

For multiplication gates, the protocol Generate-Multiplication-TriplesM generates ran-

dom sharings of l multiplication triples (a, b, c) such that c = ab, without revealing any values

of a, b, or c to parties. These random triples can be used in each multiplication gate by com-

puting [st] := [c]+[s](t−b)+[t](s−a)−(s−a)(t−b) as in [50]. To generate a sharing of a ran-

dom triple (a(k), b(k), c(k)), a random element a(k) is generated and each Pi creates a random

triple a(k)b(i,k) = c(i,k). After verifying each triple’s correctness using a triple a(k)󰁨b(i,k) = 󰁨c(i,k)

also created by each Pi, the final triple is defined as (a(k),
󰁓n

i=1 b
(i,k),

󰁓n
i=1 c

(i,k)) for each

k = 1, ..., l. For simplicity, we present the reduced version, which generates a sharing of only

156

one multiplication triple, say (a, b, c).

[204] Protocol Generate-Multiplication-TriplesM(w) −→ [(a, b, c)]

Input: phase w
Output: a sharing of random triple (a, b, c) such that c = ab

1. Each Pi /∈ C invokes ShareM (2n + 3) times (in parallel), for each a(i), b(i),󰁨b(i), {r(i,j)}nj=1, and
{󰁨r(i,j)}nj=1, and ShareM 2n times for generating sharings of 1 (in parallel), denoted by {1(i,j)}nj=1

and {󰁨1(i,j)}nj=1. The sharings of parties in C are defined to be all-zero sharings.

2. Each party defines and locally computes [a] :=
󰁓n

m=1[a
(m)], [r(i)] :=

󰁓n
m=1[r

(i,m)], [1(i)] :=󰁓n
m=1[1

(m,i)] + w[1(i,i)], and [󰁨1(i)] :=
󰁓n

m=1[
󰁨1(m,i)] + 󰁨w[󰁨1(i,i)], where each w and 󰁨w ∈ F is the

unique element that makes [1(i)] and [󰁨1(i)] a sharing of 1.
3. Each Pj /∈ C sends its share of [a][b(i)] + [r(i)][1(i)] and [a][󰁨b(i)] + [󰁨r(i)][󰁨1(i)] to Pi /∈ C.

4. Each Pi /∈ C reconstructs D(i) := ab(i) + r(i) and 󰁨D(i) := a󰁨b(i) + 󰁨r(i) with the shares received in
Step 3, and broadcasts D(i) and 󰁨D(i).

5. Each party locally computes [c(i)] := D(i) − [r(i)] and [󰁨c(i)] := 󰁨D(i) − [󰁨r(i)].
6. parties invoke Generate-RandomnessM(w, 1) to generate a random element s.
7. Each party /∈ Di broadcasts its share of [󰁥b(i)] := [󰁨b(i)] + s[b(i)], for i = 1, ..., n.
8. If the sharing of some [󰁥b(i)] broadcast in Step 7 is inconsistent, Pi broadcasts (accuse, Pj) for

such sharing sent by Pj /∈ Di. {Pi, Pj} is added to D and the protocol terminates.

9. parties invoke LC-ReconstructM n times (in parallel) to reconstruct z(i) := [a]󰁥b(i)−[󰁨c(i)]−s[c(i)],
for i = 1, ..., n.

10. If all reconstructed values in Step 9 are zero, then the protocol terminates successfully with the
triple (a, b, c) with [b] :=

󰁓n
m=1[b

(m)] and [c] :=
󰁓n

m=1[c
(m)]. Otherwise, if any z(i) is non-zero,

then proceed into Step 11 for the lowest index i such that z(i) ∕= 0.
11. a) Each Pj broadcasts its share of [a(m)], [󰁨r(m,i)], and [r(m,i)] for each Pm /∈ Dj .

b) If Pi sees that the shares of some Pj /∈ Di sent in Step 11.a are inconsistent with the share
sent in Step 3 or 9, then Pi broadcasts (accuse, Pj) and {Pi, Pj} is added to D and the protocol
terminates.
c) Each Pm examines the shares (broadcast in Step 11.a) of all sharings that Pm generated. If
Pm notices that some Pj /∈ Dm broadcast an incorrect share, then Pm broadcasts (accuse, Pj)
and {Pm, Pj} is added to D and the protocol terminates.
d) If no one broadcasts, then Pi is added to C and the protocol terminates.

157

5.5.4 MSP-based PMPC Scheme for Dynamic GAS and Groups

Similarly, we build RefreshM, RecoverM, and RedistributeM protocols to make this MSP-

based MPC scheme to be proactively secure with dynamic groups. Recall that the protocol

RefreshM re-randomizes each party’s shares regularly so that the adversary cannot recon-

struct the secret until he corrupts any set in the access structure in the period. By the

linearity of the shares, the main idea is the same as before.

Protocol RefreshM(w, [s]) −→ [s]w+1

Input: a phase w and a sharing of s
Output: new sharing of s in phase w + 1, [s]w+1

1. Every party Pi in P invokes ShareM(w, 0, Pi). (in parallel)
2. Each party locally does component-wise addition with all the shares received in Step 1 and the

shares of s, and set it as the new share of s in phase w + 1.
3. parties in P collectively output [s]w+1.

Theorem 5.4. (Correctness and Secrecy of RefreshM) When the protocol RefreshM termi-

nates, all parties receive new shares encoding the same secret as old shares they had before,

and they get no information about the secret by the protocol execution. It communicates

O((n2d+ n3κ) log |F|+ n3κ log d) bits and broadcasts O(n3 log d+ (n3 + nd) log |F|) bits.

Proof. Correctness: Recall that each party Pi has the vector si = Mib ∈ Fdi as the share of

s, where b = (s, r2, ..., re) for some random values rj’s. After Step 1, every party Pi receives

n vectors {0(j)
i }nj=1 as shares of 0’s, where 0(j)

i = Mib(j) is the share of 0 from each party

Pj, where b(j) = (0, $, ..., $) ∈ Fdi with some random values (denoted by $). Since these

n vectors have the same lengths di, each party Pi can locally compute the vector addition

s′i := si +
󰁓n

j=1 0(j)
i ∈ Fdi . As all the summands of s and n zeros are shared by ShareM,

for s′ = s + 0 + ... + 0, the invocation of LC-ReconstructM(w, [s′]) with [s′] := {s′1, ..., s′n}

158

outputs s′, which is equal to s. Secrecy: parties communicate only the shares of zeros but

nothing about the secret s or the shares of, the protocol does not reveal any information

about s. Communication: As every party shares zero to each other, they communicate

and broadcast n ∗ Cost(ShareM) bits.

For RecoverM and RedistributeM, we construct two sub-protocols: ShareRandomM and

RobustReshareM. The goals of the protocols are similar to the ones in Section 5.5.2. Still, due

to the fact that each party holds the unique share of a secret, ShareRandomM can be general-

ized for multiple groups of parties, which enables to build the efficient RedistributeM proto-

col. The protocol ShareRandomM allows participating parties to generate multiple sharings of

a random value r ∈ F for each group without reconstructing the value r. Note that W = {w}

for RecoverM, while W = {w,w + 1} for RedistributeM. The protocol ShareRandomM out-

puts |W | sharings of the same r, where r is the summation of all random elements from

each party in each phase. For instance, when W = {w}, the output is one sharing of r,

say [r] = {r1, ..., rn}, where LC-ReconstructM(w, [r]) reconstructs r =
󰁓

Pi /∈C r
(i). We denote

ShareRandomM(w) in this case. On the other hand, when W = {w,w + 1}, it outputs two

sharings of r, [r]w := {rw1 , ..., rwn} and [r]w+1 := {rw+1
1 , ..., rw+1

m }, where both sharings recon-

struct the same r. i.e., LC-ReconstructM(w, [r]w) = LC-ReconstructM(w + 1, [r]w+1) = r,

where r =
󰁓

Pi /∈Cw r(w,i) +
󰁓

Pj /∈Cw+1 r(w+1,j).

Protocol ShareRandomM(W) −→ {[r]w}w∈W

Input: a list W of phases where participating parties generate sharing(s) of a random value
Output: |W | sharing(s) of a random value r, for each Pw in w ∈ W

1. For each w ∈ W :
2. Every party Pi /∈ Cw chooses a random value r(w,i) and invokes ShareM(w′, r(w,i),Pw′

) |W |
times in parallel with respect to Sw, for each w′ ∈ W .

3. For each w ∈ W :
4. Each party Pi ∈ Pw locally computes rwi :=

󰁓
w′∈W

󰁓
Pj /∈Cw′ [r(w

′,j)]wi , where [r(w
′,j)]wi is Pi’s

159

holding share of r(w′,j) received in Step 2 from Pj /∈ Cw′ .
5. |W | sharings of r, {[r]w}w∈W , are collectively output, where r :=

󰁓
Pj /∈Cw,w∈W r(w,j) and

[r]w := {rw1 , ..., rw|Pw|}.

Note that all summand vectors {[r(w′,j)]wi } have the same lengths for each party. For N :=
󰁓

w∈W |Pw|, the protocol communicates O(N |W |((nd + n2κ) log |F| + n2κ log d)) bits and

broadcasts O(N |W |(n2 log d+ (n2 + d) log |F|)) bits.

Recall that Honest := {P \A | A ∈ ∆} is a set of potential honest parties sets.The protocol

RobustReshareM similarly works as the one in Section 5.5.2. Every party in PS ⊆ PwS in

phase wS knows the value r and wants to send a right sharing of r to the parties in PR ⊆ PwR

in phase wR. As the adversary picks one subset of parties in ∆ in each phase, at least one

set in Honest consists of only honest parties in that phase.

Protocol RobustReshareM(r, wS,PS, wR,PR) −→ [r]wR

Input: a random element r ∈ F, a phase wS , a set of parties PS in phase wS , a phase wR, and
a set of parties PR ∈ Γ in phase wR

Output: a sharing of r in phase wR, [r]wR

Precondition: All parties in PS know the value of r.
Postcondition: Each party in PR receives the share of new sharing of r.

1. Every party in PS executes ShareM(wR, r,PR) according to SR. Let [r](i) be the sharing of r
that Pki ∈ PS shares.

2. For each i = 1, 2, ..., |PS |, ReconstructM(wR, [r]
(i),PR) is invoked. Let r(i) be the result of each

reconstruction.
3. Choose a value v such that v = r(i) for all Pki ∈ H, for some H ∈ Honest. Each party chooses

such set H ∈ Honest. If multiple such sets exist, the minimal set including Pi with lower id, i,
is chosen.

4. Parties in PR collectively outputs the sharing of r from the party Pi in H with the minimum
id, i. i.e. Output [r] ← [r](min), where min := minPi∈H{i}.

Security of RobustReshareM relies on the security of ShareM and ReconstructM and communi-

160

cates O(|PS|(|PR|2 κ log dR+(|PR|3+|PR|2κ+|PR|dR) log |F|)) and broadcasts O(|PS|(|PR|2 log dR+

(|PR|2 + dR) log |F|)) bits.

Using these sub-protocols, RecoverM allows the rebooted/reset parties to recover their shares

by generating new sharing of the same secret in P with the assistance of other parties. A

sharing of a random element r is generated using ShareRandomM, LC-ReconstructM allows

every party to reconstruct a publicly known random value r′ := r + s, and RobustReshareM

helps parties to set one same sharing of r′.

Protocol RecoverM(w, [s], R) −→ [s]w+1 or ⊥

Input: a phase w, a sharing of s, and a set of rebooted parties R
Output: new sharing of s in phase w + 1, [s]w+1, or aborted

1. Invoke ShareRandomM(w) and generate a sharing [r] := {r1, ..., rn} of a random r in F.
2. Each party Pi in P \R locally computes ri + si, the share of r′ := r + s.
3. LC-ReconstructM(w, [r′]) is invoked in P \R and every party in P \R gets r′.
4. RobustReshareM(r′, w,P \R,w,P) is invoked, and each party in P gets [r′]w := {r′1, ..., r′n}.
5. Each party locally computes r′i − ri and sets it as new share of s.

Theorem 5.5. (Correctness and Secrecy of RecoverM) The protocol RecoverM allows a set

R of parties who were rebooted to recover their shares encoding the same secret for any R ∈ ∆,

and does not reveal any additional information about the secret except the shares each party

had before the execution of the protocol. It communicates O(n3κ log d+(n4+n3κ+n2d) log |F|)

bits and broadcasts O(n3 log d+ (n3 + nd) log |F|) bits.

Proof. Correctness: For each party, as the length of its share is the same as the number

of rows in M mapped to that party, the party can locally compute component-wise addi-

tion/subtraction with its shares. By the linearity of the shares, r′i − ri is the i-th share

of r′ − r = (r + s) − r = s for each Pi. Thus, all parties in P , including parties in R,

receive a new sharing of s, the same secret. Secrecy: In Step 3, every party receives the

161

reconstruction result of r′ = r + s, but as r is random in F and not reconstructed in P ,

each party has any information about r. Thus, the value r′ does not reveal any informa-

tion about s in Step 3. Steps 1 and 4 are to share a sharing of the random elements, and

Steps 2 and 5 are local computations. Therefore, executing this protocol does not reveal

any information about the secret s. Communication: The protocol ShareRandomM is in-

voked by the group of parties in phase w, where W = {w}. i.e. N = n and |W | = 1. In

LC-ReconstructM, each parties only have l = 1 secret values to share. In RobustReshareM,

PS = P \ R and PR = P in the same phase w. Thus, the total number of communica-

tion bits is O(n3κ log d + (n4 + n3κ + n2d) log |F| and the total number of broadcast bits is

O(n3 log d+ (n3 + nd) log |F|).

Assuming the dynamic settings in Figure 5.1, recall that the protocol RedistributeM allows

parties in the new group P ′ to receive the shares encoding the same secret. The main idea

is similar to the one in RecoverM, but as parties might be different in two phases, it needs

to be considered very carefully. To send a right sharing of s from P to P ′ without revealing

the secret value s to the parties, both parties in two phases generate a sharing of random

value r without reconstructing the value r using ShareRandomM. Then, parties holding the

share of s locally compute the share of r to the share of s and reconstruct s+ r using them.

Now, all parties in P know the value s + r, but not s or r, so they invoke RobustReshareM

to send a right sharing of s + r to the parties in P ′. As parties in P ′ also hold the share of

r, each party can locally compute the share of s.

Protocol RedistributeM(w, [s]w) −→ [s]w+1

Input: a phase w and the sharing of s in phase w, [s]w = {sw1 , ..., swn }
Output: new sharing of s for phase w + 1, [s]w+1 = {sw+1

1 , ..., sw+1
m }

1. Parties in P and P ′ invoke ShareRandomM(W), where W = {w,w+1}, to generate two sharings
of a random value r, unknown to every party. That is, parties in P separately receive a sharing
[r]w := {rw1 , ..., rwn }, while parties in P ′ receive a sharing [r]w+1 := {rw+1

1 , ..., rw+1
m }, and no one

162

knows the value of r.
2. Each party Pi in P locally computes xi := rwi + swi , where swi is the share of s.
3. Parties in P invoke LC-ReconstructM(w, [x]) with [x] := {x1, ...,xn} and the result is denoted

by x. Note that x = s+ r, where r is random and unknown to everyone.
4. Parties invoke RobustReshareM(x,w,P, w + 1,P ′) so that parties in P ′ receive a sharing of x,

say [x] := {z1, ..., zm}, for zi := M ′
iX, where the vector X = (x, $, ..., $) ∈ Fe′ with random $’s.

5. Each party P ′
i in P ′ locally computes sw+1

i := zi − rw+1
i , for i = 1, ...,m.

6. Parties in P ′ collectively output {sw+1
1 , ..., sw+1

m } as a sharing of s in new phase.

Theorem 5.6. (Correctness and Secrecy of RedistributeM) When the protocol termi-

nates, all parties in the new participating group have the shares of the same secret as the old

shares, and the protocol does not reveal any information about the secret. It communicates

O(n2κ log d+nm2κ log d′+((n2+mn)d+(m2+mn)d′+(n3+m3)κ+(m+n)mnκ+nm3) log |F|)

bits and broadcasts O((n3 +mn2) log d + nm2 log d′ + (n3 + (n +m)(mn + d) + nd′) log |F|)

bits, where |P| = n, |P ′| = m, size(M) = d, and size(M ′) = d’.

Proof. Correctness: Since there exists λ such that (M ′
B)

tλ = a for ∀B ∈ Γ, 〈λ, s〉 =

〈λ,M ′
BS〉 = 〈λ,M ′

B(X − R)〉 = 〈λ,M ′
BX〉 − 〈λ,M ′

BR〉 = 〈(M ′
B)

tλ,X〉 − 〈(M ′
B)

tλ,R〉 =

x− r = (s+ r)− r = s, where s is the recomposition vector with shares of parties in ∀B ∈ Γ,

S is the recomposition vector with shares of all parties in P ′, X is the vector defined in Step

4, and R is the vector of length e′ having r of Step 1 for the first component and (e′ − 1)

random values for the others. Thus, new sharing reconstructs the same secret s as the input

sharing. Secrecy: Communicating values are either random value or the share of random

value, and the shares of secret s are handled only by local computations. Also, since no one

knows the value of r throughout the protocol, the reconstruction of x does not reveal any

information about the secret value s. Communication: Apply N = n + m and |W | = 2

for ShareRandomM, l = 1 for LC-ReconstructM, and |PS| = |P| = n and |PR| = |P ′| = m for

RobustReshareM, as the others are the local computations. Assuming m = n and d′ = d, the

total number of communication bits is O(n3κ log d + (n2d + n4 + n3κ) log |F|) and the total

broadcast bits are O(n3 log d+ (n3 + nd) log |F|).

163

Table 5.3 shows the total analysis of MSP-based PMPC protocols based on the protocols in

[204]. In the table, κ denotes the security parameter. Only IC scheme and LC-Reconstruct

are based on multiple secret values, and the others are based on one secret value. In IC, l

is the number of secret values and in LC-Reconstruct, L := maxj(lj), where lj is the num-

ber of secrets from Pj. In ShareRandom, N =
󰁓

w∈W |Pw| and W is a set of phases which

parties participate in the protocol. In Redistribute, it is assumed that |P| = |P ′| = n

and size(MSP) = d = d′. Note that all protocols still have linear complexities in size of

MSP, d, even after adding out new protocol, for both static and dynamic groups. Even after

adding our new protocols, for both static groups and dynamic groups, the total communica-

tion/broadcast complexities remain linear in the size of MSP, d, the number of rows of the

corresponding matrix M .

MSP-based PMPC based on [204]
Protocol Communication Cost(bits) Broadcast Cost(bits)

Information
Checking

Authenticate∗ O(κ(log d+ log |F|)) O(log d+ log |F|)
Verify∗ O(κ log d+ (l + κ) log |F|) 1

Secret
Sharing

/ MPC

BasicShare O(d log |F|) -
Share O((nd+ n2κ) log |F|+ n2κ log d) O(n2 log d+ (n2 + d) log |F|)
Reconstruct O(n2κ log d+ (n3 + n2κ) log |F|) O(d log |F|)
LC-Reconstruct∗ O(n2κ log d+ (n3 + n2κ) log |F|) O(n(log2 L+ 1)d log |F|)
Add - -
Gen-Rand O((n2d+ n3κ) log |F|+ n3κ log d) O(n3 log d+ (n3 + nd) log |F|)
Gen-Mult-Triples O((n4 + n3κ+ n2d) log |F|+ n3κ log d) O(n3 log d+ (n3 + n2d) log |F|)

Our
Additional
Protocols

Refresh O((n2d+ n3κ) log |F|+ n3κ log d) O(n3 log d+ (n3 + nd) log |F|)
ShareRandom

O(N |W |((nd+ n2κ) log |F|+
n2κ log d))

O(N |W |(n2 log d+
(n2 + d) log |F|))

RobustReshare
O(|PS |(|PR|2κ log dR+

(|PR|3 + |PR|2κ
+|PR|dR) log |F|))

O(|PS |(|PR|2 log dR+
(|PR|2 + dR) log |F|))

Recover O(n3κ log d+ (n4 + n3κ+ n2d) log |F|) O(n3 log d+ (n3 + nd) log |F|)
Redistribute

O(n3κ log d+ (n2d+
n4 + n3κ) log |F|)

O(n3 log d+
(n3 + nd) log |F|)

Total MSP-based PMPC O(n3κ log d+ (n2d+ n4 + n3κ) log |F|) O(n3 log d+ (n3 + n2d) log |F|)

Table 5.3: Total analysis of protocols in MSP-based PMPC scheme based on [204]

5.5.5 Conversions between Additive and MSP-based MPC

Now, we present how to convert the additive PMPC scheme into the MSP-based PMPC

and in the opposite direction. Recall that the complexity of an additive PMPC scheme

depends on the size of the sharing specification |S| (we use the basic secrecy structure |󰁨Σ|),

164

while the one of an MSP-based PMPC scheme depends on the size of the MSP, d. Since d

can be varied from n to |󰁨Σ|2.7 depending on the adversary structures [204], there are some

cases worth converting the schemes even though the conversion itself needs some resource.

One PMPC scheme with better complexities can be chosen only when participating groups

or GAS are changed. That is, when dynamic groups and structures of two consecutive

phases are given, participating parties can continue the current PMPC scheme by executing

Redistribute protocol or they can convert the scheme from one to the other by calling the

protocols, called ConvertAdditiveIntoMSP or ConvertMSPIntoAdditive.

Let dynamic groups and structures in consecutive phases are given as Sw := (P ,Γ,Σ,∆, S)

and Sw+1 := (P ′,Γ′,Σ′,∆′, S′) and let the additive PMPC scheme has been using in phase

w with sharing specification S = {S1, S2, ..., Sk}. The protocol ConvertAdditiveIntoMSP

converts current additive sharing of s into a MSP-based sharing of s. By definition, if no

qualified subset of parties in the access structure Γ remains in P , then the secret value s

cannot be reconstructed even though the protocol is executed. That is, at least one honest

party exists in each Si ∈ S. To deal with active adversaries, all parties in each Si need to

share their holding share si to the parties in P ′ using the ShareM protocol. Then parties in

P ′ hide their shares with the shares of a random number and open (reconstruct) the hidden

values to decide one sharing of si from the honest party in Si. By linearity of shares, each

party in P ′ can locally compute the MSP-based share of s by component-wise adding all its

receiving shares. The formal protocol is as follows.

Protocol ConvertAdditiveIntoMSP([s]w, w,Sw, w + 1,Sw+1) −→ [s]w+1

Input: Sw := (P,Γ,Σ,∆, S) in phase w and a sharing {s1, ..., s|S|} of s such that
󰁓|S|

i=1 si = s

Output: a sharing of s for Sw+1 := (P ′,Γ′,Σ′,∆′, 󰁦M) in phase w+1, where M ∈ M(d× e) is

165

corresponding matrix of the MSP 󰁦M
1. For each i ∈ {1, ..., |S|} (in parallel):
2. Every party in Si invokes ShareM(si, w+1,P ′). Denote |Si| sharings of si by [si]

(1), ..., [si]
(|Si|).

3. Parties in P ′ invoke ShareRandomM(w + 1) to generate a sharing of a random number, say r(i).

4. Parties in P ′ locally compute [x
(j)
i] := [si]

(j) + [r(i)], for j = 1, ..., |Si|.
5. Parties in P ′ execute LC-ReconstructM(w+ 1, [x

(j)
i]) (in parallel) |Si| times for each sharing

and choose a set H ∈ Honest := {P \A|A ∈ ∆} that x(j)i = v for all Pkj ∈ (Si ∩H). If there
exists multiple such sets, they choose the minimal set including Pid with lower id.

6. The sharing [s
(min)
i] of si from Pmin ∈ H is chosen as a sharing of si, say [si].

7. At this point, parties in P ′ hold |S| sharings for each si and each party Pj ∈ P ′ holds |S| vectors
of length dj , for each sharing. Each party locally computes component-wise addition with these
vectors and sets it as its share of s. i.e., Pj computes sj :=

󰁓|S|
i=1[si]j ∈ Fdj , where each share

is the vector of length dj .
8. Parties in P ′ collectively output a sharing of s, [s]w+1 := {s1, ..., sm}, where m = |P ′|.

Theorem 5.7. (Correctness and Secrecy of ConvertAdditiveIntoMSP) When the protocol

ConvertAdditiveIntoMSP terminates, all parties in the new participating group have shares

of the same secret encoded by the old shares, and the protocol does not reveal any information

about the secret. ConvertAdditiveIntoMSP communicates O(k((m2+mn)d+(m3+m2n)κ+

nm3) log |F|+k(m3+m2n)κ log d) bits and broadcasts O(k(mnd+m3+m2n) log |F|+k(m3+

m2n) log d) bits, where |P| = n, |P ′| = m, |S| = k, and size(M) = d.

Proof. Correctness: Since the adversary chooses one set in ∆ to corrupt, there exists

at least one subset of parties in Honest that includes only honest parties. Thus, parties

in P ′ can figure out the right sharing of si from |Si| reconstruction values {(x(j)
i }|Si|

j=1 for

each i. In Step 7, each party Pj ∈ P ′ locally computes the summation of |S| vectors,

sj :=
󰁓|S|

i=1[si]j ∈ Fdj , where [si]j = Mjb(i) for b(i) := (si, $, ..., $)
t ∈ Fe. By definition,

∃λ ∈ FdB such that M t
Bλ = a ∈ Fe, for ∀B ∈ Γ′. When parties in ∀B ∈ Γ′ reconstruct with

their shares, the recomposition vector with B shares is SB = MBb, where b =
󰁓|S|

i=1 b(i).

Thus, 〈λ,SB〉 = 〈λ,MBb〉 = 〈M t
Bλ,b〉 =(the first component of b) =

󰁓|S|
i=1 si = s. Secrecy:

Since each Si ∈ S can include one or more parties, and some of them might be corrupted,

166

parties who receive the sharing of si need to choose the sharing of the honest party in Si.

However, if parties in P ′ reconstruct si, all parties can compute s by adding all si’s at the

end. Therefore, they generate a sharing of a random element r(i) for each si, and the random

number will never be reconstructed. In Step 4 of the loop, although each party sees the value

of x(j)
i , it does not reveal anything about si because it is hidden by a random number that

no one knows. Communications: It costs |S|∗{n∗Cost(ShareM)+Cost(ShareRandomM)+

n ∗ Cost(LC-ReconstructM)}, as maxi|Si| = |P| = n when Si include all parties in P .

On the other hand, when participating parties currently use the MSP-based PMPC scheme

and want to convert it to the additive PMPC in the next phase, they can execute the

protocol ConvertMSPIntoAdditive. It converts an MSP-based sharing of s in phase w into

an additive sharing of s in phase w + 1. Note that each party Pi has different shares of

s in MSP-based PMPC, and Pi’s share of s is the vector of length di. For these reasons,

each party needs to invoke multiple ShareA protocols to share each component of the vector

according to the sharing specification S′ in phase w + 1. Each party in each Sj ∈ S′ collects

all the shares received from the same party Pi and forms a vector of length di. Then, all the

parties in Sj hold the same n vectors of different lengths. When recomposing these n vectors

according to the indexing function ρ of phase w, each party can compute its share of s by

inner product with the vector λ such that M tλ = a.

Protocol ConvertMSPIntoAdditive([s]w, w,Sw, w + 1,Sw+1) −→ [s]w+1

Input: Sw := (P,Γ,Σ,∆, 󰁦M) and the sharing {si}ni=1 of s such that si = Mib for each i, where

M ∈ M(d×e) of the MSP 󰁦M computes f and accepts Γ and b = (s, r2, ..., re) for ri
$←− F

Output: a sharing of s for Sw+1 := (P ′,Γ′,Σ′,∆′, S′), where S′ := {S1, S2, ..., Sk} is the sharing
specification in phase w + 1

1. Each party Pi ∈ P invokes ShareA(w + 1, s
(i)
j ,P ′), for each s

(i)
j of si := (s

(i)
1 , ..., s

(i)
di
).

2. Every party in Sj ∈ S′ forms a vector of shares received in Step 1 from the same party Pi,
as sij := ((s

(i)
1)j , ..., (s

(i)
di
)j). i.e., Parties in Sj hold n different vectors {s1j , ..., snj} from every

167

party in P and each vector sij has length di.
3. Every parties in Sj forms the recomposition vector Qj with n vectors {s1j , ..., snj} with respect

to the indexing function ρ of 󰁦M . Note that the length of Qj is d for all j = 1, ..., k.
4. Each party in Sj sets sj := 〈λ,Qj〉, where λ is the vector such that M tλ = a, for each

j = 1, ..., |S|.
5. Players in P ′ collectively output [s]w+1 := {s1, ..., sk}.

Theorem 5.8. (Correctness and Secrecy of ConvertMSPIntoAdditive) When the protocol

terminates, all parties in the new participating group have the shares of the same secret as the

old shares, and the protocol does not reveal any information about the secret. It communicates

O(dkn3 log |F|) bits and broadcasts O(dkn3 log |F|) bits, where |P| = n, |P ′| = m, |S′| = k,

and size(M) = d.

Proof. Correctness: After Step 1, each party in Sj of phase w+1 gets n vectors, {s1j, s2j, ..., snj},

where sij := ((s
(i)
1)j, (s

(i)
2)j, ..., (s

(i)
di
)j) ∈ Fdi is the vector of j-th additive shares of the share

that Pi ∈ P has. Since each party in Sj received each vector sij from all n parties in P , it can

rearrange n vectors with respect to the indexing function ρ and form a vector of length d.

Since parties in Sj have all j-th additive share of shares of phase w, Qj is the vector of j-th

shares of each component of s ∈ Fd, where s := Mb, b := (s, r2, ..., re) ∈ Fe as in Section

5.5.4. i.e.,
󰁓k

j=1 Qj = s. By the properties of the inner product (over R ⊃ F = GF (p)) that

〈u, v〉 = 〈v, u〉 and 〈au+bv, w〉 = a〈u, w〉+b〈v, w〉, 〈λ,Q1+ ...+Qk〉 = 〈λ,Q1〉+ ...+〈λ,Qk〉.

Since 〈λ, s〉 = 〈λ,Mb〉 = 〈M tλ,b〉 = 〈a,b〉 = s, and 〈λ, s〉 = 〈λ,Q1 + ... + Qk〉 =

〈λ,Q1〉 + ... + 〈λ,Qk〉, each 〈λ,Qj〉 can be set as the j-th additive share of s. Secrecy:

It relies on the secrecy of the protocol ShareA. As what each party receives after the pro-

tocol is one additive share of s, it does not reveal any information about the secret until

ReconstructA is executed. Communications: As all other steps are local computations,

complexities only rely on the d ∗ Cost(ShareA).

From the Theorem 5.7 and Theorem 5.8, we can derive the following corollary.

168

Corollary. A proactive MPC scheme based on additive secret sharing and a proactive MPC

scheme based on MSP-based secret sharing are convertible. That is, one can transform an

additive sharing of a secret to a MSP-based sharing of the same secret and also transform

a MSP-based sharing of a secret to an additive sharing of the same secret, without revealing

any information about the secret among participating parties.

5.6 Related Work in Proactive Secret Sharing and Proac-

tive MPC

Proactive Secret Sharing (PSS): SS is typically utilized as a building block for MPC protocols.

Table 5.4 summarizes existing PSS schemes, where n is the number of parties, t is the

threshold for each refresh phase, |S| denotes the size of sharing specification, and d is the

size of a monotone span program, which is the number of rows of the matrix M . Note

that [125] also handles mixed adversaries which are characterized by two thresholds, one for

passive corruptions and one for active corruptions. All previous work on PSS considers only

the threshold adversary structures and are typically insecure when the majority of the parties

are compromised. PSS schemes [241, 168, 300, 311] [269, 48, 49] typically store the secret as

the free term in a polynomial of degree t < n/2; thus once an adversary compromises t + 1

parties (even if only passively), it can reconstruct the polynomial and recover the secret.

PSS schemes with optimal-communication [48, 49] also use a similar technique, but instead

of storing the secret in the free term, they store a batch of b secrets at different points in

the polynomial; similar to the single secret case, even when secrets are stored as multiple

points on a polynomial, once the adversary compromises t+1 parties, it can reconstruct the

polynomial and recover the stored secrets. Different techniques are required to construct PSS

secure against GAS. Recently [125] developed the first PSS scheme for a dishonest majority

but also only for a threshold adversary structure, the scheme cannot be generalized for other

169

structures. Also, the work in [125] only describes a PSS scheme and does not specify how

to perform PMPC for the same thresholds. While it may be possible to extend that PSS

scheme to PMPC, it will remain limited to the threshold adversary structure.

Scheme Threshold Security Network Dynamic Adversary Comm.
Passive (Active) Type Groups Structure Complexity

[300] t < n/2 (n/2) Cryptographic Synchronous Static Threshold exp(n)
[311] t < n/3 (n/3) Cryptographic Asynchronous Static Threshold exp(n)
[71] t < n/3 (n/3) Cryptographic. Asynchronous Static Threshold O(n4)
[269] t < n/3 (n/3) Cryptographic Asynchronous Static Threshold O(n4)
[168] t < n/2 (n/2) Cryptographic Synchronous Static Threshold O(n2)
[48] t < n/3− 󰂃 (n/3− 󰂃) Perfect Synchronous Static Threshold O(1)∗

[48] t < n/2− 󰂃 (n/2− 󰂃) Unconditional Synchronous Static Threshold O(1)∗

[49] t < n/2− 󰂃 (n/2− 󰂃) Unconditional Synchronous Dynamic Threshold O(1)∗

[125] t < n− 1 (n/2− 1) Cryptographic Synchronous Static Threshold O(n4)
[222] (t < n/2) Cryptographic Synchronous Dynamic Threshold O(n3)

This work
Additive

N/A Unconditional Synchronous

Static

General

O(|S| ∗ poly(n))
Additive Dynamic O(|S|2 ∗ poly(n))

MSP-based Static O(d ∗ poly(n))
MSP-based Dynamic O(d ∗ poly(n))

Table 5.4: Comparing existing proactive secret sharing (PSS) schemes; (*) Communication
complexities in [48, 49] are amortized

Proactive Secure Multiparty Computation (PMPC): To the best of our knowledge, there are

currently only a few PMPC protocols, e.g., [241] requiring O(Cn3) communication, where C

is the size of the circuit to be computed via MPC, and [48] requiring O(Clog2(C)polylog(n)+

Dpoly(n)log2(C)). Existing PMPC protocols are only specified for threshold adversary struc-

tures and cannot be easily4 augmented to handle GAS; this is because these protocols all

rely on secret sharing via polynomials. In addition, all current PMPCs can only tolerate

dishonest minorities, except one protocol [134], but even that one is limited to the threshold

adversary structure. The reason is that the underlying SS stores secrets as points on poly-

nomials, so once the adversary compromises enough parties (even if only passively), it can

reconstruct the polynomial and recover the secret. The only structure that can be described

is one in terms of a fraction of the degree of the polynomial (typically also a fraction of num-

ber of parties), and once the adversary compromises enough parties (even if only passively),

it can reconstruct the polynomial and recover the secret.
4Or at least it is not obvious to us how to easily augment them to accommodate GAS.

170

5.7 Summary

This work constructed the first communication-efficient structure-adaptive proactive MPC

schemes for dynamic GAS settings. Considering two MPC schemes based on additive se-

cret sharing and monotone span programs, we first made these MPC schemes adapt to the

proactive security settings by adding Refresh and Recover protocols. Then, we extended

our PMPC schemes to dynamic group settings by adding Redistribute protocols. Finally,

we presented the share conversions to efficiently and securely convert back and forth between

these two PMPC schemes.

171

Chapter 6

Balancing Security and Privacy in

Genomic Range Queries

This chapter explores application of cryptographic protocols in a specific use-case: genomic

testing, and shows the challenges of balancing security and privacy when applying crypto-

graphic techniques to real-world scenarios.

6.1 Introduction

Dramatic recent technical advances in DNA sequencing technology [223, 140, 166] and re-

duced sequencing costs paved the way for ubiquitous and affordable genomic testing. As a

result, genomic tests, such as paternity/parentage and pre-symptomatic disease diagnosis,

that were used in the past mainly by doctors and legal authorities are becoming available to

the general public.

In a typical genomic testing scenario, a testing facility (“tester"), such as 23andMe [1] or

CRI Genetics [2], requests genomic data from an individual (“Alice") regarding specific loca-

172

tions and/or ranges on the DNA of that individual. Alice naturally wants to reveal minimal

genomic data, since DNA – besides one’s own highly personal and sensitive material – in-

cludes significant information about her past, current, and future relatives. The tester also

needs to keep specifics (such as queried locations) secret, due to the often-proprietary nature

of these genomic tests. Consequently, genomic privacy has justifiably attracted lots of at-

tention from the research community and numerous privacy techniques have been proposed

[45, 235, 47, 103, 102, 40, 41, 289, 188].

On the other hand, even though at least as important, genomic security received considerably

less attention than genomic privacy. In particular, the authenticity and integrity of genomic

data are often ignored or over-simplified, though they are crucial to accurate outcomes of

genomic tests. An erroneous (whether or not maliciously caused) genomic test result can

have grave health consequences when used for medical diagnoses or treatment. It could also

involve social risks when determining familial relationships or other non-health-related traits.

At first glance, the genomic security problem seems simple and easily solvable with traditional

cryptographic primitives, such as digital signatures. However, the main challenge stems from

conflicting requirements in the triad of security, privacy, and efficiency. For example, a single

signature on Alice’s whole genome provides security – specifically, authenticity and integrity.

However, it requires Alice to send the entire genome to the tester (for signature verification),

which results in Alice having zero genomic privacy and incurs significant communication

costs. Another intuitive approach is to individually sign each smallest genomic unit (called

a "base") and provide the tester with only those signed bases needed for a given test. This

would offer much better privacy for Alice and incur much lower communication overhead.

However, it is expensive to compute (at sequencing time) and requires the tester to verify

potentially many signatures.

As an alternative to the whole genome representation, other more compact DNA represen-

tations can be used. One such example called Single-Nucleotide Polymorphisms (SNPs) –

173

one-base genomic mutations, account for only about 0.1% of the entire genome. Therefore,

they are significantly more efficient in representing a genome. However, this increase in effi-

ciency introduces additional security problems. If we sign each SNP individually, since SNP

locations are not consecutive and their positions are unpredictable (sprinkled throughout

the entire genome), Alice could cheat by omitting signed SNPs from the requested range.1

There are similar trade-offs for other candidate representations.

Inspired by these challenges, this work focused on reconciling genomic security, privacy, and

efficiency. Genomic security requires authenticity, which comprises origin authentication, in-

tegrity, and completeness. It aims to counter potentially malicious owners and/or outsiders

tampering with genomic data. Whereas, privacy (against malicious testers) demands flexi-

bility and sufficiently fine granularity controlled by the genome owner so as to reveal minimal

information. At the same time, efficiency motivates minimizing genomic data processing,

which complicates both privacy and security. After carefully examining security, privacy,

and efficiency needs, we propose techniques based on the combination of established cryp-

tographic tools that achieve a good balance for genomic testing. Anticipated contributions

are as follows:

• We construct a secure and private range query technique as a building block for various

protocols and genomic representations. Range queries allow us to perform efficient

genomic tests on various regions2 that control similar functions.

• To demonstrate the applicability of the proposed technique, we use it to improve both

the security and performance of prior protocols for private genomic substring match-

ing [103].
1Of course, she cannot introduce fake SNPs.
2Note: One example of such a region is the Major Histocompatibility Complex (MHC), a large locus

on vertebrate DNA, which consists of a set of genes coding for proteins responsible for detecting foreign
molecules at the cellular level. MHC ranges from 6p22.1 to 6p21.3 and consists of about 4 megabases;
see Cytogenetic location [4]. Various SNPs in this region (e.g., rs9264942, rs4418214, rs2395029,
and rs3131018) have been shown to protect against Human Immunodeficiency Virus (HIV) [282].

174

• We prototype proposed protocols and evaluate their performance. In the course of the

evaluation, we investigate various optimizations and analyze the performance of two

additively homomorphic encryption schemes (ElGamal [136] and Paillier [242]) and

two range-proof schemes (signature-based [72] and BulletProofs [69]).

• Finally, we generalize the problem setting to sparse integer sets and discuss applications

of the proposed schemes beyond genomics.

Organization: Section 6.2 overviews background, followed by Section 6.3 providing our sys-

tem and security models, as well as the range completeness problem. Our main contribution

is introduced in Section 6.4, followed by its application to the private substring matching

problem (SPH-PSM [103]) in Section 6.5. Sections 6.6 and 6.7 discuss the implementation

and evaluation of the proposed construction and its application to SPH-PSM. Next, Section

6.8 generalizes the problem to the sparse integer sets and comments on its security. Then,

Section 6.9 overviews related work, followed by some limitations of this work and future

work in Section 6.10. Table 6.1 summarizes all notation and acronyms used in this work.

6.2 Preliminaries

6.2.1 Genomics

The human genome is composed of around 3.2 billion 3 base pairs packed into 23 chromosomes

of different size [220]. Each base can be represented by four letters of the genetic code –

[A]denine, [C]ytosine, [G]uanine, and [T]hymine, where [A] always bonds with [T], and [G]

always bonds with [C]. According to The Human Genome Project (HGP), only around 0.1%
3 A diploid human genome has around 6 billion base pairs, whereas the HGP reference genome contains

only around 3.2 billion base pairs. This is because most human cells contain 23 chromosomes in pairs (i.e.,
46 chromosomes in total), which are almost identical. Only one of each pair, 24 chromosomes in total – 22
non-sex and 2 sex (X and Y) – can represent the whole human genome information.[17]

175

Table 6.1: Notation & Acronyms used in Chapter 6

Notation Description
SL A sequencing lab that digitalizes analog genomic sample
T A tester performing genomic tests on digitized genomes
Alice An individual requesting her digitized genome from SL and later in-

teracting with T for a genomic testing
Q = [a, b] T ’s range query, where a and b are integer boundaries such that 0 <

a ≤ b < N(≈ 3.2 ∗ 109)
BioAlice Alice’s (physical) DNA sample
GAlice = {g1, g2, ..., gN} Alice’s whole genome represented as an ordered set of tuples of the

form: gi = (i, li), i = 1, ..., N , where i is an integer position and li
is an integer in [0,15] representing a combination of two base letters:
{A,G,C, T}. (e.g., 0 for ‘AA’, 1 for ‘AC’, etc.)

M = {m1,m2, ...,mn} SNP representation of Alice’s genome, where n is the number of ge-
netic variations. Denoted by a tuple mi = (posi, li), i = 1, ..., n, where
M ⊂ GAlice. Note that posi < posi+1 for ∀i

MQ ⊆ M The subset of M including all Alice’s SNPs located in Q. i.e., MQ =

{mi ∈ 󰁦M | a ≤ posi ≤ b}, say {mk+1, ...,mk+j} for some k, j
(Sign(.), V erify(.)) A secure digital signature scheme
Com(x) A secure commitment scheme allowing zero-knowledge range proofs

over x. Equivalent to Com(x; s), where s is a random salt
NIZK(z : R(z)) A non-interactive zero-knowledge proof of knowledge of z such that

R(z) holds. Denote proof and verification protocol as NIZK_Prove(.)
and NIZK_Verify(.), respectively

(Enc(.), Dec(.)) An additively homomorphic encryption scheme
H(.) A cryptographic hash function
(pkX , skX) A pair of public and private key of an entity X

176

of base pairs differ between individuals [15]. Although it is not yet possible to determine or

predict exactly where these differences occur, many types of genetic variations can be used

to identify an individual and assess one’s susceptibility to diseases and sensitivity to drugs.

Single-nucleotide polymorphisms (SNPs) are the most common type of genetic variation

(a.k.a. mutations) among people, which represents a difference in a single base, e.g., an [A]

changes to a [C] or a [G]. A variation is classified as an SNP if over 1% of a population does

not carry the same nucleotide at a specific position in the DNA sequence [13].

Normally, SNP data sequenced by, e.g., 23andMe [1] contains two base letters, one per each

chromosome. For example, let the genotype of an SNP among Alice’s DNA sequenced result

be ‘AG’ at position 169. This means that ‘A’ is on one strand of one chromosome, and ‘G’

is on one strand of the other chromosome – naturally, the opposite strands have paired ‘T’

and ‘C’, respectively at position 169 – and another person can have a different genotype

at position 169, e.g., ‘CC’. To represent the genotypes efficiently, we use an 8-bit4 integer

∈ [0, 15], instead of representing all 2-character combinations of {A,C,G,T}. Thus, we

denote a base as (pos, l), where pos is a non-negative integer < 3.2 ∗ 109 representing the

position of the base and l is a non-negative integer ∈ [0, 15] representing two base letters

from each chromosome at that position.

Due to the relatively small volume of SNPs, a reference genome model that contains only

the list of mutations can be used to reduce storage and computation costs. Using a compact

reference form, such as the 1, 000 Genomes Project variant call format5, the human genome

can be represented using only about 120 megabytes, while the entire (raw) representation

takes up to 200 gigabytes. This work focuses on these two representations: the whole genome,

and the compact SNP-based. We defer other genomic representation formats, e.g., Short

Tandem Repeat and Restriction Fragment Length Polymorphism , to future work.
4Although 4-bit is enough to represent all 16 combinations, we use the standard uint8 type to contain

any insertions/deletions in future work.
5See: www.internationalgenome.org/wiki/Analysis/vcf4.0

177

6.2.2 Cryptographic Commitments

A commitment scheme is a cryptographic primitive that involves a prover and a verifier.

The prover first commits to a chosen (secret) value and reveals it later to the verifier. A

commitment scheme thus has two phases. In the first, commit, phase, the prover sends a

message (commitment) to the verifier committing to a secret value. The commitment must

reveal no information about the committed value; this is called the hiding property. In

the second, reveal, phase, the prover sends to the verifier a message (decommitment) which

reveals the previously committed value. The verifier validates the revealed value against the

committed one. The former must uniquely match the latter, called the binding property.

We denote a commitment using Com(z; r), where Com is a commitment scheme, z is the

committed value, and r is a random bit-string used as a salt.

We use two types of commitments: one based on the discrete logarithm problem (DLP) and

the other – based on a strong cryptographic hash function. For DLP-based commitments,

we use the well-known Pedersen [245] and Fujisaki-Okamoto [147] commitment schemes.

A Pedersen commitment is defined in a subgroup of Z∗
p, where p is a large prime, albeit any

group where the DLP is hard can be used. Let G be the group of order p, generated by

element g, i.e., G = 〈g〉 with o(G) = p. Two non-identity elements, g and h, in G are used

as public keys, where loggh is unknown to either the prover or the verifier. To commit to a

message z ∈ Zp, a Pedersen commitment is computed as: Com = Com(z; r) = gzhr, where

r is a random number in Zp. To decommit, later prover reveals z and r, and the verifier

checks if indeed gzhr = Com.

A Fujisaki-Okamoto commitment is an extension of the Pedersen commitment to the RSA

setting. Instead of Z∗
P , it uses Z∗

N , where N = PQ and P,Q are distinct primes, such that

P = 2p + 1 and Q = 2q + 1, where p and q are also primes. Now, two generators gp and gq

generate each group, Gp and Gq, of prime orders p and q, respectively, i.e., Gp and Gq are

178

subgroups of Z∗
P and Z∗

Q, respectively. Generator g of the group Gpq is computed using the

Chinese Remainder Theorem, such that g = gp (mod P) and g = gq (mod Q). Then, h is

computed by h = gα (mod N), where α is uniformly chosen from Z∗
pq, and (g, h) is set as the

public key. To commit a message z ∈ ZN , the Fujisaki-Okamoto commitment is computed by:

Com(z; r) = gzhr (mod N), where r is a random number in Z∗
λN with a security parameter

λ. Both Pederson and Fujisaki-Pkamoto commitment schemes are statistically hiding and

computationally binding.

Finally, the commitments based on secure cryptographic hash functions rely on the fact that

modern hash functions practically reveal no information about the value they hide if they

are used with a sufficiently long random salt. In addition, since secure cryptographic hash

functions offer weak or strong collision-resistance properties, the commitments based on such

functions are binding. A commitment is of the form: H(z||r), where H is a cryptographically-

secure hash function (e.g., SHA2 [20]), z is the committed value, and r is a sufficiently long

random bit-string.

6.2.3 Zero-Knowledge Range Proofs

A Zero-Knowledge Range Proof (ZKRP) allows a prover to convince a verifier that a com-

mitted secret value is within a given range without revealing that value. The three standard

zero-knowledge proof (ZKP) properties: completeness, soundness, and zero-knowledge, also

hold for ZKRPs. i.e., When the secret is in the given range, an honest prover can always

convince an honest verifier of the fact, which yields completeness. Meanwhile, no dishonest

prover can convince an honest verifier if the secret is not in the range, which yields soundness.

Also, the verifier learns nothing from the execution of the protocol about the secret value

other than that it lies in the range, which corresponds to zero-knowledge. Non-Interactive

Zero-Knowledge Proofs (NIZKs) are a class of ZKP that requires no interaction between

179

the prover and the verifier. It is well-known that NIZK can be constructed from ZKP in a

random oracle model using the Fiat-Shamir heuristic [141].

Boudot’s range proof [64] is the first practical construction of ZKRP proposed in 2001. It

includes two protocols: one for the extended range and the other for the exact range. In

the first, for a requested range [a, b], the prover shows that the secret integer v resides in

[a − θ, b + θ], where θ = 2t+l+1
√
b− a and t and l are security parameters, i.e., with the

expansion rate6 δ = 2θ. Whereas, in the second protocol, the prover shows that v resides in

the exact requested range, [a, b], i.e., with δ = 1.

Following Boudot, there has been a long line of work on ZKRPs. As mentioned in survey

papers such as [231, 119], ZKRP methods can be classified based on their main character-

istics: (1) square decomposition, (2) signature-based, (3) multi-based decomposition, and (4)

Bulletproofs.

Square decomposition constructions, such as [64, 213, 159], use the fact that any non-negative

integer can be represented by the sum of squares. Signature-based constructions [72] are

generalized from a zero-knowledge set membership test by showing that the prover knows a

signature on the secret among the entire set of signatures on integers in the given range. In

multi-based decomposition constructions [214, 74], the secret is decomposed by a u-ary (usu-

ally binary) representation, and the prover shows that each coefficient is 0 or 1, which proves

that the secret value is in a given range. Lastly, unlike other approaches, Bulletproofs [69] is

a technique without a trusted set-up phase. It uses the binary representation of the secret

value and inner product proofs, which allows for smaller proof sizes.

Any ZKRP protocol can be used in our construction. For example, we use Boudot’s range

proof [64] as the ZKRP of our main construction(Section 6.4) and Bulletproofs [69] in the
6 The expansion rate of a range proof allows for tolerance, defined as δ = B−A

b−a , where [a, b] is the requested
range and [A,B] is a larger range including [a, b] wherein the prover shows the value resides. Note that if
this rate is 1, the range proof convinces a verifier that the value is exactly in the requested range [a, b].

180

extended version (Section 6.5). We briefly summarize these protocols below.

Assume that the prover wants to show that a secret value v ∈ [a, b] is in [a− θ, b+ θ], where

θ is defined as above. To do so, the prover shows (1) v − a ≥ −θ and (2) b − v ≥ −θ. To

demonstrate (1), the prover writes (v− a) as the sum of the greatest square less than v and

a non-negative number, i.e., v − a = v21 + p, where v1 := ⌊
√
v − a⌋ and p = (v − a) − v21.

Next, the prover shows, in zero-knowledge, that the commitment to v21 hides a square, and

the commitment to p hides a number with the absolute value less than θ, using the method

in [81]. The same procedure is done for (2), but with r′1, r
′
2 such that r′1 + r′2 = −r. As a

result, the prover shows that v ∈ [a− θ, b+ θ] where θ = 2t+l+1
√
b− a.

Showing that the secret value v is exactly in [a, b] is similar. However, it is now shown that the

expanded secret value lies in the expanded range of [a, b], which implies that v ∈ [a, b] . More

specifically, the prover first expands v by computing v′ = v ·2T , where T = 2(t+l+1)+|b−a|.

Then it shows that v′ ∈ [2Ta − θ′, 2T b + θ′], where θ′ = 2t+l+T/2
√
b− a using the previous

protocol with expanded commitment Com(z; r)2
T . Since θ′ < 2T , the verifier is convinced

that v′ ∈]2Ta− 2T , 2T b+ 2T [⇐⇒ v ∈]a− 1, b+ 1[so that v ∈ [a, b] as v ∈ Z.

With Bulletproofs [69], the prover performs ZKRP twice: once for v ∈ [a, a+ 2n], and then

for v ∈ [b − 2n, b], in order to show that v ∈ [a, b]. To show that v ∈ [0, 2n − 1], the prover

first vectorizes v to n-bit value, vL := (v1, ..., vn) ∈ {0, 1}n. Then, for vR := vL − 1n, the

Hadamard product of vL and vR is zero, i.e., vL ◦ vR = 0. To show these properties, the

prover needs to show that:

1) the inner product 〈vL, 2n〉 = v, 2) 〈vL, vR◦y〉 = 0, and 3) 〈vL−1n−vR, y
n〉 = 0, for ∀y ∈ Zp

These equalities can be combined into one, by the verifier choosing a random z ∈ Zp and

181

prover showing that:

〈vL − z · 1n, yn ◦ (vR + z · 1n) + z2 · 2n〉 = z2 · v + δ(y, z) (6.1)

where δ(y, z) = (z − z2) · 〈1n, yn〉 − z3〈1n, 2n〉 ∈ Zp. Also, to hide the information about vL

and vR, additional blinding terms sL, sR ∈ Zn
p are used, so that the prover sends l, r, and t

instead, where:

l := l(X) = vL − z · 1n + sL ·X,

r := r(X) = yn ◦ (vR + z · 1n + sR ·X) + z2 · 2n ∈ Zn
p [X], and

t(X) := 〈l(X), r(X)〉 ∈ Zp[X]

To convince the verifier that the constant term t0 of t(X) = t0 + t1 · X + t2 · X2 becomes

the right-hand side of the equation (6.1), i.e., t0 = v · z2 + δ(y, z), the prover commits to

the remaining coefficients, t1, t2 ∈ Zp, receives a random point x ∈ Z∗
p from the verifier, and

replies the t(x) value to the verifier. By checking all the commitments and values, the verifier

is convinced that v ∈ [0, 2n − 1].

6.2.4 Homomorphic Encryption

Homomorphic encryption (HE) is a special type of encryption that allows users to perform

certain arithmetic operations on encrypted data such that results are reflected in the plain-

text. If it supports both unlimited addition and multiplication of ciphertexts, the HE scheme

is called Fully Homomorphic Encryption (FHE). Whereas, a scheme that supports a limited

number of operations of either type is called Somewhat Homomorphic Encryption (SWHE).

Finally, a scheme that supports only one operation type (e.g., addition or multiplication) is

called Partially Homomorphic Encryption (PHE). We use PHE in this work. (Typically, in

182

terms of computation costs, FHE > SWHE > PHE).

There are many PHE schemes, e.g., [262, 155, 136, 91, 96, 232, 240, 242, 100, 189]. For

example, the well-known ElGamal encryption scheme [136] is a PHE which supports multi-

plication, as for any m1,m2 ∈ 〈g〉 and random r1, r2,

Enc(m1)∗Enc(m2) = (gr1 ,m1∗hr1)∗(gr2 ,m2∗hr2) = (gr1+r2 ,m1∗m2∗hr1+r2) = Enc(m1m2)

Another variant of ElGamal [96] is additively homomorphic. It uses gm instead of m as the

ciphertext. i.e.,

Enc(m1)∗Enc(m2) = (gr1 , gm1∗hr1)∗(gr2 , gm2∗hr2) = (gr1+r2 , gm1+m2∗hr1+r2) = Enc(m1+m2)

Another popular PHE is Paillier [242], which also supports addition. In it:

Enc(m1) ∗ Enc(m2) = (gm1rn1 (mod n2)) ∗ (gm2rn2 (mod n2))

= gm1+m2(r1 + r2)
n (mod n2) = Enc(m1 +m2)

where r1, r2 are randomly chosen elements in Z∗
n, for any m1,m2 ∈ Zn. Although Paillier is

widely used, we show in Section 6.7 that additively homomorphic ElGamal (AH-ElGamal)

scheme is more efficient in our context. (This is mainly because we only need to check if the

ciphertext is the encryption of zero.)

183

6.3 System & Security Models

6.3.1 System Model

The system model includes three types of entities: (1) individuals, (2) sequencing labs, and

(3) testers, where each entity’s role is as follows:

1. Each individual provides their DNA sample to a sequencing lab.

2. Sequencing lab is a service provider, certified by a trusted authority, that extracts and

generates the digitized genomic data from the received DNA sample, e.g., hospitals

and Direct-To-Consumer (DTC) service providers.

3. Tester offers various genomic tests, e.g., paternity, pharmacogenetics, or cancer marker

screenings, which entail one or more queries for genomic data on some specific locations

required for a test. The exact locations for each test are certified by a trusted authority.

Each query represents a range Q = [a, b] with genomic (integer) positions a and b, which

indicates that the tester needs all genomic data in Q to perform the test.

We assume a global pre-existing public key infrastructure (PKI) establishes trust among

entities based on certified public keys. Although there would be a multitude of each entity

type, we assume (for the sake of clarity) only one individual (Alice), one sequencing lab

(SL), and one tester (T).

6.3.2 Security Model

We assume that SL and T are certified by a trusted authority and SL is fully trusted by

Alice and T . Sequencing and preparing digitized genomic data by SL are performed offline.

We assume T is Honest-but-Curious (HbC): although it faithfully follows the protocol, it

aims to learn more about Alice’s genome than is required for the test. The ranges queried

184

by T are considered to be pre-approved by a trusted authority. For instance, the trusted

authority provides T a signed white list of legitimate ranges or genome positions for all

authorized genomic tests. For this reason, Alice is willing to reveal the required genomic

data to T for the given test.

We assume that T does not trust Alice since she might supply altered genomic data (whether

by modification and/or omission) to influence the outcome of a test. For correct test results,

T needs to ensure that all information Alice supplies is both authentic and complete. To this

end, our goal is a secure and private range query protocol, π, between Alice and T .

π takes T ’s range query Q and Alice’s set of SNPs M as inputs, and outputs the response

MQ to T , i.e., the set of all SNPs in M located in Q. Concrete security goals are:

1. Authenticity: All SNPs reported by Alice must be authentic, i.e., Alice cannot modify

any part of her digitized genome or introduce new parts without being detected.

2. Completeness: All SNPs in Q should be reported, i.e., Alice should not omit any

SNP in Q from her reply to T ’s query.

3. Alice’s Privacy: T should not learn any information about Alice’s genome beyond

SNPs in Q.

Caveat: Nucleotides (individual bases) at different positions can be correlated. Some such

correlations are well-known. Therefore, based on the specific mutations in a given range that

Alice reveals to T as part of a legitimate test, T could infer genomic information from other

regions of Alice’s genome. We believe that such side-channel inference is unavoidable and

consider it out of the scope of this work.

185

6.4 Genomic Range Query Protocol

6.4.1 Intuitive Approaches

One trivial approach is to use Alice’s whole genome, GAlice, and let SL sign all gi’s at

sequencing time. When T asks for all mutations in Q, Alice provides all pairs within that

range along with their signatures. T can easily detect if anything is missing since it receives

all gi’s. Including fake bases is impossible, as Alice cannot forge SL’s signatures. This

approach provides authenticity and integrity, and leaks no information about bases outside

the queried range. However, it has high computation and storage costs because every single

base in Q needs to be signed, sent, and verified. To reduce costs, certain cryptographic

methods, such as condensed and aggregated signatures can be employed, albeit the final cost

would still be far from optimal. We refer to [65] for a detailed discussion and comparison of

such methods.

Another intuitive approach is to use Alice’s SNP-represented genome, M, and let SL sign

all mi’s at sequencing time. This would substantially reduce storage and computation costs

due to the relatively small volume of SNPs. However, it introduces the completeness prob-

lem, since nothing prevents Alice from omitting some (or all) SNPs when she sends T the

mutations and signatures on Q. To avoid any omissions and ensure the correct ordering

of mutations, SL can sign tuples consisting of two adjacent mutations sorted in ascending

order, as suggested by [122]. However, this entails revealing two tuples containing mutations

in positions immediately beyond lower and upper range boundaries, respectively. Due to

the general sparsity of genomic mutations, this could leak a substantial amount of sensitive

information to T .

186

6.4.2 Proposed Approach

Assume that Alice gives her physical DNA sample (BioAlice) to SL to obtain a digital repre-

sentation of her genome in SNPs. SL forms the SNP representation M = {m1,m2, ...,mn}

by comparing Alice’s genome to a reference genome, as discussed in Section 6.2.1. Now,

SL adds two special mutations, m0 and mn+1, to represent the lower and upper genome

boundaries. At the end of the sequencing process, Alice receives the list:

󰁦M = {m0,m1,m2, ...,mn,mn+1} = M ∪ {m0,mn+1}

For the special sentinel mutations m0 and mn+1, positions pos0 and posn+1 are integers out

of the normal human genomic position range, i.e., pos0 = −∞ < 0, posn+1 = +∞ > N , and

the base letters l0 and ln+1 are dummy letters of the same sizes.

Alice also receives the lists of signatures, Γ = {γ0, γ1, ..., γn}, and salts, Salt, used to generate

these signatures. To show the ordering of mutations without revealing additional information

on boundary ones, SL signs the tuple of commitments for each adjacent mutation instead

of signing each mutation, i.e., γi = Sign(skSL, Tupi), for ∀i. Each tuple consists of four

commitments for the adjacent mutations and their positions:

Tupi = (Com(posi; si,1), Com(mi; si,2), Com(posi+1; si+1,1), Com(mi+1; si+1,2))

for some commitment scheme Com and salts si,j for i-th SNP and j = 1, 2. The latter two

commitments for posi+1 and mi+1 are reused in the next tuple, Tupi+1. This can be done in

the offline phase between SL and Alice.

In the online phase, Alice returns the mutations within the queried range Q, along with

the corresponding signatures and salts. She also generates two range proofs for the po-

sitions of the first mutations outside the queried range: one for the mutation with the

highest position below the lower bound of Q and the other for the mutation with the lowest

187

position above the upper bound of Q. Alice sends these proofs and corresponding commit-

ments of those positions. Denoting all SNPs in Q as MQ = {mk+1, ...,mk+j}, Alice sends:

(MQ, SaltQ,ΓQ, Ck, Ck+j+1, l, h) to T , where:

SaltQ = {sk+1, ..., sk+j} = {(sk+1,1, sk+1,2), ..., (sk+j,1, sk+j,2)},

ΓQ = {γk, γk+1, ..., γk+j},

Ck = (Com(posk, sk,1), Com(mk, sk,2)),

Ck+j+1 = (Com(posk+j+1, sk+j+1,1), Com(mk+j+1, sk+j+1,2)),

l ← NIZKRP_Prove{(posk, sk,1) | Ck,1 = Com(posk, sk,1) ∧ posk < a}

h ← NIZKRP_Prove{(posk+j+1, sk+j+1,1) | Ck+j+1,1 = Com(posk+j+1, sk+j+1,1) ∧ posk+j+1 > b}

where l and h are the proofs for the non-interactive zero-knowledge proof of range proof

(NIZKRP). T reconstructs intermediate tuples using received mutations and salts, and

boundary tuples – using received Ck and Ck+j+1, as follows:

Tupk = (Ck, Com(posk+1; sk+1,1), Com(mk+1; sk+1,2)),

Tupi := (Com(posi; si,1), Com(mi; si,2), Com(posi+1; si+1,1), Com(mi+1; si+1,2)),

for i = k + 1, ..., k + j − 1, and

Tupk+j = (Com(posk+j ; sk+j,1), Com(mk+j ; sk+j,2), Ck+j+1)

Then, T verifies the signatures using SL’s public key and NIZKRP proofs l, h with the

boundaries of Q, a, and b. i.e., T sees if (1) V erify(pkSL, Tupi, γi) = 1 for all i = k, ..., k+ j,

(2) NIZKRP_Verify(Ck,1, l) = 1, and (3) NIZKRP_Verify(Ck+j+1,1, h) = 1, and it aborts

if any of those fails. Otherwise, it proceeds with the test using received MQ. Figures 6.1

and 6.2 show offline and online phases, respectively. Communication and computation costs

are reflected in Table 6.2, where n is the number of Alice’s SNPs and j is the number of

mutations in Q.

188

Figure 6.1: (Offline Phase) Digitizing Alice’s SNPs

Figure 6.2: (Online Phase) Genomic Range Query between Alice and Tester (T)

6.4.3 Security Analysis

Assume a non-empty MQ = {mk+1, ...,mk+j} for some non-negative integers k, j. T checks

the authenticity of mi ∈ MQ by verifying the received signatures ΓQ = {γi}k+j
i=k using the

reconstructed tuples {Tupi}k+j
i=k . The links between two adjacent tuples prevent Alice from

excluding any mutations. Also, T ensures completeness by verifying the two NIZKRP proofs,

189

showing that the boundary position commitments hide the integers beyond the queried range.

This allows Alice to maintain the privacy of all mutations outside Q.

Suppose that MQ is empty, i.e., Alice has no SNPs within Q. Then, Alice sends one tuple

Tupl for some l, of the form: (Com(posl), Com(ml), Com(posl+1), Com(ml+1)) such that

posl < a and posl+1 > b and its signature γl to T . T verifies γl, which satisfies authenticity,

and checks the ZKPs that committed values are outside Q, ensuring completeness and Alice’s

privacy.

One special case occurs when no mutations exist before position a and/or after position

b. The required range is large enough, and it reveals all SNPs to conduct the test with

mk = m0, and/or mk+j+1 = mn+1. Since sentinel commitments are indistinguishable from

other commitments, our security goals are also achieved in this case. In summary,

Goal 1. Authenticity is based on the security of the underlying digital signature scheme

used by SL to sign tuples.

Goal 2. Completeness is achieved by sequential linking of elements, allowing T to detect

any omissions.

Goal 3. Alice’s Privacy holds due to the use of ZKP and the hiding property of commit-

ments, which reveals no information about either mutations’ positions or mutations

outside Q.

Table 6.2: Cost Analysis of Secure & Private Genomic Range Query Protocol

(From −→ To) Communication Cost
SL −→ Alice (n + 2) mutations, (n + 1) signatures, and 2(n + 1) salts
T −→ Alice two integers, a and b, denoting the range Q = [a, b]
Alice −→ T j mutations, 2j salts, (j + 1) signatures, 4 commitments, 2 range proofs
Entity Computation Cost
SL (Offline) 2(n + 2) commitments, (n + 1) signatures
T 4j commitments, (j + 1) signature verifications, 2 range proof verifications
Alice 4 commitments, 2 range proof generations

190

6.5 Other Applications

In this section, we show how to improve a private substring matching protocol for genomic

data using our technique. SPH-PSM [103] operates on encrypted bases and allows the

genome owner (Alice) to learn whether a test pattern (a list of contiguous bases on some

specific locations required for a given test) held by a tester (T) exists in her genome while not

revealing anything about their inputs to each other. Though this protocol provides privacy

for Alice’s genome and T ’s pattern, it guarantees neither the authenticity nor integrity of

Alice’s genome. Furthermore, SPH-PSM incurs high communication and computational

costs since it requires Alice to encrypt her whole genome and send the entire encrypted

genome to T .

We denote our proposed protocols variants with the following acronyms: secure SPH-PSM

(S-SPH-PSM), efficient and secure SPH-PSM (ES-SPH-PSM), and flexible, efficient, and

secure SPH-PSM (FES-SPH-PSM), respectively. Table 6.3 provides a high-level comparison

of these variants over SPH-PSM.

Table 6.3: Comparisons of SPH-PSM variants

Genomic
Representation

Security
(for T)

Privacy
Alice T

SPH-PSM [103] Whole ✗ ✓ ✓
S-SPH-PSM (§6.5.2) Whole ✓ ✓ ✓
ES-SPH-PSM (§6.5.3) SNP ✓ ✓ ✓
FES-SPH-PSM (§6.5.4) SNP ✓ ✓ ◗

✓ and ✗ denotes supported and unsupported, respectively, and ◗ denotes degree of support can vary.

6.5.1 Size- and Position-Hiding Private Substring Matching Proto-

col (SPH-PSM) [103]

First, Alice generates a public-private key pair for an AHE scheme and encrypts each base of

her genome using the public key. T computes the additive inverse of each base in its specific

191

test pattern and encrypts each inverse using Alice’s public key.

In the online phase, Alice sends the entire encrypted genome to T . For each position where

the pattern is located, T homomorphically adds its encrypted pattern to Alice’s encrypted

base. Then, T adds the resulting values and returns the final (encrypted) sum to Alice.

Alice decrypts the received ciphertext using her private key and learns the test result. The

decrypted result is 0 if Alice’s genome matches the test pattern; otherwise, it is a random

value. During the whole process, T does not learn any information on Alice’s genome or the

test result.

6.5.2 Secure SPH-PSM (S-SPH-PSM)

In SPH-PSM, Alice can modify her digitized genome and influence the test result, since

SPH-PSM does not guarantee the authenticity or integrity of Alice’s genome. To prevent

this, we design secure SPH-PSM (S-SPH-PSM) and let SL act as a certification authority

for the genomic data.

When SL sequences Alice’s DNA sample (BioAlice), it encrypts the hash of each base using

an AHE scheme under Alice’s public key.7 Then, it signs the hash of each ciphertext – along

with its position – using its private key and sends the list of ciphertexts and corresponding

signatures to Alice.

The online phase is similar to SPH-PSM, except that T verifies the signatures and checks

the authenticity and integrity of ciphertexts on the positions required for the test. Figures

6.3 and 6.4 show the offline and online phases of S-SPH-PSM, respectively.

S-SPH-PSM also ensures authenticity and completeness via signing of both ciphertext and its

position. T can detect omissions or rearrangements, as it verifies signatures for all consecutive
7The choice of this public key depends on who will learn the test result at the end of the protocol. For

instance, for court-mandated tests, the court’s public key can be used instead.

192

Figure 6.3: Offline Phase of Secure SPH-PSM (S-PSH-PSM)

Figure 6.4: Online Phase of Secure SPH-PSM (S-SPH-PSM)

positions in the range. Also, to prevent accidental matches, we hash both the position and

the base letter when encrypting the bases, as in the AH-ElGamal-based protocol [103].

6.5.3 Efficient & Secure SPH-PSM (ES-SPH-PSM)

We design efficient and secure SPH-PSM protocol (ES-SPH-PSM) to improve efficiency.

We use SNPs instead of the whole genome representation and our techniques proposed in

Section 6.4. Offline and online phases of this protocol are given in Fig. 6.5 and Fig.6.6, re-

spectively. In the former, we add special sentinel SNPs and sign the tuples of adjacent bases,

193

Figure 6.5: Offline Phase of Efficient & Secure SPH-PSM (ES-SPH-PSM) and Flexible,
Efficient, & Secure SPH-PSM (FES-SPH-PSM)

as in Section 6.4, whereas the tuple consists of commitments of position and the ciphertext of

each SNPs instead. SL sends to Alice the encrypted genomic data and signatures along with

the salts used for the commitments. In the online phase, T verifies “all" received tuples and

computes multiple results for all possible starting positions. The computational complexity

of this approach is O(nm), where n is the size of Alice’s genome and m is the number of

bases in the pattern that T holds. This is because SNP positions are hidden, unlike in the

whole genome representation. (See unoptimized commented-out pseudo-code in Figure 6.6).

However, this computational cost can be significantly improved and reduced to O(n) with

some optimizations. First, T performs an initial calculation as before by matching the first

m (encrypted) SNPs with its m (encrypted) inverses of the pattern. T then keeps the sum of

this operation in a temporary result. Since most encrypted inverses and SNPs are reused and

aggregated in the next computation, the temporary result helps reduce the computational

cost. That is, the next result is computed by subtracting the first encrypted SNP and adding

the next encrypted SNP to the previous result. For each computation, the temporary result is

stored in the result list with randomization. Whenever the pattern and Alice’s SNPs match,

the aggregated result will be an encrypted zero. When Alice receives randomly permuted

results, she sees if any decrypted results are zero (See Figure 6.6).

194

Figure 6.6: Online Phase of Efficient & Secure SPH-PSM (ES-SPH-PSM)

To maintain the size-hiding property, we add m additional results, encryption of random

values, so that the number of results is always n, independent of the pattern size. The

pattern’s position-hiding property is still held by randomly shuffling multiple results before

they are sent to Alice. For completeness, Alice can just reveal the boundary positions, pos0

and posn+1. In ES-SPH-PSM, we achieve orders of magnitude efficiency improvement with

the same security and privacy guarantees.

195

6.5.4 Flexible, Efficient, & Secure SPH-PSM (FES-SPH-PSM)

Figure 6.7: (Online Phase) Flexible, Efficient & Secure SPH-PSM (FES-SPH-PSM)

Genomic tests whose nature is known (e.g., immunity) often operate on a small range of

the genome and may be public. This allows efficiency gains by querying only the mutations

located in that small range. Our proposed techniques in Section 6.4 can be applied as in

ES-SPH-PSM to preserve security goals for Alice’s genome with adjustable privacy for the

pattern. To keep the pattern’s privacy (size- and position-hiding properties), a wider range

including the required range can be used. The offline phase of the FES-SPH-PSM protocol

is the same as the one of ES-SPH-PSM, so presented in Fig. 6.5, and the online phase is in

Fig. 6.7. The two main differences are: (1) T now queries a range, and (2) Alice provides

encrypted mutations only in that range with NIZKRP proofs for boundary values.

Tables 6.4 and 6.5 show the computation and communication costs of each SPH-PSM variant.

196

Table 6.4: Operation complexity of each SPH-PSM variant.

Offline Online
SL Alice T Alice T

SPH-PSM - N Enc m EncInv 1 IsZero 1 Enc, MultConstant
2m MultCiphers

S-SPH-PSM N Enc, Hash, Sign - m EncInv 1 IsZero m SigVerify, 2m MultCiphers,
1 MultConstant, 1 Enc

ES-SPH-PSM
n+ 2 Enc,
n+ 2 Comm,
n+ 1 Hash, Sign

n+ 2 Comm m EncInv n/2 IsZero (on average)

2 BoundaryCheck, CommCheck,
n+ 1 Hash, SigVerify,
n Enc, n−m+ 1 MultConstant
No opt: 2(n−m+ 1) ∗m MultCiphers
Optimized: 3n−m MultCiphers

FES-SPH-PSM Same as ES-SHP-PSM
ComputeBoundaryIndex,
2 RangeProofGen
k/2 IsZero (on average)

2 RangeProofVerify,
k + 1 Hash, SigVerify,
k Enc, (k −m+ 1) MultConstant
No opt.: 2(k −m+ 1) ∗m MultCiphers
Optimized: 3k −m MultCiphers

where Enc: encryption of an AHE, MultConstant: Enc(m)r = Enc(m ∗ r), MultCiphers: Enc(m1) * Enc(m1) =
Enc(m1 +m2),

EncInv: Enc(m(−1)) = Enc(−m), IsZero: check if the input ciphertext is encryption of zero or not, Hash: computation of
a cryptographic hash function, (Sign, SigVerify): a digital signature scheme, (Comm, CommCheck): a commitment scheme,

(RangeProofGen, RangeProofVerify): a NIZKRP, and (ComputeBoundaryIndex, BoundaryCheck): integer comparison

Table 6.5: Data transfer complexity of each SPH-PSM variant.

Offline Online
SL → Alice Alice → Tester Tester → Alice

SPH-PSM - N ciphertexts 1 ciphertext
S-SPH-PSM N ciphertexts, signatures N ciphertexts, signatures Same as SPH-PSM

ES-SPH-PSM n+ 2 ciphertexts, salts
n+ 1 signatures

n+ 2 ciphertext, commitments
n+ 1 signatures
2 positions (integers), salts

n ciphertexts

FES-SPH-PSM Same as ES-SPH-PSM
k + 2 ciphertexts, commitments
k + 1 signatures
2 range proofs

k ciphertexts

6.5.5 Discussion

Different Test Result Learner. One may question the need for security in SPH-PSM

since Alice learns the test result. From a legal point of view, genomic data, as well as the

result, have to be authentic. To support such cases, SPH-PSM can be updated as follows:

Alice’s role in the protocol can be divided into genome owner (Alice) and test requester (e.g.,

court). When SL encrypts the mutations, it uses the latter’s public key. The rest of the

protocol remains the same, but T sends the encrypted result to the court, not Alice. As a

result, the court gets only the (correct) boolean result for the test, and Alice also keeps her

privacy by not revealing all the genomic data to T or the court.

Genomic Similarity Testing. In genomic tests, sometimes not an exact match but a sim-

197

ilarity score needs to be calculated (e.g., some paternity tests). S-SPH-PSM in Section 6.5.2

can be modified to support such tests by simply not aggregating the result in one ciphertext.

Specifically, consider two input genomes for the similarity test, and one of the parties (Alice)

learns the result. In this case, both parties encrypt their genomes under Alice’s public key

and send it to T , which homomorphically adds received ciphertexts for each position, shuffles

the order, and sends the shuffled list to Alice. Alice checks for similarity by decrypting each

entry and counting the number of decrypted zeros.

6.6 Implementation

6.6.1 Genomic Range Query Protocol

For SL’s signatures, we use the Elliptic Curve Digital Signature Algorithm (ECDSA) with

elliptic curve secp256r1, as its signatures are relatively short (512-bit), compared to other

schemes with the same security level (256 bits). For commitments, we use the Fujisaki-

Okamoto (FO) commitment scheme [147] that allows us to create Boudot’s range proofs [64].

Parameters used for these commitments are: s = 552, and, for range proofs: t = 128, l = 40.

For mutation commitments, we use a secure cryptographic hash function, SHA2-256 [20],

with 128-bit salts. A tuple is computed as:

[FO(posi, si,1), SHA2(mi, si,2), FO(posi+1, si+1,1), SHA2(mi+1, si+1,2))] (6.2)

with randomly generated salts si,1 in Z∗
N , where N is a composite number with two 512-bit

prime factors, and 128-bit salts si,2 for SHA2.

To implement the commitments and range proofs, we used the code from [16]. We also used

the Bouncy Castle [6] crypto library for cryptographic primitives, e.g., hash functions and

198

signatures, and Java’s SecureRandom class [11] for generating salts. The code for offline and

online phases was written in Java and was evaluated on a PC with an Intel(R) Core(TM)

i7-3770 CPU @ 3.40GHz chip and 16GB of RAM.

6.6.2 SPH-PSM Variants

For the SPH-PSM variants, we use Pedersen commitments [245], the additively homomorphic

variant of ElGamal [136] (AH-ElGamal), and Bulletproofs [69] for the NIZKRP in FES-SPH-

PSM. The structures of a tuple for ES-SPH-PSM and FES-SPH-PSM are similar to the tuple

(6.2) in Section 6.6.1 of secure range query protocol, except FO is replaced with Pedersen

commitments, while SHA2 commitments are replaced with encrypted bases. The same

ECDSA setting is used for SL’s signatures as in the previous section.

Our codebase is in Golang [3], evaluated on a server with 64 Intel(R) Xeon(R) CPUs E5-

4610 v2 @ 2.30GHz and 128GB of RAM. We modified the official Golang implementation

for ElGamal to implement an AH-ElGamal. As in the previous section, we use the official

Golang crypto library for SHA256 and ECDSA with the curve secp256r1 for hashing and

digital signatures, respectively; we also use the range proof code from [16].

6.7 Evaluation

This section evaluates the proposed construction. For the sake of reproducibility, all our

implementation and evaluation results are publicly available at [175].

199

6.7.1 Synthetic Genomic Data Generation

For the experiments, we generated synthetic genomic data with 3 · 109 bases for the whole

genome and 3 · 106 bases for SNP representations. Each base pair is structured with a

32-bit integer representing its position and an 8-bit integer for a combination of two base

letters. 8-bit integers are defined with alphabetical order of combinations, i.e., 0=‘AA’,

1=‘AC’,...,15=‘TT’. For the evaluation of Section 6.7.2, we used a single type of SNP (‘AA’)

since our measurements do not depend on the specific SNP type. For SPH-PSM variants, we

generated the necessary genomic files before each experiment and let each experiment read

the required files during the evaluation. To generate a synthetic genomic file, we input the

total size of the data n, starting and ending positions, s and e, of the pattern, and a boolean

variable isSNP to check if it is for SNP representation or the whole genome representation.

Note that which base letters are used does not affect the evaluation result. For simplicity,

we generate bases with ‘AA’ for all other positions and bases with ‘TT’ for the positions

in [s,e]. For T ’s pattern (marked with n=0), we generate bases with ‘TT’ for the positions

in the range, [s,e]. If isSNP is True, we generate bases for every 1000 positions, whereas

we generate bases for all integers if it is False.

6.7.2 Secure Genomic Range Queries

We used 3 · 106 SNPs for the experiment. The entire offline phase, including commitments

and signature generations, took 4.2 hours on the platform above. We note that this process

can be easily parallelized. Times for individual operations are:

• Fujisaki-Okamoto commitment: 3.5ms

• Boudot’s range proof: 47.7ms for proof generation and 37ms for validation

• SHA2 commitment: 0.3ms (including salt creation) and 0.1ms for validation

200

Salts can be alternatively (re-)generated using a seed and a Pseudorandom number generator

(PRNG), or HKDF [200], a simple key derivation function based on HMAC [53], to reduce

the storage cost. Verification cost incurred by T scales linearly with the number of SNPs in

Q, while verification cost of the range proof is dominated by signature verification, as shown

in the figure below (Figure 6.8).

0 2000 4000 6000 8000 10000

Number of SNPs in range

0

2500

5000

7500

10000

12500

15000

17500

V
er

ifi
ca

ti
o
n

T
im

e
in

M
il
li
se

co
n
d
s

Figure 6.8: T ’s Verification Time given the number of SNPs in the queried range

6.7.3 SPH-PSM Variants

To assess the computational efficiency of AH-ElGamal, we first compared it to Paillier [242],

a well-known additive PHE scheme, using its popular implementation [8]. Figure 6.9 shows

the comparison of AH-ElGamal and Paillier for each operation. Recall that Enc is encryption

and EncInv is modular inversion of encryption result. MultCiphers and MultConstant

are multiplication of a ciphertext with another ciphertext and a constant, respectively.

IsZero is used to check whether a given ciphertext is an encryption of zero. Since we

do not use the full decryption operation and only check if a ciphertext is encryption of zero,

results show that AH-ElGamal is significantly more efficient for all operations used in SPH-

PSM variants. Thus, we use AH-ElGamal for a homomorphic encryption scheme for the rest

of the evaluation.

201

Figure 6.9: Computation time comparison
between AH-ElGamal and Paillier for oper-
ations in SPH-PSM variants

Figure 6.10: Total Runtime Comparison be-
tween Optimized vs. Original ES-SPH-PSM
and FES-SPH-PSM

101 102 103 104 105 106

Bases

10°1

100

101

102

T
im

e
(s

)

Cost of Adding Security

SPH-PSM

S-SPH-PSM

Figure 6.11: Offline Computation Cost
Comparison for SPH-PSM and S-SPH-PSM

20000 40000 60000 80000 100000
Number of markers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

T
im

e
(s

)

Online Phase Comparison

SPH-PSM

S-SPH-PSM

ES-SPH-PSM

FES-SPH-PSM

Figure 6.12: Online phase comparison of All
SPH-PSM Variants

For individual operations, computation times averaged over ten executions were as follows:

• Salt Generation: 2.7 µs

• Hash computations: 4.8 µs for H(posi, li), 3.9 µs for h2 := H(posi, ei), and

10.4 µs for h3 := H(Tupi)

• Digital Signature Generation: 91.1 µs for sig1 := Sign(h2) and 70.2 µs for sig2 := Sign(h3)

• Digital Signature Verification: 171.4 µs for V erify(sig1) and 157.6 µs for V erify(sig2)

• Commitment Generation: 511.5 µs

• Range Proof (for FES-SPH-PSM):

Bulletproofs [69] : 262.2 ms for proof generation and 168.0 ms for validation

Signature-based [72]: 1324.6 ms for proof generation and 1299.4 ms for validation

202

For the rest of the evaluation, we used the most efficient range proof scheme, Bulletproofs,

for NIZKRP.

Next, we measured the effects of the optimization described in Section 6.5.3 for both ES-

PSH-PSM and FES-SPH-PSM. We used 108 bases for Alice’s genome and 107 bases for

T ’s pattern. Figure 6.10 shows that it drastically lowers test completion times, confirming

that even complex tests can be performed fast using this optimization. It also shows that

FES-SPH-PSM is much more efficient than ES-SPH-PSM, i.e., when the location of the test

pattern is public.

To measure the overhead of adding security to SPH-PSM, we compared the computation

costs of SPH-PSM and S-SPH-PSM. We implemented the algorithm from [103] in GoLang

and compared the cost for offline phases. We compared only the offline phases because the

online phases are almost the same, and the only difference – signature verifications – depends

on the pattern size, which is relatively small to the whole genome size. Since these signing

operations are independent, we use multi-threading to parallelize them and reduce delay.

Results in Figure 6.11 show that the overhead of adding security is negligible compared to

the cost of homomorphic encryption operations for the whole genome.

For the online phase, we vary the number of markers and use the whole genome. Figure

6.12 shows the results: test completion time for S-SPH-PSM grows linearly with the number

of markers in Alice’s genome compared to SPH-PSM. This is because T verifies signatures

within the range of its markers. ES-SPH-PSM and FES-SPH-PSM benefit from the opti-

mization, and their runtimes are comparable to that of SPH-PSM, even though they add

security and reduce data transfer by three orders of magnitude.

To show that proposed constructs can be parallelized, we implemented multi-threading for

offline and online phases of SPH-PSM variants. We believe that this is reasonable as a

consumer-facing sequencing lab would be equipped with high-end storage and computing

203

devices capable of handling massive amounts of genomic data. Figure 6.13 compares single-

threading and multi-threading with the increasing number of bases for S-SPH-PSM and ES-

SPH-PSM. Since each signature generation and verification are independent, parallelization

greatly reduces computation time. Specifically, S-SPH-PSM offline and online phases using

multi-threading are 32 and 12 times faster, respectively, compared to using a single thread.

Similarly, the offline phase of ES-SPH-PSM is 32 times faster using multi-threading with

over 107 bases. In contrast, multi-threading only slightly improves the online phase of ES-

SPH-PSM, since signature verification is the only operation that can be parallelized.

104 105 106 107 108 109

#Bases

10°2

10°1

100

101

102

103

104

T
im

e(
h
ou

rs
)

O≤ine Phase

S-SPH-PSM-mul

S-SPH-PSM-sin

104 105 106 107 108 109

#Bases

10°5

10°4

10°3

10°2

10°1

100

101
T

im
e(

h
ou

rs
)

Online Phase

S-SPH-PSM-mul

S-SPH-PSM-sin

104 105 106 107 108 109

#Bases

10°4

10°3

10°2

10°1

100

101

T
im

e(
h
ou

rs
)

O≤ine Phase

ES-SPH-PSM-mul

ES-SPH-PSM-sin

104 105 106 107 108 109

#Bases

10°4

10°3

10°2

10°1

100

101

T
im

e(
h
ou

rs
)

Online Phase

ES-SPH-PSM-mul

ES-SPH-PSM-sin

Figure 6.13: Comparison between multi-threaded and single-threaded results.

6.8 Generalization to Sparse Integers

Although our primary application domain is genomics, the proposed technique applies to

other settings. For example, suppose that a forensics team, after obtaining a court order,

204

wants to examine an Internet Service Provider (ISP)’s log regarding a particular account’s

activities for a time period relevant to a cyberspace attack. This setting resembles genomic

testing in terms of security and privacy requirements as well as the sparsity of sensitive

data. From the security perspective, the forensics team needs to ensure that the log entries

supplied by the ISP for the period and account of interest are genuine (authentic) and

complete. From the privacy perspective, the ISP does not want to reveal any non-relevant

log entries to protect its customers’ privacy and its own interests. Whereas the relevant log

entries (i.e., log entries corresponding to the period and account of interest) are likely to be

sparsely distributed within an extensive data set.

Similar situations might arise regarding range queries over firewall logs or ticket transaction

databases. The proposed technique can be adapted to address their security and privacy

challenges. This section defines a generalized version of the proposed scheme geared for

secure and private range queries over sparse integers.

6.8.1 Secure & Private Range Queries over Sparse Integers

Let D be a domain set of consecutive integers from A to B. i.e., D = [A,B] ⊆ Z, for some

A,B ∈ Z. Though there are many ways to mathematically define a sparse set [303, 62, 217],

informally, we call a subset X of a set D is sparse if |X |
|D| is small. Note that our approach

also works for the improper subset X , i.e., when X = D, however, it is more meaningful in

terms of privacy if the subset X is sparse in D.

We assume Alice and Bob act as a replier and a querier, respectively. Alice has a sparse

subset X of D = [A,B], with n integers, and Bob has a range query Q = [a, b] such that A ≤

a ≤ b ≤ B to receive all integers in X ∩Q. i.e., if Alice’s sparse set is: X = {x1, x2, ..., xn},

then Bob wants to receive all xi’s such that a ≤ xi ≤ b.

Definition 6.1. Let D = [A,B] ⊆ Z be a domain set of consecutive integers, for some

205

A,B ∈ Z. The ideal functionality F of the protocol between Alice and Bob, on input X and

Q is, F : (X , Q) → (Q,X ∩ Q), where X is a sparse subset of D and Q is a consecutive

subset of D.

Security goals are the same as in Section 6.3: authenticity, completeness, and privacy. i.e.,

1. Authenticity. Alice can not modify X after it is chosen, and Bob can check if the

integers returned by Alice are the ones that Alice chose, i.e., authentic.

2. Completeness. Bob should be convinced that the integers returned by Alice are

complete, i.e., they are within Q without any omissions.

3. Alice’s Privacy. Bob learns no information about the integers in X outside Q.

6.8.2 Construction & Its Security

We now describe a concrete construction that meets our stated goals. We assume a trusted

offline authority called Auth (as SL in Section 6.4) that facilitates trust among the protocol

participants. The offline phase is for Auth to authorize Alice’s sparse integer set X , given

in Figure 6.15, and the online phase where Alice and Bob interact is for Bob to get integers

in X ∩Q, given in Figure 6.16.

Similar to Section 6.4, Auth first chooses two additional integers outside of D to indicate

the boundaries and random salts for commitments. It then commits each element in X ,

makes adjacent commitments in a tuple, and signs those tuples. Since only one commitment

is required for each element, the overall size of salts being sent is halved. In the online

phase, Alice chooses the elements in Q and computes two commitments for the sentinel

values outside of Q and the two range proofs for them. Bob’s computation cost is also

reduced since the number of commitments is halved. NIZKRP steps for checking xk < a and

xk+j+1 > b also show that any integers (other than the returned ones) are out of range, as

206

integers are sorted before they are committed. Details are shown in Figure 6.14.

xk a xk+1 · · · xk+j b xk+j+1

Requested range [a, b]

Figure 6.14: Proving xk < a states xw, for ∀w ≤ k is out of range.
Similarly, proving xk+j+1 > b states xw, for ∀w ≥ (k + j + 1) is out of range.

We now give a proof sketch of security and privacy for the proposed construction:

1. Goal 1 is satisfied by the binding property of the commitment scheme, along with sig-

natures on the tuples containing two commitments of neighboring integers. Signatures

on commitments ensure that no element of X can be changed.

2. Signatures on commitment tuples ensure that any inclusion or omission of elements is

detectable.

3. Consider tuples outside Q = [a, b], i.e., {Com(xk), Com(xk+1)} and {Com(xk+j), Com(xk+j+1)}

in Figure 6.14. Due to the hiding property of the commitment scheme, Bob learns no

information about either xk or xk+j+1 from Com(xk) and Com(xk+j+1), respectively.

Also, NIZKRP guarantees that no information about xk and xk+j+1 is revealed other

than the fact xk < a and xk+j+1 > b, respectively.

6.9 Related Work

Privacy of genetic material and tests has attracted much attention, and numerous methods

have been proposed based on various cryptographic techniques. Genomic security, on the

other hand, remained in the background due to a (mistakenly) perceived lack of challenges.

In this section, we briefly go over the cryptographic privacy building blocks in the genomics

domain and then discuss related techniques for achieving data authenticity and integrity in

the context of range queries.

207

Figure 6.15: (Offline Phase) Authorizing Alice’s sparse integer set X from Auth

Figure 6.16: (Online Phase) Range query-response between Alice and Bob

6.9.1 Genomic Privacy

Several recent survey papers, [230, 28, 63, 293] overview recent advances in genomic privacy.

This section lists the techniques used in this domain and their related work. First, MPC is

commonly used for genomic privacy. For example, [185] utilizes oblivious transfer (OT) and

208

oblivious circuit evaluation to compute the edit distance and Smith-Waterman similarity

score to measure the similarity between two DNA sequences. [47] uses PSI Cardinality

for paternity tests by observing the sizes of DNA fragments cut by restricting enzymes.

It also shows how to use Authorized PSI for personalized medicine, where an authority

authorizes the markers to be checked in the DNA. [102] uses an Android smartphone to

store encrypted genomic data and PSI techniques to provide results of personal medicine,

paternity, and ancestry tests using the smartphone as the end-user computation device. [306]

utilizes secret-sharing-based MPC techniques to compute minor allele frequencies (MAF) and

chi-squared statistics in the context of Genome-Wide Association Study computation and the

Hamming distance between two genomic datasets. To improve the efficiency of edit distance

computation, [295] approximates the edit distance by compressing genome sequences to sets

and privately computing the set difference size (or the threshold of the set difference size)

using garbled circuit and OT techniques.

HE is another popular tool for privacy in genomic tests. For example, [40] uses PHE (see

Section 6.2.4) and dynamic programming techniques to compute the edit distance of two

DNA sequences without revealing their sequences to each other, which is later improved in

[41]. Subsequently, [87] suggests a way to compute the edit distance on encrypted genomic

data using SWHE (see Section 6.2.4). [188] constructs a secure genomic data query archi-

tecture with third parties, where one party stores and computes encrypted genomic data

– e.g., storage and processing unit (SPU) – while the other party manages the keys used

to encrypt and decrypt genomic data. It uses the additively homomorphic property of the

Paillier [242] cryptosystem to secure count query. Similarly, [44] suggests an architecture for

disease susceptibility tests with a third-party SPU. This technique utilizes Paillier Partial

HE and proxy re-encryption [60] so that only the two parties who receive the partial secret

keys from the patient can participate in the test. i.e., SPU homomorphically computes the

test on the encrypted DNA and partially decrypts the result, such that the medical center

can obtain the final result by partial decryption of the message received from SPU. These

209

ideas are further refined in [45] and [101] which showed that [45] can be more efficiently

implemented by using additively homomorphic Elliptic Curve-based ElGamal and simpler

encoding method of genomic data. [246] presents a method to search encrypted biomedical

data stored in the server using Bloom filters and HE, so that the user can perform the search

query to the server. [205] uses a ring-based FHE scheme [218] to encrypt genomic data and

demonstrates common genomic computations over encrypted data, e.g., Pearson Goodness-

of-Fit test, the D′ and r2 measures of linkage disequilibrium, the Estimation Maximization

(EM) algorithm for haplotyping, and the Cochran-Armitage Test for Trend. [307] and [294]

also assume encrypted genomic data with an FHE [161] on untrusted public cloud. [307]

focuses on the chi-square statistics and proposes two protocols for secure division operation,

while [294] suggests a framework for estimating the P-value of exact logistic regression pa-

rameters over encrypted data. [163] shows how to construct an index tree of the genomic

data and send the index tree to the cloud server after encryption with Paillier; the server then

traverses the encrypted tree according to the encrypted query from a query initiator using a

secure function evaluation via an interactive protocol using Yao’s garbled circuits [302].

6.9.2 Range Query Security

Range query completeness was explored in the context of outsourced databases where the

data owner assigns query handling to a cloud-based data publisher. The latter, if malicious,

can reply to a range query with incomplete and/or fake results. To counter such misbehavior,

[172] focused on minimizing privacy leakages on data attributes using data partitioning

algorithms that are aware of the distribution of query ranges. [243] developed methods

based on the continual linking of elements and collision-resistant hash functions to prevent

malicious actions. [207] used Merkle hash and B+ trees, as well as aggregated signatures

to provide authenticity and integrity (with less strict privacy requirements than [243]) and

improve efficiency in the dynamic database case.

210

Other cryptographic range query techniques incorporated so-called range proofs. Early ex-

amples of range proofs include [221, 68, 81]. [221] uses the bit-length of the committed

value to prove that the number is in the range [0, 2k − 1] where k is the number of bits in

that committed value. [68] only proves that the committed value lies in a broader range:

[−a, 2a], instead of [0, a]. [81] convinces a verifier that the committed value lies in a range

with the expansion rate of 2t+l+1, where t and l are security parameters. [64] proposes two

efficient protocols for proving that the committed value which is in [a, b] lies in [a− θ, b+ θ]

where θ = 2t+l+1
√
b− a and t and l are security parameters. The second protocol (that uses

Fujisaki-Okamoto commitments [147]) is the one we used in this work; it has the expansion

rate of 1. [72] proposes range proofs based on set membership protocols by extending the

u-ary notation and proving that the secret z ∈ [0, ul − 1].

6.10 Limitations and Future Work

In this work, we focused on genomic tests that reveal the genomic data in some queried range.

We also showed that our proposed technique can be used for private substring matching-type

tests where genomic data can be encrypted under an additively homomorphic encryption

scheme. However, different types of genomic tests may require more operations other than

addition, subtraction, and constant multiplication that additively homomorphic encryption

cannot support. We cannot avoid using some SWHE or FHE in such cases to keep the

privacy, sacrificing the performance, as some previous work [205, 87, 307, 294] suggested.

We avoided going into discussions regarding low-level side-channels in our work. For instance,

Alice can infer the size of the queried range from execution time when applying our technique

to SPH-PSM as in Section 6.5. However, this can be easily prevented in practice by letting

T send the replies after a fixed period instead of sending them right after the computation

is finished.

211

Lastly, we only consider SNP for efficient genomic representation; however, there are multiple

genomic representation formats (as mentioned in Section 6.2.1). Also, for the base letters,

we only consider well-sequenced genomic data without any gene duplications, insertions,

deletions, or lateral gene transfers that can commonly occur in genomic materials. Therefore,

there is still room for improving our proposed techniques, and we consider these to be

opportunities for future work.

6.11 Summary

This work motivated and constructed a secure and private genomic range query technique,

balancing genomic security and privacy. To achieve authenticity of genomic material, com-

pleteness of mutations within a given range, and total privacy for genomic data outside of

the range, we applied zero-knowledge range proofs to show that a committed value (the

position of a genomic mutation) is outside the queried range, digital signatures to prevent

any alterations on genomic material and linkage among two consecutive mutations to pre-

clude any omissions. We also abstracted away from genomics and defined a more general

problem of secure and private range queries over sparse integers. In addition, we showed the

applicability of our approach with the private substring matching problem as an example.

212

Chapter 7

Conclusion and Future Work

This dissertation addressed several research challenges to advance closer toward end-to-end

data privacy from generation to consumption. This section summarizes each chapter and

suggests potential future research directions for each work.

Chapter 2 presented PARseL, a provable attestation root-of-trust for mid-range devices over

a formally verified microkernel, seL4. It reduces the size of TCB at runtime and separates it

from all the user-dependent components, which makes it feasible to verify its implementation.

We formally verified the runtime components’ memory safety, functional correctness, and

secret independence. Our verified implementation (including boot-time components) is open-

sourced, and our evaluation showed its feasibility for the existing hardware platform.

PARseL provides static root-of-trust for assessing user-space processes, i.e., the binary of

processes are measured at their loading time. This is credible because PARseL enforces no

new processes spawned during runtime, and no code modifications are allowed without re-

booting the device. On the other hand, an adversary compromising the user-space processes

can still perform control-flow hijacking attacks. Therefore, extending PARseL to support

control-flow integrity would be an interesting research direction.

213

In Chapter 3, we formalized PfB for data privacy from its generation and presented VERSA,

a secure architecture for low-end devices realizing PfB . VERSA guarantees that only cor-

rect execution of expected and explicitly authorized software can access and manipulate

the sensing interfaces – which can be generalized to access control to any memory regions.

Our VERSA implementation is formally verified and open-sourced, and its evaluation results

showed its affordability in low-end devices.

Following the related work, VERSA also triggers immediate MCU reset whenever any vi-

olations occur, including interrupts and DMA. However, it may not be ideal for real-time

applications that require interrupts as resetting/rebooting the device causes delay. Thus,

other than our suggestion to remedy this issue in Section 3.9, one can design a secure

interrupt-friendly architecture for low-end devices.

Chapter 4 proposed how to enforce the input correctness in PSI with input size conditions.

We first identified possible malicious behaviors using duplicates and/or bogus elements. To

prevent duplicates, we defined PoED and presented a construction satisfying PoED using

homomorphic encryption and shuffling. We extended this to AD-PSI which outputs the

intersection only when the PoED is successfully verified and discussed its variants. Then,

applying the AD-PSI to the U-SH-PSI, we completed the B-SH-PSI which outputs the result

only when both lower and upper bounds for input set size are satisfied. Finally, we showed

a protocol for AD-APSI to avoid both duplicates and bogus elements involving a TTP.

On the other hand, some MPC protocols reveal more information than intended when they

are repeatedly executed. For example, although a secure PSI-CA protocol reveals only the

intersection set’s cardinality, manipulating input sets carefully can reveal exact intersecting

items. Such information leakage from repetitive executions of a secure MPC protocol would

need to be researched as it can be critical in real-life applications. In addition, our input

correctness check is specific to the PSI with lower bounds as it checks the distinctness of

input elements. Therefore, more general methods would be needed to check the correctness

214

of MPC with input conditions, such as specific formatting.

Chapter 5 presented PMPC schemes for dynamic groups and dynamic GAS settings, consid-

ering mobile adversaries. We proactivized two MPC schemes based on linear secret sharing by

adding Refresh and Recover protocols, where the former refreshes the distributed sharings,

and the latter recovers partial shares with the others’ help. We also built Redistribute

protocols for dynamic group settings, which redistribute the shares from previous to new

groups participating in the computation. Also, we presented the share conversions between

these two PMPC schemes for dynamic GASs.

Although our work considered strong adversaries who can corrupt parties for a certain period

and eventually corrupt everyone, universal composability (UC) [75] was not considered. Since

MPC systems are usually considered building blocks for larger security systems, building

PMPC schemes with UC security would be meaningful in real-life applications.

In Chapter 6, our work showed the challenges of balancing the triad of security, privacy,

and efficiency in genomic domains. We focused on an efficient genomic representation, SNP,

which induces completeness problems while effectively improving efficiency. To resolve this

issue, we applied linking over cryptographic commitments and ZKRP to balance security

and privacy, guaranteeing authenticity and integrity while revealing the minimum amount

of data necessary for testing. We also applied these techniques to SPH-PSM-based genomic

tests and showed the feasibility of adding security.

Although SNP representations are common in genomic tests, protocols may vary for different

genomic representations, such as Indels, CNVs, and STRs. In addition, not all genomic tests

are based on range queries. Therefore, to further apply security and privacy in genomic data,

close collaboration with relevant disciplines is essential to identify commonly used genomic

tests and apply cryptographic techniques carefully.

215

Bibliography

[1] 23andme. https://www.23andme.com/. Accessed: 2022-01-24.

[2] Cri genetics. https://www.crigenetics.com/. Accessed: 2022-01-24.

[3] Go. https://golang.org/. Accessed: 2022-01-24.

[4] How do geneticists indicate the location of a gene? https://ghr.nlm.nih.gov/
primer/howgeneswork/genelocation. Accessed: 2022-01-24.

[5] The karamel compiler (2017). https://github.com/FStarLang/karamel.

[6] The legion of the bouncy castle. https://www.bouncycastle.org/. Accessed:
2022-01-24.

[7] Motion sensor code. https://github.com/Seeed-Studio/LaunchPad_Kit/
tree/master/Grove_Modules/pir_motion_sensor.

[8] paillier. https://github.com/didiercrunch/paillier. Accessed: 2022-01-
24.

[9] Project everest bibiliography. https://project-everest.github.io/
papers/.

[10] Researchers discover lg smart tv vulnerabilities allowing root access. https://
thehackernews.com/2024/04/researchers-discover-lg-smart-tv.
html. Accessed: 2024-05-04.

[11] Securerandom (java platform se 8). https://docs.oracle.com/javase/8/
docs/api/java/security/SecureRandom.html. Accessed: 2022-01-24.

[12] Smart light bulbs can hack your personal infor-
mation. https://gulfnews.com/technology/
smart-light-bulbs-can-hack-your-personal-information-1.
1571846229201. Accessed: 2024-05-04.

[13] Snp. https://www.nature.com/scitable/definition/snp-295/#:
~:text=If%20more%20than%201%25%20of,having%20more%20than%
20one%20allele. Accessed: 2022-01-24.

216

https://www.23andme.com/
https://www.crigenetics.com/
https://golang.org/
https://ghr.nlm.nih.gov/primer/howgeneswork/genelocation
https://github.com/FStarLang/karamel
https://www.bouncycastle.org/
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/pir_motion_sensor
https://github.com/didiercrunch/paillier
https://project-everest.github.io/papers/
https://thehackernews.com/2024/04/researchers-discover-lg-smart-tv.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://gulfnews.com/technology/smart-light-bulbs-can-hack-your-personal-information-1.1571846229201
https://www.nature.com/scitable/definition/snp-295/#:~:text=If%20more%20than%201%25%20of,having%20more%20than%20one%20allele.

[14] Temperature sensor code. https://github.com/Seeed-Studio/LaunchPad_
Kit/tree/master/Grove_Modules/temp_humi_sensor.

[15] Whole genome association studies. https://www.genome.gov/17516714/
2006-release-about-whole-genome-association-studies. Accessed:
2022-01-24.

[16] Zero-knowledge proofs. https://github.com/ing-bank/zkproofs. Accessed:
2022-01-24.

[17] Mapping and sequencing the human genome. National Research Council (US)
Committee on Mapping and Sequencing the Human Genome. Washington (DC):
National Academies Press (US); 1988. 2, Introduction., 1988. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK218247/, Accessed: 2022-01-31.

[18] Avr atmega 1284p 8-bit microcontroller. http://ww1.microchip.com/
downloads/en/DeviceDoc/doc8059.pdf, 2009.

[19] pages 295–300. John Wiley & Sons, Ltd, 2010.

[20] Secure hash standard. FIPS PUB 180-4, Information Technology Laboratory, National
Institute of Standards and Technology, Gaithersburg, MD, 2012.

[21] Darpa high assurance cyber military systems (hacms) heavy equipment transporter.
https://www.youtube.com/watch?v=6cllzGGxRfE, 2017.

[22] Palisade homomorphic encryption software library. Online: https://
palisade-crypto.org/, 2017.

[23] Msp430 flash memory characteristics. https://www.ti.com/lit/an/
slaa334b/slaa334b.pdf?ts=1638460551489, 2018.

[24] Lattigo v4. Online: https://github.com/tuneinsight/lattigo, Aug 2022.
EPFL-LDS, Tune Insight SA.

[25] VERSA source code. https://github.com/sprout-uci/pfb, 2022.

[26] T. Abera, N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd, A. Sadeghi, and
G. Tsudik. C-FLAT: control-flow attestation for embedded systems software. In E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 743–754. ACM, 2016.

[27] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A.-R. Sadeghi, and G. Tsudik.
Invited: Things, trouble, trust: on building trust in IoT systems. In ACM/IEEE
Design Automation Conference (DAC), page 121, Austin, TX, USA, 2016. ACM.

[28] B. Abinaya and S. Santhi. A survey on genomic data by privacy-preserving techniques
perspective. Computational Biology and Chemistry, 93:107538, 2021.

217

https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://www.genome.gov/17516714/2006-release-about-whole-genome-association-studies
https://github.com/ing-bank/zkproofs
http://ww1.microchip.com/downloads/en/DeviceDoc/doc8059.pdf
https://www.youtube.com/watch?v=6cllzGGxRfE
https://palisade-crypto.org/
https://www.ti.com/lit/an/slaa334b/slaa334b.pdf?ts=1638460551489
https://github.com/tuneinsight/lattigo
https://github.com/sprout-uci/pfb

[29] E. Aliaj, I. D. O. Nunes, and G. Tsudik. GAROTA: generalized active root-of-trust
architecture. CoRR, abs/2102.07014, 2021.

[30] J. F. Almansa, I. Damgård, and J. B. Nielsen. Simplified threshold rsa with adaptive
and proactive security. In Proceedings of the 24th annual international conference on
The Theory and Applications of Cryptographic Techniques, EUROCRYPT’06, pages
593–611, Berlin, Heidelberg, 2006. Springer-Verlag.

[31] M. Ammar and B. Crispo. Verify&revive: Secure detection and recovery of compro-
mised low-end embedded devices. In Annual Computer Security Applications Confer-
ence, pages 717–732, 2020.

[32] M. Ammar, B. Crispo, and G. Tsudik. Simple: A remote attestation approach for
resource-constrained iot devices. In 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS), pages 247–258. IEEE, 2020.

[33] Anonymous. Parsel open-source code. https://anonymous.4open.science/
r/parsel-submission-1EC5/.

[34] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster. Keep-
ing the smart home private with smart (er) iot traffic shaping. arXiv preprint
arXiv:1812.00955, 2018.

[35] N. Apthorpe, D. Reisman, and N. Feamster. Closing the blinds: Four strategies for pro-
tecting smart home privacy from network observers. arXiv preprint arXiv:1705.06809,
2017.

[36] N. J. Apthorpe, D. Reisman, and N. Feamster. A smart home is no castle: Privacy
vulnerabilities of encrypted iot traffic. CoRR, abs/1705.06805, 2017.

[37] E. Aras, M. Ammar, F. Yang, W. Joosen, and D. Hughes. Microvault: Reliable storage
unit for iot devices. In 2020 16th International Conference on Distributed Computing
in Sensor Systems (DCOSS), pages 132–140, 2020.

[38] Arm Ltd. Arm TrustZone. https://www.arm.com/products/
security-on-arm/trustzone, 2018.

[39] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik. ASSURED:
Architecture for secure software update of realistic embedded devices. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 37(11), 2018.

[40] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence compar-
isons. In Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society,
WPES ’03, pages 39–44, New York, NY, USA, 2003. ACM, Association for Computing
Machinery.

[41] M. J. Atallah and J. Li. Secure outsourcing of sequence comparisons. International
Journal of Information Security, 4(4):277–287, Oct 2005.

218

https://anonymous.4open.science/r/parsel-submission-1EC5/
https://www.arm.com/products/security-on-arm/trustzone

[42] G. Ateniese, E. De Cristofaro, and G. Tsudik. (if) size matters: size-hiding private set
intersection. In International Workshop on Public Key Cryptography, pages 156–173.
Springer Berlin Heidelberg, 2011.

[43] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zeldovich. Notary: A
device for secure transaction approval. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 97–113, New York, NY, USA, 2019.
Association for Computing Machinery.

[44] E. Ayday, J. L. Raisaro, and J.-P. Hubaux. Privacy-enhancing technologies for medical
tests using genomic data. In Network and Distributed System Security Symposium
(NDSS), 2013.

[45] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont. Protecting and evaluating
genomic privacy in medical tests and personalized medicine. In Proceedings of the 12th
ACM Workshop on Workshop on Privacy in the Electronic Society, WPES ’13, pages
95–106, New York, NY, USA, 2013. ACM, Association for Computing Machinery.

[46] M. Backes, C. Cachin, and R. Strobl. Proactive secure message transmission in asyn-
chronous networks. In Proceedings of the Twenty-Second ACM Symposium on Princi-
ples of Distributed Computing, PODC 2003, Boston, Massachusetts, USA, July 13-16,
2003, pages 223–232, 2003.

[47] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering gattaca:
Efficient and secure testing of fully-sequenced human genomes. In Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS ’11, pages
691–702, New York, NY, USA, 2011. ACM, Association for Computing Machinery.

[48] J. Baron, K. Eldefrawy, J. Lampkins, and R. Ostrovsky. How to withstand mobile
virus attacks, revisited. In Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing, PODC ’14, pages 293–302, New York, NY, USA, 2014. ACM.

[49] J. Baron, K. Eldefrawy, J. Lampkins, and R. Ostrovsky. Communication-optimal
proactive secret sharing for dynamic groups. In Proceedings of the 2015 International
Conference on Applied Cryptography and Network Security, ACNS ’15, 2015.

[50] D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigen-
baum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–432, Berlin, Hei-
delberg, 1992. Springer Berlin Heidelberg.

[51] Z. Beerliová-Trubíniová and M. Hirt. Efficient multi-party computation with dispute
control. In TCC, pages 305–328, 2006.

[52] Z. Beerliová-Trubíniová and M. Hirt. Perfectly-secure mpc with linear communication
complexity. In TCC, pages 213–230, 2008.

[53] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authen-
tication. In N. Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages 1–15,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

219

[54] M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in Cryp-
tology — CRYPTO’ 92, pages 390–420, 1993.

[55] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

[56] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multi-
party computation with a dishonest minority. In CRYPTO, pages 663–680, 2012.

[57] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-
security signatures. In Journal of Cryptographic Engineering, 2011.

[58] G. R. Blakley. Safeguarding cryptographic keys. Proc. of AFIPS National Computer
Conference, 48:313–317, 1979.

[59] M. Blanton and E. Aguiar. Private and oblivious set and multiset operations. In Pro-
ceedings of the 7th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), 2012.

[60] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryp-
tography. In K. Nyberg, editor, Advances in Cryptology — EUROCRYPT’98, pages
127–144, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[61] S. Blazy and X. Leroy. Mechanized Semantics for the Clight Subset of the C Language.
Journal of Automated Reasoning, 2009.

[62] H. Blumberg. Exceptional sets. In Fundamenta Mathematicae, pages 3–32, 1939.

[63] L. Bonomi, Y. Huang, and L. Ohno-Machado. Privacy challenges and research oppor-
tunities for genomic data sharing. Nature Genetics, 52(7):646–654, July 2020.

[64] F. Boudot. Efficient proofs that a committed number lies in an interval. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 431–
444. Springer, 2000.

[65] T. Bradley, X. Ding, and G. Tsudik. Genomic security (lest we forget). IEEE Security
& Privacy, 15(5):38–46, 2017.

[66] T. Bradley, S. Faber, and G. Tsudik. Bounded size-hiding private set intersection. In
International Conference on Security and Cryptography for Networks, pages 449–467.
Springer, Springer International Publishing, 2016.

[67] F. Brasser, B. E. Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl. Tytan: tiny
trust anchor for tiny devices. In Proceedings of the 52nd Annual Design Automation
Conference, San Francisco, CA, USA, June 7-11, 2015, pages 34:1–34:6. ACM, 2015.

[68] E. F. Brickell, D. Chaum, I. B. Damgård, and J. van de Graaf. Gradual and verifiable
release of a secret. In Conference on the Theory and Application of Cryptographic
Techniques, pages 156–166. Springer, 1987.

220

[69] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 315–334. IEEE, 2018.

[70] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. T. Mühlberg, and
F. Piessens. Provably secure isolation for interruptible enclaved execution on small mi-
croprocessors. In 2020 IEEE 33rd Computer Security Foundations Symposium (CSF),
pages 262–276. IEEE, 2020.

[71] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous verifiable secret
sharing and proactive cryptosystems. In ACM Conference on Computer and Commu-
nications Security, pages 88–97, 2002.

[72] J. Camenisch, R. Chaabouni, and A. Shelat. Efficient protocols for set membership
and range proofs. In J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008,
pages 234–252, Berlin, Heidelberg, 2008. Springer, Springer Berlin Heidelberg.

[73] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In
Advances in Cryptology — CRYPTO ’97, pages 410–424, 1997.

[74] S. Canard, I. Coisel, A. Jambert, and J. Traoré. New results for the practical use of
range proofs. In S. Katsikas and I. Agudo, editors, Public Key Infrastructures, Services
and Applications, pages 47–64, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[75] R. Canetti. Universally composable security: a new paradigm for cryptographic pro-
tocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 136–145, 2001.

[76] R. Canetti and A. Herzberg. Maintaining security in the presence of transient faults.
In CRYPTO, pages 425–438, 1994.

[77] X. Carpent, S. Faber, T. Sander, and G. Tsudik. Private set projections & variants.
In Proceedings of the 2017 on Workshop on Privacy in the Electronic Society (WPES
’17). Association for Computing Machinery, 2017.

[78] X. Carpent, S. Hwang, and G. Tsudik. Element distinctness and bounded input size
in private set intersection and related protocols. In C. Pöpper and L. Batina, editors,
Applied Cryptography and Network Security, pages 26–57, Cham, 2024. Springer Nature
Switzerland.

[79] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[80] A. Cerulli, E. De Cristofaro, and C. Soriente. Nothing refreshes like a repsi: Reactive
private set intersection. In Applied Cryptography and Network Security, pages 280–300,
2018.

221

[81] A. H. Chan, Y. Frankel, and Y. Tsiounis. Easy come - easy go divisible cash. In
Advances in Cryptology - EUROCRYPT ’98, International Conference on the The-
ory and Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4,
1998, Proceeding, volume 1403 of Lecture Notes in Computer Science, pages 561–575.
Springer, 1998.

[82] M. Chase and P. Miao. Private set intersection in the internet setting from lightweight
oblivious prf. In Advances in Cryptology – CRYPTO 2020, pages 34–63. Springer
International Publishing, 2020.

[83] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure proto-
cols. In Proceedings of the twentieth annual ACM symposium on Theory of computing,
STOC ’88, pages 11–19, New York, NY, USA, 1988. ACM.

[84] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in Cryp-
tology – CRYPTO’ 88, pages 319–327. Springer New York, 1990.

[85] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,
and K. Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing. In NDSS, 2018.

[86] Y. Cheng, X. Ji, X. Zhou, and W. Xu. Homespy: Inferring user presence via encrypted
traffic of home surveillance camera. In ICPADS, pages 779–782, 2017.

[87] J. H. Cheon, M. Kim, and K. Lauter. Homomorphic computation of edit distance. In
M. Brenner, N. Christin, B. Johnson, and K. Rohloff, editors, Financial Cryptography
and Data Security, pages 194–212, Berlin, Heidelberg, 2015. Springer Berlin Heidel-
berg.

[88] M. Ciampi and C. Orlandi. Combining private set-intersection with secure two-party
computation. In Security and Cryptography for Networks, 2018.

[89] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.
In CAV, 2002.

[90] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model checking.
MIT press, 2018.

[91] J. B. Clarkson. Dense probabilistic encryption. In In Proceedings of the Workshop on
Selected Areas of Cryptography, pages 120–128, 1994.

[92] D. Cofer, A. Gacek, J. Backes, M. W. Whalen, L. Pike, A. Foltzer, M. Podhradsky,
G. Klein, I. Kuz, J. Andronick, G. Heiser, and D. Stuart. A formal approach to
constructing secure air vehicle software. Computer, 2018.

[93] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware extensions for
strong software isolation. In 25th USENIX Security Symposium (USENIX Security
16), 2016.

222

[94] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale analysis of
the security of embedded firmwares. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 95–110, 2014.

[95] R. Cramer, I. Damgård, and U. Maurer. Span programs and general secure multi-party
computation. BRICS Report Series, 4(28), Jan. 1997.

[96] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-
authority election scheme. In W. Fumy, editor, Advances in Cryptology — EURO-
CRYPT ’97, pages 103–118, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[97] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set
intersection. In Applied Cryptography and Network Security, pages 125–142, 2009.

[98] I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and
the computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

[99] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable multiparty
computation with nearly optimal work and resilience. In CRYPTO, pages 241–261,
2008.

[100] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In K. Kim, editor, Public Key Cryptography,
pages 119–136, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[101] G. Danezis and E. De Cristofaro. Fast and private genomic testing for disease sus-
ceptibility. In Proceedings of the 13th Workshop on Privacy in the Electronic Society,
pages 31–34. ACM, 2014.

[102] E. De Cristofaro, S. Faber, P. Gasti, and G. Tsudik. Genodroid: are privacy-preserving
genomic tests ready for prime time? In Proceedings of the 2012 ACM workshop on
Privacy in the electronic society, pages 97–108. ACM, 2012.

[103] E. De Cristofaro, S. Faber, and G. Tsudik. Secure genomic testing with size-and
position-hiding private substring matching. In Proceedings of the 12th ACM workshop
on Workshop on privacy in the electronic society, pages 107–118. ACM, 2013.

[104] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation of cardinality
of set intersection and union. In Cryptology and Network Security, pages 218–231.
Springer, 2012.

[105] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection
protocols secure in malicious model. In Advances in Cryptology - ASIACRYPT 2010,
pages 213–231, 2010.

[106] E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear
complexity. In Financial Cryptography and Data Security, pages 143–159, 2010.

223

[107] E. De Cristofaro and G. Tsudik. Experimenting with fast private set intersection. In
Trust and Trustworthy Computing, pages 55–73, 2012.

[108] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik.
VRASED: A verified hardware/software co-design for remote attestation. In USENIX
Security, 2019.

[109] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Pure: Using
verified remote attestation to obtain proofs of update, reset and erasure in low-end
embedded systems. 2019.

[110] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. APEX: A
verified architecture for proofs of execution on remote devices under full software com-
promise. In 29th USENIX Security Symposium (USENIX Security 20), Boston, MA,
Aug. 2020. USENIX Association.

[111] I. De Oliveira Nunes, S. Hwang, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik.
PARseL: Towards a verified root-of-trust over sel4. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pages 1–9, 2023.

[112] I. De Oliveira Nunes, S. Hwang, S. Jakkamsetti, and G. Tsudik. Privacy-from-birth:
Protecting sensed data from malicious sensors with versa. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 2413–2429, 2022.

[113] I. De Oliveira Nunes, S. Jakkamsetti, Y. Kim, and G. Tsudik. Casu: Compromise
avoidance via secure update for low-end embedded systems. ICCAD ’22.

[114] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik. On the
toctou problem in remote attestation. CCS, 2021.

[115] I. De Oliveira Nunes, S. Jakkamsetti, and G. Tsudik. Dialed: Data integrity attestation
for low-end embedded devices. 2021.

[116] I. De Oliveria Nunes, S. Jakkamsetti, and G. Tsudik. Tiny-CFA: Minimalistic control-
flow attestation using verified proofs of execution. In Design, Automation and Test in
Europe Conference (DATE), 2021.

[117] S. K. Debnath and R. Dutta. Secure and efficient private set intersection cardinality
using bloom filter. In Information Security, pages 209–226. Springer International
Publishing, 2015.

[118] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu. PIR-PSI: Scaling private contact
discovery. Proceedings on Privacy Enhancing Technologies, pages 159–178, 2018.

[119] C. Deng, J. Fan, Z. Wang, Y. Luo, Y. Zheng, Y. Li, and J. Ding. A survey on range
proof and its applications on blockchain. In 2019 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC), pages 1–8, 2019.

224

[120] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi. Litehax: lightweight hardware-
assisted attestation of program execution. In 2018 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), ICCAD ’18, pages 1–8. IEEE, 2018.

[121] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan,
and A.-R. Sadeghi. Lo-fat: Low-overhead control flow attestation in hardware. In
Proceedings of the 54th Annual Design Automation Conference 2017, page 24. ACM,
2017.

[122] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data publication
over the internet 1. Journal of Computer Security, 11(3):291–314, 2003.

[123] B. Devices. Boundary devices bd-sl-i.mx6. https://boundarydevices.com/
product/bd-sl-i-mx6/.

[124] X. Ding, E. Ozturk, and G. Tsudik. Balancing security and privacy in genomic range
queries. In Proceedings of the 18th ACM Workshop on Privacy in the Electronic Soci-
ety, WPES’19, page 106–110, New York, NY, USA, 2019. Association for Computing
Machinery.

[125] S. Dolev, K. Eldefrawy, J. Lampkins, R. Ostrovsky, and M. Yung. Proactive secret
sharing with a dishonest majority. In Proceedings of the 10th International Conference
on Security and Cryptography for Networks - Volume 9841, pages 529–548, New York,
NY, USA, 2016. Springer-Verlag New York, Inc.

[126] S. Dolev, J. Garay, N. Gilboa, and V. Kolesnikov. Swarming secrets. In Communica-
tion, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference
on, pages 1438–1445, Sept 2009.

[127] S. Dolev, J. A. Garay, N. Gilboa, and V. Kolesnikov. Secret sharing krohn-rhodes:
Private and perennial distributed computation. In Innovations in Computer Science -
ICS 2010, Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages
32–44, 2011.

[128] S. Dolev, J. A. Garay, N. Gilboa, V. Kolesnikov, and Y. Yuditsky. Towards efficient
private distributed computation on unbounded input streams. J. Mathematical Cryp-
tology, 9(2):79–94, 2015.

[129] C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an
efficient and scalable protocol. In CCS, 2013.

[130] T. Duong, D. H. Phan, and N. Trieu. Catalic: Delegated psi cardinality with ap-
plications to contact tracing. In Advances in Cryptology – ASIACRYPT 2020, pages
870–899. Springer International Publishing, 2020.

[131] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot
2.0—a framework for ltl and ω-automata manipulation. In International Symposium
on Automated Technology for Verification and Analysis, 2016.

225

https://boundarydevices.com/product/bd-sl-i-mx6/

[132] J. Edelson. A timeline of facebook’s privacy issues — and its re-
sponses. https://www.nbcnews.com/tech/social-media/
timeline-facebook-s-privacy-issues-its-responses-n859651,
2018.

[133] K. Eldefrawy, S. Hwang, R. Ostrovsky, and M. Yung. Communication-efficient (proac-
tive) secure computation for dynamic general adversary structures and dynamic groups.
In C. Galdi and V. Kolesnikov, editors, Security and Cryptography for Networks, pages
108–129, Cham, 2020. Springer International Publishing.

[134] K. Eldefrawy, R. Ostrovsky, S. Park, and M. Yung. Proactive secure multiparty com-
putation with a dishonest majority. In Security and Cryptography for Networks - 11th
International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings,
pages 200–215, 2018.

[135] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. HYDRA: hybrid design for remote
attestation (using a formally verified microkernel). In Wisec, 2017.

[136] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[137] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Advances in Cryptology, pages 10–18, 1985.

[138] W. Englund, E. Nakashima, and T. Telford. Colonial pipeline ‘ransomware’ attack
shows cyber vulnerabilities of u.s. energy grid. https://www.washingtonpost.
com/business/2021/05/10/colonial-pipeline-gas-oil-markets/,
May 2021.

[139] D. Evans, V. Kolesnikov, and M. Rosulek. A Pragmatic Introduction to Secure Multi-
Party Computation. 2018.

[140] Y. Feng, Y. Zhang, C. Ying, D. Wang, and C. Du. Nanopore-based fourth-generation
dna sequencing technology. Genomics, proteomics & bioinformatics, 13(1):4–16, 2015.

[141] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Proceedings on Advances in Cryptology—CRYPTO ’86, page
186–194, Berlin, Heidelberg, 1987. Springer-Verlag.

[142] U. Fiege, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages
210–217. Association for Computing Machinery, 1987.

[143] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive rsa. In Proceedings
of the 17th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’97, pages 440–454, London, UK, UK, 1997. Springer-Verlag.

[144] M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas. Efficient set intersection with
simulation-based security. Journal of Cryptology, 29(1):115–155, 2016.

226

https://www.nbcnews.com/tech/social-media/timeline-facebook-s-privacy-issues-its-responses-n859651
https://www.washingtonpost.com/business/2021/05/10/colonial-pipeline-gas-oil-markets/

[145] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious
pseudorandom functions. In Theory of Cryptography, pages 303–324. Springer Berlin
Heidelberg, 2005.

[146] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set inter-
section. In Advances in Cryptology - EUROCRYPT 2004, pages 1–19, 2004.

[147] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Annual International Cryptology Conference, pages 16–30.
Springer, Springer Berlin Heidelberg, 1997.

[148] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code alteration by creating a
temporary memory bottleneck. IEEE TIFS, 2009.

[149] M. Geden and K. Rasmussen. Hardware-assisted remote runtime attestation for critical
embedded systems. In 2019 17th International Conference on Privacy, Security and
Trust (PST), pages 1–10. IEEE, 2019.

[150] S. Ghosh and T. Nilges. An algebraic approach to maliciously secure private set
intersection. In Advances in Cryptology – EUROCRYPT 2019, pages 154–185. Springer
International Publishing, 2019.

[151] O. Girard. openMSP430, 2009.

[152] V. D. Gligor and S. L. M. Woo. Establishing software root of trust unconditionally.
In NDSS, 2019.

[153] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, 2004.

[154] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, pages 218–229, New York, NY, USA, 1987. ACM.

[155] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, STOC ’82, page 365–377, New York, NY, USA,
1982. Association for Computing Machinery.

[156] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing, STOC ’85, pages 291–304, 1985.

[157] C. Gouert, D. Mouris, and N. G. Tsoutsos. Sok: New insights into fully homomorphic
encryption libraries via standardized benchmarks. Proc. Priv. Enhancing Technol.,
2023(3):154–172, 2023.

[158] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo. PISTIS: Trusted computing archi-
tecture for low-end embedded systems. In 31st USENIX Security Symposium, pages
3843–3860, Aug. 2022.

227

[159] J. Groth. Non-interactive zero-knowledge arguments for voting. In J. Ioannidis,
A. Keromytis, and M. Yung, editors, Applied Cryptography and Network Security,
pages 467–482, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[160] C. Hagen, C. Weinert, C. Sendner, A. Dmitrienko, and T. Schneider. All the numbers
are us: Large-scale abuse of contact discovery in mobile messengers. IACR Cryptology
ePrint Archive, page 1119, 2020.

[161] S. Halevi and V. Shoup. An implementation of homomorphic encryption. https:
//github.com/shaih/HElib(2013). Accessed: 2022-01-31.

[162] P. Hallgren, C. Orlandi, and A. Sabelfeld. Privatepool: Privacy-preserving ridesharing.
In IEEE 30th Computer Security Foundations Symposium (CSF), 2017.

[163] M. Z. Hasan, M. S. R. Mahdi, M. N. Sadat, and N. Mohammed. Secure count query
on encrypted genomic data. Journal of Biomedical Informatics, 81:41–52, 2018.

[164] C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In Theory of Cryptography,
pages 155–175, 2008.

[165] C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adver-
saries. In Public Key Cryptography – PKC 2010, pages 312–331, 2010.

[166] S. J. Heerema and C. Dekker. Graphene nanodevices for dna sequencing. Nature
nanotechnology, 11(2):127, 2016.

[167] B. Hemenway Falk, D. Noble, and R. Ostrovsky. Private set intersection with linear
communication from general assumptions. In Proceedings of the 18th ACM Workshop
on Privacy in the Electronic Society, WPES’19, pages 14–25. Association for Comput-
ing Machinery, 2019.

[168] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How
to cope with perpetual leakage. In CRYPTO, pages 339–352, 1995.

[169] M. Hirt, U. Maurer, and C. Lucas. A Dynamic Tradeoff between Active and Passive
Corruptions in Secure Multi-Party Computation. In R. Canetti and J. A. Garay, edi-
tors, Advances in cryptology - CRYPTO 2013 : 33rd Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013 : proceedings, volume 8043
of Lecture notes in computer science, pages 203–219, Heidelberg, 2013. Springer.

[170] M. Hirt and D. Tschudi. Efficient general-adversary multi-party computation. In
K. Sako and P. Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, pages
181–200, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[171] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 1969.

[172] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In
Proceedings of the Thirtieth international conference on Very large data bases-Volume
30, pages 720–731. VLDB Endowment, 2004.

228

[173] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better
than custom protocols? In NDSS. ISOC, 2012.

[174] B. Huberman, M. Franklin, and T. Hogg. Enhancing privacy and trust in electronic
communities. In ACM Conference on Electronic Commerce, 1999.

[175] S. Hwang, E. Ozturk, and G. Tsudik. Source code for evaluation. https://github.
com/sprout-uci/genomic-security-journal-code, 2022.

[176] S. Hwang, E. Ozturk, and G. Tsudik. Balancing security and privacy in genomic range
queries. ACM Trans. Priv. Secur., 26(3), mar 2023.

[177] S. IKEDA. South korea issues fines to facebook, netflix over privacy
violations. https://www.cpomagazine.com/data-protection/
south-korea-issues-fines-to-facebook-netflix-over-privacy-violations/.

[178] M. G. Ilaria Chillotti, Nicolas Gama and M. Izabachène. Tfhe: Fast fully homomorphic
encryption library over the torus. https://github.com/tfhe/tfhe.(2017).
Accessed: 2022-01-31.

[179] T. Instruments. Msp430 ultra-low-power sensing & measurement mcus. http:
//www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/
overview.html.

[180] Intel. Intel Software Guard Extensions (Intel SGX). https://software.intel.
com/en-us/sgx.

[181] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth, M. Raykova, D. Shana-
han, and M. Yung. On deploying secure computing: Private intersection-sum-with-
cardinality. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 370–389, 2020.

[182] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani. Verilog2SMV: A tool
for word-level verification. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016, 2016.

[183] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant
computational overhead. In STOC, pages 433–442, 2008.

[184] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to
adaptive ot and secure computation of set intersection. In Theory of Cryptography,
pages 577–594, 2009.

[185] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic compu-
tation. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 216–230,
2008.

[186] M. Jin, R. Jia, and C. J. Spanos. Virtual occupancy sensing: Using smart meters to
indicate your presence. IEEE Transactions on Mobile Computing, 16(11):3264–3277,
2017.

229

https://github.com/sprout-uci/genomic-security-journal-code
https://www.cpomagazine.com/data-protection/south-korea-issues-fines-to-facebook-netflix-over-privacy-violations/
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
https://software.intel.com/en-us/sgx

[187] K. Kajita and G. Ohtake. Private set intersection for viewing history with efficient data
matching. In HCI International 2022 Posters, pages 498–505. Springer International
Publishing, 2022.

[188] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin. A cryptographic approach to securely
share and query genomic sequences. IEEE Transactions on information technology in
biomedicine, 12(5):606–617, 2008.

[189] A. Kawachi, K. Tanaka, and K. Xagawa. Multi-bit cryptosystems based on lattice
problems. In Public Key Cryptography – PKC 2007, pages 315–329. International
Workshop on Public Key Cryptography, 04 2007.

[190] R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer systems.
In USENIX Security Symposium, 2003.

[191] H. C. Kim Laine and R. Player. Simple encrypted arithmetic library (seal). https:
//github.com/microsoft/SEAL.(2017). Accessed: 2022-01-31.

[192] L. Kissner and D. Song. Privacy-preserving set operations. In Advances in Cryptology
– CRYPTO 2005, pages 241–257, 2005.

[193] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, et al. sel4: Formal verification of an os kernel.
In SIGOPS. ACM, 2009.

[194] G. Klein, K. Elphinstone, G. Heiser, et al. seL4: Formal verification of an OS kernel.
In ACM SIGOPS, 2009.

[195] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite: A security
architecture for tiny embedded devices. In EuroSys, 2014.

[196] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivious
prf with applications to private set intersection. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS, pages 818–
829. Association for Computing Machinery, 2016.

[197] V. Kolesnikov, M. Rosulek, and N. Trieu. SWiM: Secure wildcard pattern matching
from ot extension. In Financial Cryptography and Data Security: 22nd International
Conference, FC 2018, Nieuwpoort, Curaçao, February 26 – March 2, 2018, Revised
Selected Papers, pages 222–240. Springer-Verlag, 2018.

[198] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth.
New results for timing-based attestation. In 2012 IEEE Symposium on Security and
Privacy, pages 239–253, 2012.

[199] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth. New
results for timing-based attestation. 2012.

230

[200] H. Krawczyk. Cryptographic extraction and key derivation: The hkdf scheme. Cryp-
tology ePrint Archive, Report 2010/264, https://ia.cr/2010/264.

[201] J. Kreidler. Ftc says: Amazon didn’t protect alexa users’ or children’s
privacy. https://consumer.ftc.gov/consumer-alerts/2023/05/
ftc-says-amazon-didnt-protect-alexa-users-or-childrens-privacy.

[202] A. Kulshrestha and J. Mayer. Estimating incidental collection in foreign intelligence
surveillance: Large-Scale multiparty private set intersection with union and sum. In
31st USENIX Security Symposium, pages 1705–1722. USENIX Association, 2022.

[203] S. Kumar, Y. Hu, M. P. Andersen, R. A. Popa, and D. E. Culler. JEDI: Many-
to-many end-to-end encryption and key delegation for iot. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1519–1536, 2019.

[204] J. Lampkins and R. Ostrovsky. Communication-efficient mpc for general adversary
structures. In M. Abdalla and R. De Prisco, editors, Security and Cryptography for
Networks, pages 155–174, Cham, 2014. Springer International Publishing.

[205] K. Lauter, A. López-Alt, and M. Naehrig. Private computation on encrypted genomic
data. In D. F. Aranha and A. Menezes, editors, Progress in Cryptology - LATINCRYPT
2014, pages 3–27, Cham, 2015. Springer International Publishing.

[206] C. Legislature. Title 1.81.5. california consumer privacy act of 2018, 2018.

[207] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index
structures for outsourced databases. In Proceedings of the 2006 ACM SIGMOD inter-
national conference on Management of data, pages 121–132. ACM, 2006.

[208] Y. Li, J. M. McCune, and A. Perrig. Viper: Verifying the integrity of peripherals’
firmware. In CCS. ACM, 2011.

[209] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the integrity of peripherals’
firmware. In ACM CCS, 2011.

[210] H. Lin and N. W. Bergmann. Iot privacy and security challenges for smart home
environments. Information, 7(3):44, 2016.

[211] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the
presence of malicious adversaries. Journal of Cryptology, 28(2):312–350, Apr. 2015.

[212] N. Lindsey. Google data collection is more extensive and intrusive than
you ever imagined. https://www.cpomagazine.com/data-privacy/
google-data-collection-is-more-extensive-and-intrusive-than-you-ever-imagined/,
2018.

[213] H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In
C.-S. Laih, editor, Advances in Cryptology - ASIACRYPT 2003, pages 398–415, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

231

https://ia.cr/2010/264
https://consumer.ftc.gov/consumer-alerts/2023/05/ftc-says-amazon-didnt-protect-alexa-users-or-childrens-privacy
https://www.cpomagazine.com/data-privacy/google-data-collection-is-more-extensive-and-intrusive-than-you-ever-imagined/

[214] H. Lipmaa, N. Asokan, and V. Niemi. Secure vickrey auctions without threshold trust,
2001. Published in Financial Cryptography 2002. helger@tcs.hut.fi 11810 received 13
Nov 2001, last revised 3 May 2002.

[215] M. Loukides. What is devops? OReilly Media, 2012. 7 June.

[216] D. W. Loveland. Automated Theorem Proving: a logical basis. Elsevier, 2016.

[217] I. Lutsenko and I. Protasov. Sparse, thin and other subsets of groups. International
Journal of Algebra and Computation, 19(04):491–510, 2009.

[218] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. Proceedings of the Annual
ACM Symposium on Theory of Computing, 05 2012.

[219] J. P. K. Ma and S. S. M. Chow. Secure-computation-friendly private set intersection
from oblivious compact graph evaluation. ASIA CCS ’22, 2022.

[220] W. Makalowski. The human genome structure and organization. Acta biochimica
Polonica, 48:587–98, 02 2001.

[221] W. Mao. Guaranteed correct sharing of integer factorization with off-line shareholders.
In International Workshop on Public Key Cryptography, pages 60–71. Springer, 1998.

[222] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. X. Song.
Churp: Dynamic-committee proactive secret sharing. IACR Cryptology ePrint Archive,
2019:17, 2019.

[223] E. R. Mardis. A decade’s perspective on dna sequencing technology. Nature,
470(7333):198, 2011.

[224] U. Maurer. Secure multi-party computation made simple. In Proceedings of the 3rd
International Conference on Security in Communication Networks, SCN’02, pages 14–
28, Berlin, Heidelberg, 2003. Springer-Verlag.

[225] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
Efficient TCB reduction and attestation. In IEEE S&P ’10, 2010.

[226] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
execution infrastructure for tcb minimization. In Proceedings of the 3rd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2008, pages 315–328, 2008.

[227] K. L. McMillan. The smv system. In Symbolic Model Checking, pages 61–85. Springer,
1993.

[228] C. A. Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. 1986 IEEE Symposium on Security
and Privacy, pages 134–134, 1986.

232

[229] P. Miao, S. Patel, M. Raykova, K. Seth, and M. Yung. Two-sided malicious security
for private intersection-sum with cardinality. In Advances in Cryptology – CRYPTO
2020, pages 3–33. Springer International Publishing, 2020.

[230] A. Mohammed Yakubu and Y.-P. P. Chen. Ensuring privacy and security of genomic
data and functionalities. Briefings in Bioinformatics, 21(2):511–526, 02 2019.

[231] E. Morais, T. Koens, C. Wijk, and A. Koren. A survey on zero knowledge range proofs
and applications. SN Applied Sciences, 1, 08 2019.

[232] D. Naccache and J. Stern. A new public key cryptosystem based on higher residues.
In Proceedings of the 5th ACM Conference on Computer and Communications Secu-
rity, CCS ’98, pages 59–66, New York, NY, USA, 1998. Association for Computing
Machinery.

[233] S. Nagaraja, P. Mittal, C. Hong, M. Caesar, and N. Borisov. BotGrep: Finding bots
with structured graph analysis. In Usenix Security, 2010.

[234] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir. Inferring user routes and loca-
tions using zero-permission mobile sensors. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 397–413. IEEE, 2016.

[235] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux, B. A.
Malin, and X. Wang. Privacy in the genomic era. ACM Computing Surveys (CSUR),
48(1):6, 2015.

[236] A. L. M. Neto, A. L. Souza, I. Cunha, M. Nogueira, I. O. Nunes, L. Cotta, N. Gentille,
A. A. Loureiro, D. F. Aranha, H. K. Patil, et al. Aot: Authentication and access
control for the entire iot device life-cycle. In Proceedings of the 14th ACM Conference
on Embedded Network Sensor Systems CD-ROM, pages 1–15, 2016.

[237] O. Nevo, N. Trieu, and A. Yanai. Simple, fast malicious multiparty private set inter-
section. In CCS ’21: ACM SIGSAC Conference on Computer and Communications
Security, pages 1151–1165, 2021.

[238] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Ver-
bauwhede, J. Götzfried, T. Müller, and F. C. Freiling. Sancus 2.0: A low-cost security
architecture for iot devices. ACM Trans. Priv. Secur., 20(3):7:1–7:33, 2017.

[239] U. of Cambridge and T. Munich. Isabelle. https://isabelle.in.tum.de/.

[240] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring.
In K. Nyberg, editor, Advances in Cryptology — EUROCRYPT’98, pages 308–318,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[241] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract).
In PODC, pages 51–59, 1991.

233

https://isabelle.in.tum.de/

[242] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International conference on the theory and applications of cryptographic techniques,
pages 223–238. Springer, Springer Berlin Heidelberg, 1999.

[243] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying completeness of rela-
tional query results in data publishing. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 407–418. ACM, 2005.

[244] E. Parliament and Council. Regulation (eu) 2016/679, general data protection regula-
tion, 2016.

[245] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Annual international cryptology conference, pages 129–140. Springer, Springer
Berlin Heidelberg, 1991.

[246] H. Perl, Y. Mohammed, M. Brenner, and M. Smith. Fast confidential search for
bio-medical data using bloom filters and homomorphic cryptography. In 2012 IEEE
8th International Conference on E-Science (e-Science), pages 1–8, Los Alamitos, CA,
USA, oct 2012. IEEE Computer Society.

[247] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot — A coprocessor-
based kernel runtime integrity monitor. In USENIX Security Symposium, 2004.

[248] A. Petz, G. Jurgensen, and P. Alexander. Design and formal verification of a copland-
based attestation protocol. In ACM-IEEE International Conference on Formal Meth-
ods and Models for System Design, 2021.

[249] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Spot-light: Lightweight private set
intersection from sparse ot extension. In Advances in Cryptology – CRYPTO 2019,
pages 401–431. Springer International Publishing, 2019.

[250] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Psi from paxos: Fast, malicious
private set intersection. In Advances in Cryptology – EUROCRYPT 2020, pages 739–
767. Springer International Publishing, 2020.

[251] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection
using permutation-based hashing. In Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’15, pages 515–530. USENIX Association, 2015.

[252] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is
practical. Asiacrypt, 2009.

[253] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient circuit-based psi with
linear communication. In Advances in Cryptology – EUROCRYPT 2019, pages 122–
153. Springer International Publishing, 2019.

[254] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based psi via
cuckoo hashing. In Advances in Cryptology – EUROCRYPT 2018, pages 125–157.
Springer International Publishing, 2018.

234

[255] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on
OT extension. In 23rd USENIX Security Symposium (USENIX Security 14), pages
797–812. USENIX Association, 2014.

[256] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection based on ot
extension. ACM Transactions on Privacy and Security (TOPS), 21:1–35, 2016.

[257] P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov, and A. V. Vasilakos.
The quest for privacy in the internet of things. IEEE Cloud Computing, 3(2):36–45,
2016.

[258] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-
Béguelin, A. Delignat-Lavaud, C. Hri󰄍cu, K. Bhargavan, C. Fournet, and N. Swamy.
Verified low-level programming embedded in f*. Proc. ACM Program. Lang., aug 2017.

[259] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proceedings of the twenty-first annual ACM symposium on Theory
of computing, STOC ’89, pages 73–85, New York, NY, USA, 1989. ACM.

[260] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mechanisms for
secure embedded systems. In VLSI Design, 2004.

[261] P. Rindal and P. Schoppmann. Vole-psi: Fast oprf and circuit-psi from vector-ole. In
Advances in Cryptology – EUROCRYPT 2021, pages 901–930. Springer International
Publishing, 2021.

[262] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, Feb. 1978.

[263] M. Russell. Enable the security potential and versatility of sel4 in medical device de-
velopment. https://dornerworks.com/blog/sel4-medical-products/,
2020.

[264] A. Satariano. Google is fined $57 million under europe’s data pri-
vacy law. https://www.nytimes.com/2019/01/21/technology/
google-europe-gdpr-fine.html, 2019.

[265] A. Satariano. Meta fined $1.3 billion for violating e.u. data pri-
vacy rules. https://www.nytimes.com/2023/05/22/business/
meta-facebook-eu-privacy-fine.html, 2023.

[266] G. Sathya Narayanan, T. Aishwarya, A. Agrawal, A. Patra, A. Choudhary, and
C. Pandu Rangan. Multi Party Distributed Private Matching, Set Disjointness and
Cardinality of Set Intersection with Information Theoretic Security. In CANS, 2009.

[267] D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation on legacy operating
systems with trusted platform modules. Science of Computer Programming, 74(1):13–
22, 2008.

235

https://dornerworks.com/blog/sel4-medical-products/
https://www.nytimes.com/2019/01/21/technology/google-europe-gdpr-fine.html
https://www.nytimes.com/2023/05/22/business/meta-facebook-eu-privacy-fine.html

[268] D. C. Schmidt. Google data collection. https://www.dre.vanderbilt.edu/
~schmidt/PDF/google-data-collection.pdf, 2018.

[269] D. Schultz. Mobile Proactive Secret Sharing. PhD thesis, Massachusetts Institute of
Technology, 2007.

[270] A. Sears. ’felt so violated:’ milwaukee couple warns hackers are
outsmarting smart homes. https://www.fox6now.com/news/
felt-so-violated-milwaukee-couple-warns-hackers-are-outsmarting-smart-homes.

[271] seL4 Team. sel4 supported platforms with verification status. https://docs.sel4.
systems/Hardware/.

[272] A. Seshadri, M. Luk, and A. Perrig. SAKE: Software attestation for key establishment
in sensor networks. In DCOSS. 2008.

[273] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. In ACM
SOSP, 2005.

[274] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. SWATT: Software-based attesta-
tion for embedded devices. In IEEE Symposium on Research in Security and Privacy
(S&P), pages 272–282, Oakland, California, USA, 2004. IEEE.

[275] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation for a verified os
kernel. ACM SIGPLAN Notices, 48:471–482, 2013.

[276] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[277] A. Shamir. On the power of commutativity in cryptography. In Automata, Languages
and Programming, pages 582–595, 1980.

[278] S. Shead. Amazon hit with $887 million fine by european
privacy watchdog. https://www.cnbc.com/2021/07/30/
amazon-hit-with-fine-by-eu-privacy-watchdog-.html, 2021.

[279] SiFive. Hifive unleashed specifications. https://www.sifive.com/boards/
hifive-unleashed.

[280] S. H. Standard. Fips pub 180-2, 2002.

[281] E. Stefanov, E. Shi, and D. Song. Policy-enhanced private set intersection: Sharing
information while enforcing privacy policies. In Public Key Cryptography – PKC, 2012.

[282] I. H. C. Study and F. P. and Xiaoming Jia and Paul J McLaren and Amalio Telenti
and Paul I W de Bakker and Bruce D Walker and Stephan Ripke and Chanson J
Brumme and Sara L Pulit and Mary Carrington and Carl M Kadie and Jonathan
M Carlson and David Heckerman and Robert R Graham and Robert M Plenge

236

https://www.dre.vanderbilt.edu/~schmidt/PDF/google-data-collection.pdf
https://www.fox6now.com/news/felt-so-violated-milwaukee-couple-warns-hackers-are-outsmarting-smart-homes
https://docs.sel4.systems/Hardware/
https://www.cnbc.com/2021/07/30/amazon-hit-with-fine-by-eu-privacy-watchdog-.html
https://www.sifive.com/boards/hifive-unleashed

and Steven G Deeks and Lauren Gianniny and Gabriel Crawford and Jordan Sulli-
van and Elena Gonzalez and Leela Davies and Amy Camargo and Jamie M Moore
and Nicole Beattie and Supriya Gupta and Andrew Crenshaw and Noël P Burtt
and Candace Guiducci and Namrata Gupta and Xiaojiang Gao and Ying Qi and Yuko
Yuki and Alicja Piechocka-Trocha and Emily Cutrell and Rachel Rosenberg and Kristin
L Moss and Paul Lemay and Jessica O’Leary and Todd Schaefer and Pranshu Verma
and Ildiko Toth and Brian Block and Brett Baker and Alissa Rothchild and Jeffrey Lian
and Jacqueline Proudfoot and Donna Marie L Alvino and Seanna Vine and Marylyn
M Addo and Todd M Allen and Marcus Altfeld and Matthew R Henn and Sylvie Le
Gall and Hendrik Streeck and David W Haas and Daniel R Kuritzkes and Gregory K
Robbins and Robert W Shafer and Roy M Gulick and Cecilia M Shikuma and Richard
Haubrich and Sharon Riddler and Paul E Sax and Eric S Daar and Heather J Rib-
audo and Brian Agan and Shanu Agarwal and Richard L Ahern and Brady L Allen
and Sherly Altidor and Eric L Altschuler and Sujata Ambardar and Kathryn Anas-
tos and Ben Anderson and Val Anderson and Ushan Andrady and Diana Antoniskis
and David Bangsberg and Daniel Barbaro and William Barrie and J Bartczak and Si-
mon Barton and Patricia Basden and Nesli Basgoz and Suzane Bazner and Nicholaos
C Bellos and Anne M Benson and Judith Berger and Nicole F Bernard and Annette M
Bernard and Christopher Birch and Stanley J Bodner and Robert K Bolan and Emilie
T Boudreaux and Meg Bradley and James F Braun and Jon E Brndjar and Stephen J
Brown and Katherine Brown and Sheldo. The major genetic determinants of hiv-1 con-
trol affect hla class i peptide presentation. Science (New York, NY), 330(6010):1551,
2010.

[283] A. S. A. Sukor, A. Zakaria, N. A. Rahim, L. M. Kamarudin, R. Setchi, and H. Nishizaki.
A hybrid approach of knowledge-driven and data-driven reasoning for activity recog-
nition in smart homes. Journal of Intelligent & Fuzzy Systems, 36(5):4177–4188, 2019.

[284] Z. Sun, B. Feng, L. Lu, and S. Jha. Oat: Attesting operation integrity of embedded
devices. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1433–1449.
IEEE, 2020.

[285] N. Swamy, C. Hri󰄍cu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhar-
gavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-
Béguelin. Dependent types and multi-monadic effects in f*. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 2016.

[286] J. Takeshita, R. Karl, A. Mohammed, A. Striegel, and T. Jung. Provably secure
contact tracing with conditional private set intersection. In Security and Privacy in
Communication Networks, pages 352–373. Springer International Publishing, 2021.

[287] Z.-Z. Tao, A. Rastogi, N. Gupta, K. Vaswani, and A. V. Thakur. Dice*: A formally
verified implementation of dice measured boot. In USENIX Security Symposium, 2021.

[288] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. Packet-level signa-

237

tures for smart home devices. In Network and Distributed Systems Security (NDSS)
Symposium, volume 2020, 2020.

[289] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error
resilient dna searching through oblivious automata. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 519–528. ACM, 2007.

[290] Trusted Computing Group. Trusted platform module (tpm), 2017.

[291] A. Ukil, S. Bandyopadhyay, and A. Pal. Iot-privacy: To be private or not to be pri-
vate. In 2014 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 123–124. IEEE, 2014.

[292] J. Vaidya and C. Clifton. Secure set intersection cardinality with application to asso-
ciation rule mining. Journal of Computer Security, 13(4), 2005.

[293] Z. Wan, J. W. Hazel, E. W. Clayton, Y. Vorobeychik, M. Kantarcioglu, and B. A.
Malin. Sociotechnical safeguards for genomic data privacy. Nature Reviews Genetics,
23(7):429–445, July 2022.

[294] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and X. Jiang.
HEALER: homomorphic computation of ExAct Logistic rEgRession for secure rare
disease variants analysis in GWAS. Bioinformatics, 32(2):211–218, 10 2015.

[295] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu. Efficient genome-wide,
privacy-preserving similar patient query based on private edit distance. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, page 492–503, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

[296] R. Waugh. Smart TV hackers are filming people hav-
ing sex on their sofas. http://metro.co.uk/2016/05/23/
smart-tv-hackers-are-filming-people-having-sex-on-their-sofas-and-putting-it-on-porn-sites-5899248/.

[297] R. H. Weber. Internet of things–new security and privacy challenges. Computer law
& security review, 26(1):23–30, 2010.

[298] W. Wei. Xiaomi cameras connected to google nest expose video feeds from others.
https://thehackernews.com/2020/01/google-nest-xiaomi-camera.
html.

[299] Y. Wen, Z. Gong, Z. Huang, and W. Qiu. A new efficient authorized private set
intersection protocol from Schnorr signature and its applications. Cluster Computing,
21(1):287–297, Mar. 2018.

[300] T. M. Wong, C. Wang, and J. M. Wing. Verifiable secret redistribution for archive
system. In IEEE Security in Storage Workshop, pages 94–106, 2002.

238

http://metro.co.uk/2016/05/23/smart-tv-hackers-are-filming-people-having-sex-on-their-sofas-and-putting-it-on-porn-sites-5899248/
https://thehackernews.com/2020/01/google-nest-xiaomi-camera.html

[301] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Sym-
posium on Foundations of Computer Science, FOCS ’82, pages 160–164, Washington,
DC, USA, 1982. IEEE Computer Society.

[302] A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

[303] L. Zajíček. Differentiability of the distance function and points of multi-valuedness of
the metric projection in banach space. Czechoslovak Mathematical Journal, 33(2):292–
308, 1983.

[304] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R. Sadeghi.
Atrium: Runtime attestation resilient under memory attacks. In Proceedings of the
36th International Conference on Computer-Aided Design, pages 384–391. IEEE Press,
2017.

[305] K. Zetter. Inside the cunning, unprecedented hack of
ukraine’s power grid. https://www.wired.com/2016/03/
inside-cunning-unprecedented-hack-ukraines-power-grid/, March
2016.

[306] Y. Zhang, M. Blanton, and G. Almashaqbeh. Secure distributed genome analysis for
gwas and sequence comparison computation. BMC Medical Informatics and Decision
Making, 15:S4, 12 2015.

[307] Y. Zhang, W. Dai, X. Jiang, H. Xiong, and S. Wang. Foresee: Fully outsourced
secure genome study based on homomorphic encryption. BMC Medical Informatics
and Decision Making, 15:S5, 12 2015.

[308] Y. Zhao and S. Chow. Are you the one to share? secret transfer with access structure.
Proceedings on Privacy Enhancing Technologies – PETS’17, 2017.

[309] Y. Zhao and S. S. Chow. Can you find the one for me? In Proceedings of the 2018
Workshop on Privacy in the Electronic Society, WPES’18, pages 54–65. Association
for Computing Machinery, 2018.

[310] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster. User perceptions of smart home
iot privacy. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW):1–20,
2018.

[311] L. Zhou, F. B. Schneider, and R. van Renesse. Apss: proactive secret sharing in
asynchronous systems. ACM Trans. Inf. Syst. Secur., 8(3):259–286, 2005.

[312] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche. Hacl*: A verified
modern cryptographic library. In CCS, 2017.

239

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

