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Decision-making strategies shift during normal aging and can profoundly affect
wellbeing. Although overweighing losses compared to gains, termed “loss aversion,”
plays an important role in choice selection, the age trajectory of this effect and how it
may be influenced by associated changes in brain structure remain unclear. We therefore
investigated the relationship between age and loss aversion, and tested for its mediation
by cortical thinning in brain regions that are susceptible to age-related declines and
are implicated in loss aversion — the insular, orbitofrontal, and anterior and posterior
cingulate cortices. Healthy participants (n = 106, 17–54 years) performed the Loss
Aversion Task. A subgroup (n = 78) provided structural magnetic resonance imaging
scans. Loss aversion followed a curvilinear trajectory, declining in young adulthood and
increasing in middle-age, and thinning of the posterior cingulate cortex mediated this
trajectory. The findings suggest that beyond a threshold in middle adulthood, atrophy of
the posterior cingulate cortex influences loss aversion.

Keywords: decision-making, loss aversion, aging, cortical thickness, posterior cingulate, neuroimaging

INTRODUCTION

The proportion of the global population that is 65 years or older is increasing faster than those of
other age groups; it is estimated that by 2050, one in four people in North America and Europe,
and one in six people worldwide, will be over 65 (United Nations, 2019). As older adults face a
myriad of choices that involve uncertainty and loss across multiple domains, changes in decision-
making can substantially impact their quality of life (Samanez-Larkin, 2013; MacLeod et al., 2017).
Accordingly, the impact of aging on decision-making is of substantial interest (Löckenhoff, 2018;
Lighthall, 2020). Findings have been mixed, showing worsening in some respects, particularly in
more deliberative domains, such as applying decision rules (Brown and Ridderinkhof, 2009). Yet,
older adults can show more optimal decision-making than their younger counterparts, especially
for choices that rely on life experience and acquired knowledge (Li et al., 2013).

Many everyday decisions present a potential for loss, which increases in salience with age
(Ebner et al., 2006; Depping and Freund, 2011; Mata and Hertwig, 2011; Löckenhoff, 2018).
When making a choice that balances the chance of gain against the risk of loss, people of all
ages tend to be risk averse and to accept a gamble only if the magnitude of the win vastly
outweighs that of the loss. This phenomenon has been explained by loss aversion, which reflects
the overweighing of losses compared to equivalent gains (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1992). Despite reports of greater loss aversion in adults over compared to under 40
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(Arora and Kumari, 2015; Kurnianingsih et al., 2015; O’Brien
and Hess, 2020), other studies find no differences (Li et al.,
2013; Rutledge et al., 2016; Pachur et al., 2017; Seaman et al.,
2018). This discrepancy could be due to nonlinear effects of age
on loss aversion, the exclusion of middle-aged participants in
comparisons of older and younger groups (Li et al., 2013), or
different methods of measuring loss aversion (Rutledge et al.,
2016; Seaman et al., 2018).

Although aversions to risk and loss are presumably
evolutionarily adaptive mechanisms (Robson, 1996; Chen
et al., 2005; Zhang et al., 2014; Hintze et al., 2015), extreme
sensitivity to potential loss can impair decision-making during
laboratory tasks (Benjamin and Robbins, 2007; Cassotti et al.,
2014) and real-world choices (Mishina et al., 2010; Herweg and
Mierendorff, 2013; Schleich et al., 2019), and by people with
psychiatric pathologies, such as affective disorders (Stamatis
et al., 2020; Xu et al., 2020). Notably, a curvilinear relationship
exists between age and both real-world financial choices (Agarwal
et al., 2009) and laboratory risky decision-making (Read and
Read, 2004; Tymula et al., 2013; Di Rosa et al., 2017), with
better performance by middle-aged adults than their younger or
older counterparts.

The goal of this study was to determine whether loss
aversion followed a curvilinear relationship with age, and
whether such a relationship is mediated by thickness of
the insula, ventromedial prefrontal/orbitofrontal cortex (OFC),
and/or anterior and posterior cingulate cortices, all of which are
particularly vulnerable to age-related atrophy and are implicated
in loss aversion (Tom et al., 2007; Canessa et al., 2013; Markett
et al., 2016). Because risky decision-making (Tymula et al.,
2013; Di Rosa et al., 2017) and associated cognitive functions
(Verhaeghen and Salthouse, 1997; Brockmole and Logie, 2013;
Hartshorne and Germine, 2015) follow curvilinear trajectories
with age, we hypothesized that age and loss aversion would be
related by a quadratic function, and that cortical thickness would
influence this relationship. Considering reports that the cortical
regions selected for study exhibit linear age-related thinning
(Tamnes et al., 2009; Lemaitre et al., 2012; Storsve et al., 2014), we
hypothesized that cortical thickness would influence loss aversion
after a threshold of atrophy had been reached. Loss aversion
was measured using the Loss Aversion Task, and structural MRI
was performed on participants from young adulthood through
middle age (17 to 54 years).

MATERIALS AND METHODS

Participants
Data presented here are from healthy, right-handed volunteers
between the ages of 17 and 54 who participated in studies
that were approved by the University of California, Los
Angeles Institutional Review Board. 130 participants (40 women)
completed the Loss Aversion Task and 24 were excluded during
analysis of the behavioral data (see procedures for exclusion
under Loss Aversion Task below), leaving 106 for final analysis.
MRI and behavioral data from these participants, other than
performance on the Loss Aversion Task, have been published in

other reports (Dean et al., 2011, 2015, 2018, 2020; Ghahremani
et al., 2011, 2012; Morales et al., 2012, 2015a,b; Payer et al.,
2012; Zorick et al., 2012; Kohno et al., 2014; Ballard et al.,
2015a,b; Jones et al., 2016; Okita et al., 2016a,b,c, 2018; Moeller
et al., 2018; London et al., 2020). Recruitment utilized online and
print advertisements. After initial screening, participants received
detailed information about each study and gave written informed
consent before screening for eligibility by physical examination,
medical history, and psychiatric evaluation. Drug use history and
demographic information were collected using questionnaires.
Participants were excluded for medical or neurological disorders
or any current Axis I psychiatric disorder except Nicotine
Dependence, determined by the Structured Clinical Interview for
DSM-IV (First et al., 1998). After intake, participants returned
on a different day to perform the Loss Aversion Task, which was
administered using identical procedures for all studies. A subset
of participants (n = 83) also completed structural magnetic
resonance imaging (sMRI) on a different day. Data from 5 of
those participants were excluded during preprocessing, leaving 78
for analysis. The average time between behavioral testing and the
sMRI scan was 7 days. At intake and on each test day, participants
were required to provide a urine sample that was negative
for amphetamine, cocaine, methamphetamine, benzodiazepines,
opioids, and cannabis. They were compensated in the form of
cash, gift cards, or vouchers.

Loss Aversion Task
The task consisted of 128 sequential monetary choices to accept
or reject a mixed gamble offering a 50/50 chance of winning
a certain amount of money and losing a different amount of
money (e.g., gaining $30 or losing $7) (Tom et al., 2007). On
each trial, an image representing a 50/50 choice was presented on
the screen, and the participants indicated whether they strongly
accept, weakly accept, weakly reject, or strongly reject the choice
(Figure 1A). Four options were provided instead of two (i.e.,
accept or reject) to discourage reliance on rule-based choice (e.g.,
always accepting when the loss exceeded $5). The probability of
winning or losing was kept constant at 50%, and the alternative
to accepting the gamble was always to remain at the status
quo (i.e., win and lose nothing). The gains ranged from $10–
40 in increments of $2, and the losses ranged from $5–20 in
increments of $1. Once the participant decided, the next choice
was presented without showing the outcome of the previous
choice; if no selection was made within 3 s, the next gamble
appeared on the screen. The task was presented using MATLAB
(Mathworks, Natick, MA, United States) and the Psychtoolbox1

on an Apple PowerMac laptop computer running Mac OSX
(Apple Computers, Cupertino, CA, United States), with most
of the code being the same as used previously (Tom et al.,
2007). Participants responded using the 1, 2, 3, and 4 keys
on the keyboard.

Before testing, participants received thorough instruction on
how to perform the task. Instructions were read aloud, and
the participant was encouraged to ask questions while viewing
training slides and performing 5–10 practice trials. To ensure that

1 www.psychtoolbox.org
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FIGURE 1 | The Loss Aversion Task. (A) The task consisted of 128 sequential
monetary choices to accept or reject a mixed gamble offering a 50/50 chance
of winning a certain amount of money (blue) and losing a different amount of
money (red). On each trial, an image representing a 50/50 choice was
presented on the screen, and the participants indicated whether they strongly
accept, weakly accept, weakly reject, or strongly reject the choice. Before
testing, participants received thorough instruction and practice on how to
perform the task. One choice was randomly selected to be paid out at the
end of the task. (B). Gain (x) and loss (–x) magnitudes of each choice were
inserted into the subjective value equation v(x). The loss aversion parameter
(λ) represents the sensitivity to potential loss relative to potential gain. Rho (ρ)
describes the curvature of the utility function and represents attitude toward
risk. (C) Posterior distributions of parameters estimated using hierarchical
Bayesian analysis, which enables the joint estimation of individual and group
parameters. The distribution densities of each parameter are plotted. Higher
values of λ indicate higher loss aversion and that the participant assigns more
weight to losses than to gains of equal magnitude. When ρ < 1, the
participant is risk-seeking for losses (more likely to take a gamble over a sure
loss) and risk-averse for gains (more likely to choose a sure gain over a riskier
prospect). The opposite is true when ρ > 1. Tau (τ) is the logit sensitivity and
represents choice consistency, or the sensitivity of the participant to the
difference between the certain amount and the gamble.

participants were motivated on the task, they were told that one of
their choices would be randomly selected to be paid out at the end
of testing. They also were told that losses would be deducted from
their earnings from participation in the study, but losses were not
actually deducted.

The data were assessed for quality and cleaned in two
ways: (1) trials with implausible reaction times (i.e., <200 ms)

were excluded (0.0048% of trials); (2) data were excluded for
any participant whose preferences were random, erratic, or
inconsistent with trends predicted by our structural model (i.e.,
they were not more likely to accept the gamble for increasing
magnitude of gain, decreasing magnitude of loss, or increasing
expected value). Data from 24 participants were excluded.

Behavioral Choice Modeling
Choice parameters were estimated using a multi-parameter utility
function (Sokol-Hessner et al., 2009) that represents subjective
value (SV) (Eq. 1) based on original prospect theory (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1992):

SV (x) =

{
xρ, x ≥ 0

λ ∗ (−x)ρ, x < 0
(1)

The SV of the gamble is estimated using the objective
magnitudes of gain (x) and loss (−x)given in each choice and the
parameters of loss aversion (lambda; λ) and risk attitude (rho; ρ)
(Figure 1B). The sensitivity to potential loss relative to potential
gain is represented by λ. If λ = 1, the participant values gains
and losses equally. When λ > 1, the participant is considered
loss averse and assigns more weight to losses than to gains of
equal magnitude. When λ < 1, the participant is considered
gain-seeking, and overvalues gains compared to losses. Rho (ρ)
describes the curvature of the utility function and represents
attitude toward risk. If ρ = 1, the participant’s preferences can
be modeled by a linear utility function, which signifies that each
incremental increase in reward has equal utility. Values for ρ

other than one indicate that the preferences of the participant
can be described by a utility function that shows diminishing
marginal utility. When ρ < 1, the participant is risk-seeking for
losses (more likely to take a gamble over a sure loss) and risk-
averse for gains (more likely to choose a sure gain over a riskier
prospect). The opposite is true when ρ > 1. We did not explicitly
measure risk attitudes in either the loss or gain domains.

The subjective values were then inserted into a logit (softmax)
function (Eq. 2) that estimates the probability of accepting the
gamble based on the difference in SVs between the lottery (50/50
choice or SVgamble) and the fixed amount ($0 or SVcertain).
The responses “strongly accept” and “weakly accept” were both
treated as accepting the gamble, and both “strongly reject” and
“weakly reject” were treated as rejecting the gamble. Tau (τ) is
the logit sensitivity and represents choice consistency, or the
sensitivity of the participant to the difference between the certain
amount and the gamble.

p
(
Accept Gamble

)
= [1+ exp(−τ ∗ SVgamble − SVcertain)]−1

(2)
Parameter values were estimated using hierarchical Bayesian
analysis with the “hBayesDM” package in R (Ahn et al., 2017),
which enables the joint estimation of individual and group
parameters and robustly identifies individual differences in
decision-making (Ahn et al., 2011). Posterior inference was
performed with Markov Chain Monte Carlo (MCMC) sampling
using Stan (Carpenter et al., 2017) and RStan2. Models were

2http://mc-stan.org/interfaces/rstan
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validated by using the posterior distribution to generate data and
visually inspecting whether the generated data corresponded to
the underlying distribution.

Structural MRI
Structural T1-weighted magnetic resonance images of
the brain were acquired from 83 participants using a
Magnetization Prepared Rapid Gradient Echo (MPRAGE)
sequence (see Table 1). Images were collected from 31
participants on Scanner 1: a 1.5-Tesla Siemens Sonata MRI
scanner (Erlangen, Germany) with a standard quadrature
head coil (TR = 1900 ms, TE = 4.38 ms, flip angle = 15◦,
FOV = 160 mm × 256 mm × 256 mm, 176 slices,
resolution: 1 mm × 1 mm × 1 mm). Images from 33
participants were collected on Scanner 2: a 3-Tesla Trio
TIM Siemens MRI scanner (Erlangen, Germany) using
parameters of TR = 2530 ms, TE = 3.31 ms, flip angle = 7◦,
FOV = 176 mm × 256 mm × 256 mm, 176 slices, resolution:
1 mm× 1 mm× 1 mm. Data from the remaining 14 participants
were acquired on Scanner 3: a different 3-Tesla Trio TIM
Siemens scanner using the same parameters.

MRI Processing
Anatomical MRI images were processed using FreeSurfer 6.0.03,
which generates a three-dimensional model of the cortical surface
and provides measurements of local cortical thickness (Dale
et al., 1999). Mean thickness within 72 automatically defined
cortical parcels for each hemisphere were extracted from this
model (Fischl et al., 2004; Desikan et al., 2006). Data quality
was evaluated using the Qoala-T supervised learning quality

3http://surfer.nmr.mgh.harvard.edu

TABLE 1 | Demographics of participants tested on different scanners.

Variable Scanner 1
(1.5 T; n = 31)

Scanner 2
(3 T; n = 33)

Scanner 3
(3 T; n = 14)

Omnibus
statistics

Age, yearsa 32.8 (1.14) 19.9 (0.193) 38.0 (2.76) F (2,75) = 61.1,
p < 0.001***

Biological sex
female/male (n)

18/13 8/25 4/10 χ2(2) = 8.38,
p = 0.015*

IQ estimate
standard scorea

105.5 (2.153) 110.9 (1.843) 108.4 (2.408) F (2,62) = 1.635,
p = 0.203

Mother’s
education, yearsa

12.3 (0.656) 14.8 (0.690) 13.3 (1.06) F (2,72) = 3.16,
p = 0.0482*

Race/ethnicity (n) χ2(8) = 28.8,
p < 0.001***

White 9 27 9

African American 6 1 0

Hispanic/Latinx 13 2 3

Asian/Pacific
Islander

0 3 1

Other 3 0 1

Cigarette
smoking, n

13 14 10 χ2(2) = 3.94,
p = 0.139

aUnless otherwise indicated, values are means (SE).
IQ estimate = Weschler Test of Adult Reading.
*p < 0.05; ***p < 0.001.

control tool (Klapwijk et al., 2019), which identified data from
5 participants for exclusion, leaving data from the remaining
78 for the final analyses. As scans were acquired on different
scanners, the ComBat procedure was used to harmonize the
data and remove variability due to scanner type. ComBat has
been validated on cortical thickness data and has been shown to
robustly correct for scanner differences (Fortin et al., 2018). To
preserve the variability due to age, we specified age as a biological
variable for the ComBat model.

Statistical Analysis
Statistical analyses were performed using RStudio version
1.1.456. Analysis of variance (ANOVA) or correlation, as
appropriate, was used to determine whether λ was significantly
associated with biological sex, race/ethnicity, estimated IQ [using
the Wechsler Test of Adult Reading (WTAR) (Wechsler, 2001)],
years of education of the participant’s mother (as a proxy for
socioeconomic status), or cigarette smoking status. As shown
below, only race/ethnicity was associated with λ and was
therefore included as a covariate in subsequent analyses.

A generalized linear model (GLM) was used to assess the
effect of age on loss aversion. The parameter estimate (λ)
from the behavioral choice model was used as the dependent
variable in a GLM with the independent variable of age. Based
on previous research demonstrating a curvilinear relationship
between age and economic decision-making under risk (Tymula
et al., 2013), a hierarchical regression analysis was used to test for
a quadratic relationship between λ and age, with age2 added as
an independent variable for the second step of the model. On an
exploratory basis, the same associations were tested with the risk
attitude parameter, ρ .

The average of the mean cortical thickness of both
hemispheres, weighted by cortical volume, was calculated to
determine whether λ was related to whole-brain cortical
thickness. Based on prior research indicating brain regions
important for loss aversion (Tom et al., 2007; Canessa et al.,
2013; Markett et al., 2016) and cortical thinning of the cortex
with age (Tamnes et al., 2009; Lemaitre et al., 2012; Storsve
et al., 2014), a region of interest (ROI) analysis was performed,
including the insula, OFC, anterior cingulate cortex (ACC),
and posterior cingulate cortex (PCC). ROIs were created by
calculating a weighted average of both hemispheres for each
region. A weighted average was also used to combine the rostral
and caudal ACC to create one ACC ROI, and the medial and
lateral OFC to create one OFC ROI.

To assess the main effect of cortical thickness on λ, a GLM was
used for each region with λ as the dependent variable and the
linear and quadratic components of cortical thickness (cortical
thickness and the square of cortical thickness) as independent
variables. Estimated intracranial volume was included as a
covariate. Results were corrected for multiple comparisons using
the Holm-Bonferroni method.

For brain regions showing significant relationships of
structure with λ, a mediation analysis was performed to test
whether cortical thickness mediated the relationship between
age and λ. Age-related cortical thinning was confirmed using a
GLM with cortical thickness as the dependent variable, age as
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the independent variable, and biological sex, race/ethnicity, and
estimated intracranial volume tested as covariates. Age2 was then
added as an independent variable for the second step of the model
to check for any nonlinear effects of age.

The mediation model tested whether cortical thickness
mediated the effect of age on λ. Because of the quadratic
relationship between age and λ, age2 was specified as the
independent variable, with age and estimated total intracranial
volume as covariates. To account for any nonlinearities, the
square of cortical thickness was also included as a covariate.
The mediation analysis used the “mediations” specification of
the “mediation” package in R, which enables nonparametric
causal mediation analysis (Imai et al., 2010, 2013). Indirect
effects, given by the Average Causal Mediation Effects (ACME),
were computed using Monte Carlo simulations, and the 95%
confidence intervals were computed by determining the effects
at the 2.5 and 97.5th percentiles.

Data Availability
All loss aversion task and cortical thickness data discussed in
this manuscript, as well as the code used for statistical analyses,
are publicly available at Open Science Framework under project
title “Age Influences Loss Aversion Through Effects on Posterior
Cingulate Cortical Thickness”4.

RESULTS

Relationship Between Loss Aversion and
Demographic Variables
Biological sex, estimated IQ, cigarette smoking status, and years
of mother’s education had no significant effects on λ (ps > 0.05),
and, therefore, were not included in subsequent analyses (results
were consistent when measures of socioeconomic status, such
as father’s education, were used instead of mother’s education).
An ANOVA revealed differences in λ based on race/ethnicity
[F(4,101) = 5.78, p < 0.01], with post-hoc t-tests illustrating
that Caucasians had higher λ than all other groups (ps < 0.05),
and Hispanic/Latinx had higher λ than African Americans
(p < 0.05); all other pairwise comparisons were nonsignificant
(ps > 0.05). Based on these findings, subsequent analyses used
race/ethnicity as a covariate which was coded as 1 = Caucasian,
2 = Hispanic/Latinx, 3 = African American, and 4 = Other.

Quadratic Relationship Between Loss
Aversion and Age
In data from the full sample, parameter estimates of the
behavioral choice model, estimated using hierarchical Bayesian
analysis, were consistent with published values (Tom et al., 2007;
Sokol-Hessner et al., 2009, 2012). Posterior distributions of the
parameters are shown in Figure 1C. Means with standard errors
and ranges were: λ = 1.58 (0.04; 0.76 – 2.61; loss aversion),
ρ = 0.60 (0.0036; 0.44 – 0.70; risk attitudes), τ = 3.07 (0.09;
0.96 – 6.74; choice consistency) and reaction time = 1.45 (0.0059;

4https://osf.io/ejr56/

0.206 – 4.49). When the quadratic variable of age was added to
the model, both age [β = −0.067, t(97) = −2.24, p = 0.028] and
age2 [β = 0.0010, t(97) = 2.309, p = 0.023] had significant effects,
and the model fit the data better than the linear model [ANOVA;
F(97,98) = 5.33, p = 0.02, change in R2

= 0.0433; Figure 2A].
The curvilinear association between λ and age persisted in the

subsample from which sMRI data were acquired (n = 78); when
the quadratic variable of age was added to the model, both age
[β = −0.0722, t(75) = −2.36, p = 0.021] and age2 [β = 0.0011,
t(75) = 2.46, p = 0.016] were significantly related to λ. The
quadratic model provided a significantly better fit for the data
than the linear model [ANOVA; F(75,76) = 6.074, p = 0.016;
change in R2

= 0.070].

Mediation by Posterior Cingulate
Cortical Thickness of the Age Effect on
Loss Aversion
Main Effects
Mean overall cortical thickness was not significantly related to
loss aversion (β = 0.072, t(77) = 0.152, p = 0.88) and was therefore
excluded from subsequent analyses. There were neither linear
nor quadratic main effects of cortical thickness on λ in the
insula [linear: β = −2.529, t(73) = −0.248, p = 0.805; quadratic:
β = −0.467, t(73) = −0.278, p = 0.782], OFC [linear: β = 6.77,
t(73) = 0.498, p = 0.620; quadratic: β = −1.32, t(73) = -0.515,
p = 0.608], or ACC [linear: β =−1.209, t(73) =−1.071, p = 0.288;
quadratic: β = 2.097, t(73) = 1.030, p = 0.306]. Although there
were effects of both the linear and quadratic components of PCC
thickness on λ [linear: β = −1.672, t(73) = −2.148, p = 0.035;
quadratic: β = 3.30, t(73) = 2.13, p = 0.037], neither survived
Holm-Bonferroni correction for multiple comparisons.

Mediation Analysis
Age-related cortical thinning of the PCC followed a linear course
[β = −0.00728, t(73) = −5.19, p = 0.00000182; Figure 2B], with
a small quadratic component [β = −0.000243, t(72) = 1.712,
p = 0.091]. PCC thickness significantly mediated the age-loss
aversion relationship, as quantified by the ACME (p = 0.028;
Figure 2C). Since linear age-related change in the PCC was
confirmed, but age and λ were quadratically related, we examined
which component of the λ-age relationship was mediated by
PCC thickness. To visualize the relationship between λ and PCC
cortical thickness for different ages, we plotted the relationship
between PCC thickness and λ by age for younger (<35) and
older (>35) participants (Figure 2D). We split the data at the
age of 35 as this was the inflection point of the age-loss aversion
quadratic. The plot suggests that the mediation analysis captures
an effect of PCC thickness on loss aversion that shifts throughout
the lifespan, potentially mediating the increase in loss aversion in
later life as opposed to the decrease in young adulthood.

Exploratory Analyses: Risk Attitudes (ρ)
and Brain Structure
The risk attitude parameter (ρ) was not significantly correlated
with age [β = −0.000520, t(98) = 0.83, p = 0.408] or the
quadratic variable of age [β = 0.0000266, t(97) = 0.494, p = 0.622].
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FIGURE 2 | Relationships between age, loss aversion, and cortical thickness. (A,B) Loss aversion (λ) follows a quadratic trajectory with age, whereas cortical
thickness of the posterior cingulate cortex (PCC) declines linearly with time. Shading indicates standard error confidence intervals. (C) Cortical thickness of the PCC
mediates age-related changes in λ. The effect of age on PCC thickness is given by “a.” The effect of PCC thickness on λ is given by “b.” The Average Direct Effect
(ADE; “c”) is the effect of age on λ when controlling for the mediator of PCC thickness. To calculate the Total Effect (c) of age on λ, without accounting for the
mediator, both age and age2 were included in the model and the regression coefficient for age2 was taken as the strength of the effect. The causal mediation
analysis was performed using nonparametric bootstrap confidence intervals and Monte Carlo simulations. The model included age, age2, race/ethnicity, scanner,
and estimated intracranial volume, as well as PCC thickness as the mediator. Age2 was specified as the variable of interest. The measure of significance was given
by the Average Causal Mediation Effect (ACME; p = 0.018*). Asterisks denote statistically significant results. *p < 0.05, **p < 0.01. (D) A negative relationship
between PCC thickness and λ exists in older participants, but no relationship is present in participants under 35 years. The age of 35 was used to split the data into
younger and older groups as it approximates the inflection point of the age-λ quadratic.

There were no main effects for cortical thickness or the
cortical thickness2 on risk attitudes in any of the four ROIs:
insula [linear: β = 0.499, t(73) = 0.489, p = 0.626; quadratic:
β =−0.0764, t(73) =−0.454, p = 0.651]; OFC [linear: β =−0.083,
t(73) = −0.061, p = 0.951; quadratic: β = 0.0151, t(73) = 0.058,
p = 0.954]; ACC [linear: β = −0.724, t(73) = −0.633, p = 0.529;
quadratic: β = 0.130, t(73) = 0.631, p = 0.530]; PCC [linear:
β = 1.144, t(73) = 1.439, p = 0.154; quadratic: β = −0.222,
t(73) =−1.401, p = 0.165].

DISCUSSION

With the global population of those 65 years and older growing
faster than all other age groups (United Nations, 2019), an
understanding of the trajectory of decision-making over the
lifespan may help people make better choices as they age
(Agarwal et al., 2009; MacLeod et al., 2017). Providing unique

insight into the relationship between aging and decision-making,
this study found an association between age and loss aversion that
followed a quadratic function, declining across young adulthood
and reaching a minimum around age 35 before increasing
in middle-age. We also showed that PCC thickness mediates
the relationship between age and loss aversion, suggesting that
cortical thinning of the PCC is likely one of several factors
that contribute to changes in decision-making throughout the
lifespan. Because we also confirmed that PCC thickness declines
linearly with age (Tamnes et al., 2009; Lemaitre et al., 2012;
Storsve et al., 2014), PCC thinning may emerge as an important
factor in loss aversion when a certain threshold of atrophy
begins in middle age.

A nonlinear relationship between age and loss aversion
could unify seemingly conflicting results in the literature.
Previous studies may have captured components of the quadratic
relationship: participants aged 25–40 were less loss averse than
those aged 41–55 (Arora and Kumari, 2015), and participants
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∼18–28 were less loss averse than those aged ∼60–86 years
(Kurnianingsih et al., 2015; O’Brien and Hess, 2020). Others
may have missed differences due to the nonlinearities observed
here (Li et al., 2013; Pachur et al., 2017). Our findings conflict
with certain studies that did not find a quadratic relationship
between age and loss aversion (Gächter et al., 2010; Rutledge
et al., 2016; Seaman et al., 2018), which may be accounted for by
the use of different tasks and methods to measure loss aversion
(Gächter et al., 2010; Rutledge et al., 2016; Seaman et al., 2018).
Nevertheless, the loss aversion and risk preference parameters
were very similar to those recently reported in a study that
fit a prospect theory utility function to choice data from 146
participants (Ackert et al., 2020).

The quadratic relationship between loss aversion and age
mirrors the developmental trajectory of the cortex, during which
the neurobiological mechanisms of cortical thinning differ in
development and aging (Vidal-Pineiro et al., 2020). Cortical
maturation includes thinning in sensory and eventually fronto-
cortical areas, and may extend beyond the mid-twenties (Tamnes
et al., 2009), whereas cortical thinning approaching middle-age
could be considered the onset of senescence (Salat et al., 2004).
Thus, PCC thickness may be unrelated to loss aversion during
cortical maturation, but may arise as a contributing factor once
cortical thinning is underway.

With normal aging, functional changes include the reduction
of the integration of coordinated activity between brain regions
and increases in the localization of function within regions
(Bishop et al., 2010). Such reorganization can contribute to
shifts in the mechanisms underlying decision-making, perhaps
increasing reliance on certain regions and not others. The
PCC has been linked to the representation of subjective value
during probabilistic choice tasks (Kable and Glimcher, 2007; Levy
et al., 2010), reward signaling (McCoy et al., 2003), attentional
focus (Leech and Sharp, 2013), and the dynamic adaptation of
behavior (Pearson et al., 2011). Beyond a threshold of cortical
thinning of the PCC, such functions may be impeded, rendering
the most adaptive strategy that which is the least cognitively
demanding (Mata et al., 2007). Such adaptations could manifest
in the use of an automatic or default heuristic, such as loss
aversion, as shown by older adults using less cognitively taxing
strategies in paradigms that involve risk (Weller et al., 2011).
The plasticity of the brain coupled with an adaptive response
to shifting cognitive resources (Gutchess, 2014) may result in
older adults opting for choices that are “good enough” instead
of searching to maximize outcomes [i.e., using “satisficing”
instead of maximizing strategies (Kurnianingsih et al., 2015)].
During probabilistic choices involving loss, older adults are
more likely to use such strategies when making decisions
related to finances (Chen and Sun, 2003) and health (Besedeš
et al., 2012). Satisficing strategies are related selectively to loss
aversion and not to risk preferences; those who have greater loss
aversion tend to stop searching for an optimal solution sooner
(Schunk and Winter, 2009).

Notably, the Loss Aversion Task does not measure adaptive
decision-making, and a loss-aversion strategy is not necessarily
disadvantageous. Older individuals do not indiscriminately make
worse decisions (Wood et al., 2005; Li et al., 2013, 2015; Bruine

de Bruin et al., 2014), and heightened loss aversion may reflect
naturally occurring shifts in values and motivations (Depping
and Freund, 2011; Hess, 2014). Changes in cognitive faculties
with age are not linear across time nor uniform across domains;
the age-related decline of certain cognitive faculties, such as
processing speed, episodic memory, and executive functions
(Baltes and Lindenberger, 1997; Salthouse, 2019), may lead
older adults to revert to a previously learned response, such
as loss aversion, that requires less cognitive effort. Meanwhile,
prioritizing the use of abilities that remain intact or even improve
with age, such as those that depend on experience, emotional
intelligence, and crystallized intelligence, may improve efficiency
(Peters et al., 2007; Hess, 2014; Hartshorne and Germine, 2015;
Zaval et al., 2015). Similarly, while young adults can take more
risk than older adults, risk-seeking as measured in the laboratory
is separable from loss aversion (Köbberling and Wakker, 2005).
Thus, it is possible for a participant to display a certain level
of loss aversion in the face of uncertain gambles but still be
risk-seeking when presented different options.

The PCC also is implicated in emotional processing, as
it is activated by emotional words (Maddock et al., 2003)
and attending to emotional states (Terasawa et al., 2013).
Emotional processing is necessary for adaptive decision-making
(Loewenstein, 1996; Mellers et al., 1999; Phelps, 2009), and
loss aversion is linked to the ability to regulate (Sokol-Hessner
et al., 2009, 2012), and process (Bibby and Ferguson, 2011)
emotions. Such faculties peak around age 45–60 (Hartshorne and
Germine, 2015), and emotional content is particularly salient
for older adults (Carstensen and Turk-Charles, 1994; Fung and
Carstensen, 2003). Since reliance on emotional information can
compensate for age-related declines in cognitively challenging
situations (Hanoch et al., 2007; Peters et al., 2007), increases in
loss aversion with age may reflect greater focus on emotional
or experiential dimensions of decision-making. Related to
emotional processing is interoception, which is also associated
with the PCC (Kleckner et al., 2017; Stern et al., 2017) and tied
to loss aversion (Sokol-Hessner et al., 2015). Thus, age-related
cortical thinning in the PCC may hinder the ability to efficiently
integrate affective responses into complex choices, especially
those that include loss.

The present moment also gains salience with age, and
prioritizing immediate or emotional wellbeing may intensify
as time horizons constrict (Carstensen, 2006; Löckenhoff,
2011). Converging evidence, including self-reported goal
orientations and performance on a probabilistic gambling
task (Ebner et al., 2006; Depping and Freund, 2011; Mata and
Hertwig, 2011), indicates a shift later in life toward avoiding
losses instead of seeking gains. In fact, loss orientation in later
adulthood is correlated with subjective well-being (Ebner et al.,
2006). When motivations shift toward optimizing immediate,
emotional wellbeing and processing power becomes limited
with age, perhaps partly because cortical thinning of the
PCC impedes probabilistic assessments, loss aversion may
naturally emerge as a low-effort response when facing choices
with uncertainty.

Higher loss aversion in younger participants and its
subsequent decline across young adulthood may similarly reflect
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the underdevelopment of complex probabilistic decision-making
(Weller et al., 2011; Beitz et al., 2014). The Loss Aversion
Task requires the time-limited integration of the magnitude
and probability of both reward and loss to decide whether the
chance of reward is worth the risk of loss; this estimation of
subjective value is critical to adaptive choice behavior. Sensitivity
to the difference in expected value between options follows
an inverted U-shaped function, suggesting that the ability to
distinguish appropriately between reward-based options may not
fully develop until the mid-20s (Weller et al., 2011).

While the age range of 17 to 54 covered in the current
study does not represent the entire lifespan, prior studies point
to the trajectory of the quadratic relationship observed here.
Loss aversion was a main driver of behavior in children as
young as 5–8 years old (Steelandt et al., 2013), and adults
older than those examined here (aged 61–86) exhibited greater
loss aversion than young adults (Kurnianingsih et al., 2015;
O’Brien and Hess, 2020), consistent with the upward trend we
observed from ages 35–54. Another limitation of this study is
imbalance and relatively small samples of men and women;
therefore, conclusive statements about effects of biological
sex on loss aversion were not possible. That race/ethnicity
was a significant factor in loss aversion also merits further
investigation. The lack of an effect of age on risk-taking
may reflect the type of task used, as the Loss Aversion
Task is not necessarily designed to comprehensively elicit risk
preferences. Finally, although there was no significant association
between loss aversion and PCC thickness when correcting for
multiple comparisons, lack of significance apparently reflected
nonlinearities in the relationship – a negative correlation
of loss aversion with PCC thickness in older participants,
who had smaller PCC thickness, but not in participants
whose PCC thickness crossed the inflection point on the
U-shaped curve.

We conclude that cortical thickness of the PCC may
supplement other cognitive and neurobiological age-related
changes and arise as an important factor for loss aversion around
the onset of age-related atrophy. Tracking age-related changes in
the influence of decision-making biases, such as loss aversion,
can inform policies that are tailored to the aging population
(Samanez-Larkin, 2013). Moreover, determining the age at which
changes begin can introduce opportunities for early intervention,
such as services, education, or incentives that could better inform
important life decisions, such as those related to health and
finances (Johnson and Goldstein, 2003; Agarwal et al., 2009;
MacLeod et al., 2017). Identification of brain regions that affect
such choices when altered with age provides the opportunity
to forecast – and perhaps forestall – future decision-making
impairments. To this end, future longitudinal studies may go
beyond cross-sectional investigations to use measurements from

key brain regions (e.g., PCC) at mid-life to predict changes in
decision making biases later in life.
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