UC Berkeley
SEMM Reports Series

Title
Stochastic finite element methods and reliability: a state-of-the-art report

Permalink
bttgs:ééescholarshiQ.orgéucgitemg3d60690£=l|
Authors

Sudret, Bruno
Der Kiureghian, Armen

Publication Date
2000-11-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/3d606904
https://escholarship.org
http://www.cdlib.org/

Stochastlc Finite Element Methods
and Reliability

A State-of-the-Art Report

by
Bruno Sudret and Armen Der Kiureghian

A report on research suppgrted. by
Electricité de France
- under Award Number D56395-T6L29-RNES61

Report No. UCB/SEMM-2000/08
Structural Engineering, Mechanics and Materials
Department of Civil & Environmental Engineering
University of California, Berkeley

November 2000




Acknowledgements

This research was carried out during the post-doctoral stay of the first authoyr ai the
Department of Civil & Environmental Engineering, University of California, Berkeley.

This post-doctoral stay was supported by FEeele Nationale des Ponts et Chaussées

(Marne-la-Vallée, France] and by Electricité de France under Award Number D56395-
- T6L29-RNE861 to the University of California at Berkeley. These supports are gratefully
acknowledged.




Contents

Part I : Review of the literatufe 1
1 Introduction ) - ' 3
1 Classification of the stochastic mechanics approaches . . . . . . .. . .. 4
2 Qutline. . . ....... e 5
2 Methods for discretization of random fields 7
1 Generalities . . T T A T U 7
i1 Probability space and random variables . . . . . . SRR 7
1.2 Random fields and related Hilbert Spaces . .. . ... ... .. 8

2 Point discretization methods . . . . . . ... ... oo L. L. 10 ' _ Ea
2.1 The midpoint method (MP) . . . . . ... ... ... L. 10
2.2 The shape function method (SF) . .. ... ... L 10
2.3 The integration point method . . . . . . ... ... 11
2.4 The optimal linear estimation method (OLE) . .. ... ... .. 11
3 Average discretization methods . . . . . . .. ... oL 13
3.1  Spatial average (SA) . . .. .. .. L 13
- 3.2 The weighted infegral method . . . . . . . .. ... .. .. ... i4
"4 | Comparis_oa of the approaches . . . . . . . .. .. ... ... ... 15
5 Series expansion metheds . .. . ... . ... P 17
5.1 Infroduction . . . . .. . .. e e e I 17
5.2 The Karhunen-Loéve expansion . . . . . .. .. ... ... .... 18

vii




viil Contents

5.2.1 Definition . . . . . . . . . e 19

5.2.2 Properties . . . . . . .. 20

5.2.3 Resolution of the integral eigenvalue problem . . . . .. 21

5.2.4 ConcluSion . .« v v v v o e e e e e 22

5.3 Orthogonal series expansion . . . . . . ... ... o o 23
5.3.1 Introduction . . . . . . ..o 23

5.3.2 Transformation to uncorrelated random variables . . . . 24

54  The EOLE method . . . . . . .. . s 25

b4l Definition and properties. . . . . . . .. . .. e 25

5.4.2 Varianee 70T .« « v« o v v e e e e e e e e 26

5 Comparison between KL, OSE, EOLE . . .. .. P 26
6.1  Barly results. . . .. .. e 26.

6.1.1 EOLE vs. KL . . . . . o o o e e e o e e 26

6.1.2 OSEws. KL . . . ... o oo v oo S 27

6.2 Full comparison between the three approaches . . . . .. ... .. 28

| 6.2.1 Definition of a point-wise error estimator . . . . . . . . . 28

6.2.2 Results with exponential autocorrelation function . . . . 28

6.2.3 Results with exponential square auﬁocorrelation function 28

6.2.4 Mean variance error vs. order of expansion . . . . . . . . 29

6.2.5 Conclusions . . . .« « v v v e 31

7  Non Gaussian random fields . . . . . . ..o 32
8  Selection of the random field mesh . . . . . ... ..o 32
9 ConcluSiOnS .« « o e e e L34
32  Second moment approaches 37
1 Introduchion . . . . . e e e e e e e e e e e 37

2 Principles of the perturbation methed . . . . . . . .. ... .o 38




Contents X

3 Applications of the perturbation method . . . . . . .. ... IR EEPEPE 39
3.1 Spatial average method (SA) . . . . .. .. ... .. ... ... 40

3.2 Shape functions method (SF) . . .. . ... ... .. 40

4 The weighted integral method . . . .. . . . ... ... .. ... .. .., 40
41 Introduction . . . . . ... . . .. ... 40

4.2 Expansion of theresponse . . . . . ... .. ... ... ... ... 41

4.3 Variability response functions . . . .. . .. ... ... .. -

5  The quadrature method . . . . . .. ... 42
5.1 Quadrature method for a single random variable . . . . . ., .. . 43

5.2 Quadraturs method'applied to mechanical systems . . .. .. . . 43

6 Advantages and limitations of second moment approaches . . . . . . . . . 44
4 Finite element reliability analysis 47
1 Imtroduction . . . . . . ..., 47
2 Ingredients for reliability . . . . . ... . ... e L. 4T
2.1 Basic random variables and. loadeffects . . .. . ... ... ... . 47

2.2 Limit state surface . . . . . . . . B 48

2.3 Barly reliability indices . . . . . ... ... . o N T

2.4 Probabilistic transformation . . . . .. ... ... ... ... .. B0

25  FORM,SORM .. ... ... ... .. . . .. ... 52

2.6 Determination of the design point . . . . . . . ... .. ... ... 54

2.6.1 Barly approaches . . . .. ... ... ... ........ b4

2.6.2 The improved HLRF algorithm(iHLRF) . ... ... . . 56

2.6.3 Conclusion . . .. ... ... ... .. ... . ..., 57

3 Gradient of a finite element response . . . . . ... . ... ... 57
3.1 Inmtroduction . . . . .. ... L 57




% Contents
3.2.1 Sensitivity to material properties . . . . . . .. ... .. 59

3.2.2 Sensitivity to load variables . . . . .. ... ... 80

3.2.3 Sensitivity to geometry variables . . . . . .. I 80

3.24 Practical computation of the response gradient . . . . . 61

3.2.5 Examples . . . . . . . . .. 62

3.3 Case of geometrically non-linear structures . . . ... .. .. ... 62

3.4 Dynamic response sensitivity of elastoplastic structures . . . . . . .63

3.5 Plane stress plasticity and damage . .. . .. . .. .. PR 64

4 Sensitivity analysis . . . ... ..o L. o 65
5 Response surface method . . . . . ... .. . C 67
5.1 Introduction . . . . . .. ... . .. ............ . 67

5.2 Principle of the method . . . . . . . .. .. .. L 67

5.3 Building the response surface . . . . . . ..., 68

5.4 Various types of response surface approaches . . . . . . . . . . .. 89

5.5 Comparison between direct coupling and response surface methods 71

5.6 Neural networks in reliability analysis. . . .. .. .. ... .. .. 71

57 Conclusions . . . . . . o o e e e e e e 72

6  Conclusions . .. .. T T I 73
5 Spectral stochastic finite element method 75
1 Introduction . . . . . . . . . L e e 75
2 SSFEM in elastic linear mechanical problems . . . . . . . . ... ce. 1T
2.1 Imtraduction . . . . . . . ... ... o 77

2.2 Deferminisiic two-dimensional finite elements . . . . . . . . . .. 77

2.3 Stochastic equilibrium equation . . . . . ..o 77

2.4 Representation of the response using Neumann series . . . . . . . 78

2.5 General representation of the response in £2H{@, F, P) . . . . .. 79




Contents xi

2.6 Post-processing of the results . . . . . .. ... . ... . .. .. .81

3 Computational aspects . . . . . . .. ... ... .. .. ... ... 83
3.1 Imtroduction . . . . . ... .. 83

3.2 Structure of the stochastic stiffness matrix . . . ... ..., 83

3.3 Solution algorithms . . . . . . . .. .. .. e e 83

3.4 Hierarchical approach . . . . . ... L, 84

4 Extensions of SSFEM . . . ... ... ... 85
4.1 Lognormal input random field . . . . . .. . ... ... . .. ... 85
4.1.1 Lognormal random variable . . . .. ... .. . ... .. 86

412  Lognormal random field . . . .. .. ... ... . . ... 86

4.2 Multiple input random fields . . . .. ................. 87

43  Hybsid 8SFEM . . ... .. ... 88
4.3.1 Monte Carlo simulation . ... ... ... . I 88

432  Coupling SSFEM and MCS . . . ... ... . . .. ... 83

4.3.3 Concluding remarks . .. .. .. ... ..., e e 89

5 Summary of the SSFEM applications . . . . . . . . . T 89
6  Advantages and limitations of SSFEM ................... 90
A.1 Polynomial chaos expansion . . . . . . ... ... ... ... ... . 43
ALT Definition . . ... ..o 93
A.1.2 Computational implementation . . . ... ... ... .. .. .. . 94

A.2 Karhunen-Loéve expansion of lognormal random fields . . .. . ..., . . 96
6 Conclusions 99
1 Summary of thestudy . . . .. ... ... . ... 99




xii

Contents

Part II : Comparisons of Stochastic Finite Element Methods

with MATLAB 101
1 Introduction - 103
1 Aimofthepresent study . . . . . . . . . ... 103

2 Object-oriented implementation in MATLAB . . . . . . . . .. .. ... 104

3 Outline. . ............... e 104
"2 Implementation of random field discretization schemes 107
1 Introduction . . . . . . . .. 107

2 Description of the input data . .. ... ... .. ... 0 167
21 Gaussian random ﬁ_elds e e e 167

2.2 Lognormal random fields . . . . . . . . ... 0L 109

3 - Discretization procedure . . . . . . . ... 109
3.1 Domairn of diseretization . . . . ... . ... ... . 110

3.2 The Karhunen-Loéve expansion . . . . . . . . ... ... ... .. 110

3.2.1 One-dimensional case. . . . . . . . . . . . ... ... 118

3.2.2 Two-dimensionalcase . .. ... ... ... 0. 111

3.23 Case of non symmetrical domain of definition . . . . . . 111

3.3 The EOLE method . . . . . . . ... .. . L. 112

3.4 The OSEmethod . . . .. . .. ... . .. ... ... . ..., 112

3.4.1 General formulation . . . .. ... ... .. .. ... 112

342 Construction of a complete set of deterministic functions 113

3.5 Case of lognormal fields . . . . .. .. .. ... ... 115

4 Visuslization tools . . . . . . . . . . 115

(w1

Conclusion . . . . . . 117




Contents xiii
3 Implementation of SSFEM 115
i Introduetion . . . . . . . ... ... 119
11 Preliminaries . . . . . . . . . . ... 118
1.2 Summary of the procedure . . . . . . .. . ... 119
2 SSFEM pre-processing . . . . v . v v v v e 120
2.1 Mechanical model . . . . . e 120
2.2 Random field definition, . . . . . . . . . . .. . . ... ... ... 121
3 Polynomial chaos . . . . . . . . . . . .. ... . 122
3.1 Introduction . . . . . . . .. ... 122
3.2 Implementation of the Hermite polynomials . . .. ... ... .. 123
3.3 Implementation of the polynomial basis . . . . . L 123
3.4 Computation of expectation of products . . . .. ... ... ... 125
3.4.1 Products of two polynomials. . . . . . ... . .. S 125
3.4.2 The product of two polynomials and a standard normal
' variable . . . . . .. e e 125
3.4.3 Products of three polynomials ............... 126
3.5 Conclusion . . . . .. .. ... 127
4 SSFEM Analysis . . . ... . L 127
4.1 Element stochastic stiffness matrix . . . . . . . e e 127
4.2 Assembly procedures . . . . .. ... L. 128
4.3 Application of the boundary conditions . . . . .. .. .. ... .. 129
44  Storageandsolver . .. .. ... 130
b SSFEM post-processing . . . . . . . . . .. .. 130
3.1 Strain and stress analysis. . . . . .. ... ... e . 130
5.2 Second moment analysis . . . ... ... L ... 131
5.3 Reliability analysis . . . . ... ... .. ... ... .. ..... 131
5.4 Probability density function of a response quantity . . ... ... 132
6 Conclusions . . ... . . 132




xiv Contents

4 Second moment analysis ' 133
1 Imtroduchion . . . ... L 133
2 Monte Carlo simulation . . . . . . . . . . ... 134

2.1 Introduction . . . . . . . . . L. 134

2.2 The finite element code FEMRF . . . . . . . . .. .. ... ... 134

2.3 Statistical treatment of the respomse . . . . . . . . . .. .. ... 135

2.4 Remarks on random fields representing material properties . . . . 136

3 Perturbation method with spatial variability . . . . ... .. .. ... .. 136
3.1 Introduction . . . . . . . .. ... . o 136

3.2 Derivatives of the global stiffness matrix . . .. ... .. .. ... 137

3.3 Second moments of theresponse . . . . . . .. ... 138

3.4 Remark on another possible Taylor series expansion . . . . . . . . 138

4 Settlement of a foundation on an elasticsoil mass . . . . .. . ... .. . 139
4.1 Deterministic problem statemnent . .. ... 139_

4.2 Case of homégeneeus soillayer . . . .. .. .. L 140
4.2.1 Closed form solution for lognormal Young's modulus . . 140

4.2.2 Numerical results . . . . . . . .. .. .. .. ... ... 141

43 Case of heterogeneous soil layer . . . .. .. B 143
4.3.1 Problem statement . . . . . . . .. . ... ... ... 143

4.3.2 Numerical resulés . . . . . . . . . . . . . . ... 144

4.4 . Efficiency of the approaches . . . .. . .. .. ... ... .. ... 145

5 Conclusions . . . ... ... .. PR e 146

5 Reliability and random spatial variability 147
1 Inmtroduction . . . . . . . . ... 147
2 Direct coupling approach : kev points of the implementation . . . . . . . 148

2.1 Utilization of the finite element code FEMRFE . . . . . . . . . .. 148




XV

Contents
2.2 Direct differentiation method for gradient computation . . . . . . 148
3 Settlement of a foundation - Gaussian input random field .. . ... .. 150
31  Imtroductiom . . . ... ... ... 150
3.2 Influence of the order of expansion . . . . . ... ... ... ... 150
3.2.1 Direct coupling . . . . . . .. ... ... e 151
3.2.2 SSFEM +FORM . . . .. .. ... .. ... .. 151
3.2.3 Analysis of theresults . . . . . .. .. .. e . 151
3.3 Influence of the threshold in the limit state function . . . . . . . . 152
3.4 Influence of the correlation length of the input . . . . . .. .. .. 155
3.5 Influence of the coefficient of variation of the input . . . .. ... 156
3.6 One-dimensional vs. two-dimensional random flelds . . . .. . . . 156
3.7 Evaluation of the efficiency . . . . . . . . ... ... ... .. ... 158
3.8 Application of importance sampling . . . . .. .. .. .. ... .. 160
3.8.1 Introduction . . ... ..o 160
3.8.2 Numerical results . . . . . .. .. ... ... ... .. 160
3.9 Probability distribution function of a response quantity . . . . . . 161
310 Conclusions . . . . . . .. L 162
4 Seftlement of a foundation - Lognormal input random field . . . . . . . 164
4.1 Introduction . . . . . . ... 164
4.2 Influence of the orders of EXPANSIOR . . . . . . e 165
4.3 Influence of the threshold in the Hmit state function . . . . .. ... 165
4.4 Evaluation of the efficiency . . . . . . . . . . ... ... ... 167
4.5 Conclusions . . .. ... ... ... e e 168
-5 Conclusions . . . . ..o 169
6 Conclusion 171




Part 1

Review of the literature




Chapter 1

Introduction

Modeling a mechanical system can be defined as the mathematical idealization of the
physical processes governing its evolution. This requires the definitions of basic variables
(describing system geometry, loading, material properties), response variobies {displace-
ment, strain, stresses) and the relationships between these various quantities.

For a long time, researchers have focused their attention on improving structural models
(beams, shells, continua, ...) and constitutive laws (elasticity, plasticity, damage theo-
ries, ...). With the development of computer science, a great amount of work has been
deveoted to numerically evaluate approximated solutions of the boundary value problems
describing the mechanical system. The finite element method is probably nowadays the
most advanced approach for solution of these problems.

However the increasing accuracy of the constitutive models and the constant enhance-
ment of the computational tools does not solve the problem of identification of the
model parameters and the uncertainties associated with their estimation. Moreover, in
most civil engineering applications, the intrinsic randomness of materials (soil, rock,
concrete, ...) or loads (wind, earthquake moticn, ...) is such that deterministic models
using average characteristics at best lead to rough representations of the reality.

Accounting for randomness and spatial variability of the mechanical properties of mate-
rials is one of the tasks of stochastic or probabilistic mechanics, which has developed fast
in the last ten years. The aim of this report is to present a state-of-the-art review of the
existing methods in this field. Having industrial applications of these methods in mind,
attention will be mainly focused on finite element approaches. The literature on this
topic has been classified by Matthies et al. (1957). A collective state-of-the-art report
on computational stochastic mechagnics has been published by Schuéller (1997). A recent
special issue of Computer Methods in Applied Mechanics and Brgineering (January 1999)
presents the latest developments of various approaches. These three contributions will
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be used as a hasis for the present report, where only those parts related to the present
concerns will be developed?®.

1 Classification of the stochastic mechanics ap-

proaches

The existing theories for stochastic mechanics approaches will be classified here with
respect to the type of results they primarily yield. Three categories are distinguished :

e the theories aiming at calculating the first two statistical moments of the response
quantities, i.e. the mean, variance and correlation coefficients. They are mainly
based on the perturbation method.

e the reliability methods, aiming at evaluating the probability of failure of the system.
They are based on the definition of a limit state function. As failure is usually
associated with rare events, the tails of the probability density functions (PDFs)
of response quantities are of inferest in this matier.

e the stochastic finite element methods aiming at evaluating the global probabilis-
tic structure of the response guantities considered as random processes. We will
present in this report the so-called spectral approach (SSFEM).

It has been noted in the reviewed literature that these three categories of approaches are

investigated by different communities of researchers having few inferactions with each
other. We will try to show in this report that the ingredients utilized in these methods
have many common features.

Note that the above classification is somewhat subjective. Indeed results obtained as
byproducts of the main analysis tend to break the walls between these classes, as shown
in the following examples, which will be investigated in detail later on :

e Bv means of sensitivity analysis, it is always possible to compute the PDF of a
response quantity after the main reliability analysis.

e The expression of response random processes obtained by SSFEM are generally
not used directly. Closed form expressions yield the second-moment statistics, and
the PDFs can be obtained by simulation.

L The book by Haldar and Mahadevan (2000} shouid be mentioned for the sake of compieteness. Due
to its recent publication, it could not be reviewed for the present report.
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2. Outline

However, it is expected that methods pertaining to one of the ahove categories will
not be efficient in the computation of byproducts. As mentioned before, due to the
compartmentalization of the research groups, no significant comparisons have been made
so far.

2 Qutline

A common ingredient of all the methods mentioned above is the need to represent
the spatial variability of the input parameters. This is done by using a random field
representation. For computational needs, these random fields have to be discretized in
an optimal way. Chapter 2 covers the methods for discretization of random fields.

Chapter 3 deals with second moment methods in the context of finite element analysis.
These methods give resulis in terms of response variability. They appear to be the earliest
approaches in probabilistic finite element analysis.

Chapter 4 is devoted to reliahility methods and their coupling with finite element analysis.
The ingredients for reliability approaches are first introduced in a general context. Then
the specific modifications to be introduced in the finite element context are presented.
This approach was first proposed by Der Kiureghian and Taylor (1983).

Chapter 5 is devoted to the spectral stochastic finite element method (SSFEM). This
method was introduced by Ghanem and Spanos (1991a}. The main concepts will be
presented as well as a summary of the applications found in the literature.

As a conclusion, we will present a scheme for comparing the SSFEM and the reliability
approaches on the problem of evaluating small probabilities of occurrence as well as
the PDF of a given response quantity for a specific example. As noticed before, no
comparison of this type has been reported in the literature so far.




Chapter 2

Methods for discretization of random
fields

The engineering applications in the scope of this report require representation of uncer-
tainties in the mechanical properties of continuous media. The mathemasical theory for
this is random fields. For definitions and general properties, the reader is referred to Lin
(1567) and Vanmarcke {1983).

1 Generalities

The introduction of probabilistic approaches in mechanical problems requires advanced
mathematical tools. This section is devoted to the presentation of some of them. Should
the reader be already familiar with this material, the {ollowing will give him /her at least
the notation used throughout the report.

1.1 Probability space and random variables

Classically, the observation of a random phenomenon is called a trial. All the possible
outcomes of a trial form the sample space of the phenomenon, denoted hereinafter by ©.
An event E is defined as a subset of @ containing outcomes § € @. Probability theory
aims at associating numbers to events, i.e. their probability of occurrence. Let P denote
this so-called probability measure. The collection of possible events having well-defined
probabilities is called the s-algebra associated with ©, denoted here by F. Finally the
probability space constructed by means of this notions is denoted by (@, F, P).

A real random variable X is a mapping X : (@, 7, P} — R. For continuous random
variables, the probability density function {(PDF) and cumulative distribution function
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{CDF) are denoted by fx(z) and Fy(z), respectively, the subscript x being possibly
dropped when there is no risk of confusion. To underiine the random nature of X, the
dependency on the cutcomes may be added in some cases as in X (8). A random vector
x is & collection of random variables,

The mathematical expectation will be denoted by E[-]. The mean, variance and n-th
moment of X are :

(2.1-8) p=EX] = /w v fx(z) d
(2.1:b) # = Bl =P = [ -z ds
(2.1-¢) B[X" = / 5 feln) da

Furthermore, the covariance of two random variables X and ¥ is :
(2.2) Cov[X, Y] =E[(X ~ px)(Y — uy}]
Introducing the joint distribution fx y{z, y} of these variables, Eq.(2.2) can be rewritten

as :

(2.3) Cov[X, Y] = f / (& — 1)y — poy) oy (z; 4) dedy
. —00 o -0

1.2 Random fields and related Hilbert spaces

The vecterial space of real random variables with finite second moment {E[X?] < co) is
denoted by £*(®, F, P). The expectation operation allows to define an inner product
and the related norm as follows :

(2.4-a) ' <X,Y > = E[XY]
(2.4-b) [ X = VEX]

It can be shown (Neveuw, 1992) that £2(@ , F, P) is complete, which makes it a Hilbert -
space.

A random field H(x , 0) can be defined as a curve in £2(©, F, P), that is a collection
of random variables indexed by a continuous parameter = € {2, where §) is an open set
of R* describing the system geometry. This means that for a given z,, H (z,,6) is a
random variable. Conversely, for a given outcome 6,, H{z, 8,) is a realization of the
field. It is assumed to be an element of the Hilbert space £?(Q) of square integrable
functions over £2, the natural inner product associated with £2(§2) being defined by :

(2.5) <t.g>oe= [ fo) o)
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Hilbert spaces have convenient properties t¢ develop approzimate soluticns of boundary
value problems, such as the Galerkin procedure.

A random field is called univariaie or muliivariaie depending on whether the quantity
H(z) attached to point @ is a random variable or a random vector. It is one- or mui-
tidimensional according to the dimension d of =, that is d = 1 or 4 > 1. For the sake
of simplicity, we consider in the following univariate muliidimensional fields. In practi-
cal terms, this corresponds to the modeling of mechanical properties including Young’s
modulus, Poisson’s ratio, yield stress, etc., as statistically independent fields.

The random field is Goussian if any vector {H{wy), ... H(z,) } is Gaussian. A Gaus-
sian fleld is completely defined by its mean p(x), variance o%(x) and autocorrelation
coefficient p(x, ') functions. Moreover, it is homogeneous if the mean and variance are
constant and p is a function of the difference @’ — @ only, the one-argument function
being in this case denoted by 5(-). The correlation length is a characteristic parameter
appearing in the definition of the correlation function (see examples Eqs.(2.35)-(2.37)).
Tor one-dimensional homogeneous fields, the power spectrum is defined as the Fourier
transform of the autocorrelation function, that is :

{2.6) Spplw) = 1/ Blz) e ™% dz

27 J oo
A discretization procedure is the approximation of H{-) by H (-} defined by means of a
finite set of random variables {x;, 7 =1, ...n}, grouped in a random vector denoted by

X .
(2.7 Hiw) " fi(a) = Fla, x]

The main topic here is to define the “best” approximation with respect to some error esti-
mator, that is the one using the minimal number of random variables. The discretization
methods can be divided into three groups :

s point discretization, where the random variables {x;} are selected values of H{:)
at some given points x;.

o average discretization, where {x;} are weighted integrals of H(-) over a domain
Q, :

(2.8) xi= | H{z)w(z)db
J (s
e series expansion anethods, where the field is exacily represented as a series
involving random variables and deterministic spatial functions. The approximation
is then obtained as a #runcafion of the series,
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Reviews of several discretization methods can be found in Li and Der Kiureghian (1993};
Ditlevsen (1996); Matthies et al. (1997). The main results are collected in the sequel.

2 Point discretization methods

In the context of finite element method, a spatial discretization of the system geometry
(the mesh) is utilized for the approximation of the mechanical response of the structure.

2.1 The midpoint method (MP)

Introduced by Der Kiureghian and Ke {1988), this method consists in approximating
the random field in each element €1, by a single random variable defined as the value of
the field at the centroid x, of this element :

-

(2.9) | A(w) = Hz) , 20

The approximated field H(-) is then entirely defined by the random vector
x = {H(zl), ... H{z¥)} (N, being the number of elements in the mesh). Its mean
i and covariance matrix 3, are obtained from the mean, variance and autocorrelation
coefficient functions of H{-) evaluated at the element centroids. Each realization of H(
is piecewise constant, the discontinuities being localized at the element boundaries. It has
been shown (Der Kiureghian and Ke, 1988) that the MP method tends to over-represent
the variability of the random field within each element.

2.2 The shape function method (SF)

Introduced by Liu et al. (19864,6), this method approximates H (-) in each element using
nodal values &; and shape functions as follows :

(2.10) Hi{z)= i Ni(z) H{z;) =€

where g is the number of nodes of element e, x; the coordinates of the ¢-th node-and N;
polynomial shape functions associated with the element. The approximated field H (-] is
obtained in this case from x = {H(zy), ... H{zn)}, where {z;,7 = 1, .. N} is the set
of the nodal coecrdinates of the mesh.
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The mean value and covariance of the approximated field A (-} read :

g

(2.11) E{Ef(m)} = ZNi(:B)P"(mi)
(212)  Cov |H(z), fz)] = Y3 Nlw) &) Cov [H(z), Hiay)

Each realization of H(-) is a continuous function over £, which is an advantage over the
midpeint method.

2.3 The integration point method

This method is mentioned by Matthies et al. (1997) referring to Brenner and Bucher
(1995}, Assuming that every integration appearing in the finite element resolution scheme
is obtained from integrand evaluation at ecch Gouss point of each element, the authors
discretize the random field by associating a single random variable to each of these Gauss
points. This gives accurate results for short correlation length, However the total number
of random variables involved increases dramatically with the size of the problem.

2.4 The optimal linear estimation method (OLE)

This method is presented by Li and Der Kiureghian (1993). It is sometimes referred to as
the Kriging method. It is a special case of the method of regression on linear functionals,
see Ditlevsen (1996). In the context of point discretization methods, the approximated
field H(-) is defined by a linear function of nodal values x = {H(w), ... H{x,)} as
follows :

(2.13) ﬁ@gxa@g+§;m@gm=a@g+bﬂwyx

where ¢ is the number of noedal points involved in the approximation. The functions
a({z) and b{x) are determined by minimizing in each point  the variance of the error

Var [H (#)- H (m)? subject to H{z) being an unbiased estimator of H(x) in the mean.

These conditions write :

(2:14) Yo el Minimize Var [H(:{:) — f;l'(w)]
(2.15) | mmlﬂm@—ﬁmﬂ:o
Eq.(2.15) reguires :

(2.16) w(z) = a(z) + b7 (z) Bix] = alz) + 67 (2) I,
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Then the variance error is :
(2.17) Var [H(m) -~ H(m}} - E [(H(:c) (0 ]

which turns out to be after basic algebra

Var {H(m} — ﬁ(iﬂ)] =g (z) -2 Z bi{z) Cov [H{z), xi]
(2.18) .
Z Z bi(z) b;(m)Cov [x: , X

The minimization problem is solved point-wise for b;(x). Requiring that the partial
differential of (2.18) with respect to b;(w) be zero yields :

(2.19) Vi=1,..q —Cov[H(z},x) Zb JCov [xi, x;] =0

which can be written in a matrix form :
(2.20) — Stz Syt B =0

s

where ., is the covariance matrix of x. The optimal linear estimation finally writes :
{2.21) | H(z) = p(z) + Sheyy - Sen (X — fy)

Isolating the deterministic part, Eq.(2.21) may be rewritten as :

g
(2.22) A(a) = [p(z) — Ty Tox - Al + D% (T D,
i=1

from which it is seen that OLE is nothing but a shape function discretization method
where, setting the mean function aside, the shape functions read :

g
(2.23) NPYE () = (271 EH@X => (T z)o(z;) ple, ©;)

j=1

The variance of the error is (Li and Der Kiureghian, 1693) :
(24) Ve |Hz)- Al@)] = o*(@) - They T Dren

The second term in Eq.(2.24) is identical to Var {H (m)} . Thus the variance of the error is

simply the difference between the variances of A (z) and H {x). Since the error variance is
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always positive, it follows that & (x) always under-estimates the variance of the original
random field. Moreover it can be proven (Ditlevsen, 1996) that :

(2.25) Cov gﬁ(m) , Hiz) - fzf(sc)} =0

Thus requiring the error variance to be minimized is equivalent to requiring the error
and the approximased field to be uncorrelated. Both statements can be interpreted as
follows : in the Hilbert space of random variables £2(©, F, P), H(z) is the projection
of H(z) onto the hyperplane mapped by the peints {y;}{Neveu, 1992).

3 Average discretization methods

3.1 Spatial average (SA)

The spatial average method was proposed by Vanmarcke and Grigoriu (1983), Vanmarcke
(1983). Provided a mesh of the structure is available, it defines the approximated field
in each element as a constant being computed as the average of the original field over
the element : '

' ' " fo Hlz)dQe  _
(2.26) : Hz)==—te = H, | a2l

I€Le |

Vector x is then defined as the collection of these random variables, that is
xT={H.,e=1,..N.} The mean and covariance matrix of x are computed from
the mean and covariance function of H (2] as integrals over the domain £,. Vanmarcke
(1983) gives results for homogeneous fields and two-dimensional rectangular domains.
The case of axisymmetric cylindrical elements is given in Phoon et al. {1990). It has
been shown that the variance of the spatial average over an element under-represents
the local variance of the random field {Der Kiureghian and Ke, 1988).

Difficulties involved in this method are reported by Matthies et al. (1997) :

e the approximation for non rectangular elements {which can be dealt with by a
collection of non overlapping rectangular ones) may lead to a non-positive definite
covariance matrix.

‘s The probability density function of each random variable x; is almost impossible
to obtain except for Gaussian random fields. For the sake of exhaustivity, recent
worl from Knabe ef al. {1998) on spatial averages should be mentioned.
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3.2 The weighted integral method

This method was developed by Deodatis (1990, 1991), Deodatis and Shinozuka (1991)
and also investigated by Takada (1990a,d) in the context of stochastic finite elements.
It is claimed not to require any discretization of the random field and thus seems o be
particularly attractive. In the context of linear elasiicity, the main idea is to consider
the element stiffness matrices as basic random quantities. More precisely, using standard
finite elernent notations, the stiffness matrix associated with a given element occupying
a volume 2, reads :

(2.27) k=[] B"-D. BdQ,
£2e
where D denoctes the elasticity matrix, and B is a matrix that relates the components

of strains to the nodal displacements.

Consider now the elasticity matrix obtained as a product of a deterministic matrix by a
univariate random field {e.g. Young's modulus) :

(2.28) Dix, §) = Dy[1+ Hiz, 0)]

where D, is the mean value' and H{x, 6) is a zero-mean process. Thus Eq.(2.27) can
be rewriften as :

(2.29) B0) =k + AK°(9) , Ak()= | Hz,0)B" D, Bd,
J Qe

Furthermore the elements in matrix B are obtained by derivation of the element shape
functions with respect to the coordinates. Hence they are polynomials in the latter, say
(z,y,z). A given member of Ak® is thus obtained after matrix product (2.29) as

(2.30) ARE(8) = fﬂ Pylz,y,2) Hie, ) d,

where the coefficients of polynomial P; are obtained from those of B and D,. Let us
write F; as

NWI
(2.31) ?J T y,z; ZGJ z)azyﬁfz’n

where NWI is the number of monomials in Py;, each of them corresponding to a set of
exponents {aq, B, 1}. Substituting for {2.31) in (2.30) and introducing the following
weighted integrals of random field H(-) :

(2.32) X (0) = [ 2P H (z, 6)d0,
e

1For the sake of clarity, the dependency of random variables on outcomes 4 is given in this section.
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it follows that :

NWI
(2.33) ARG (0) = ) iy xf(6)
=1

Collecting now the coefficients al; in a matrix Ak, the (stochastic) element stiffness

matrix can finally be written as :

NWI
(2.34) ke =kt+ > AkExS
. =1

In the above equation, k% and {Ak], [ = 1, ... NWI} are determinisiic matrices and x§
sre random variables. As an example, a truss element requires only 1, a two-dimensional
beam element 3, and a plane sfress quadrilateral element 3 such weighted integrals and
associated matrices.

As pointed out by Matthies et al. (1997), the weighted integral method is actually
mesh-dependent as it can be seen from Eq.(2.32). The original random field is actually
projected onto the space of polynomials involved in the B- matrices, that is basically onto
the space spanned by the shape functions of the fnite elements. This is an implicit kind
of discretization similar to the shape function approach {see section 2.2). Moreover, if the
correlation length of the random field is small compared to the size of integration domain
{2, the accuracy of the method is questionable. Indeed, the shape functions usually
employed for elements with constants properties (e.g. prismatic beams with constant
Young’s modulus and cross-section) may not give good results when these properties
are rapidly varying in the element. The problem of accuracy of the weighted integrals
approach seems not have been addressed in detail in the literature. A comprehensive
study including the definition and computation of error estimators would help clarify
this issus.

Applications of the weighted integral method for evaluating response variability of the
system will be discussed later (Chapter 3, section 4).

4 Comparison of the approaches

Li and Der Kiureghian (1993) carry out an exhaustive comparison of the above discretiza-
tion methods, i.e. MP, SA, SF and OLE. Two-dimensional univariate homogeneous Gaus-
sian random fields were considered, with three different correlation structures, namely
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exponential, square exponential, and cardinal sine :
i

(2.35) palz, ') = exp(—lw?_%ﬁuh)
(2.36) ' ppiz, 2) = e}{p(———-——-——Fé © ;fl ”2)
sim( 2212 =2

240 pete, @) 2 o=

===

where ¢ is a measure of the correlation length. A square mesh (element size [} is chosen,
and the following error estimator is computed on a given element {2, as a function of

la:
o o wﬂm@—ﬁw}
(238) w0 = S T )

Applying OLE, four different sets of discretization points are used, namely the nodes of
~the element under consideration, or the nodes of 3, 5 or 7 adjacent elements respectively.

As far as the size of ¥ in OLE is concernad, results are reported in Figure 2.1. It appears
. that any point outside the 1x 1 grid is non informative for type A correlation model. The
error is quite large even for refined mesh ({/a < 0.2). For both type B and type C models,
the error is negligible as soon as [/a < 0.5 (attention should be paid to the different
scales on the figures corresponding to correlation type A, B and C respectively;.

Comparisons between OLE and the other methods (MP, SA, SF) are 1'31301'ted in fig-
ure 2.2 and call for the following comments -

e For type A correlation, the error remains large even for a small element size
(I/a < 0.2). This is due to the non differentiable nature of the random field in
this case (because the autocorrelation function is not differentiable at the origin,
see Vanmarcke (1983))

e For type B and C, the error is negligible as soon as I/a < 0.5. Thus when the
available information about the correlation structure is imited to correlation length
a, the choice of type A model should be avoided.

e It is seen that OLE gives better results than SF in all cases. As mentioned before,
QLY is basically a SF approach, where the shape functions are not prescribed
polynomials, but the “optimal” functions to minimize the variance of the error.

e Other results comparing the approximated correlation structure X, to the initial
one is also given by Li and Der Kiureghian (1993). In all cages, OLE leads to better
accuracy in the discretization than MP. SA and SF.
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Figure 2.1: Discretization errors for OLE method with varying grid and element size

(after L1 and Der Kiureghian (1993})

5 Series expansion methods

5.1 Introduction

The discretization methods presentad up to now involved a finite number of random

variables having a straightforward interpretation : point values or local averages of the
original field. In all cases, these random variables can be expressed as weighted integrals

of H{-) over the volume of the system :

(2.39) | i(8) = / Hiz, 6) w(z) d0

The weight functions w(z) corresponding to MP, SA, 8F and OLE methods are sur-
~marized in table 2.1, column #2. In this table, 6(.) denotes the Dirac function and 1g,

is the characteristic function of element e defined by :

1 Hxeell,
{2.40 1, (z) =
‘ ) () {O otherwise
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Figure 2.2: Comparison of errors for MP, 8A, SF and OLE for varying element size (after
Li and Der Kiureghian {1993))

By means of these random variables x;(#), the approximated field can be expressed as
a finite summation :

(2.41) Bz, 0) =3 x(0) eila)

i=1
where the deterministic functions ¢;{&) are reported in table 2.1, column #3.

Bq.(2.41) can be viewed as the expansion of each realization of the approzimated field
H{z, 8,) € L) over the basis of {¢;(*)}’s, x:(6,) being the coordinates. From this
point of view, the basis used so far are not optimal (for instance, in case of MP, S5A and
SF, because the basis functions {y;(-)} have a compact support (e.g. each element €.)). .

The discretization methods presented in the present section aim at expanding any real-
ization of the original random field H{z . 8,) € £2(0)) over a complete set of deterministic

functions. The discretization occurs thereafter by truncating the obtained series after a
finite number of terms.
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Table 2.1: Weight functions and deterministic basis unifying MP, SF, SA, OLE methods

Method weight function w{z) ()
MP 8z —x,) ARG
i, (@)
polynomial shape
SF 8z~ x;)

functions N;{x)

“hest” shape functions
NPYE(z) according to
the correlation struc-
ture (See Eq.(2.23))

OLE dla — x;)

5.2 The Karhunen-Loéve expansion
5.2.1 Definition

The Karhunen-Loéve expansion of a random field H(-) is based on the speciral decom-
position of its autocovariance function Cupix, @) = o{x)o(a’) p(x, &'). The set of
deterministic functions over which any realization of the field H{x, 8,) is expanded is
defined by the eigenvalue problem :

(2.42) Viz1, . [ Cnlz . @) o) d0% = X i)
DAY

Eq.(2.42) is a Fredholm integral equation. The kernel Cry (-, -) being an autocovariance
function, it is bounded, symmetric and positive definite. Thus the set of {¢;} form a
complete orthogonal basis of £L2{(2). The set of eigenvalues (spectrum) is moreover real,
positive, numerable, and has zero as only possible accumulation poinf. Any realization
of H(-) can thus be expanded over this basis as follows :

(2.43 iz, 6) = plz) + Z V2 6i(6) ()

where {£(#), i =1, ...} denotes the coordinafes of the realization of the random field
with respect to the set of deterministic functions {¢;}. Taking now into account all
possible realizations of the field, {£, i = 1, ...} becomes & numerable set of random
variables.

When caleulating Cov [H(z), H{z')] by means of (2.43) and requiring that it be equal
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to Cgz(z, x’), one easily proves that :
(2.44) E[£:6) = 6y {Kronecker symbol)

This means that {&, ¢ = 1, ..} forms a set of orthonormal random variables with
respect to the inner product (2.4-a). In a sense, (2.43) corresponds to a separation of the
space and randomness variables in H{x, ).

5.2.2 Properties
The Karhunen-Loéve expansion possesses other interesting properties :

s Due to non accumulation of eigenvalues around a non zero value, it is possible to
order them ir a descending series converging to zero. Truncating the ordered series
(2.43) after the M-th term gives the KI. approximated field :

A
(2.45) Hz, 6) = ple) + 3 V&) eile)

e The covariance eigenfunction basis {;{z)} is optimal in the sense that the mean
square error (integrated over 2} resulting from a truncation after the M-th term is
minimized (with respect to the value it would take when any other complete basis
{h;{z)} is chosen)}.

o The set of random variables appearing in (2.43) is orthonormal, . e. verifying (2.44),
if and only if the basis functions {h;{x)} and the constants A; are solution of the
eigenvalue problem (2.42}.

e Due to the orthonormality of the eigenfunctions, it is easy to get a closed form for
each random variable appearing in the series as the following linear transform :

{2.486) &) = / [H{z, 0) — plz)] wi(x) dQ

VA

Hence when H{-) is a Goussian random field, each random variable §; is Gaussian.
It follows that {£;} form in this case a set of independent standard normal variables,
Furthermore, it can be shown (Loéve, 1877) that the Karhunen-Loéve expansion
of Gaussian fields is almost surely convergent.

s From Eq.(2.45), the error variance obtained when truncating the expansion after
M terms turns out to be, after basic algebra :

(2.47) Var [H(z) - H(e }: ZA ¢2{e) = Var [H ()] — Var [ﬁ(m)}
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The righthand side of the above equation is always positive because it is the vari-
ance of some quantity. This means that the Karhunen-Loéve expansion always
under-represents the true variance of the field.

5.2.3 Resolution of the integral eigenvalue problem

Fq.{2.42) can be solved analytically only for few autocovariance functions and gecmetries
of 2. Detailed closed form solutions for triangular and exponential covariance functions
for one-dimensional homogeneous fields can be found in Spanos and Ghanem (1989),
Ghanem and Spanos (19914), where £ = [—o, a). Extension to two-dimensional fields
defined for similar correlation functions on a rectangular domain can be obtained as
well.

Except in these particular cases, the integral eigenvalue problem has to be solved numes-
ically. A Galerkin-type procedure suggested in Ghanem and Spanos (1991a); Ghanem
and Spanos (19915, chap. 2} will be now described. Let {h;{.)} be a complete basis of
the Hilbert space £*(€)). Each eigenfunction of Cyp(z, @') may be represented by its
expansion over this basis, say :

(2.48) | pr(@) = 3 d (o)
i=1

where df are the unknown coefficients. The Galerkin procedure aims at obtaining the
best approximation of y,{.) when truncating the above series after the N-th term. This
is accomplished by projecting ¢ onto the space Hy spanned by {h;(.},2 =1, ... N}
Introducing a truncation of (2.48) in (2.42), the residual reads : -

(2.49) @dm)::zgdi{JQC%HCDEmﬂhﬂm)dﬂy-—kkh(m)

Requiring the truncated series being the projection of (.} onto H implies that this
residual is orthogonal to Hy in £2(Q2). This writes :

(2.50) <ENJH>5]}N@VM@MQ:0 j=1, .. N
a

After some basic algebra, these conditions reduce to a linear system :

(2.51) CD=ABD
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where the different matrices are defined as follows :

a

(2.52-D) Cy = f f Counlz, ) bil@) hyla') d% %
adn

(2.52—6) D@j - Cif

(2.52-d) Ay = Gy (6;; Kronecker symbol)

This is a discrete eigenvalue problem which may be solved for eigenvectors D and eigen-
values );. This solution scheme can be implemented using the finite element mesh shape
functions as the basis {{f;(-)} (see Ghanem and Spanos (19914, chap. 5.3) for the exam-
ple of a curved plate). Other complete sets of deterministic functions can also be chosen,
as described in the next section.

5.2.4 Conclusion

Due to its useful properties, the Karhunen-Loéve expansion has been widely used in
stochastic finite element approaches. Details and further literature will be given in Chap-
ters &.

The main issue when using the Karhunen-Loéve expansion is to solve the eigenvalne
problem (2.42). In most applications found in the literature, the exponential autacovari-
ance function is used in conjunction with square geometries to take advantage of the
closed form solution in this case. This poses a problem in industrial applications (where
complex geometries will be encountered}, because :

& the scheme presented in Section 5.2.3 for numerically solving(2.42) requires addi-
tional computaiions,

e the obtained approximated basis {;(-)} is no more optimal.

To the author’s opinion, it should be possible, for general geometries, to embed Q2 in a
square-shape volume and use the latter to solve in a closed form (when possible) the
eigenvalue problem. Surprisingly, this assertion, earlier made by Li and Der Kiureghian
(1993), did not receive attention in the literature.
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5.3 Orthogonal series expansion
5.3.1 Introduction

The Karhunen-Loéve expansion presented in the above section is an efficient represen-
tation of random fields. However, it requires solving an integral eigenvalue problem to
determine the complete set of erthogonal functions {¢;, 1 = 1, ... }, see Eq.(2.42). When
no analytical solution is available, these functions have to be computed numerically (see
Section 5.2.3}. The orthogonal series ezpansion method (OSE) proposed by Zhang and
Ellingwood (1994) aveids solving the eigenvalue problem (2.42) by selecting ab initio a
complete set of orthogonal functions. A similar idea had been used earlier by Lawrence
(1987).

Let {h;(x)}:, be such a set of orthogonal functions, i.e. forming a basis of £%(Q). For
the sake of simplicity, let us assume the basis is orthonormel, i.e. ;

(2.53) / hi(z) hi(x) 2 = ;5 { Kronecker symbol)
0

Let H{z, ) be a random field with prescribed mean function u{z) and antocovariance
function Crg(z, x'}). Any realization of the field is a function of L2((}), which can be
expanded by means of the orthogonal functions {h;(z)}.2,. Considering now all possible
outcomes of the field, the coeflicients in the expansion become random variables. Thus
the following expansion holds :

(2.54) H{z, 0) = plx) + Z x:(0) hyl(z)
. i=1

where x;(6) are zero-mean random variables®.

Using the orthogonality properties of the h;'s, it can be shown after some basic algebra
that :

(2.55-8) w6) = [ 1. 0) - pia)] hw) a0
o
(2.550)  (S,0, =Ebux] = / f Cu(e, @) (@) ba(’) d0 d0s
aJo
If H{-) is Gaussian, Eq.(2.55-a) proves that {x;}%, are zero-mean Gaussian random

variables, possibly correlafed. In this case, the discretization procedure associated with
OSE can then be summarized as follows :

The notation in this section is slightly different from that used by Zhang and Ellingwood {1994)
for the sake of consistency in the present report.
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¢ Choose a complete set of orthogonal functions {A;(z)}io, {Legendre polynomi-
als were used by Zhang and Ellingwood (1994)) and select the number of terms
retained for the approximation, e.g. M.

e Compute the covariance matrix X, of the zero-mean (aussian vector
X = {x1, ... xar} by means of Bq.(2.55-b). This fully characterizes X.

e Compute the approximate random field by :

M
(2.56) (e, 8) = ) + 3 x:(6) halz)

i=1
5.3.2 Transformation to uncorrelated random variables

The discretization of Gaussian random felds using OSE involves correlated Gaussian
random variables X = {x1, ... xas}. It is possible to transform them into an uncorrelated
standard normal vector &€ by performing a spectral decomposition of the covariance
matrix 3., .

(2.57) Sy B=B A

where A is the diagonal matrix containing the eigenvalues A; of 2y, and @ is a matrix
whose columns are the corresponding eigenvectors. Random vector X is related te & by

(2.58) X=& AV ¢

Let us denote by {®F, i = 1, ... M} the coordinates of the k-th eigenvector. From (2.58),
each component y; of X is given by :

: M
(2.59) xilf) =Y /A &0
k=1
Hence :

H(w, 0) = ple)+ > ( &/ me)) hi(e)

=1 k=

= ple) + > Ve &(6) (Z of hi(m))

(2.60)

Introducing the following notation :

M
(2.61) wil) = Z@f hi(x)
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Fq.(2.60) finally writes :

M
(2.62) Hz, 0) = p(@) + Y _ V2 &(0) oulz)
k=1

The above equation is an approximate Karhunen-Looéve expansion of the random feld
H{-), as seen by comparing with Eq.{2.43). '

Bv comparing the above developments with the numerical solution of the eigenvalue
problem associated with the autocovariance function (2.42) (see Section 5.2.3), the fol-
lowing important coneclusion originally pointed out by Zhang and Ellingwood (1994) can
be drawn : the OSE using a complete set of orthogonal functions {f;()}2, is strictly
equivalent to the Karhunen-Loéve expansion in the case when the eigenfunctions ¢y ()
of the autocovariance function Cygy are approximated by using the same set of orthog-
onal functions {h;(z)}i,.

5.4 The EOLE method
5.4.1 Definition and properties

The expansion optimal linear estimation method (EOLE) was proposed by Li and Der
Kiureghian {1993}, It is an extension of OLE (see section 2.4) using a spectral represen-
tation of the vector of nodal variables .

Assuming that H(-) is Gaussian, the spectral decompaosition of the covariance matrix
B of x = {H(z), ... Hlxy) is:
N

(2.63) X(0) = e+ 3 VA E(0) &,

where {§;,i =1, ... N} are independent standard normal variables and {);, ¢;) are the
sigenvalues and eigenvectors of the covariance matrix X, verifying :

Substituting for (2.63} in {2.13) and solving the OLE problem yields :

2 ) — - &i(6) T
(2.65) H(z,0) = plz)+ ) T 9 B

=1

Asg in the Karhunen-Loéve expansion, the series can be truncated after r terms, the
eigenvalues A; being sorted first in descending order.
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5.4.2 Variance error

The variance of the error for EOLE is ;

(2.66) Var [H(2) - H(a)] = o) - 3 & (¢ SBaw)’

=

As in OLE and KL, the second term in the above equation is identical to the variance
of H(z). Thus EOLE also always under-represents the true variance. Due to the form of
(2.66), the error decreases monotonically with r, the minimal error being obtained when
no truncation is made (r = N). This allows to define antomatically the cut-off value r
for a given tolerance in the variance error.

Remark The truncation of {2.65) after r terms according to the greatest eigenvalues
of X, is equivalent to selecting the most important random variables & in (2.63). This
technique of reduction is actually general and has been applied in other contexts such

as
e reducing the number of random variables in the shape functions method (Liu et al.,
19864),

e reducing the number of random variables before simulating random field realiza-
tions (Yamazaki and Shinozuka, 1990)

s reducing the number of terms in the Karhunen-Loéve expansion.

6 Comparison between KL, OSE, EOLE

6.1 Iarly results
6.1.1 EOLE vs. KL

The accuracy of the KL and EOLE methods has been compared by Li and Der Ki-
ureghian (1993) in the case of one-dimensional homogeneous Gaussian random fields.
The error estimator (2.38) was computed for different orders of expansion r. The results
are plotted in figure 2.3.

1t appears that even when KL is exact (7.e. when the exponential decaying covariance
kernel is used) the KL maximal® error is not always smaller than the EQLE error for a
given cut-off number r. A deeper analysis shows, as pointed out by Li and Der Kiureghian

*Estimator (2.38) is defined as a Sup.
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Figure 2.3: Comparison of errors for KI. and EOLE methods with type A correlation
Eq.{2.35) (after Li and Der Kiureghian (1993))

(1993), that the KL point-wise error variance Var [H () — H (m)} for a given r is smaller
than the EOLE error in the inierior of the discretization domain 2, however larger of
the boundaries.

6.1.2 OSE vs. KL

Zhang and Ellingwood (1994) applied the OSE method to a one-dimensional Gaus-
sian random field defined over a finite domain [~a; a]. The following orthonormal basis
{hy{x)}, defined by means of the Legendre polynomials was used :

Iniip (2

(2.67) b () = v P

G

where B, is the n-th Legendre polynomial. The authors introduced two error estimators
based on the covariance function to evaluate the respective accuracy of KL and OSE
methods. To reach a prescribed tolerance, it appears that the number of terms M to be
included in OSE is one or two more than the number of terms required by KI..
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6.2 Full comparison between the three approaches

To investigate in fuller detail the accuracy of the series expansion methods and allow a
full comparison between the three approaches, a MATLAB toolbox for random field dis-
cretization has been implemented ag part of this study. This implementation is described
in detail in Part II, Chapter 2.

6.2.1 Definition of a point-wise error estimator

The following point-wise estimator of the error variance is defined :
Var [H(m) - f—ﬁf{m)é
Var [H{z)]

This measure is independent of the mean and standard deviation when H{z) is homo-
geneous (See Part II, Chapter 2, Section 4). In the following numerical application, a
one-dimensional homogeneous Gaussian random field having the following characteristics
is chosen :

(2.68) err(z) =

e Domain O = [0, 10],

o Correlation length o = 5.

6.2.2 Results with exponential autocorrelation function

Figure 2.4 represents the estimator {2.68) for the three discretization schemes at differ-
ent orders of expansion. On each figure, the mean value of err(z) over € is also given.
As expected from the properties of the Karhunen-Loéve expansion described in Sec-
tion 5.2.2, the KL approach provides ihe lowest mean error. The EQLE error is close
to the KL error while the OSE error is slightly greater {20 points were chosen for the
EOLE discretization, which means that the size of each element in the EOLE-mesh is
Lgr = a/10). As already stated by Li and Der Kiureghian {1993}, the point-wise vari-
ance error at the boundaries of £ is larger for KL than for EOLE, It is emphasized that
the error is still far from zero even when r = 10. This is due to the fact that the Gaus-
sian random field under consideration is non differentiable because of the exponential
autocorrelation function.

6.2.3 Results with exponential square autocorrelation function

The results for exponential square autocorrelation function (see Eq.(2.36)) are presented
in figure 2.5. As there is no analytical solution to the eigenvalue problem associated
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Figure 2.4 Point-wise estimator for variance error, represented for different discretization
schemes and different orders of expansion (ezponentiol autocorrelation function)

with the Karhunen-Loéve expansion in this case, only EOLE and OSE are considered.
It appears that EOLE gives better accuracy in this case also.

6.2.4 DMean variance error vs. order of expansion

The mean of err{z) over the domain Q is displayed in figure 2.6 as a function of the
order of expansion r for each discretization scheme and for both types of autocorrelation
functions.

As expected, at any order of expansion, the smallest mean error is obtained by KL
(if applicable). EOLE is almost always better than OSE. The EQOLE-mesh refinement
necessai*y to get a fair representation depends strongly on the autocorrelation function,
as seen in figure 2.7. If the exponential type is considered {figure 2.7-a}, EOLE is more
accurate than OSE only if Lgr/a < 1/6 in the present example. If the ezponential square
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Figure 2.5: Point-wise estimator for variance error, represented for different discretization
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Figure 2.6: Mean variance error vs. order of expansjon for different autocorrelation struc-
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mesh refinement.

type is considered (figure 2.7-b), then EOLE is more accurate than OSE whatever the

It should be noted that, for a given order of expansion r, the variance error obtained in
case of the exponential square autocorrelation function is much smaller than that ob-

tained for the exponential autocorrelation function, whatever the discretization scheme.
For r > B, it is totally negligible for cur choice of parameters.

b - Ezponentiel squore gutocorrelation funclion
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6.2.5 Conclusions

The series expansion discretization schemes (KL, EOLE and OSE) all ensure a rather
small variance error as soon as a few terms are included.

When the ezponential autocorrelation function is used, KL should be selected, since it
gives the best accuracy. EOLE is more accurate than OSE if the underlying mesh is
sufficiently refined (i.e. Lpp/a < 1/8). As already stated by Li and Der Kiureghian
{1993), EOLE is more efficient with a fine mesh and a low order of expansion than with
a rough mesh and a higher order of expansion.

When the ezponential sguare autocorrelation function is used, EOLE is more accurate
than OSE whatever the mesh refinement. The ratio Lpp/a < 1/2—1/3 is recommended
in this case. Generally speaking, the variance error computed with an exponential square

autocorrelation function is far smaller than that computed for the exponential case.

Thus in practical applications, if there is no particular evidence of the form of the
autocorrelation function, the exponential square form should be preferred, since it allows
‘practically an exact discretization (mean variance error < 1076) with only a few ferms.
This result holds for both EOLE and OSE discretization schemes. Furthermore, this
form of autocorrelation function implies a differentiable process, which would be more
realistic for most physical processes.
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7 Non Gaussian random fields

The case of non Gaussian fields has been addressed by Li and Der Kiureghian {1993) in
the case when they are defined as a non-linear transformation (also cailed translation)
of a Gaussian field :

(2.69) ' Hye() = NLH())
The discretized field is then simply obtained by :
(2.70) Aye(-) = NCH())

This class of transformations includes the Nataf transformation {see details in section 2.4
of Chapter 4). From a practical point of view, it includes the lognormal random fields,
which are of great importance for modeling material properties due to its non-negative
domain.

Although it has not be used in the literature, the translation procedure could be applied
with any of the series expansion schemes described in the last section including KT and
OBE.

]8 Selection of the random field mesh

Several of the methods of discretization presented in this chapter require the selection of
5 random field mesh, e.g. the MP, SA, SF, OLE, EOLE methods. A critical parameter
for efficient discretization is the typical size of an element or the grid size.

Several authors including Der Kiureghian and Ke {1988) and Mahadevan and Haldar
{1991} have pointed out that the finite element- and the random field meshes have to be
designed based upon different criteria. Namely :

s the design of the finite element mesh is governed by the stress gradients of the .

response. Should some singular points exist {crack, edge of 2 rigid punch, ...}, the
mesh would have to be locally refined. '

e The typical element size Lgp in the random field mesh is related to the correlation
length of the autocorrelation function.

Depending on the discretization method, different recommendations about the element
size can be found in the literature : '
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e Der Kiureghian and Ke (1988) proposed the value :

a )
.7 Lpp e to =
(2.71) R R 02

by repeatedly evaluating the reliability index of a heam with stochastic rigidity
using meshes with decreasing element size.

e This range was confirmed by Li and Der Kiureghian (1993) (see details in section 4)
by computing the error estimator (2.38) and by Zeldin and Spanos (1898} by
comparing the power spectra of H{-) and H{-}.

e In the context of reliability analysis (see Chapter 4}, Der Kiureghian and Ke (1888)
and Mahadevan and Haldar (1991} reported numerical difficulties of the procedure
when the length Lpp is too small. In this case indeed, the random variables ap-
pearing in the discrefization are highly correlated and the diagonalization of the
associated covariance matrix leads to numerical instabilities.

e Ag far as the EOLE method is concerned, the short study presented in section 6
allows to conclude that Lpp should be taken between /10 and a/5 for the expo-
nential autocorrelation function and between a/4 and a/2 for other cases. How-
ever, in contrast to point- and average discretization methods, the fact that Lzg
is rather small does not imply that the number of random variables r used in the
discretization is large, since r is prescribed as an independent parameter.

The correlation length being usually constant over Q, the associated mesh can be con-
structed on a regular pattern {segment, square, cube). However, in the context of relia-
bility analysis, Liu and Liu {1993) showed that the refinernent of the random field mesh
should be connected to the gradient of the limit state function (see details in Chapter 4).
This seems to be a common feature with the finite element mesh : when the response
guantities of interest are localized in a specific subdomain of the system, it is possible
to choose a coarse mesh in the regions far away from this subdomain.

In the applications, some authors simply construct the random field mesh by grouping
several elements of the finite element mesh in a single one (see Liu and Der Kiureghian
(1991a); Zhang and Der Kiureghian (1993, 1997)). This allows to reduce dramatically
the size of the random vector . Any realization of H{:) is also easily mapped onto the
finite element mesh for the mechanical analysis.

To the author’s knowledge, no application involving two really independent meshes and
a general mapping procedure of the random field realization onto the finite element
mesh has been proposed so far, This technique needs to be adopted for large industrial
applications, where the finite element mesh is generally automatically generated, having
variable element size with unprescribed orientation. Indeed, in this case, it would not
be practical to define the random field mesh by grouping elements of the finite element
resh.
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9 Conclusions

This chapter has presented a review of methods for discretization of random fields that
have been used in conjunction with finite element analysis. Comparisons of the efficiency
of these methods found in the literature have been reported, and new results regarding
the series expansion methods have been presented. The question of the design of the ran-
dom fleld mesh has been finally addressed. As a conclusion, advantages and weaknesses
of each method are briefly summarized below :

s The point discrefization methods described in Section 2 have common advantages :
the second order statistics are readily available from those of the field. The marginal
PDF of each random variable is the same as that of the field. However, the joint
PDF is readily availablie only when the random field is Gaussian. The number of
random variables involved in the discretization increases rapidly with the size of
the finite element problem.

o Methods yielding continuous realizations of the approximate field (e.g. SF, OLE)
are preferable to those yielding piecewise constant realizations (e.g. MP, SA) since
they provide more accurate representations for the same mesh refinement.

s The S5A method is practically limited to Gaussian fields since the statistics of the
random variables involved in the discretization cannot be determined in any other
case. However, it may be extended to non Gaussian fields obtained by translation
of a Gaussian field, see Section 7,

e The expansion methods (e.g. KL, OSE) do not require a random field mesh. The
former is the most efficient in terms of the number of random variables required
for a given accuracy. However, it requires the solution of an integral eigenvalue
problem. The latter uses correlafed random variables, which can be transformed
into uncorrelated variables by solving a discrete eigenvalue problem. When no
closed-form solution of the KL integral eigenvalue problem exists, KL and OSE
are equivalent.

o Although applicable to any kind of field, both of these methods are mainly efficient
for Gaussian random fields, since the variables involved in the discretizagion are
Gaussian in this case. As an extension, non Gaussian random fields obtained by
translation can be dealt with, see Section 7.

e It is possible to reduce the number of random variables involved in a discretiza-
tion procedure by a spectral decomposition of their covariance matrix. Only those
eigenvalues with greatest value are retained in the subsequent analysis. This re-
duction technique has been applied in conjunction with SF. Coupled with OLE, it
vields EQLE.
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e Disregarding the analytical KI. method (which is ouly applicable to few correlation
structures of the random field and geometry of the system), EOLE and OSE are
the most appealing methods.

Both methods provide analytical expressions for the realization of the approximate
field, involving its autocovariance function or the orthogonal basis functions re-
spectively. These realizations are continuous. In terms of accuracy, EOLE is better
than OSE if the random field mesh is sufficiently refined (Lpr =~ /5 —a/10, where
a is the correlation length).

The covariance matrix of the random variables involved in EOLE is readily avail-
able, since these variables correspond to selected points in the domair §2. Solving
an eigenvalue problem is then necessary to achieve the discretization.

Regarding the OSE method, each term of the covariance mairix has to be computed
as a weighted integral of the autocovariance function, see Eq.{(2.55-b).




Chapter 3

Second moment approaches

1  Introduction

Historically, probability theory was introduced in mechanics in order to estimate the

response variohility of a system, that is the dispersion of the response around a mean
value when the mput parameters themselves vary around their means. The alm is to
understand how uncertainties in the input propagete through the mechanical system.
For this purpose, second order statistics of the response are to be evaluated.

Suppose the input randomness in geometry, material properties and loads is described
by a set of IV random variables, each of them being represented as the sum of its mean
value and a zero-mean random variable ;. The input variations around the mean are
thus collected in a zero-mean random vector @ = {c1, ... ax}. In the context of finite
element analysis, the second moment methods aim at evaluating the statistics of the
nodal displacements, strains and stresses from the mean values of the input variables
and the covariance matrix of .

The perturbation method introduced in the late 1970°s has been employed in a large
number of studies. The general formulation is presented in Section 2. Different examples
of application in conjunction with random field discretization are presented in Secticn 3.
The weighted integral method, which is a combination of a perturbation-based approach
with the discretization scheme presented in Chapter 2, Section 3.2 is presented in Sec-
tion 4. The guadrofure method proposed recently to compute directly the moments of
response guantities is presented in Section 5.
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2 Principles of the perturbation method

The perturbation method was applied by many researchers including Handa and Ander-
sson {1981) and Hisada and Nakagiri {1981, 1985} in structural mechanics, Baecher and
Ingra (1981} and Phoon et al. {1990) for geotechnical problems, and Liv et al. (1986a,b)
for non-linear dynamic problems. It uses a Taylor series expansion of the quantities in-
volved in the equilibrinm equation of the system around their mean values. Then the
coefficients in the expansions of the left- and right-hand sides are identified and evaluated
by perturbation analysis.

In the context of finite element analysis for quasi-static linear problems, the equilibrium
equation obtained after discretizing the geometry generally reads :

(3.1) K- U=F

Suppose the input parameters used in constructing the stiffness matrix K and the load
vector F' are varying around their mean. As a consequence, the three quantities appearing
in the above equation will also vary around the values K,, U°, F, they take for these
mean values of the input parameters.

The Taylor series expansions of the terms appearing in {3.1) around their mean values
read! :

(3.2) K = OTZKI(}H ZZK;?;%%M(HQW)

i_}.j 13

(3.3) U = U0+2Uf%+ ZZU;’jamﬁo(];a[]z)

'zgly 1

(3.4) F = F, +ZFIaV+ ZZF aiaj+ o e |*)

i=1 j=1

where the first (resp. second) order coefficients ()] (resp. (}7) are obtained from the first
and second order derivatives of the corresponding quantztles evaluated at @ =0, e.g. :

0K |
.5 K =
(3 3) ' BCE;:] [cz:D
FPK
r
(3.6) Kz-jf’ =

8052‘ 6&’;; =0

By substituting (3.2)-(3.4) in (3.1) and identifving the similar order coefficients on both

. 1¥or the sake of simplicity, the dependency of the random varisbles o; on the basic outcomes § € ®
is not written in the sequel.
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sides of the equation, one obtains successively :

(3.7) U = K;'-F,
(3.8) U; = K;'(F{-K[ U
(3.9) vl = K;' (F-K! Ul-K! Ul - K U

From these expressions, the statistics of U is readily available from that of c. The second
order estimate of the mean is obtained from (3.3) :

N

(3.10) U - ZZUU Cov [, ay]

1*131

where the first term U° is the firsi-order approximation of the mean. The first order
estimate of the covariance matrix reads :

(3.11)
N N N

Cov{l7, U]~ ZZ Ul { UI) Cov ey, o) = ZZ . 8& OCOV (o, oy
=1 j=1 =1 jop CCvile= o=

Introducing the correlation coefficients of the random variables (e, o) -

t [ R
Cov [, ay]

3.12 i =
( ) Pig Tas Ot
the above equation can be rewritten as :
N
guy  ou”
(3.13) Cov|U, U] = ZZ o Lmﬂ By | g P47 92 %

i=] j=1

1t is seen that each term of the summation involves the sensitivity of the response to the
parameters o; (partial derivatives of U) ag well as the variability of these parameters
(Ca;). Bq.(3.13) thus allows to interpret what quantities are most important with respect
to the response variance. The second-order approximation of the covariance matrix can
also be derived. It involves up to fourth moments of o and is therefore more intricate
to implement and longer to evaluate.

Formulas for the statistics of element strain and stresses have been developed by many
authors including Hisada and Nakagiri (1981) and Liu et al. (19865).

3 Applications of the perturbation method

in this section, attention is focused on the use of the perturbation method coupled with
random fleld discretization techniques.
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3.1 Spatial average method (SA)

Using the SA method (see Chapter 2, Section 3.1}, Baecher and Ingra (1981) obtained
the second moment statistics of the seftlement of a foundation over an elastic soil mass
with random Young’s modulus and compared the results with existing one-dimensional
analysis,

Vanmarcke and Grigoriu (1983) obtained the first and second order statistics of the nodal
displacements of a cantilever beam. Extending the SA formalism to two-dimensional
axisymmetric problems, Phoon ef al. {1990) obtained the first order statistics of the
settlement of a pile embedded in an elastic soil layer with random Young's modulus.

3.2 Shape functions method (S¥F)

Using the SF discretization method (see Chapter 2, Section 2.2}, Liu et al. {1986a,b)
applied the perturbation methed to static and dynamic non-linear problems, including :

e wave propagation in a one-dimensional elastoplastic bar with random yield stress
(Liu et al., 19865);

e static plane stress response of a cantilever beam (same reference);

s static elastoplastic plate with a circular hole, including random cyclic loading and
random yield stress (Liu ef al., 19864);

e turbine biade (shell element) with random side load and length (same reference).

The results compare fairly well with Monte Carlo simulations. However the coefficient
of variation of the random quantities is limited to 10% in all these examples.

4 The weighted integral method

4.1 Introduction

This approach, proposed by Deodatis (1990, 1981), Deodatis and Shinozuka (1991}
- and Takada {1990¢,b), couples the perturbation method with the representation of the
stochastic stiffness matrix presented in Chapter 2, Section 3.2. This representation can
be put in the following form :

NWT
(3.14) ke = kS > ARD X

=1
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where x| are zero-mean weighted integrals of the random field and Ak} are deterministic
matrices. By assembling these contributions over the N elements of the system, a global
stochastic stiffness matrix involving NWJI x N random variables is obtained.

4.2 Expansion of the response

In the context of the perturbation method, the following first-order Taylor series expan-
sion of the vector of nodal displacements U is used :

NWI 3U{
(3.15) U=U +ZZ X B o

e=1 =1

Assuming deterministic loads, applying {3.7)-(3.8) to this particular case yields :

N ONWI
8K

(316) S K

e=1 [=1

UU

4.3 Variability response functions

From Eq.(3.16) the covariance matrix of the response writes :

(3.17)
N N NWINWT T
e or . 0K

CovlU, U] = ZZZZK— o, 5

e1=leg=11;=1 [9=x] Iz

(EHT Cov X, %)

The last term in the above expression is obtained from the definition (2.32) of the
weighted integrals. For example, in the one-dimensional case :

(3.18) Cov [x7, x7] = ?XE? xi] / / w1 25" B H (21)H (22)] doy dos
Qe o/ ey

where :

(319) E {H(ml)H(mg)} = CHH{-T'} - 332)

is the autocovariance function of H(-}. Introducing the power spectral density function
SHH (LU) S&{éiSfyiﬂg :

(3'20} Cralz: —22) = /SHH(LU) etelm =) gy
4R

one finally obtains :

[} el o ;
COV X{l , Xia /SHH / mlazezwm dﬂf} / xzizeiwm d$2
(3.21) Qe /e,

x/SHH(w)Uif(w} dw
R
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where v/} (w) is defined as

O i @iy i
(3.22) vfflzz (w) = / mfl ™" doy / T, 1 e dg
: e, o :

ez

Substituting (3.21) in (3.17) and gathering the diagonal terms into the vector Var [U]
leads to :

(3.23) Var [U] = fR () V() d

In the above equation, V{w) is a vector having N components, each of them being
the variability response function Vi(w) at the corresponding degree of freedom. From
(3.17),(3.21), it is seen that these functions V;(w) depend on the deterministic stiffness
matrices K,, Akf, the response mean value U” and some functions v/ (w) given by
Eq.{3.22). These functions can be given closed-form expressions after some algebra in
the one-dimensional case (Deodatis, 1990). Each Vj(w) gives the contribution of a given
scale of fluctuation of the input random field {characterized by w) to the variance of the

nodal displacement U,

Deodatis (1990) examined the following upper bound for the variance of U;. Taking
indeed each component of {3.23) separately, the following trivial inequality holds :

(3.24) Var [U;] < f Sy (w) max |Vi{w)] dw < o max|Vi{w)]
®

where 0% is the variance of the input random field, see Eq.(2.28).

The above equation yields an upper bound on the response variance, which is indepen-
dent of the correlation structure of the input field. This is valuable since this kind of data
is difficult to obtain in practice. However, Eq.(3.24) has limited practical use because
the guantities max |V;(w)! are not easily available. In the application of this method to
a frame structure, Deodatis {1990} computed these maximum values graphically after
plotting the functions V;{w). '

5 The quadrature method |

An original approach called guadroture method has been recently proposed by Baldeweck
(1999) to compute the moments of response quantities (e.g. nodal displacements) ob-
tained by a finite element code. It is based on the quadrature of the integrals defining
these moments.
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5.1 Quadrature method for a single random variable

Consider a random variable X whose probability density function (PDF) is denoted by
fx(x) and suppose the moments of ¥ = g{X} are to be determined. By definition, the
i-th moment of ¥ is given by :

(3.25) BY] =B [(0)] = [ (@] fx(a)ds

The gquadrature of the above integral is its approximation by a weighted summation of
the values of the integrand :

. NP .
(3.26) E [S’ZQX)} ~ Zwk lg(ze)]"

where (wy, ) are integration weights and points associated with fx respectively, and
NP is the order of the quadrature scheme. For instance, if X has a uniform distribution
over {—1, 1}, the integration points in the above equation are the well-known Gauss
points. More generally, it is possible to compute integration weights and points associ-
ated with other PDFs fx at any order. Baldeweck {1999) gives tables for normal and
lognormal distributions up to order 10.

5.2 Quadrature method applied to mechanical systems

Suppose the uncertainties of a given mechanical system are described by the vector of
basic random variables X = {X;, ... Xy} having a prescribed joint distribution. After
a probabilistic transformation (see chapter 4, Section 2.4 for details) it is possible to
assume that the X;’s are uncorrelated standard normal variates. The statistics of a
given response quantity S (e.g. nodal displacement, strain- or stress component) is to
be determined. The ¢-th moment of S can be computed as :

(327) B [S‘{(le e XN):I = [ iS(i’}_ ey .'L'N)J‘i gﬁ(.ﬁbi) PR, QD(EN) Ci.’L'} - .diﬂN “
JRN

where (.) is the PDF of a standard normal variate, and 3(zy, ..., zx) is usually known in
an algorithmic sense, i.e. through a finite element code. Generalizing Eq.(3.26), Bq.(3.27)
can be estimated as :

NP

NP
(3.28) E[S"X:, .. Xy)] = Z e Z Why e Why 18(Tiy 5 ooy Ty )]

k=1 ky=1

It is seen that NP” evaluations of S (i.e. finite element runs) are needed a priori.
As stated by Baldeweck, the number of evaluations increases exponentially with the

3
|
|
i
:
i

2
i
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number of random variables. However, some of the weight products wy, . .. wy, are totally
negligible compared to others, so that some terms in Eq.(3.28) are not computed.

Remark From Eq.(3.27), it is seen that the method is not a “pure” second moment
approach, since information about the distributions of the basic random variables is
included in the caleulation. However, it is presented in this chapter because it gives
primarily the moments of the response quantities.

Baldeweck applied the quadrature method to compute the first four moments of the
response quantities. From these first moments, a probability distribution function can
be fitted (so-calied Johnson or Pearson distributions). This PDF can be finally used to
get reliabilify results.

_ Several examples in structural mechanics, geotechnics and fracture mechanics are pre-
sented. In each case, the results obtained with the quadrature method compare well with
the other approaches (e.g. perturbation method, Monte Carlo simulation). It is noted
that non-linear problems can be dealt with as easily as linear problems. However, the
limitation on the number of random variables is a severe restriction of this approach (at
most 4 were used in the applications described by Baldeweck (1999)).

6 Advantages and limitations of second moment ap-
proaches

General formulations and different applications of the perturbation method have been
presented in this chapter for linear as well as nonlinear structures. From this analysis,
the following conclusions can be drawn :

s Due to its relative simplicity, the first-order perturbation method is practical to
get an estimate of the response variance, see Eq.(3.13). It is applicable at low cost
to a wide range of problems.

e Due to the Taylor series expansion, accurate results are expected only in case of
small variability of the parameters. The upper limit on the coefficient of variation
{COV) for which the results are acceptable strongly depends on the degree of
nonlinearity of the system. Fair comparisons with Monte Carlo simulations have
been obtained for COV up to 20%. However the upper limit may differ a lot with
respect to the kind of mechanical problems under consideration. It is important o
note that, while the results from perturbation analysis are distribution-free (i.e.
they only require the second moments of the input variables}, the Monte Carlo
results by necessity must be obtained for specific distributions. In this sense the
comparison is dependent on the assumed distribution in the Monte Carlo analysis.
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It is emphasized that the choice of Gaussian distributions is questionable when
describing material properties that are positive in nature. In most of the papers
referred to in this chapter, Monte Carlo simulations of Gaussian random fields are
used as “reference” calculations to assess the validity of the varicus approaches.
No discussion about the possible non physical negative outcomes in the simulation
could be found in these papers though.

o the derivatives of K and F have to be derived with respect of each parameter o,
possibly at the second order level. This derivations are usually performed at the
element level before assembling the system. In most situations, they can be done
analytically, leading however to intricate formula. These calculations can be time
consuming, particularly when the second order terms are included. Higher-order
approximaticons are totally intractable.

The weighted integral method described in Section 4 allows to obtain a) second order
statistics of the response given a prescribed input random field and b} an upper bound ‘
on the response variance which is independent of the correlation structure of the field. [
It is claimed that the method does not use any particular discretization scheme for the |
random field. However, as stated in Chapter 2, Section 3.2, the accuracy of the method
for problems in which the correlation length is small compared to the size of the structure :
may not be good. This has been illustrated by Zhang and Der Kiureghian {1997, Chap. 2) .
on the example of an elastic rod in tension, having constant cross-section and random
Young's modulus. Moreover, the following severe limitations of the method have to be
recognized :

e it is limited to elastic structures, where the Young’s modulus is modeled as a ran-
dom field. Although extension of the method to nonlinear problems was claimed
(Deodatis and Shinozuka, 1991), such a derivation could not be found in the liter-
ature.

® by making use of the first-order perturbation method, it is limited to relatively
small coefficients of variation of the input.

e the bounds (3.24) on the response variance are difficult to compute in practice,
due to the complex expression of the response variability functions V{w).

‘@ the number of random variables involved in the computation equals NWI x N
(e.g. NW1I is 3 for beam-column elements). The method is thus time consuming
for systems having a large number of elements.

Due to its simplicity, the quadrature method is appealing for problems involving a re-
duced set of random variables. It is neither limited to linear problems nor small coeffi-
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cients of variation. However, further exploration of this approach would be necessary to
assess its validity in a more general context.




Chapter 4

Finite element reliability analysis

1 Introduction

Reliability methods aim at evaluating the probebility of failure of a system whose mod-
eling takes into account randomness. Classically, the system is decomposed into com-
ponents and the system failure is defined by various scenarii about the join? failure of
components. Thus the determination of the probability of failure of each component is
of paramount importance. This chapter will focus on the well-established procedures for
evaluating this so-calied component reliobility, first from a general point of view, then in
the context of finite element analysis.

2 Ingredients for reliability

2.1 Basic random variables and load effects

Let us denote by X the set of all basic random variables pertaining to the component
(e.g. a given structure) describing the randomness in geometry, maserial parameters and
loading. If needed, suppose that one of the discretization scheme described in Chapter 2
has been applied to represent random felds as functions of a finite set of random vari-
ables. For each realization of X, the state of the structure is determined by load effect
quantities, such as displacements, strains, stresses, measures of damage, etc... Let §
denocte a vector of such effects, whose values enter in the definition of the failure of the
system. These two vectors are related through the mechanical transformation :

(4.1) § = S(X)
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which is defined, in ail but simple situations, in an algorithmic sense, e.g. through a
finite element computer code.

2.2  Limit state surface

To assess the reliability of a structure, a limif state function g depending on load effects
is defined as follows :

s g{S) > 0 defines the safe state of the structure.

e ¢(85) < 0 defines the failure state. In a reliability context, it does not necessarily
mean the breakdown of the structure, but the fact that certain requirements of
serviceability or safety limit states have been reached or exceeded.

The values of § satisfying g(§) = 0 define the limit state surface of the structure.
Examples of limit state functions are :

o g{8) = Opax — 6, if the failure occurs when the displacement § at a given point
exceeds a given threshold dmex.

o ¢(8) = 0, — Jo(o), if the failure occurs when a given point yields (o, is the yield
stress and Ja(o) the equivalent Von Mises stress).

Let us denote now by fs(s) the joint probability density function of S. The probability
of failure is then given by : ‘

(42) P = f G

The above equation containg in itself two major difficulties :

e The joint PDF of the response quantities, fs(s), is usually not known, the available
information being given in terms of the basic variables X.

¢ The mulii-fold integral (4.2} over the failure domain is not easy to compute.

Thus approximate methods have been developed in the Jast 25 years. Exhaustive presen-
tation of this domain can be found in the monograph by Ditlevsen and Madsen (1996).
In the sequel, only the main concepis are summarized.
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2.3 Early reliability indices

Early work in structural reliability aimed at determining the failure probability in terms
of the second moment statistics of the resistance and demand variables. Suppose these
are lumped into two random variables denoted by R and § respectively. The safety
margin is defined by :

(4.3) Z=R-§

Cornell’s reliability index (Cornell, 1969) is then defined by :

Bz
(4.4) fo=—
Tz
It can be given the following interpretation : if R and S were to be joinily normal, so

would be Z. The probability of failure of the system would then be :

(4.5) ﬁ:P@g@:P(Zﬂw<_Egz®k%)
Oz oz

where ©{.} is the standard normal cumulative distribution function. In this case, S can
be described as a function of the second moment statistics of £ and § :

g = fts
\/G‘i‘ia‘i‘o'g WQ,ORSG'RO'S

{4.6) bo =

Let us consider now a general case where 7 ig actually a limit state function :
(4.7) Z =g(5)

the mean pg and covariance matrix Xgg being known. The mean and covariance of Z
are not available in the general case where (S} is non-linear. Using the Taylor expansion
around the mean value of § :

(4.8) 7= glpes) + (Veg)gmy, - (8 — s} +0 (| (S — pg)* |))

the following first-order approximations are obtained :

(4.9) By =~ glug)
(4.10) oy = (ng)gi,us Tz (Val)sop,

'This procedure leads to the definition of the so-called mean value first order second
moment reliability index by using Eqs.(4.9)-(4.10) in (4.4) :

glps)
\/(V89>§:MS . 258 . (VSQ)S:,US

(4.11} Prvrosm =




a0 . Chapter 4. Finite element reliability analysis

The main problem with this reliability index is that it is not ¢nvariant with respect to
changing the limit state function for an equivaleni one (for instance by replacing g(-)
by g*(-)). Variations can be important in some problems (Ditlevsen and Madser, 1996,
chap. 5).

The problem of invariance was solved by Hasofer and Lind {1974) in & second moment
context by recasting the problem in the standard space using a linear transformation of
random variables. Egsentially, the authors showed that the point of linearization should
be selected as the point on the limit state surface nearest to the origin in the standard
space, the distance to this point being the first-order second moment reliability index
Brosm. Later, a non-linear probability transformation was employed to account for prob-
ability distribution of the variables including non Gaussian distributions. This method
is described in the sequel.

2.4  Probabilistic transformation

Consider a transformation of the basic random variables X :
(4.12) Y = Y(Xx)
such that Y is a Gaussian random vector with Zer0 mean and unit covariance matrix.

The exact expression of the probability transformation ¥ = Y{X) depends on the joint
PDE of X. Several cases sorted by ascending order of difficuliy are listed in the sequel
as examples :

s X is a Gaussian random vector with mean p, and covariance matrix 2y,. The
diagonalization of the symmetric positive definite matrix X,, allows to write :

(4.13) ' X=AY +p,

where A is obtained by the Cholesky decomposition of X, :
(4.14) T, =A4-AT

The probability transformation and its Jacobian then write :

(4.15-a) yxy = AT (X - u)
= Al

‘}Q,X

e X is a vector of independent non normal variables whose PDF f;(z;) and
CD¥ Fy{z;) are given. The probability transformation in this case is diagonal :

(4.16) g =0 [Fi(z)], i=1,.N
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and i%ts Jacobian reads :

() bx= g (120)

e X is a vector of dependent non normal variables. In many applications, the
joint PDF of these random variables is not known. The available information is
often limited to the margina! distributions (PDF or CDF) and correlation matrix

R, whose coefficients read :

Cov [xi, x5]
.1 P SN e
(4.18) P45 e

The problem of constructing joint PDFs compatible with given marginal PDFs and
correlations was solved by Der Kiureghian and Liu (1986). The authors proposed |
two different models : 1

— the Morgenstern model : it is limited to small correlations {|p:;| < 0.3)) and
the closed form expression for the joint PDF and CDF become tedicus to
manage when dealing with a large number of random variables.

— the Nataf model : it is defined in a convenient closed form for any number of
random variables and complies with almost any valid correfation siructure.

Due to these characteristics, only the Nataf model is presented now. From the
marginal PDF of X, the following random vector Z is defined :

(419) Z; = @7 [Fi(x)]

Assuming now that Z is a Gaussian standard normal vector with yet to be com-
puted correlation matrix R, its joint PDF is given by :

1 1
.2 =,z = T gt
Using the inverse transformation of (4.19), the joint PDF of X then reduces to :
¢nlz, Ro)
4.2% X)= filzy o @) ——
(4.21) 1) = fle) - Fula) ST

To complete the definition, the correlation matrix R, should finally be chosen such
that the correlation coefficient of any pair (x;, x;) computed from (4.21) matches
the prescrived correlation coefficient p;. This condition leads to the following im-
plicit equastion in p, 45 :

oo ® e g Ti—
(4.22) Pij =/ / ( tg_ Z) ( ‘?g‘ L) ol 255 po,y) dzidz;
=0 =0 T 1




(@13
I3

Chapter 4. Finite element reliability analysis

2.5

Approximate relations for p, ;;{pi;) for a large number of PDF types are given by
Der Kiureghian and Liu (1986), Liu and Der Kiureghian (1986), Ditlevsen and
Madsen {1996).

From a reliability point of view, assuming the basic variables X have a Natafl joint
PDY, vector Z defined by (4.19) is Gaussian with zero mean and correlation matrix
R, =L, Lg. The probability transformation to the standard normal space thus
writes :

YX) =L Z

(4.23) =L {(I)“l [Fi{z)], .. @77 EFR(J%)]}

T

Tts Jacobian writes :

(4.24) Tyx = Lq" - ding (%D

The Rosenblatt transformation introduced by Hohenbichler and Rackwitz (1981)
is an alternative possibility when conditional PDFs of X are known. It is defined
ag follows :
o =7 (2}
=@ LF
yn = OHF(zp|zr, oo 2n)]

Unfortunately, it is not invariant by permutation of the variables x; (Ditlevsen and
Madsen, 1996).

FORM, SORM

The mapping of the limit state function onto the standard normal space by using the
probabilistic transformation (4.12) is described by :

(4.26)

9(8) = g(S(X)) = g{S e YY) = G(Y)

Hence the probability of failure can be rewritten as :

(4.27)

Py = f ply) dy
Gly)<0

where (Y} denotes the standard normal PDF of Y :

1

(425) o= en (-3 1)
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This PDF has two interesting properties, namely it is rotationally symmetric and decays
exponentially with the square of the norm || y ||. Thus the points making significant
contributions to the integral (4.27) are those with nearest distance to the origin of the
standard normal space. '

This leads to the definition of the reliability index § (Ditlevsen and Madsen, 1996}, see
figure 4,17 :

(4.29-2) g = oy

(4.29-b) y' = argmin {|y| | Gly) <0}

This quantity is obviously invariant under changes in parametrization of the limit state
Tunction, since it has an intrinsic definition, i.e. the distance of the origin to the limil
state surface.

The solution y* of the constrained optimization problem Eq.{4.29-b} is called the design
point or the most likely failure point in the standard normal space. When the limit state
function G{y) is linear in y, it is easy to show that :

(4.30) P; = &(-4)

where @(.) is the standard normal CDF.

~ Gy =0
5 ~)s

» J1

Figure 4.1: Geometrical definition of the design point

When G(y) is non-linear, the First Order Approzimation Method (FORM) consists in :

IRigorously speaking, this definition is only valid when G{0} > 0. If D lies in the failure domain, &
is actually negative, with its absclute value given by Eq.(£.29).
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¢ evaluating the reliability index 5 by solving {4.29),
e obtaining an approximation of the probability of failure by :

(4.31) Pra Py = 0{-5)

Geometrically, this is equivalent to replacing the failure domain by the halfspace outside
the hyperplane tangent to the limit state surface at y¥ = y*. Generally speaking, FORM
becomes a better approximation when 3 is large.

To enhance the precision of Bq.{4.31), second order approzimation methods (SORM) have
been proposed. The idea is to replace the limit state surface by a quadratic surface whose
probabilistic content is known analytically. Two kinds of approximations are usually
used, namely the curvature fitting (Breitung, 1984; Der Kiureghian and de Stefano,
1991) which requires the second derivative of G(y) at the design point " and the poini
fitting where semi-paraboloids interpolate the limit state surface at given points around
the design peint (Der Kiureghian et al., 1987).

Recently, higher order approximation methods (HORM) have been proposed by Grandhi
and Wang {1999), where the limit state surface is approximated by higher order poly-
nomials. The amount of computasion needed appears to be huge compared to the im-
provement it yields. '

2.6 Determination of the design point
2.6.1 Early approaches

As mentioned earlier, the classical reliability methods (FORM/SORM]} require the de-
termination of the design point, which is defined as the point on the limit state surface
closest to the origin, in the standard normal space. The constrained optimization prob-
tem (4.29) is equivalent to :

* : 1
(4.32) v =argmin {Q) = 3 v [P | Gl <0
Introducing the Lagrangian of the problem :

1
(4.33) Ly, M=y lly 1> +2G(y)

Eq.(4.32) reduces to solving :

{4.34) (y*, A*) = argmin L{y , A)

LA AR
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Assuming sufficient smoothness of the functions involved, the partial derivatives of £
have to be zero at the sclution point. Hence :

(4.35) YN VGE(Y) = 0
(4.36) Gly*) = 0

The positive Lagrange multiplier A* can be obtained from (4.35), then substituted in the
same equation. This yields the first-order optimalily conditions :

(4.37) | VG |-y Lyt |-V =0

This means that the normal to the limit state surface at the design point should point
towards the origin.

Hasofer and Lind (1974) suggested an iterative algorithm to solve (4.34)}, which was later
used by Rackwitz and Fiessler (1978) in conjunction with probability transformation
techniques. This algorithm (referred to as HLRF in the sequel) generates a sequence of
points y, from the recursive rule :

VG(yi)T - Gly)  VGE(y,)
| VG (y,) | | VG{y) |

Eq.(4.38) can be given the following interpretation : at the current iterative point y;, the
limit state surface is linearized, i.e. replaced by the trace in the y-space of the hyperplane
tangent to Gly) at y = y,. Eq.{4.38) is the solution of this linearized optimization
problem, which corresponds to the orthogonal projection of y, onto the trace of the

{4.38) Yirg =

tangent hyperplane.

As the limit state function and its gradient is usually defined in the original space, it
is necessary to make use of a probabilistic transformation such as those described in
Section 2.4. The Jacobian of the transformation is used in the following relationship :

(4.39) V,Gly) = Vag(X) Iy y

The HLRF algorithm has been widely used due to its simplicity. However it may not
converge in some cases, even for rather simple limif state functions. Der Kiureghian and
de Stefano (1991) have shown that it certainly diverges when a principal curvature of
the limit state surface at the design point satisfies the condition |8s;] > 1. Thus several
modified versions of this algorithm have been developed {Abde and Rackwitz, 1990;
Liu and Der Kiureghian, 19915). The latter reference presents a comprehensive review
of general purpose optimization algorithms, including the gradient projection method
(GP), the augmented lagrangian method {AL), the sequential quadratic programming
method (S8QP), the HLRF and the modified HLRF (mHLRF). All these algorithms have
been implemented in the computer program CALREL (Liu et al., 1989) for comparison
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purposes, and tested with several limit state functions. It appears that the most robust
as well as efficient methods are SQP and mHLREF.

Although the modified mHLRF was an improvement over the original HLRF, no proof
of its convergence could be derived. Thus further work has been devoted in finding an
unconditionally steble algorithm.

2.6.2 The improved HLRF algorithm(iHLRF)

Zhang and Der Kiureghian (1895, 1997) proposed an improved version of HLRF denoted
by iHLRF for which unconditional convergence could be proven. It is based on the
foliowing recast of the HLRF recursive definition (4.38) :

(4.40) Yir1 = Wi+ Apdy
{(4.41) with A = 1
VG (y) -y, — Gly)  VG(y,)
4.49 d; = : d I
(442) EEIEEAET

In the above equations, d; and ); are the search direction and the sfep size respectively.
The original HLRF can be improved by computing an optimal step size A; # 1.

For this purpose, a merit function m{y) is introduced. At each iteration, after comput-
ing (4.42), a line search is carried out to find A; such that the merit function is minimized,
that is:

+{4.43) A = argmin {m(y, + A d;)}

This non-linear problem is not easy to solve. It is replaced by the problem of finding a
value ; such that the merit function is sufficiently reduced (if not minimal). The so-called
Armijo rule (Luenberger, 1986) is an efficient technique. It reads :

(4:44) A= %Eaé({bk Fm{y, + 05 d;) — m{y,) < —ab® || Vm(y) P} . a6>0
Zhang and Der Kiureghian {1995, 1997

p—

proposed the following merit function :

Fy ? +elGy)l

B

(4.45) | m(y) =

This expression has two properties :

e The HLRF search direction d (Eq.{4.42)) is a descent direction for it, that is d

: : Lyl
satisfies : Vy, Vm{y)T - d <0 provided ¢ > o2t
| V&) il
e [t attains its minimum at the design point provided the same condition on c is

fulfilled.

Both properties are sufficient to ensure that the global algorithm defined by
Egs.(4.40),{4.42),(4.44) is unconditionally convergent {Luenberger, 1988).
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2.6.3 Conclusion-

When the solution of the mechanical problem S{X} is obtained by a finite element code,
each evaluation of g(§{X)) = G{y) and its gradient V, ¢(X) have a non negligible cost
(see Section 3 for a detailed presentation). Thus an efficient optimization algorithm for
determining the design point should call the smallest number of each evaluation. From
this point of view, the IHLRF algorithm is the most efficient algorithm. The reader is
referred to Liu and Der Kiureghian (19915) and Zhang and Der Kiureghian (1697) for
detailed cost comparisons,

3 Gradient of a finite element response

3.1 Introduction

As mentioned in the preceding section, the design point is determined by an iterafive
algorithm which makes use of the gradient of the limit state function in the standard
normal space V,G(y). The limit state function is usually defined in the original space
in terms of load effects, which are related to the basic random variables X. The chain
rule of differentiation allows to write :

(4.46) VyGly) = Vy g(8(X(w))) = Vagls) VS(X) - Iy 1y

In this expression, Vyg{s) is usually known analytically, and J, , = J7, is given by
Eqs.(4.15-b), (4.17), (4.24) depending on the probabilistic transformation. At this point,
only the gradient of the mechanical transformation V,, 8(X) remains unknown. Its eval-
uation however is not an easy task,

Fvaluating the gradient of the system response with respect to given input parame-
ters comes under response sensitivity anclysis. Outside reliability analysis, measures of
sensitivity are useful in various applications such as optimal structural design and de-
termination of importance of parameters.

For our purpose of determining the design point, the evaluation of the gradient has fo be
efficient (because of the numerous calls in the iHLRF algorithm) and accurate (because
its value enters an iterative convergent procedure, which is driven by tolerance checking).
The straightforward application of a finite difference scheme may be inappropriate in
this context. The size of the vector of basic random variables X being N, one gradient
would require at least IV + 1 complete finite element analysis. The accuracy depends on
the size of the finite variation of the parameters and is thus difficult 4o fix in advance.

A computationally more efficient approach employs the perturbation method {Liu et al.,
19868). Recalling the formalism developed in Chapter 3, the first order variation of the
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nodal displacement vector Uf is given by E
- (4.47) Ul=K:" (F;T_Kf U

Thus the same mean value stiffness matrix K, is used for evaluating all the components
of the displacement gradient vector. This method requires basically one complete finite
element analysis and N forward resolutions (4.47), where i =1, ... N.

A much more efficient approach called direct differentiation method has been proposed
to circumvent the drawbacks of the above methods. It is presented in the sequel first
for an elastic linear problem. Then the extension to geometrically non-linear structures
(Liu and Der Kiureghian, 1989, 19915}, dynamics of Jp-elastoplastic structures (Zhang
and Der Kiureghian, 1993), plane stress elastoplastic damaged structures {(Zhang and
Der Kiureghian, 1997; Der Kiureghian and Zhang, 1999) will be briefly summarized.

3.2 Direct differentiation method in the elastic case

In the finite element formulation for static problems, the balance between the vector of
internal forces R and the vector of external forces F' writes :

w9 R={ [ B oan={J{

e

NT. pobodﬂe+/ NTvtociSe} =F

Qe 88

where | J, denotes the assembling procedure over all elements, B gives the strain tensor
from the nodal displacements, N contains the shape functions, p,b, and £, are the body
and surface forces respectively.

All these quantities depend on basic random variables. Let X,,, X;, X, be those vari-
ables representing uncertain material properties, external loads and the geometry of the
structure respectively. Let X be the vector of nodal coordinates, U the vector of nodal
displacements. In case of small strain linear elastic structures, the following relationships
hold :

(4.49) X = XX,

(4.50) U = U[X(X,), X, X

(4.51) R = R[X(X,), UX(X,), Xm, X}, Xum]
(4.52) F = F{X(X,), X

Thus Eq.{4.48} can be formally rewritten as :

(4.53) RIX(X,), UX(X,), X X1) s Xow] = F[X(X,), X
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To simplify the presentation, it is assumed in this section that the limit state function
only depends on the displacement vector U :

(4.54) a(8(x)) = g(U (X))

Thus its gradient becomes :

(4.55) Vyg{S(X)) = Vyg(U) - VU

To obtain the gradient of the displacement vector U, Eq.(4.53) is differentiated with
respect to each set of variables X, , X, X,.

3.2.1 Sensitivity to material properties

Differentiating (4.53) with respect to X, yields :

OR OR

OR .
Introducing the sfiffness matriz K = — we obtain {from the above equation :

au

R
8xm

(4.57) K-V, U=-
Differentiating the left hand side of {4.48) with respect to X,, gives :

an do
4, = . dQ
(4.58) . U [Q BT o 1

The stresses in element {2, are obtained from the nodal displacements u, by :

(4.59) o=D(X,) B u,
Thus :
R r 8D
‘ —— = D B, dO)
(4.60) T L;-/S)EB B B - u,dQ,

The right hand side of (4.60) is then obtained by evaluating derivative quantities in each
element, then assembling them in a global vector exactly as a regular vector of nodal
forces.

Examples — Suppose the Young’s modulus of the maferial is represented by a random
field and X, is the vector of random variables used in its discretization. If the midpoint
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method is used, any element % of X, represents the constent Young's modulus in
element e. The elasticity matrix in this element thus reduces to :

(4.61) D(Xp) = D(x5) = x5 Do
Eq.(4.60) then simplifies into :

R -
. il = D, B -u,d,
(4.62) e LGJ QEB D w, dS2,

Tf & series expansion method (e.g. KL, OSE, EOLE) is used, the elasticity matrix in each
point x € £}, can be written as

(4.63) DX, @) = (A + Az - X)) - D,

thus depending linearly on the random variables X (see Eq.(2.65) for the exact expres-
sion). In this case, BEq.(4.60) reduces to :
g

R . |
. _— = . D, -B-u.d,
(4.64) . U QBB A, B u,d

3.2.2 Sensitivity to load variables

Taking the derivative of Eq.(4.53} with respect to X; yields :

. IaF
(463) K- VXJU = EZ
where :
oF . dp,b ' ot
4.66 — = NT 220240, + NT .22 458,
(4.66) ax; g {/ﬂe X, - Jaa. X g }

Usually X; contains load intensity factors for point-wise, surface or body forces. Hence
the derivatives in the above equation are analytical.

3.2.3 Sensitivity to geometry variables

Taking the derivative of Eq.{4.53) with respect to X, yields :

O0R 0X oU  OF 0X
(4.67) axax, N X, " ox %,
which simplifies in :
oF oRY\ oX
4. K- = — .
(4.68) Y, U (BX 8X> IX4
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In this expression, aX is easy to compufe since X is usually an explicit function of
X,. The difference inside the brackets should however be paid more attention, since the
domain of integration (2. in (4.48) is dependent on X. To carry out these derivatives, it
i5 necessary to map the integral domains onto a fixed configuration. Such a mapping is
a standard scheme for the so-called isoparametric elements. The derivation of all these
quantities for truss and four-node plane elements can be found in Liu and Der Kiureghian
(1989).

3.2.4 Practical computation of the response gradient

By compiling Eqgs.{4.57),(4.65),{4.68), the response gradient with respect to X can he
written as : '

J0F OR

(4.69) K VU =5 - o

which is simply a set of N linear systems (N being the length of X) and requires thus
N repeated solutions of the following type :

(4.70) v, U=K" [BF aR}

s B 6X:’

However the guantity of interest is not V, U in itseif, but the product Vg g(U) - V,, U
(see Bq.(4.55)). The adjoint method was proposed {Liu and Der Kiureghian, 1991¢a) to
obtain this quantity directly with a single linear system resolution. It consists in solving
first for an auxiliary vector A :

(4.71) K A= Yyg

Then the following equality holds :

-1 |OF OR
o Vya(U (X)):AT [;La% ax}
5X X

This procedure allows to reduce from IV to 1 the number of forward substitutions. Note
that the inverse stiffness matriz used in solving {4.71) is readily available from the initial
finite element run.

In summary, the computation of the response gradient requires the partial deﬂvatwes
JF /GX and OR/OX at the element level, their assembly in a global vector, a forward
substitution for an auxiliary vector A and finally a matrix product (4.72).
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The assumption (4.54) is now relaxed. If strains or stresses appear in the limit state
function (8§ = U, o, €), they are derived with respect to the parameters as well. For
instance, one can write :

Jdo 0D aB Ju
) o = —— . B oy, + D— u, + D Bt
(4.73) 5 = Bx B u.+ S w, + D B

where these expressions have to be expanded for each type of variable (X, X;, Xg).
The adjoint method is then used to obtain directly the product Vg -V, 5.

3.2.6 Examples

Der Kiureghian and Ke (1988) considered the reliability of elastic structures, namely a
beam with stochastic rigidity and applied load. Both random fields were assumed to be
homogeneous and Gaussian. They were discretized by the MP method on the one hand,
the SA method on the other hand. These meathods respectively over- and under-represent
the variance of the original field. Thus they aliow to bound the exact results (within the
framework of FORM approximations).

Two limit state functions were defined, one in terms of midspan deflection and another
in terms of bending moment. The reliability index is computed with different correlation
lengths and element sizes. It appears that good accuracy is obtained when the ratio
between element size and correlation length is 1/4 to 1/2. The convergence of MF and
SA to one another proved the validity of these methods.

Der Kiureghian and Ke {1988) also considered a plate made of two materials with
stochastic properties. The limit state function was defined in terms of exceedance of
the principal stress in one given point. It appears that the closer the elastic properties
to each other, the higher the reliability index.

The orthogonal series expansion method (see Chapter 2, Section 5.3) was applied by
Zhang and Ellingwood (1994) to the reliability analysis of fixed-end beam having Gaus-
sian random flexural rigidity £7. The reliability index was computed for various trun-
cated expansions of the field involving an increasing number of terms A/, The convergence
is attained for M=6-10 depending on the choice of the autocovariance function. Using
a Karhunen-Loéve expansion of the field (with exponentially decaying autocovariance
function, i.e. analytical expressions for its eigenfunctions), the convergence was obtained
using 1 to 2 terms less in the expansion.

3.3 Case of geometrically non-linear structures

Lin and Der Kiureghian (1989) presented exhaustively the response gradient compu-
tation for geometrically non-linear structures. In this case, Eqs.(4.51},(4.52) should be
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replaced by :

(479 R = R[X(X,), UX(X). Xn. X)), X]
(475) F = F J:X(Xg) y U(X<Xg) ) Xm: XE)) XIE

Inchuded in the above reference is the derivation of all partial derivatives of interest for
truss and plane four-nede elements. A summary of the procedure can also be found in
Liu and Der Kiureghian {1991¢). It is emphasized that the non-linearities do not make
the gradient computation more expénsive, provided the stiffness matrix is replaced by
the tangent stiffness matriz. The latter is computed during the iterative procedure for
solving for the displacements U. Inferestingly, the gradient computations do not involve
any additioral iteration. In conjunction with the gradient method, the gradient response
is also obtained by a single forward resolution. However the analytical expressions {or
the partial derivatives and their coding is mmuch more cumbersome in the non-linear case.

In the above reference, the gradient operators were coded in FEAP (Zienkiewicz and
Taylor, 1989). The reliability of a square plate with a hole having random geometry was
investigated. The applied load had a random intensity. The elastic material properties
(£, v) were modeled as lognormal and uniform-bounded random fields respectively. As a
whole the problem involved 85 random variables, including 30 for each field (30 elements
were used for MP discretization), 24 for the coordinates of the hole and 1 for the load
intensity. Thus all types of uncertainties were mixed in the same problem. The reliability
problem was investigated using FORM and SORM, in conjunction with two limit state
functions defined as threshold exceedance of stress and displacements respectively. The
CPU was shown to be divided by 100 by using the direct differentiation method rather
than finite difference for gradient computation.

3.4 Dynamic response sensitivity of elastoplastic structures

Zhang and Der Kiureghian (1993) extended the direct differentiation method to dynamic
problems involving elastoplastic materials. The class of problems considered has the
following discretized equation of motion?

(4.76) MU, )+ C)UR, X)+R[U, X), X] = P(t, X)

where the dots denote the time derivatives. The response gradient with respect to X Is
dencted by ; '
: au
477 V=—

For the sake of simplicity of the notation, only one sensitivity parameter x is shown in this section.
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By differentiating Eq.(4.76) with respect to X, the gradient (4.77) turns out to satisfy :

0P _OMy 9C, OR
ax ax ax X lu fixed

(4.78) MV+CV+KU)V =

Eqs.(4.77),{4.78) are solved by using a step-by-step implicit numerical integration
method. The following usual linear approximations are used :

(4.79) Upr = L (UHH,Un,I?mifn)
(4.80) Upn = L (Un+1,Un,D’mi)Tn)

When substituting for (4.79), (4.80) in (4.76), a non-linear system of equations is ob-
tained, which is usually solved by a Newton-Raphson scheme. When convergence is
achieved, the gradient vector V.1 is obtained by a single forward substitation as in the
linear case (see Section 3.2). The matrix used in this substitution is identical to that
used for determining U, .1, and is thus readily available in an inverted form.

The quantities appearing in the right hand side contain the derivatives of the internal
forces OR/OX. In case of non-linear constitutive laws including path dependence (such
as plasticity), this derivative is complicated. Zhang and Der Kiureghian {1993) present
the complete derivation in the case of Jp plasticity including isofropic and kinematic
hardening.

The first example presented in the above paper is a plane strain analysis of a strip with
a circular hole. Cyclic loading under quasi-static conditions was applied. The response
gradient with respect to yield stress and hardening parameters was computed using
DDM and finite difference with various finite variation size. Convergence from the latter
to the former when variation size tends to zero was assessed.

The second example is a truss structure under dynamic loading. Geometrical non-
linearities due to large displacements are taken into account. The material of the truss
follows J, plasticity with linear hardening.

In both cases, the CPU time for the gradient computation is a small fraction of the
time required for the response run. This result is applicable fo any number of variables
provided the adjoint method is used.

3.5 Plane stress plasticity and damage

Zhang and Der Kiureghian (1997) further developed the above formulation for plane
stress J, plasticity. In this case, the discretized constitutive laws take a special form
because of the zero stress constraint. A coupling with the damage model by Lemaitre
and Chaboche {1990) is introduced and the sensitivity formulas developed.
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As an example, a plate with a hole having initial damage (modeled as a lognormal
random field) is investigated. The loading is a periodic traction on a side. The limit
state function is defined as the excursion of damage at any point within the plate above
a given threshold. Time and space variabilify is thus introduced in the reliability analysis.

Thig leads to a system reliability problem, the failure modes being related to different
locations of the first damage threshold crossing. A similar study is presented by Der
Kiureghian and Zhang {1999). It is emphasized that taking intc account the spatial
variability in reliability dramatically changes the result, i.e. the reliability index. -

4 Semnsitivity analysis

The determination of the design point requires the computation of the gradient of the
mechanical response. This can Iead to tedious analytical developments and coding when
the direct differentiation method is used, but allows for addressing strongly non-linear
reliability problems. However, the gradient computation contains information which can
be used for sensilivily aneolysis. This is a readily available byproduct of any FORM
analysis,

The relative importance of the basic standard normal random variables entering the
reliability analysis can be measured by means of the vector &* defined as :

(4.81) at =

where y* denotes the coordinates of the design point in the standard normal space.
Precisely, the ordering of the elements of o* indicates the relative importance of the
random variables in the standard normal space.

Of greatest interest is also the sensitivity of the reliability index £ with respect to pa-
rameters @ entering the definition of the limit state function (g(-, 4,}) or the probability
distribution function £, (X, ;) of the basic random variables X. In the former case, the
sensitivity of § is (Ditlevsen and Madsen, 1996, chap. 8) :

(482) W, " Tew @) 0 %

In the latter case, it involves the partial derivative of the probability transformation
(4.12) and turns out to be :

A8 o7 OV(X(6), 8y)
(4.83) d@f = (ﬁf) {%}f
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where o is given by {4.81). The sensitivity of the probability of failure to parameters is
cbtained as :

aF _
dd

b

(4.84) =

©(8)

The papers referred to in Section 3 all include sensitivity analysis of the reliability index,
which gives better insight of the problems under consideration.

A special use of the sensitivity analysis is the following. Suppose the limit state function
is defined in terms of one load effect, say, one component of displacement v and a
threshold :

(4.85) g(U) =u" —u

Obviously, the probability of failure associated with this limit state function is identical
to the cumulative distribution function of u* evaluated at w. It follows that the PDF of
u; can be computed as the sensitivity of P; with respect to parameter u. This type of
reasoning was applied in Liu and Der Kiureghian (1991¢) and Zhang and Der Kiureghian -
(1897) to determine the complete PDF of a response quantity.

Sénsitivity analysis can also be used to identify random variables whose uncertainty has
insignificant influence on the reliability index and which can be replaced by deterministic
values (e.g. the median values of such variables) (Madsen, 1988}

Another interesting application of sensitivity analysis can be found in Mahadevan and
Haldar {1991), based on an idea first introduced by Der Kiureghian and Ke (1985).
The problem under consideration is to determine whether a parameter representing a
distributed load or a material property should be modeled as a random variable or
a random field in a reliability study. By first considering all parameters as random
~ variables, the authors determined the importance vector x* (see Eq.(4.81}). From their
numerical investigation, it appears that only those parameters x; corresponding to {af| >
0.3 deserve to be modeled as random fields for a better accuracy of the results. The
examples considered to determine this empirical valee of 0.3 included a clamped beam,
a portal frame and a two-dimensional plate with a hole.

To conclude, it is worth mentioning a recent book from Kleiber et al. {1997) entirely
dedicated to finite element sensitivity analysis of linear and non-linear problems.
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5 Response surface method

5.1 Introduction

In the previous sections, ingredients for a direct coupling between reliability analysis and
finite element computations have been presented. It has been observed that the two most
important issues making this “marriage” possible are :

e an unconditionally stable algorithm for the determination of the design point in
the standard normal space (e.g. the iHLRF algorithm described in section 2.6),

e a practical method for computing gradients of the limit state function. The direct
differentiotion method described in section 3 turns out to be the most efficient
approach. It can be applied to general problems including those involving material
as well ag geometric non-linearity and dynamics. However, it requires analytical
developments that may become cumbersome when non-linear problems are ad-
dressed. These developments and the corresponding implementation have to be
done from scratch for every class of problems. In contrast, the finite difference
approach for gradient computation can be applied without modifying the finite el-
ement code, but requires much more computational effort (each gradient requires
{N + 1) evaluations of the limit state function, where NV is the number of basic
random variableg).

As a consequence, when a large number of random variables is used together with the
finite difference method (for instance, when a commercial finite element code is used, the
source code of which not being accessible), the direct approach may eventually be really
time consuming (Lemaire, 1998). The response surface method offers an alternative in
this case.

5.2 Principle of the method

Let X = {X, .. Xn} be the vector of basic random variables. The basic idea of the
response surface method is to approximaie the exact limit state function g(X), which is
usually known only through an algorithmic procedure, by a polynomial function §{X).
In practice, quadratic functions are used in the form :

N N N N
(486) Q(CC) Rs’@(:c) = aO%Zai Z; "}'Zﬁm 56?'{'2 E Qg Ly Ly
fz=l fzzl

=1 j=1,554
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where the set of coeficients a = {a,, @, 0y, a;;}°, which correspond to the constant,
linear, square, and cross terms respectively, are to be determined.

1t is argued that a limited number of evaluation of the limit state function (i.e. number
of finite element runs) is required to build the surface. Then the reliability analysis
can be performed by means of the analytical expression (4.86) instead of the true limit
state function. This approach is particularly attractive when simulation methods such
as importance sampling (Bucher and Bourgund, 1990) are used to get the reliability
results.

5.3 Building the response surface

The determination of the unknown coefficients a = {a,, 4, Gu, Gy} is performed by
the least-square method. After choosing a set of fitting points {2, &k = 1, ... NF}, for
which the exact value y* = g(2®) is computed, the following error is minimized with
respect to0 @ !

NF
(4.87) err(a) = S (vF — §(z"))’
k=1

Recasting Eq.(4.86) in the form :
(4.88) ale) =11, 2, 22, mz;} 7 oo, @iy a5, 05} =V {Z") - a
the least-square problem becomes :

NF
(4.89) Find a = Argmin {Z (y* = VT{z")- a)z}

B=1

After basic algebra (see for instance Faravelli (1989)), the solution of the above problem
turns out to be :

(4.90) a=VT VT VT y

where V is the matrix whose rows are the vectors V(z*) (see Eq.(4.88)) and ¥ is the
vector whose components are y* = g{z").

The various response surface methods proposed in the literature differ only in the ferms
retained in the polynomial expression (4.86) (e.g. with or without cross terms), and the
selection of the coordinates of the ftting points {z*, k =1, ..NF}, i.e., the ezperimen-
tal design used in the regression analysis. It is emphasized that NF > N is required to
be able to solve (4.90). Furthermore, the fitting points have to be chosen in a consistent
way in order to get independent equations, i.e. an invertible V¥ - V.

8The subscripts (4, 7) vary as described in Fq.(4.86). The variation is not explicitly written here for
the sake of simplicity.
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5.4 Various types of response surface approaches

Early applications of this method to the analysis of slope stability can be found in
Wong (1985). The autkor employed the so-called factorial experimental design. For each
random variable X;, lower and upper values of realizations (z] , 777} are selected. As a
whole, 2% fitting points are defined by all the possible combinations {z7 , zE, Lz}
Wong selected values symmetrically around the mean at a distance of one standard

deviation, that is :
(4.91) ¥ = £ oy

The number of fitting points increases exponentially with the number of random variables
N involved in the reliability problem under consideration.

In order to reduce the number of fitting points in case when NN is large, Bucher and
Bourgund (1990) proposed a simplified quadratic expression without cross terms, which
is defined by only (2 N + 1} coefficients {a, , ¢;, i }. In a first step, the mean vector f1y
is chosen as the center point of the response surface. Exactly (2 N + 1) fitting points are
selected “along the axes” as follows :

1

(4.92) % =px — foie;, i=1,..N
oo+l :,u.x—l—fo*@-ei, ’.i:}_,...j\r

where o; is the standard deviation of the i-th random wvariable, e; is the i-ik basis
vector of the space of parameters, whose coordinates are {0, ... , 1,0, ...}, and f isan
arbitrary number (set equal to 3 by Bucher and Bourgund (1990}).

From this first response surface, an estimate of the design peint z* is computed. Then
a new center point x;; is obtained as a linear interpolation between py and z*, so that
it approximately zeroes the ezact limit state function :

glpx)

(4.93) Ty = poy + (0" — px) Tl gl@)

A second response surface is then generated around zx;. As a whole, the approach
requires only (4 N + 3) evaluations of the limit state function, and can thus be carried
out for structural systems involving a great number of random variables. Importance
sampling is finally used to get the reliability results.

Rajashekhar and Ellingwood (1993) later considered the approach by Bucher and Bour-
gund (1990) as the first two steps of an iterative procedure they pushed forward until
convergence. They also added cress terms to the response surface definition, obtaining
better results in the numerical examples.
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Analyzing the three papers presented above, Kim and Na {1997) observed that, in each
cage, the fitting points are selected around a preselected point (e.g. the mean value of
the basic random vector) and arranged along the axes or the “diagonals” of the space
of parameters, without any consideration on the orientation of the original limit state
surface. The authors argued that these procedures may not converge to the true design
point in some cases.

Alternatively, they proposed to determine a series of linear response surfaces as follows :
In each iteration, the fitting points used in the previous step are projected onto the
previous response surface, and the obtained projection points (which lie closer to the
actual limit state surface) are used for generating the next response surface. In each
iteration, an approximate reliability index is readily available, since the response surface
is linear. In some sense, this method finds the design point without solving the mini-
mization problem usually associated with FORM. The authors assessed the validity of
this so-called vector projection method by comparing with Monte Carlo simulation (with
'1,000,000 samples), first by using an analytical limit state function, then by studying a
frame structure and a truss.

Starting from the paper by Kim and Na (1997), Das and Zheng (2000) recently proposed
to enhance the linear response surface by adding square terms. The fitting points defining
the final linear response surface are reused to produce the quadratic surface. SORM
analysis is then performed.

Lemaire (1997) presents a synthetic summary of the response surface methods {called
“adaptive” because of successive refinement until convergence around the design point)
and draws the following conclusions :

e it is better to cast the response surface in the standard normal space rather than
in the original space for reliability problems. All quantities being adimensional,
there is a better control of the regression.

s Provided encugh fitting points are used, the choice of the type of experimental
design ig not fundamental.

e The quality of the response surface has to be checked. Different indicators are
proposed to estimate the accuracy, including :

— the back-transformastion of the fitting points from the standard normal space
to the original space, in order to exclude non physical points,

the conditioning of the experimental matrix Y7 - V appearing in Eq.(4.90),

the quality of the regression measured by a correlation coefficient,

|

— the belonging of the obtained design point te the original limit state surface.




5. Response surface method 71

In order to reuse at best the finite element results; a data base keeping track of the finite
element runs should be constructed.

5.5 Comparison between direct coupling and response surface
methods

Few studies have been devoted to the actual comparison of the direct coupling and the
response surface methods. A general discussion on their respective advantages can be
found in Lemaire (1998).

Lemaire (1997) considers the problem of a hollow sphere submitted to internal pressure.
The limit state funciion is defined analytically and FORM analysis is applied to get the
reference results. The response surface method is then applied and gives identical results
after three iterations.

Hornet et al. (1998) and Pendola et al. {2000c) proposed a benchmark problem in non-
linear fracture mechanics. Crack initiation in a steel pipe submitted to internal pressure
and axial tension is under consideration. Different finite element codes including ANsYs
and CopE_ ASTER” are used together with the reliability softwares RyFES® (developed
by Lemaire and his colleagues), COMREL {developed by Rackwitz and his colleagnes) and
ProBan (developed by Det Norske Veritas). As far as accuracy is concerned, the direct
coupling and the response surface method give identical results for probabilities of failure
within [1071, 10~} (corresponding to an increasing axial tension). As far as efficiency
is concerned, Pendola ef al. (2000¢) show that the response surface approach allows to
divide by 10 the number of finite element runs for the specific example. However, a finite
difference scheme for gradient computation was applied in the direct coupling, which is
not optimal. In this example, an axisymmetric non-linear finite element model was used.

A similar comparison has been carried out by Defaux and Heinfling {2000) on the problem
of an hyperbolic cooling fower submitted to thermal and wind loading. A linear elastic
three-dimensicnal finite element model using thin shell elements was used. In this case,
the direct coupling and the response surface method gave the same results for similar
computational cost. '

5.6 = Neural networks in reliability analysis

Before concluding this section, it is worth mentioning the recent introduction of neural
networks in the context of reliability analysis. Basically, neural networks work as powerful

4This general purpose finite element code is developed by Electricité de France.
SRYFES stands for “Reliability using Your Finite Blement Software”,
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interpolation tools, and can thus be used instead of quadratic response functions to
approximate the Hmit state function. After being trained with a set of input/output
data (here realizations of the vector of basic random variables, and corresponding value
of the limit state function obtained after a finite element calculation), the neural network
can produce reliable output values for any input at low cost.

Hurtado and Alvarez (2000) compare two types of networks called mulii-loyer perceptrons
and radial basis functions networks. After being trained, the networks are used together
with a crude Monte Carlo simulation to get the probability of failure. A system reliability
problem associated with the collapse of a frame is considered. It appears that the radial
basis functions network provide the best results with a rather small number of training
samples.

Pendola et al. (2000a) introduce neural networks in conjunction with FORM analysis.
The neural network replaces the quadratic response surface obtained after the iterative
procedure described in section 5.4. Applying this approach to the benchmark problem
described in Pendola ef al. {20005), the authors show that the results are identical to
those obtained by the response surface method, the number of finite element simulations
being however reduced by a factor 2.

5.7 Conclusions

Although the response surface method is an old idea, it seems to have gained new
consideration in recent years. The up-to-date approach consists in generating quadratic .
response surfaces iteratively, where the center point converges to the design point. After
convergence, any reliability method can be applied with the response surface, e.g. FORM,
SORM or importance sampling.

From the few existing comparisons between the direct coupling and the response surface
method, it seems that the same accuracy can be obtained by both approaches. When
the response surfaces are carefully generated and checked at each step, convergence to
the design point is always obtained in these comparisons. However, no proof has been
given that this result is general.

As far as efficiency is concerned, the papers dealing with comparison of approaches
always conclude that the computational cost of the response surface approach is far
less than the direct approach. However all these applications consider a small number
of random variables, typically 3-5. If a larger number of random variables were to be
considered, the cost of generation of each response surface would probably blow up.
Moreaver, even for a small number of random variables, the comparisons of efficiency
with the direct coupling are not fair, in the sense that gradients are usually computed
by finite differences instead of direct differentiation.
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As a summary, the response surface method appears to give accurate results for most
problems applied, and may be faster than the direct coupling when a small number
of random variables is considered, and when it is not possible to implement the direct
differentiation method (for instance, when a commercial finite element code is used).
Otherwise, the direct coupling will probably require less or equal amount of computa-
tion. These conclusions can change in the near future due to the introduction of neural
networks iz the field of reliability analysis.

6 Conclusions

In this chapter, methods coupling reliability and finite element analysis have been pre-
sented. The classical approach of reliability (FORM/SORM) has been summarized. The
need of computing response gradients was emphasized. For this purpose, the direct diffet-
entiation method has been presented. It allows sensitivity analysis for general problems
including material and geometrical non-linearities and dynamics. Using this approach,
the computational cost of the gradient is a small increment over the cost of the non-linear
response itzselfl

Ii has been shown that reliability analysis allows for obtaining PD¥Fs of any response
quantity. It should be noticed that this approach will give accurate results only for the
tails of the PDF. Indeed it is based on FORM, which may be inaccurate for low reliability
indices (large probabilities).

The response surface method has been presented as an alternative to direct coupling. It
is also applicable to the most general problems and does not reguire the implementation
of gradients in the finite element code. Whether one method is more efficient than the
other depends fundamentally on the number of random variables included in the analysis
and the way gradients are cem.puted.




Chapter 5

Spectral stochastic finite element
method

1 Introduction

The spectral stochastic finite element method (SSFEM) was proposed by Ghanem and
Spanos {1990, 1991a) and presented in a comprehensive monograph by Ghanem and
Spanos {19915). It is an extension of the deterministic finite element method (FEM) for
boundary value problems involving random material properties.

To understand what kind of discretization is infroeduced in SSFEM, let us come back for a
while in the deterministic world, and consider a mechanical system {2 with deterministic
geometry, material properties and loading. The evolution of such a system is governed
by a set of partial differential equations (PDE) and associated boundary conditions and
initial state. When no closed-form solution to these equations exists, a discrefization
procedure has to be applied in order to handie the problem numerically. In the usual
finite element method, the geometry £ is replaced by a set of points {z;,i =1, ... N}
that are the nodes of the finite element mesh. Correspondingly the response of the
system, i.e. the displacement field w({x) is approximated by means of nodal displacements
{ut,i=1, .. N} gathered into a vector I/. The set of PDE can then be transformed to
a system of equations in {w'},.

If a material property such as the Young's modulus is now modeled as a random field,
the system will be governed by a set of siochastic PDE, and the response will be the
displacement random field u(z, 4), where # denotes a basic outcome in the space of all
possible outcomes @. A spatial discretization procedure such as that described in the

1See notation in Chapter 2, Section 1.1.
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above paragraph results in approximasing the response as a random vector of nodal dis-
placements U (#), each component being a random variable u*(f) yet to be characterized.

A random variable is completely determined by the value it takes for all possible out-
comes 6 € ©. Adopting the same kind of discretization as for the spatial part would
result in selecting a finite set of points {f;, ... 05} in ®. The Monte Carlo simulation of
the problem corresponds to this kind of strategy. The realizations ; have to be selected
with some rules to ensure that the space & is correctly sampled. It is however well known
that an accurate description of the response would require a large value for Q.

SSFEM aims at discretizing the “random dimension” in a more efficient way using series
expansions. Two different procedures are used.

e the input random field is discretized using the truncated Karhunen-lLoéve expan-
sion presented in Chapter 2, Section 5.2.

e Fach random nodal displacement u*(#) is represented by its coordinates in an
appropriate basis of the space of random variables £2(@, F, P}, namely the poly-
nomial chaos.

The outline of this chapter will be the following :

e SSFEM will be first developed in Section 2 for elastic two-dimensional problems
involving a Gaussian random field for modeling the Young’s modulus of the mate-
rial.

¢ Computational issues regarding the peculiar system of equations eventually ob-
tained will be addressed in Section 3.

e Extensions of SSFEM to problems involving non Gaussian input random fields or
multiple random fields will be presented in Section 4, as will the so-called Aybrid
SSFEM.

e A list of applications found in the literature will be given in Section 5.

s Pinally advantages and Hmitations of SSFEM will be discussed in Section 6.

Some technical developments including the definition of the polynomial chaos and the
additional tools related %o the discretization of lognormal random field are gathered in
an appendix at the end of this chapter.
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2 SSFEM in elastic linear mechanical problems

2.1 Introduction

Rather than presenting SSFEM in & general, thus intricate way, the main ideas are
first developed in this section on a simple example, namely the accounting of the spa-
tial variability of the Young's modulus in an elastic mechanical system. In this case,
the deterministic finite element method is assumed to be well-known. Hence only the
approximated golution “in the random dimension” is developed.

2.2 Deterministic two-dimensional finite elements

Using classical notations, the finite element method in linear elasticity eventually vieids
a linear system of size N x N (N being the number of degrees of freedom) :

(5.1) K. U=F

where the glohal stiffness matriz K is obtained after assembling the element stiffness
matrices k° :

(5.2) k= | BT D . Bd,
o Qe

In the above equation, IJ stands for the elasticity matrix and B is the matrix that
relates the components of strain to the element nodal displacements.

2.3 Stochastic equilibﬁUm equation

Suppose now that the material Young’s modulus is a Gaussian® random field. The elas-
ficity matrix in point = can thus be written as :

{5.3) : D{z,8)=H(z, §) D,

where I3, is a constant matrix. The Karhunen-Loéve expansion of H(.) writes
(Eq.(2.43)) :

(5.4 Hiz, 8) = ple) + 3 VA &l6) wile)
i=1

?This assumption, which is not realistic, will be relaxed later.
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Substituting for (5.3),(5.4) in (5.2) yields :
(5.5) | kE(6) = kg + > ki &(6)
i=1

where k¢ is the mean element stiffness matrix and kf are deterministic matrices obtained
by :

(5.6) ¥ =V [ el BT D, B,
Ja,

Assembling the above element contributions eventually gives the stockhastic counterpart
of the equilibrium equation (5.1) (assuming a deterministic load vector F'}

oo
(5.7) [K“FZK} 55(9)} Uy =F

i==1
In the above equation, K; are deferministic matrices obtained by assembling k{ in a
way similar to the deterministic case.

2.4 Representation of the response using Neumann series
The vector of nodal displacements U (8) is formally obtained by inverting (5.7). However
1o closed-form solution for such an inverse exists. An early strategy adopted by Ghanem

and Spanos (19915) consists in using a Neumann series expansion of the inverse stochastic
stiffness matrix to get an approximate response. Eq.(5.7) can be rewritten as:

(58) Kc ’

I+ i Kl K, gi(a)} Uy =F

i=1

which leads to ;

—1
oo
(5.9) U@ = {I +> KUK, @(9)] U, U'=K;VF
i=1
The Neumanzn series expansion of the above equation has the form :
oo oo &
(5.10) U@ => (-1 {Z KK, a-.(@)} U
k=0 =1
whose first terms explicitly write :
(5.11}
o0 oo oo ‘}
U@) = I-> K K &0)+> > KN K- K K;6(0)6(0) + .. | Ut
i=1 i=1 g=1

Truncating both the Karhunen-Loéve and the Neumann expansions (indices 7 and % in
Bq.(5.10), respectively) yields an approximate solution for U(6).
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2.5 General representation of the response in L2(@, F, P)

From (5.11) it is seen that each random displacement w(f) can be represented as a
series of polynomials in the standard normal variables {£,(6)}72,. Reordering all terms
by means of a single index j, this representation formally writes :

(5.12) wi(0) = > i Py ({601
J=t
where Py = 1 and P; ({&(6‘}}2‘3__4) are polynomials in standard normal variables, e.g.

(5.13) P ({aone,) =g e

The set of {P;}32, in Eq.(5.13) forms a basis of the space of all random variables
L£2(®, F, P), and the coefficients v} are interpreted as the coordinates of u*(f) in this
basis.

Referring to the inner product defined in £L2(@, F, P) by Eq.(2.4-a}, the above basis
is however not orthogonal For instance, £,(8) and £(6) are two basis random variables
whose inner product is E[£f] = 3. For further exploitation of the response, such as
computing its moments, an orthogonal basis appears more appealing.

The polynomial chaos® proposed by Ghanem and Spanos (19915) possesses this property.
The details of its construction are quite technical and not essential to the understanding
of SSFEM. Thus they are given in Appendix A.1 at the end of this chapter.

To proceed, let us assume thai any random variable u(f) element of £*(@, F, P) can
be given the following representation :

(5.14) u(@) = >_u; 3;(0)

where {¥;(8)}32, is a complete set of orthogonal random variables defined as polynomials
in {£,(8)}52,, satisfying® :

(5.15-a) v, = 1
(5.15-b) E[g] =0 >0
(5.15-c) | E@)u0)] = 0 j#k

®Also referred to as Wiener chaos from the name of the mathematician who derived it first.
[es]

“Eq.(5.14) has been preferred to a more detailed notation such as u{f) = Z 1wy U5 (16:(0)15L,) for
—

the sake of simplicity.
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The expansion of the nodal displacements vector is consequently written as :
(5.16) U@y => UL,
=

the “coordinates” U; being deterministic vectors having N components. Note that the
first term U, in the above equation is different from the first term in the Neumann
expansion (5.11). The latter, denoted by U°, is that obtained by a perturbation approach
(see Chapter 3, Section 2).

By denoting &,(#) = 1 and substituting the above equaticn in (5.7), one gefs :
oo o0

(5.17) (Z K, gi(a)) : (Z U, \Irj(zg)) ~F=0
i=0 =0

For computational purposes, the series involved in (5.17) are truncated after a finite
number of terms, precisely (A -+ 1) for the stifftiess matrix expansion { Karhunen-Loéve
expansion) and P for the displacements vector expansion. As a result, the residual in
{5.17) due to the fruncation reads :

M P-1

(5.18) e = DD K UsaB) U6~ F

=0 j=0

The best approximation of the exact solution U (#) in the space Hp spanned by { U}
is obtained by minimizing this residual in a mean square sense. In the Hilbert space
L2(@, F, P), this is equivalent to requiring that this residual be orthogonal to Hp,
which vields :

(519) EiEMr:p . \Bk:} =0 k= O, P

Let us introduce the foiléwiﬂg notation :

(5'20) Cijk = E[&: Wj ‘I’lf

(5.21) F, = E[U, F

Note that Fy is zero for & > 0 in the case of deterministic loading considered in this
report. Using {5.18), Eq.(5.19) can be rewritten as :

M P-1

(5.22} chiiji'UjIFk k=0,...P—1
=0 j=0

For the sake of simplicity, let us define :

i3

(5.23) Ky = Z Cizn K
=0
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Hence Eq.(5.22) rewrites :

P—1
(5.24) > Kj Uj=F; k=0, .P-1

i=0
In the above equations, each U, is a N—dimensional vector, each K ;. a matrix of size
N x N. The P different equations can be cast in a linear system of size NP x NF as
follows :

K, v Kc,P—l U, ¥,

K, ... Kip_ U F
(5.25) -z 1,.P 1 _ ‘1 _ .E

Kp 1o ... Kp.pa Upy Fp,
which may formally be rewritten as :
(5.26) K-U=F
After solving this system for I = {U,HA = (} — 1}, the best apprexzmatioz} of
U{6) in the subspace Hp spanred by {¥,}i 1 is given by :
(5.27) HOE Z U;,(6)
Jj=0

As reported in Appendix A, Section A.1.2, the dimension P of Hp is usually 10-35
in application. This means that any nodal displacement is characterized as a random
variable by 15-35 coefficients. The amount of computation required for solving the linear
system (5.26) is thus much greater than that required for the deterministic analysis of
the same problem.

2.6 Post-processing of the results

The coefficients in Eq.(5.27) do not provide a clear interpretation of the response ran-
domness in themselves. The following useful quantities are however readily obtained.

e The mean nodal displacement vector E{U] is the first term of the expansion,
namely U, since E[¥,(#)] =0 for j > 0.

e The covariance matriz of the components of vector I is :
(5.28) Cov[l7, U] = Z [22 U;-UT

the coefficients E [¥%] being easily computed due to the definition of the U;’s (See
Appendix A1),
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e The probakility density function of any component U of the nodal displacement

vector can by obtained by simulating the basis random variables ¥,(#}, then using
Eq.(5.27). In the case when this equation is limited to quadratic terms (second
order polynomial chaos), a closed-form expression for the characteristic function
of U has been given by Ghanem (1999a), which can be then numerically Fourier-
transformed %o obtain the required PDE.

Reliability analysis has been claimed a straighiforward byproduct of SSFEM in
Ghanem and Spanos (19915). However no such application could be found in the
literature.

It seems possible to couple the general reliability tools developed in Chapter 4,
Section 2 with SSFEM. Let us consider for instance a limit state function of the
following form :

(5.29) gU@) =u—u>

where u* is a nodal displacement under consideration and u is a preseribed thresh-
old. Substituting the 7,-th component of the vectorial equation (5.27) in (5.28)
vields the following analyticel polynomial expression of the limit state function :

(5.30) ATO) = u— Y e ¥ ({6(0}12)
=0

This Hmit state function is already cast in the standard normal space due to the
definition of the polynomials ¥, ({£(6)}22,). Moreover, its gradient with respect
to the basic random variables can easily be obtained in closed-form as well. De-
termining the design point and associated probability of failure should thus be
straightforward.

Of course, this approach requires having solved (5.25) beforehand and it is probably
not efficient when a single reliability problem is to be solved. In contrast, it might
be interesting when the probability density function of a response quantity is to he
determined by sensitivity analysis after repeated FORM analyses (see Chapter 4,
Section 4}, or when system reliability is under consideration {in the latter case, a
number of previous component reliability analyses is reguired as well).

In any case, the accuracy of this approach has to be checked. Especially the ac-
curacy in representing the tails of the PDF of the response should be carefully
evaluated (these tails are essential in reliability analysis}. It may happen that an
acceptable accuracy requires a large number of terms P in the expansion of the re-
sponse. This approach must eventually be compared to the classical finite element
reliability approach developed in chapter 4 in terms of accuracy and efficiency.
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3 Computational aspects

3.1 Introduction

As it can be seen in Eq.(5.25), the size of the linear system resulting from the SSFEM
approach increases rapidly with the series cut-off number P. Whenever classical direct
methods are used to solve the gystem, the computational time may blow up rapidiy.
This is the reason why early applications of SSFEM were limited to a small number of
degrees of freedom N. Only in recent papers was the problem of computational efficiency
of SSFEM addressed {Ghanem and Kruger, 1996; Pellissetti and Ghanem, 2000).The
main resulis are reported in this section.

3.2  Structure of the stochastic stiffness matrix

Bgs.(5.23)-(5.24) suggest that the global matrix K is completely determined by the
matrices K; and the coefficients ¢;;;. Storing IC as these building blocks K; along with
the ¢ coeflicients reduces the required amount of memory considerably. Ghanem and
Kruger (1996) took the example of a 4-term KL expansion. Using a second (resp. third)
order polynomial chaos, the proposed method requires 11 times (resp. 33 times) less
memory compared to the classical global storage. It turns out that a large number of
coefficients ¢y, are zero (see the tables in Ghanem and Spanos (19915, chap. 3}).

It is recalled that K, corresponds to the siiffness matrix of a system having the mean
material properties. In the same way, K;, i > 0, can be viewed as the stiffness matrix
corresponding to a certain spatial fluctuation of the material properties given by the
eigenfunction ¢;(x). Since the mean of these fluctuations is zero, and if they are bounded
within a certain range, the entries of K, are expected to be dominant in magnitude.
Furthermore, it is easily seen from {5.20) that ¢, o & since &, = 1 and the ¥;’s are
orthogonal to one another. Examining now (5.23}, this means that K, has a contribution
only in the K;; blocks that are on the main diagonal of K. These arguments tend to
prove a diagonal dominance in JC which should be taken advantage of in the solution
scheme. Finally the matrices K all have the same non-zerc structure, which can simplify
the storage.

3.3 Solution algorithms

To take advantage of the proposed storage scheme, it is necessary that the solution
method not require explicit assembling of XC. Iterative methods such as the conjugate
gradient method are well suited to this situation, since they only require matrix-vector




84 Chapter 5. Spectral stochastic finite element method

products. It is thus sufficient to compute the matrices K j; by means of Eq.(5.23) each
time they are operated on. Since only a small number of coefficient c;;, is non zero, this
is not a time-consuming task.

In the context of iterative algorithms for solving linear systems, the spectral condi-
tion number of the matrix {the ratio between its largest and smallest eigenvalues] is of
paramount importance. These algorithms rapidly converge when the condition number
is low. To enhance the convergence, preconditioning technigues (see Demmel (1997) for a
state-of-the-art review) have been proposed. They essentially replace the original system
K. .U=Fby:

(5.31) M'K.-U=M"-F

where the condition number of M~ K is much lower than that of K.

The Jacobi preconditioner (M = diag (K)) and incomplete factorization preconditioners
(M = L™ U™, L™ and U™ being the incomplete triangular factors of K') are usually
employed in the context of deterministic finite elements.

Due to the properties mentioned in Section 3.2, the following preconditioning matrix
was proposed by Ghanem and Kruger (1996) for efficient solution of the SSFEM linear
gystem :

(5.32)
K, 0 .. 0
L o Ky, o0 0 X o
M= d]a,g{ij} = ] . where ij = Coij}I}i }}cﬂ
] o ... KP—E,P—-l

Applying this approach to a system with N = 264 degrees of freedom and P = 5,15,
the authors showed that the proposed preconditioner allows to divide the number of
iterations by 12-15 compared to the Jacobi preconditioner. Moreover, the former leads
to a number of iterations independent of the coefficient of variation of the input field
wheress the latter does not®.

3.4 Hierarchical approach

The polynomial chaos basis is called hierarchical because increasing the dimension of
the functional space (i.e. P) does not change the lower-order basis functions. ‘This leads
to the following solution strategy. Suppose the linear system (5.26) is partitioned as

5The larger the coefficient of variation, the larger the condition number of K.
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follows :

Kll th UE _ Fl!
(5:33) [Khz Khh][Uh}m{Fbg

where {); and (), stand for lower and higher order terms, respectively.

Tf the lower-order solution U; = K o1+ F; was obtained with sufficient accuracy, it can be
expected to be close to U; appearing in (5.33). Thus an approximate solution of (5.33}
ig :

(5.34) U = U,
(5.35) U, = K} (Fh“Khi'f]i>

It is then possible to enhance successively the solution (5.27) starting from a lower-order
solution and using (5.35) by adding one basis polynomial at each fime. As the lower-
order coefficients are not medified along the procedure, this could lead to a successive
built-up of error.

On an example application, Ghanem and Kruger (1996) found no significant discrepancy
between the results obtained by this procedure and those obtained by a direct higher-
order resolution. However, there is no proof or evidence that this is a general result. It
is likely that the accuracy of the results obtained by the hierarchical approach decays
when the coefficient of variation of the input field increases. A more exhaustive study
should be carried out to assess the validity of this approach.

4 Extensions of SSFEM

4.1 Lognormal input random field

The use of Gaussian random fields is quite common in the context of probabilistic me-
chanics. However these fields are not well suited to modeling material properties (Young’s
modulus, yield stress, etc.) which are by their nature positive valued. Indeed for large
coeflicients of variation, realizations of the field could include negative outcomes that are
physically meaningless, In contrast, the lognormal field appears attractive in this sense.
A lognormal field can be defined by a transformation of a Gaussian field g(z) as :

(5.36) (@) = @

The Karhunen-Loéve expansion of a lognormal field, although possible, is of no practical
interest since the probabilistic structure of the random variables {£;} appearing in the
expansion cannet be determined. In order to be able to include lognormeal fields in the
SSFEM approach, Ghanem (19996) proposed to expand them into the polynomial chaos.
Due to the particular form of (5.36), this leads to closed-form expressions.
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4.1.1 Lognormal random variable

Let us first consider a single lognormal random variable obtained as follows :
(5.37) [ = gHotoet

where ¢ is a standard normal variable. The polynomial chaos expansion of [ reads :
oo
(5.38) (=L 0(E)

where ¥,;(£) is the i-th Hermite polynomial in this case. Due to the orthogonality prop-
erties of the W,'s, the coefficients [; can be cbiained as :.

_ Elexp (g + 0,8) Ti(£)]
(5.39) [ = % [ mﬁ

which, after some algebra, reduces to :

BB +a,)]

1
(5.40) b= —— P 1ty + 53]

5%

o

The fraction in the above equation turns out to be »,—fg after some algebra, whereas the
. il

exponential term is nothing but the mean value of [, denoted by p;. Thus the expansion

of any lognormal random variable into the (one-dimensional) polynomial chaos reduces

to:

(5.41) (=Y L)

i=0

4.1.2 Lognormal random field

Let us now consider the approximate lognormal field ({2} defined by exponentiating the .
following truncated Karhunen-Loéve expansion of & Gaussian random field g(x) :

(5.42) (@) = exp [y (@) + D gi(®) &] = exp [y (@) + gl@)” - €]

i=1
The polynomial chaos expansion now reads :

oo

(5.43) )= k(@) (8

=0

Closed-form expressions of the coeflicients {;(z) are given iz appendix A.2 at the end of
this chapter.
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To use SSFEM in conjunction with a lognormal input random field is now straight-
forward : the procedure described in Section 2 applies, where Eq.(5.4) is replaced by
Eq.(5.38). The stochastic equilibrium equation (see Eq.{5.7)} now writes :

(5.44) (i K, xpi(@) U@ =F

After truncation of the latter after P terms, the Galerkin minimization of error leads
to a system of linear equations similar to (5.22), the coefficients ¢;;, being now replaced

(545) d’jjic = E[‘I"z \Ifj \Irk::[

The polynomial chaos expansion of the input random field introduces a new approxima-
tion in SSFEM, which probably decreases the accuracy of the method. This accuracy
has not been stated by Ghanem and his co-workers. Whether a fair accuracy could be
obtained with a manageable number of terms in the series expansion is of crucial impor-
tance, Unfortunately no comparison with other methods (e.g. Monte Carlo simulation}
are provided in Ghanem {19995,¢). Regarding reliability problems, the accuracy in the
tails of PDFs is probably also affected by the use of the polynomial chaos expansion of
the input random field.

4.2 Multiple input random fields

It is usual that more than one material property governs the evolution of a system.
Consider for instance Young’s modulus and Poisson’s ratio in mechanical problems,
conduetivity and heat capacity in heat conduction, etc. In a probabilistic context, all
these quantities have to be modeled as random fields®.

This is completed in the following manner : each field is discretized using different sets
of standard normal variables, say {&;, ... £y} for the first one, {Eprp1, ... Ea0} fOr the
second, ete. All these variables are then merged in a single list, the size of which deter-
mines the dimension of the polynomial chaos expansion of the response. This technique
was applied in the heat conduction example presented by Ghanem (1999¢).

Exéept from the point of view of data management, using multiple input random flelds
seems not a difficult task. However multiplying by 2 the length of vector £ increases
dramasically the size of the polynomial chaos basis (see for instance table 5.2, page 96),
which basically controls the computation time.

5We suppose here the statistical independence of these fields
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4.3 Hybrid SSFEM
4.3.1 Monte Carlo simulation

The SSFEM formalism consists in expanding the response process over a basis of
£%©, F, P), namely the polynomial chaos. If the basis functions W,(0) were Dirac
delta functions 6(6 — 6;), where 0; denotes a particular sample in @, a collocation-like
procedure along the random dimension would be obtained. Thus the response process is
now considered as the infinite set of its realizations, and an approximation is defined by
a finite set of s, As stated in the introduction, this is in some sense the definition of
Monte Carlo simulation.

Let ( be the number of samples. Practically speaking, a linear system K {8, -U(Qij =F
is solved for each ;7 == 1, ... @. The whole simulation can be cast in the following linear
systern of size N@ x N@Q :

K 0 ... o 1 Tou.] [ F]

0 K ... 0 U, F,

(5.46) 5 0 ... : o =1
.0 0 ... K{o)] LUal LFoq,

This system is similar in structure as that of Eq.(5.25), the size of which being NPxNP.
It is simpler because it can be solved by blocks resulting in () systems of size N x NV,
In practical applications, ¢ is much greater that P (3-4 orders of magnitude). However,
depending on the matrix storage and solving scheme, there should exist a threshold level
for which one procedure (SSFEM or Monte Carlo simulation) becomes more efficient than
the ather.

4.3.2 Coupling SSFEM and MCS

The.hybm'd SSFEM proposed by Ghanem (1998¢) is a coupling of Monte Carlo simu-
lation and SSFEM. Using a P-terms polynomial chaos expansion of the response, and
expanding the residual in terms of a set of delta functions &;(¢) = §(¢ — ¢;) results in :

P-1 : @2-1
(5.47) Ul) > U T,0)+ > U;8,(6)
=0 =0

The above expansion is substituted for in the equilibrium equation, and the obtained
residual is made orthogonal both to the ¥,'s and the ®,’s. This leads to a N{P + ) x
N(P -+ @) linear system. Further assumptions resulting in the partial decoupling of the
equations are introduced. The linear system is then solved iteratively at lower cost than
by the direct approach.
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4.3.3 Councluding remarks

Details of the hybrid method can be found in Ghanem {1988a). However no coavincing
application of these ideas has been published so far. Moreover, the deita functions do
not form a numerable set, and their use as a basis of £2(8, F, P) or a subspace of it
is questionable. The decoupling assumption which leads to the iterative procedure men-
tioned above is not really argued. There is globally a lack of mathematical justification
of the method. Further theoretical research as well as applications are needed to assess
the validity of this approach. :

5 Summary of the SSFEM applications

The main applications of SSFEM found in the literature can be summarized as follows :

o Early applications (Spanos and Ghanem {1989); Ghanem and Spanes (19914,8))
dealt with one- and two dimensional linear elastic structures : a cantilever beam
with Gaussian fexural rigidity E7 subjected to a deterministic transverse load at
its free end, a square plate clamped along one edge and subjected to a uniform in-
plane tension along the opposite edge with Gaussian Young's modulus, a clamped
curve plate for which the KL expansion had to be computed numerically. Coeffi-
cients of variation of the response as well as PDF’s were determined and compared
to those obtained by Monte Carlo simulation. The number of finite elements in
these examples was limited to 16. The maximal accuracy adopted in these exam-
ples was a 3rd order - 4-dimensional polynomial chaocs. For medium COV of the
input {say 15-30%), only these mest accurate results compare fairly well with the
Monte Carle simulation results.

e Ghanem and Brzkala (1996) addressed the problem of a two-layer soil mass with
deterministic properties in each layer and Gaussian random interface, subjected
to a constant pressure on part of its free surface. In this case, the random feld
representing the Young's modulus of the material is not Gaussian due to its non-
linear relationship with the Gaussian field defining the interface. Thus the stiffness
matrix had to be expanded over the polynomial chaos as in Eq.{5.44).

o Waubke {1996) addressed the problem of deterministic vibrations of a rigid plate
over a two-layer soil mass with random elastic parameters.

e The application of SSFEM to transport of contaminant in unsaturated porous me-
dia was addressed by Ghanem (19985). The permeability coefficients as well as the
diffusion coefficient are modeled as Gaussian random fields and discretized using
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Karhunen-Loéve expansion. The effective head and the contaminant concentra-
tion are expanded into the polyncmial chaos. The numerical results include the
coefficients in the expansion of the concentration as well as the variance of the
latter over the domain. No comparison with other approaches (e.g. Monte Carlo
simulation) is given.

The problem of heat conduction was addressed by Ghavem (1999¢). In this case,
hoth the conductivity and the heat capacity are modeled as Gaussian or lognormal
random fields. As an example, a one-dimensional domain of unit length is subjected
to a constant flux at one end and perfectly insulated at the other one. The initial
temperature of the domain is uniform. It is divided in 10 elements. The cov
of the input is up to 40%. The results are presented in terms of the coefficients
of the polynomial chaos expansion. Neither post-processing of these results nor
comparison with Monte Carlo simulation is provided in this paper. Due fo the

~ relatively small number of terms included in the expansions (M = 2 — 3), it is

difficult to judge the accuracy of the results or even interpret them.

The first application of SSFEM to elasto-plastic problems can be found in Anders
and Hori (1999) introducing some simplifying assumptions. The elasto-plastic con-
stitutive law indeed defines the plastic strain rate proportional to the derivative
of the yield criterion with respect to the current stress. In a stochastic context,
this would imply differentiation with respect to random variables, which is not an
casy task (see Ghanem (1999¢) for some theoretical developments and references
on this topic). Moreover, it is no$ clear how to enforce the negativeness of the vield
criterion when the stress is now a random quantity.

Thus the authors simplified the problem introducing two bounding solids, whose
mechanical properties allow to bound the stresses. The plastic flow rule is thus
applied with deterministic bounding stresses in each point. Although these as-
sumptions are questionable, his is the only example of real non-linear application
of SSFEM, which shows that a lot of work remains in this matter.

Advantages and limitations of SSFEM

In this chapter, SSFEM has been preéented in a comprehensive way including the most
recent developments. As an extension of the deterministic finite element method, this
approach represents the response as a vector of random nodal displacements. Bach com-
ponent of this vector is characterized by its coefficients in a series of polynomials in
standard normal variables. Due to this property, the representation of the response ran-

domness is said to be inirinsic.
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Formally, Eq.(5.27) can be interpreted as a polynomial response surface for the displace-
ment feld, defined by means of the basic random variables {&}¥,. In contrast with
usual responsge surface methods such as those deseribed in Chapter 4, Section 5, SSFEM

allows to define it at any order in a consistent framework.

Note that in all applications found in the literature, only the Karhunen-Loéve expansion
has been used to discretize the input Gaussian random field. The use of other schemes
such as OSE or EOLE would however be possibie and in some case more practical than
KL {for instance when other correlation structures than that with exponential decay are
dealt with).

The approximate solution Eq.(5.27) is obtained in the context of Galerkin minimization
of residuals. General convergence properties to the exact solution are associated with
this procedure : when the number of terms in the series tends to infinity, SSFEM tends
1o be “exact”.

However the following limitations of the method have to be recognized :

e it is practically limited to linear problems. Material non linearity (e.g. plasticity)
or geometrical non-linearity cannot be dealt with by SSFEM in its latest state of
development.

e The amount of computation required for a given problem is much greater than that
of the equivalent deterministic problem. Typically 15-35 coefficients are needed to
characterize each nodal displacement. As a consequence a huge amount of output
data is available. The question of whether this data is really useful for practical
problems has not been addressed.

e The truncation of the series invelved in SSFEM introduces approximation. So
far, no error estimafor has been developed and no real study of the accuracy of
the method has been carried ous, except some comparisons with Monte Carlo
simulations presented in early papers by Ghanem and Spanos.

e Although it is claimed in different papers quoted above that the reliability analysis
is a straightforward post-processing of SSFEM, no application could be found in
the literature. The application of SSFEM to reliability analysis remains broadly
an open problem. Important issues such as the accuracy of SSFEM in representing
the tails of the PDF5s of response guantities have to be addressed for this purpose.

e When lognormal random fields are used, another accuracy issue comes up. Even

_for a single variable, only an infinite number of terms in the expansion reproduces

the lognormal characteristic. This means that the input field defined by using only

a few terms in the polynomial chaos expansion (Eq.(5.38)) can be far from the
actual lognormal field.
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As a conclusion, it is noted that SSFEM is a quite new approach. Although limited for
the time being, it deserves further investigation and comparisons with other approaches
to assess its efficiency.
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Appendix

A.1 Polynomial chaos expansion

A. 1.1 Definition

‘The polynomial chaos is a particular basis of the space of random variables £2(© , F, P)
based on Hermite polynomials of standard normal variables.

Classically, the one-dimensional Hermite polynomials are defined by :

(5.48) (o) = (—1) el Gl e

dx®

Hermite polynomials of independent standard normal variables are orthogonal to each
other with respect to the inner product of £2(@, F, P) defined in (2.4-a), that is :

(5.49) E[bm(6(6)) 2(500)] =0, m#n

Multidimensional Hermite polynomiols can be defined as products of Hermite polynomi-
als of independent standard normal variables. To further specify their construction, let
us consider the following integer sequences :

{5.50} a = {a, .0 ;20
5.51 i o= {iy, i)} 4> 0
P i

The multidimensional Hermite polynomial associated with the sequences (i, o) is:

(5.52) Wia(®) = ] Das (6(0))
k=1

It turns out that the set {U; o} of all polynomials associated with all possible sequences
(i, @) of any length p forms a basis in £*(©, F, P).

For further convenience, let us denote by T, (&,(6), ... &, (6)) the set of basis polyne-
mials {¥; ,(0) | >.7_, o =p} and by T, the space they span. I'; is a subspace of
L@, F, P), usually called homogeneous chaos of order p. The subspaces [, are or-
thogonal to each other in £2(@, F, P). This is easily proven by the fact that they are
spanned by two sets of W, o having null intersection. Thus the following relationship,
knowi as the Wiener Chaos decomposition, holds :

(5.53) Pri=140,F, P)
k=0
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where €5 denotes the operator of orthogonal summation of subspaces in linear algebra.
Consequently the expansion of any random variable (@)} in the polynomial chaos can
be written as :

o oo

(5.54) w(f) = u, T+ Z’% Ty (&, (0)+ > Z i, Do (6,(8), £,(8)) +
i1=1 i1=1dp=1

In this expression u,, Ui, , Us,;, are the “coordinates” of u(@) associated with O-th, first

and second order homogeneous chaoses respectively. The lower order homogeneous chaos

have the following closed-form expression :

(5.55-a) I, =1

(5.55-b) NG = &

(5.55-¢) Lo, &) = &ibin — binas

(5.55-d) Us{€iy, &ias §ia) = Cubanbis — &iiiss — Einliney — &iadinig

Remark The polynomial chaos can be related to the (non orthogonal} basis associated
with the Neumann series expansion, see Eq.(5.13). For this purpose, le$ us introduce the
orthogonal projection m, of £3(@, F, P) cnto T, It can be shown that the following
relationship holds” :

(5.56) (O ... &7(8)) =

A.1.2 Computational implementation

For computational purposes, finite dimensional polynomial chaoses are constructed by
means of a finite number M of orthonormal Gaussian random variables, These variables
are for instance selected from the Karhunen-Loéve expansion of the input random field.
The polynomial basis formed by means of these M random variables is dencted by
Cp(&y, ... &) and it is called homogeneous chaos of dimension M and order p.

Due to (5.52), the basis I'; (&1, ... &) is generated as follows. To each set of A/ integers
{a, ...apf ranging from 0 to p and summing up to p, the following basis vector is
associated :

. M
(5.57) Vo= [beulé)

This formula allows for a systematic construction of the polynomial chaoses of any order.

M+p—
It can be shown that the dimension of [',(&; , ... £ar) is the binomial factor ( b I)

7This relationship and other mathematical properties of the polynomial chacs can be found in
Ghanem (19992).
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The lower-dimensional polynomial chaoses {up to M = 4) have been tabulated by
Ghanem and Spanos (19914, chap. 2) for different orders (up to p = 4). As an example,
Table 5.1 gives the two-dimensional polynomial chaoses at different orders.

Table 5.1: Two-dimensional polynomial chaoses

i B J-th basis polynomial ¥;
0 |lp=40 1
Tiep=1 &

2 £a

3 -1

4 1p=2 £162

5 -1

6 & — 36

T ip=3 &£ -1)

& 1 (& -1)

9 £5 — 36

10 & — 66143
11 & (& —3&)
12 p=4 -1 -1
13 & (6 - 3&)
14 £ -6 +3

When truncating Eq.(5.54) after order p, the total number of basis polynomials P is
given by :

(5.58) P= i (M *; - 1)

k=0

Table 5.2 gives an evaluation of P for certain values of M and p. It is seen that P is
increasing extremely fast with both parameters. Remembering that each scalar response
quantity v { which was a single number in the deterministic finite element method} is now
represented by P coefficients, it is easily seen that SSFEM will require a large amount of
computation. This may be worthwhile, considering that the whole probabilistic structure
of u is {(approximately) contained in these P coefficients.

From a practical point of view, the choice of M is dictated by the discretization of the
input random fields. In the original SSFEM, the Karhunen-Loéve expansion (see chap-
ter 2, Section 5.2) is used under the assumption that the input field is Gaussian. The
choice of A is thus directly related to the accuracy reguesied in this random field dis-
cretization. The higher M, the better higher frequency random fluctuations of the input
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Table 5.2: Number of basis polynomials P {M = number of basis random variables,
p = order of homogeneous chaos expansion)

M | p=1| p=2 | p=3 | p=4
2 3 6 10 15
4| 5 15 | 35 70
6 7 28 | 83 | 210

will be taken into account. Conversely, parameter p governs the order of non-linearity
captured in describing the solution process. Typical values used in the applications are
M=4and p=2,3.

A.2 Karhunen-Loéve expansioﬁ of lognormal random
fields

Let us consider the following truncated Karhunen-Loéve expansion of a Gaussian random
field g(a) -

i
(5.59) 3z, 8) = pg(z) + > gilz) &(6)

i=1
Gathering the random variables £;{f) in a vector £ and the deterministic functions gi{@)
in a vector g(z), we can define the following approximate lognormal random field® :
(5.60) () = exp ()] = exp [, (z) + glx)7 - ¢
Its coefficients in the pélyﬁomial chaos expansion are obtained as in (5.39) by :

(5.61) r [;ug(wé ;1; 2g](:c) A

The first coefficient corresponding to ¥, = 1 is the mean value of [{z), i.e. :

(5.62) lo(z) = pu(a) = exp [, (x th = exp [ug(w) + Gﬁ(m)]

where o5 () is the standard deviation of §(). The other ones simplify after some algebra,

to :
(5.63) L(@) = () E[\I’ig[gg(w))]

8Tor the sake of simplicity, the dependency on § is dropped in the sequel.
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Referring to representation {5.57) of the polynomials W;{£)}, the fraction in the above
equation can be written as :

H.Q’j(m)%

M
-
[T
i=1

Finally, letting M tend to oo, the polynomial chaos expansion of the lognormalfield can

be written as :

(5.64) & mig[&tg G

M
o ng(:c)&j

' pl) Z ' M
=1 [ Ha‘j!

j:l

&
|
5
B
....I..“
¥
&
S
o
1

(5.65)
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Conclusions

1 Summary of the study

This report has presented several techniques using the finite element method coupled
with probabilistic approaches. Methods for discretizing random fields, obtaining sec-
ond moment statistics of the response, probabilities of failure, or approximations of the
stochastic response process itself have been reviewed. In each case, advantages and lim-
itations have been analyzed and examples of application taken from the literature have
been reported.

So far, these examples deal with simple geometries (beams, square plates, sometimes
plates with a hole) and few elements (up to one hundred}. Thus the random field dis-
cretization obtained directly or indirectly from the finite element mesh involves a man-
ageable number of variables. However, some work remains on the topic of treating in a
really independent fashion the random field- and finite element meshes (both of them
being for instance generated automatically with respect to their respective criteria), and
connect them properly.

Perturbation-based approaches were presented in Chapter 3. From a practical point of
view, they can easily give information about response variability (i.e. mean and standard
deviation). They require gradient operators at the element level in the finite element
code. For strongly non-linear limit state functions, they are expected to be accurate
only with small coefficients of variation of the input variables. This could be a limitation
when geomaterials are involved. The CPU time becomes very large when the number of
~random variables is medium (say 20-50). The second order approach may be intractable
in this case.

The finite element reliability approach {see Chapter 4} is based on the coupling of finite
element calculations and & reliability algorithm determining the design point. It allows to
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compute the probability of failure of a system with respect to a given limit state function.
Due to this coupled formulation, it is possible to use state-of-the-art finite element codes
by linking them to the reliability program. It has been applied to general non-linear
problems including plasticity, plane stress plasticity and damage. It is applicable to
industrial problems in its current state of development. Current research on this topic
is related to time- and space-variant reliability.

The spectral stochastic finite element method has been applied to linear problerms, and it
is not applicabie to general non-linear problems yet. However, it is a rather new approach
and deserves further exploration. The main idea of obtaining an approximation of the
stochastic response process itself is definitely attractive due to the wide spectrum of
byproducts it can yield. The SSFEM method is computationally demanding but, on
the other hand, gives a full characterization of the output quantities. Whether this
information is really needed for practical applications is an open question. So is also the
question of the efficiency and accuracy of SSFEM in the context of reliability analysis.

2 Suggestions for further study

As mentioned in the introduction, the various approaches presented in this study are
investigated by different communities of researchers, so that no real comparison of these
methods has been made so far. Such & comparison would be of greatest importance to
assess the relative advantages of each approach and compare the computational costs for
a given problem. It should be emphasized that the examples presented in the literature
do not provide a basis for comparison as themselves, because of the use of different
parameters, computing platforms, etc.

In the context of two-dimensional elastic problems, it is proposed to implement the
SSFEM method and compare it with :

¢ perturbation method and Monte Carlo simulation for second moment analysis,

s direct coupling between FORM analysis and a deterministic code for reliability

problems.

The implementation issues and comparison results are presented in Part II of the present
‘report.
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Chapter 1

Introduction

1 Aim of the present study

Part I of the present report reviewed methods coupling finite element analysis with a
probabilistic description of the input parameters. Emphasis has been put on taking into
account the spatial variability of material properties. This has been done by introducing
the concept of random fields and the related discretization fechniques.

Second moment approaches {including the perturbation and the weighted integral meth-
ods) have been reviewed as well as the so-called finite element reliability methods. Fi-
nally, the spectral stochastic finite element method (SSFEM) has been presented, which
is claimed to provide after post-processing second moment as well as reliability results.

As already stated in Part I, there has been little comparison of SSFEM with the other
approaches, at least no comparison with the perturbation method in the context of
second moment analysis, and no reliability study at all. The current part of this report
aims at making these comparisons and thus evaluating the efficiency and accuracy of
SSFEM with respect to more classical approaches.

As already discussed in Part I, Chapter 5, SSFEM is only well established for linear
problems s¢ far. Thus elastic two-dimensional mechanical problems have been chosen for
the present study. The conclusions of the study should be understeod only in this context.
"It is reminded that both the perturbation method and the finite element reliability
methods can be and have already been applied to general non-linear problems {including
large strains, plasticity) as well as dynamics. These approaches have a much larger scope
than SSFEM, at least in its present stage of development. However, in the case when
all these approaches are applicable (i.e. for linear problems), the present study will give
some new lights about their respective advantages and shortcomings.
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2 Object-oriented implementation in MATLAB

In order to carry out the comparisons mentioned above, numerical tools had to be
implemented. The MATLAE environment was chosen for this purpose. The first reason
is the ease of implementation due to the numerous toolboxes for numerical analysis
provided by MATLAB . The second reason is the ability of developing software within
the object-oriented paradigm. Although MATLAB is not by itself a fully object-oriented
language, it possesses some special features (e.g. structures, “cell arrays”) that allow to
pack information into some kinds of objects. Having adopted this way of programming,
it should not be a hard task to transfer the MATLAB code into a true object-oriented
language like C+-1.

In this sense, the computer code produced for the present study can be viewed as a
paste-up for later more robust implementation in C++.

3 Outline

The second part of this report is divided into four chapters. The first two chapters are
devoted to implementation issues, the last two chapters to the comparisons mentioned
above.

Chapter 2 presents a new random field discretization toolboz within MATLAB . This
toolbox is later used by the different programs required by the present study. It praec-
tically implements the spectral discretization schemes discussed in Part I, Chapter 2,
Sections 5-6.

Chapter 3 presents the implementation of the SSFEM method. A detailed description of
the implementation of the polynomial chaos expansion (see Part I, Chapter 3) is given.
Post-processing techniques to get second-moment and reliability results are also detailed.

Chapter 4 is devoted to second-moment approaches. The formulation of the perfurba-
tion method is particularized to the situation when the randomness in the system is
limited to a random field describing the Young’s modulus of the material. The problem
of simulating random fields representing material properties is then addressed. Finally
the various methods are compared on the example of computing the seftlement of a
foundation over an elastic soil mass with spatially varying Young's modulus.

Chapter 5 is devoted to reliability analysis. The post-processing of SSFEM by FORM
and importance sampling is compared to a direct coupling between FORM and a deter-

The MATLAB routines (“M-files”) can also be automatically translated to G+ -+ and compiled, if
desired.
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ministic finite element code. The serviceability of a foundation over an elastic soil mass
with spatially varying Young’s modulus is investigated.




Chapter 2

Implementation of random field
discretization schemes

1 Introduction

Taking into account material spatial variability in finite element analysis requires the
introduction of random fields and the implementation of diseretizaiion schemes such
as those presented in Part I, Chapter 2. In the present chapter, attention is focused
on series expansion methods, i.e. Karhunen-Loéve expansion (KL}, Expansion Optimal
Linear Estimation (EOLE), and Orthogonal Series Expansion (OSE). In order to get a
versatile tool that can be used by itself, an object-oriented implementation in MATLAB
is aimed at. All the input data defining the field, as well as all the guantities required
to evaluate realizations are gathered in a random field object.

The three proposed discretization schemes are basically implemented for Gaussian ran-
dom fields, As an extension, lognormal fields are dealt with by exponentiation.

2 Description of the input data

2.1 Gaussian random fields
The implementation is limited to homogeneous one- or two-dimensional random fieids

whose mean and standard deviation are denoted by u and o respectively. Following the
notation in Part I, Chapter 2, the approximated random field is expressed as :

A
(2.1) H(x,0) =+ Z Hi(x) &(9)
i=1
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where {&{(8), ¢ = 1,..M} are independent standard normal variables and
{Hj{z), i=1,..M} are deterministic functions. More precisely, depending on the
discretization scheme, these functions are :

related to the eigenfunctions of the covariance kernel in case of the Karhunen-Loéve
expansion (see Part I, Eq.(2.42}},

related o the autocorrelation function of the field in case of BEOLE (see Part I,
Eq.(2.65)),

related to a complete set of deterministic functions {hi(x)}i2, ( e.g. Legendre
polynomials) in case of OSE (see Part I, Eq.(2.54)).

The parameters describing a homogeneous random field are stored ir an object (e.g.
RFinput), which is practically implemented as a structure having the foliowing entries! :

RFinput.Type : its value is ’Gaussian’ in this case.
RFinput.M¥ean : contains the mean value .
RFinput.Stdv : contains the standard deviation o.

RFinput.CorrLength : contains the correlation length of the field, cast as a single
scalar £ in case of 1D fields and as an array of length 2 (e.g. [£;, £,]) in case of 2D
flelds.

RFinput.CorrType : contains the type of the autocorrelation function. Available
options are ’exp’ for exponential type :

( exp(—Z =% ) for 1D fields
2.2) ple, o) = iz~ Jy—v]
eXp(— f,r - gy

) for 2D fields

and ’exp2’ for exponential square type :

o
exp(—(x E:c 14 for 1D fields

(2.3) ole, z') = o o
eXp(m(xe : ) — (y 7 i 1) for 2D fields
3

11n Matlab as in C, components of a structure type are usually called fields and accessed using the
operator “7. In the sequel, the word “entry” is used ingtead of “field” in order to avoid any confusion
with the random field under consideration.
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e RFinput.DiscSchenme : contains the name of the discretization scheme. Available
options are *KL’° (only available for exponential autocorrelation function), *EOLE’
and 0SE’.

e RFinput.OrderExp : contains the order of expansion, that is the number of terms
M in the summation (2.1).

e RFinput.NbPts : This entry is required when the EOLE method is chosen and
involves the definition of a grid. This entry contains the number of points along
each direction, defining a uniform grid over the domain. This is a scalar in case of
1D fields and an array of length 2 in case of 2D fields.

2.2 Lognormal random fields

By exponentiating the approximate Gaussian field (2.1), one gets an approximate log-
normal feld :

=1

(2.4) (z, ) = exp {,u + ZH%(m) §i(6)}

In the context of SSFEM, the latter equation is expanded over the polynomial chaos
basis {Part I, Chapter 5, Section 4.1) as :

(2.5) @, 0) = pr+ > () wil0)

The input parameters for such fields are the same as those for a Gaussian field except
the following entries :

e RFinput.Type : iis value is ’Lognormal’ in this case.
e RFinput.LNMean : containg the mean value y;.

@ EFinput.LEStdv : contains the standard deviation oy

-3 Discretization procedure

From the random field input and the geometry of the mechanical system (defined as an
array containing the mesh nodal coordinates, e.g. C0ORD}, a random field object (e.g. RF)
is constructed. It contains both the input data provided by RFinput and the quantities
required for evaluating realizations of the field.
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3.1 Domain of discretization

The rectangular envelope of the system {2 is determined from the array of nodal coor-
dinates. This envelope defines the domain of discretization of the random field, and is
denoted by QOgr in the sequel. It is stored in RF.Domain.

As an alternative, this entry can be input in the form of the following list : RF .Domain =
{Zmin » Trmag } for one-dimensional fields (resp. RF.Domain = {[Tsmn , Yemin) s 1 Tmag » Ymaz) b
for two-dimensional fields. This option is useful when the random field toolbox is used
by itself to numerically compare different discretization schemes.

3.2 The Karhunen-Loéve expansion

The approximate random field in this case is defined by :
A M
(2.6 H(z,6)=p+) o Vaie)&(6) , @& Qgr
i=1
where (), ;) are the solution of the eigenvalue problem :

2.7) | j oz, o) oila) Sl = X i)
. Orp

In case of an exponential autocorrelation function (see Eq.(2.2)) and rectangular domain,
the latter equation can be solved in closed form.

3.2.1 One-dimensional case

Suppose Orr = [—a, a). The eigenvalue problem (2.7) can be rewriifen as :

jz — 2|

(2.8) /a e L gz de = Az

@

where £ is the correlation length. The solution of Eq.(2.8) is (Ghanem and Spanos,
19915} :

o for 1 odd, ¢ > 1:

2
(2.0-2) NOT T
i
(2.9-b) wilz) = oy coswir oy = .
sin 2w,a

Zwi
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where w; is the solution of :

1 . .1
(2.10) 7w tanw;a = 0 in the range  {{i — 1)2, (i — 5)%]
e for 1 even, ¢ > 2
24
2.11-a Ay = ——
( ) ’ 14 w2s?
. 1
(2.11-b) wi(z) = o sinwz \ o = -
; 8in Zw;a
ar 2&,1
where w; is the solution of :
1 1 .
(2.12) 7 tanwia 4+ w; = 0 in the range [{i — 5)1;- , 7,%]

All coefficients {cy, w;} are computed for 1 = 1, ... M and stored as additional entries
of RF.

3.2.2 Two-dimensional case

Following Ghanem and Spanos (19915), the solution of the two-dimensional eigenvalue
problem is simply obtained by products of one-dimensional solutions, e.g. :

(2.13) A= )‘zl;D ’ ’\gzD

(2.14) plz)=plr,y) = vl vuy)

where superscript ¥ refers to the one-dimensional solution given in the above paragraph.
In implementation, the products of the 1D eigenvalues are computed and sorted in de-

scending order, and the M greatest products are stored together with the corresponding
subscripts {i;, i2) as additional entries of RF.

3.2.3 Case of non symmetrical domain of definition

If Ory is non symmetric, e.9. Opp = [Tomin » Tmee), & Shift parameter is computed :

;
Lomin T Lrmax

(2.15) T = -
Then the eigenvalue problem is solved over :
(2-16) Q%F =Qpr —T = [:Bmm ; Lmax 7 Lonoz ; Lnin

which is symmetric, and FEq.(2.6) is replaced by :

M
(2.17) Hiz,0)=p+3 ov/ ez -T)&(0) . =&
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3.3 The EOLE method

The EOLE method requires the definition of & grid. In the current implementation,
umiform grids are defined within the rectangular domain of discretization (lzr. The
number of points defining the grid {in each direction for 2D probiems) is specified in the
entry RFinput.NbPts. First the coordinates of all the nodes of this grid are computed,
say {@1, ... ©x}. The array containing these coordinates is stored in the entry RF . COORD.
It is emphasized that these nodes are different from the nodes of the structural mesh. In
other words, a completely independent definition of the structural mesh and the random
field mesh is possible.

In case of a homogencous Gaussian field, it can be shown from (Part I, Eq.(2.65)) that
the discretized randoem feld reduces fo :

where Cpe, = {ple —;),i =1, ..M}, and (A, ¢;) is the solution of the eigenvalue
problem :

C, being the correlation matrix whose terms are given by :
(2.20) Co (k1) = plag — ;)

In implementation, the correlation matrix Eq.(2.20} is first computed from the grid
coordinates RF . COORD. Using & MATLAB built-in procedure, the M greatest eigenvalues’
); and corresponding eigenvectors ¢, are then computed and stored as additional entries
of RF. It is noted that the fuli eigenvalue problem does not have to be solved, if an
algorithm computing the greatest eigenvaiues one by one is available,

3.4 The OSE method

3.4.1 General formulation
The discretized random field in this case reads (see Eq.(2.54) in Part I):
: i M
(2.21) I, 0) = p+ ) balw) x:(6)
fz=]

where X = {x1{6), ... xas()} is a zero-mean Gaussian vector, whose covariance matrix
3y 18 defined by :

(2.22) Syl 1) =EDuxi] = f [ ot plz, 2') helz) hy(z') dz da’
Qrr J Onr
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The spectral decomposition of this covariance matrix is :
(2.23) T &=2-A

where A is the diagonal matrix of eigenvalues and @ contains the corresponding eigen-
vectors arranged in columns. Consequently, the correlated Gaussian vector X can be
transformed into an uncorrelated vector £ as follows :

(2.24) X=& AY?. ¢

where A2 is a diagonal matrix whose terms are the square roots of the diagonal terms
of A. Substituting for {2.24} into {2.21) finally gives :

M M
(2.25) H(z,0) =+ Vv {Z o, hk(;)} &(6)

3.4.2 Consiruction of a complete set of deterministic functions

Following Zhang and Ellingwood (1994}, the set of deterministic functions {A,{z}}32, is
based upon the Legendre polynomials { P, (z)}2%,, which can be defined by the recursive
equations : '

(2.26-2) Plz) = 1 ; Pla)==z

(2260)  Ponle) = ——[2n+)ePulz) —nPoale)] 1> 1

n+1

The Legendre polynonﬁals have the following elementary properties :

(2.27-a) F.(-1) = (-1)"
' 0 if n odd
27- P = 5
(2.27-b) w(0) — ™ ifneven
77 (3
(2.27-c) P.(1) = 1
and satisfy the following orthogonality conditions : -
1 0 ifn#m
(2.98) f Polz) Paa)dz=4 o
-1 Hn=m
2m41

Considering the one-dimensional discretization domain Qrp = [Zmin ; Tmez), it 15 possible
to construct a set of orthonormal deterministic functions {h,(z)}22, based upon the
Legendre polynomials as follows :
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(2.29) hn(m)—-@/zz—l NYCantl S U S

where :
(2.30-2) T = ———Im”;mm
(2.30-b) a = ?_T%‘W‘

are the shift and scaling parameters respectively.

The covariance matrix X,, q.(2.22) in this case is given by :
(2.31)
2 Loz TImaxz T r_ T
Sk, )= 5o \/(Zk*l)ﬂml‘f / Pz, ) Pe 1( - ).P,{_'g(ma ) dz dr'

min in

Introducing the mapping :

(2.32-a) R

(2.32-b) y =

F.(2.31) reduces to

2 i3 i
(2.33) Ty lk, )= 5@k - DEI-1) [ / plau, av)Pyi(u) Pros (v) dudy
—1 4 =1

Using a Gaussian integration procedure, the above equation is evaluated by

(2.34)
NPG NPG

Sk, D) ——\/(211;—1) 20—1) > wyw; p(aXs, aXy) Pt (X) Pa(X)

=1 j=1

where {{w;, X;), i =1, .. NPG} are the integration weights and points, respectively.

To get an invertible covariance matrix, the number of Gaussian points NPG should be
greater than the number of random variables M. In implementation, NPG = 16 was used
in the computation. To efficiently evaluate Eq.(2.34}, two matrices are first computed :

s Matrix C of size NPG x NPG, containing :

(2.35) (i, ) = p(aX;, aXy)
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e Matrix LP of size M x NPG, containing :

(2.36) LP(k, 1) = P (X))

After ,, has been computed using Fqs.(2.34)-(2.36), the spectral decomposition is
performed using a MATLAB built-in procedure. The correlation matrix, the eigenvalues
and eigenvectors are stored as additional entries of the object RF. Subsequent evaluations
of the field are obtained by Eq.{2.25).

3.5 Case of lognormal fields

Lognormal fields are treated as the result of the exponentiation of a discretized Gaussian
field. From the mean value y; and standard deviation oy (stored in RFinput.LNMean
and RFinput.LNStdv, respectively), the mean value A and standard deviation { of the
underlying Gaussian field are first computed from :

(2.37) ¢ = I+ ot/)

(2.38) A= inmué-g’z

They are stored in the entries RF .Mean and RF.Stdv respectively.

Then the underlying Gaussian field is discretized using one of the three methods de-
scribed in the preceding sections.

4 Visualization tools

When dealing with Gaussian random fields, the accuracy of the discretization can be
evaluated by means of the following point estimator:

"
H

Var LH(:::) — }:T(m)j

(2.39) err{z) = Vor [H(a)]

For homogeneous fields (i.e. Var [H{z)] = ¢?), this estimator can be given closed form
expressions depending on the discretization scheme :
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KL method
err(z) = —Var Z Ve fﬁ{Q)}
MA1
(2.40) T AC)
M—ri

= E“‘Z)\z%

EOLE method (sce Eq.(2.66) in Part I} :
1 T 2
. =1- 3 i Cra;
{2.41) err{z) E " (& )

OSE method Due to the independence of the basic random variables {£;}2, in the KL
and EQLE expansions, it can be seen from Eqgs.(2.40)-(2.41) that the vartance of
the error is simply the difference between the variances of H () and H(z), leading
to:

Var [ﬁ(m)]

(2.42) err(e} =1-— 5

a

Such a result does not hold when dealing with correlated variables. In the case
of OSE method, the expression for error estimator (2.39) requires a little more
algebra. Letting aside the mean value (i.e. assuming in the sequel that p = 0), and
restricting to the one-dimensional case, one can write :

(2.43) H(z, 8 = 2 hala)X: (0
where, due to the orthonormality of the deterministic basis functions :

(2.44) X(6) = / Hiy, ) haly) dy

The variance of the error can be written as:
R . 2
Var [H(z) - H(a;)} =E [(H(:t:) — H(x}) }

(2.45)
=B [Hz)] +E [ffﬂ(:c)} —9E [H(m) fir(w)}

From Eq.(2.43}, one gets :

M M

' (2.48) E ¥ }Wg SN hila) ) G, 1)

1—131
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where C,,, is given in Eq.(2.22). From BEqs.(2.43)-(2.44), one can write

(2.47) E{H()Ef( } [ w,Zh /H hily dy]

By regrouping the deterministic terms outside the expectation operation, one gets:

M
B[ 86)] =3 ki) [ WPk d
=o' 3 hilo) [ hutylole,v)dy
=1 2

Substituting for Fqs.(2.46),(2.48) in Eq.(2.45), and dividing by E{H?*(z)] =
gives eventually the error estimator :

(2.48)

M

(2.49) err(z) _E—E-ZZh Colt, )= EZhi(m)/hi(y)p(x,y)dy

i=1 j=1 T =1 2

where the integral in the above equation is numerically computed using Gaussian
integration.

A routine plotting the error estimator over the domain Qrp has been implemented. In
addition, the mean value & of this error estimator ever the domain is computed, which
gives an indication on the global accuracy of the discretization :
N I
(2.50} E=- err(x) d§2
|Opp] Qpr

This can be used for instance to determine the order of expansion M yielding a mean
error smaller than a prescribed tolerance. Figure 2.1 shows an example of the output for
different discretization schemes, in case of one-dimensional field. So does Figure 2.2 in
case of two-dimensional fields and EOLE discretization scheme.

5 Conclusion

This chapter has presented the implementation of a random field discretization toolbox
within MATLAB . Due to the object-oriented programing, this toolbox is easily extensible
to other types of discretization (e.g. OSE hased on other deterministic basis functions
than the Legendre polynomials), autocorrelation functions (e.g. with triangular decay-
ing) or three-dimensional fields. This toolbox has been used to compare the accuracy of
the series expansion discretization methods in Part I, Chapter 2, Section 6.
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025r

QOrder of expansion : 4 p—l
Mean Error over the domain ; - g‘g?
0.2 KL :0.112
ECQOLE: 0.117

OSE :0.132 .

0.05 -

Figure 2.1: FError estimator computed for different discretization schemes - one-

dimensional field

Error variance along the discretization domain

o o o
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s

Var [H(x) = H_pp(x)]
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iscretiZ@iicn scheme ECLE
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Figure 2.2: Error estimator computed for EOLE expansion - two-dimensional field




Chapter 3

Implementation of SSFEM

1 Introduction

1.1 Preliminaries

As presented in Part I, Chapter 5, the Spectral Stochastic Finite Element Method (S3-
FEM) aims at representing the mechanical zespoﬁse_ of a system (e.g. the vector of
nodal displacements} through its coefficients over a basis of the space of random vari-
ables £2(®, F, P). Any nodal displacement, now considered as a random variable, is
described as a truncated series :

P-1

(3.1) w(®) = w ¥, ({&(6)}HL)

=0

where {3, ({£:(0)}1,)} is the so-called polynomial chaos basis defined by means of M
standard normal variables {£,(0)}L,, and {u;} are the “coordinates” of the random
variable u over this basis.

As already discussed in Chapter 1, SSFEM is practically applicable only to linear prob-
{ems. Thus the current implementation is limited to linear elastic two-dimensional me-
chanical problems. Furthermore, the material Young's modulus will be the only param-
eter considered as spatially variable, and consequently modeled as a random field.

1.2 Summary of the procedure

As with any finite element program, SSFEM is organized in three stages :
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¢ The pre-processing stage : The data describing the mechanical model and the
random field discretization are provided in the MATLAB workspace. In the context
of an object-oriented implementation, this data is gathered in two objects called
Model and RF respectively. Details of this construction are given in section 2.

The implementation of SSFEM also requires the representation of the polynomial
chaos in a practical computational way. This is done by considering the polyno-
mial chaos as the multidimensional Hermite polynomials. All data regarding the
polynomial chaos is then stored in a single object called PC. Details are given in
gection 3. :

e The analysis stage : Element stiffness matrices are computed, then assembled
to form a global linear system of equations, on which boundary conditions are
applied. The unknowns of this system are the set of coefficients {u5} describing
the probabilistic structure of each nodal displacement u*, see Eq.(3.1). Details
regarding this stage are given in section 4.

‘« The post-processing stage : The set of coefficients {u}} are used either for
second-moment or reliability analysis. Details are given in section 5.

Remark All along this chapter, MATLAR variable names {e.g. Model, RF, PC) are used
for the sake of clarity. The user can of course choose any other name, provided there Is
consistency in the input file specifying the data to be put in the MATLAB workspace.

2 SSFEM pre-processing

2.1 Mechanical model

To get started with a finite element analysis, the following data describing the mechanical
mode! has to be provided in the MATLAB workspace.

¢ A flag variable {e.g. TypeDef), set to 0 or 1 whether a plane stress or plane strain
~ analysis is carried out.

e An array of nodal coordinates (e.g. COORD) of size NbNodes X2, where NbNodes is
the number of nodes of the mesh.

s A connectivity array (e.g. CONEC) of size NbElts x NbNodesElt, where NbElts
is the number of elements and ¥bNodesElt the maximum number of nodes per
element.
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e An element data structure (e.g. ELData) containing the type of each element
(ELData.type) and its constitutive material {{(ELData.mat). Each entry is an in-
teger array of size NbElts. For instance 4-node isoparametric elements correspond
to ELData.type(i) =1 fori=1, ... NbElss.

e A material structure (e.g. MATS) containing the parameters of the material con-
stitutive law. For linear elastic isotropic material, the entries corresponding to
material #i are ;

— MATS{i}.E : Young's modulus
— MATS{i}.nu : Poisson’s ratio

— MATS{i}.initialstress : an array describing the initial stress state in the
structure {a linear variation with respect to coordinates can be specified.)

— MATS{i}.bodyforces : an array of length 2 containing the prescribed body
forces in z and ¥ directions.

e A boundary conditions array {e.g. BC) of size NbNodes x 2. For each node 7 and
each degree of freedom 7 =1, 2, BC(4, 7) is set to 1 to impose a zero value of the
corresponding nodal displacement (default value of BC is thus §).

e A load vector (e.g. LOADS) of size NbNodes x 2, allowing to prescribe nodal loads.

All the above arrays are gathered into a structure called Model. This allows passing all
the parameters of the mechanical model as a single variable to subroutines. The input
data described so far is sufficient to run a deterministic analysis. For each application,
such an analysis is carried out systematically in order o check the data as well as the
quality of the mesh with respect to the output quantity nnder consideration.

2.2 Random field definition

s e i
‘The parameters describing the random field and its discretization scheme are gathered .
in a structure {e.g. RFinput), see Chapter 2, Section 2. From this object and the mesh 0
coordinates COORD, a random field object {e.g. RF} is created as described in Chapter 2,
Section 3.
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3 Polynomial chaos

3.1 Introduction

The M-th dimensional p-th order polynomial chaos consists in a set of multidimensional
Hermite polynomials in {&1, ... £}, whose degree does not exceed p (see Part I, Chap-
ter 5). In implementation, each of these polynomials is completely defined by a sequence

of Af non-negative integers {1, ... cpr+ as follows :

M
(3.2) Vo =[] bal&) , 20
=],
M
where §,(.) is the ¢-th Hermite polyromial. Let us furthermore denote by g = Z t
i=1

the degree of the list o

The implementation of the polynomial chaos requires :

e computing and storing the {(one-dimensional) Hermite polynormials,

e generating all the lists o, whose degree is less or equal than p. These lists are
numbered from 0 to P — 1 and the polynomials simply dencted by {¥,,j =
0,..P -1}

In the context of SSFEM, the variables {£;, ... £as} are standard normal variables. Fur-
thermore, expectations of products of polynomials appear in the calculation (See Part I,
Chapter 5, Section 2), namely :

e I [\Pﬂ, interpreted as the square norm of the basis function ¥, in £L2(©, F, P).

e ¢ = E[§¥; W) These coefficients are required when the input random field is
Gaussian.

e d =L i\lfz\lijlh} These coefficients are required when the input random field is
lognormal.

1In the actual implernentation, subscript § varies from 1 to P to comply with MATLAB reguirements
on array indexing.
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3.2 Implementation of the Hermite polynomials

The Hermite polynomials can be defined by a recursive algorithm as follows :

(S_SMa) holz) = 1
d
(3.3-b) fi;x(m) = ghya(z)
0 if g odd
(3.3-¢) By (0) = (—1)9/2 ch if ¢ even

7 (3]

Polynomial fj, is stored as an array of ¢ + 1 coefficients computed from those of §,-1 by
means of Egs.(3.3-b)-(3.3-¢c). The set of polynomials is gathered in a single object using
the cell array feature of MATLAR . A cell array 7 is basically an array whose elements
Z{i},i=1, ... can be of any kind (7.e. not necessarily the same for all of them). In the
present example, this feature is mandatory, since the arrays representing the Hermite
polynomials have different lengths.

3.3 Implementation of the polynomial basis

For each degree g = 1, ... p, the goal is to compute all the lists of non-negative integers
whose sum equals ¢g. This problem is equivalent to that of filling (M + g — 1) boxes
with (M — 1) balls as illustrated in Figure 3.1. The correspondence between the integer
sequences and the ball samples is as follows :

o for each integer ¢; in the sequence, skip «; boxes and put a ball in the next box;

e conversely, for each sample of ball positions, each infeger equals the number of
empty boxes (possibly ) between two consecutive balls,

From this equivalence, the number of lists o of degree §, = ¢ is the number of the

- —1
corresponding ball samples, that is the binomial factor (ﬂﬂ;}. ! 1 ! = (M +a ):
- / g

which appears in (Part I, Eq.(5.58)).
The following recursive algorithm was used to generate all possible ball samples (see the

complete generation in Figure 3.2 in case of (M =4, ¢=2)) :

e For a given g, the initial sample corresponds fo all balls in the (M — 1} first boxes,
which corresponds to the Hst e = {0, 0, ... 0, g}.
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ball sample Integer sequence
[ B8 & | 1010
aee | | o002

Polynomial basis

f)z(fl) ’ [}1(53) =& &3
ha(le) = &7 -1

Figure 3.1: Correspondance between ball samples and integer sequences o (M =4, g =

2)

Ball sample Integer sequence

mjﬂ_ﬁ_\iTL_J 6002
o8 ® | 0011
®® | ® 0020

NS
LQi_!M\_*_f 0101
S @& |® 0110

N Y
0200

N4
u_Q_L._LQ%:_I 1001
L & & (@ 1010

N
1100

Nov
L] ®® 8 2000

Polynomial basis
&1
3191
&-1
£2és
£2s
& -1
§16s
16
£16s

&1

Figure 3.2: Recursive generation of the polynomial chaos (M =4, ¢ = 2)

e From the current sample, the next one is recursively obtained by shifting the
rightmost ball by one box to the right. If this is not possible (i.e. the ball is
already in the rightmost box), then the rightmost ball that can be shifted by one
box to the right is found. This ball is shifted, and all the balis lying to its right

are brought back to its immediate right.

For each ball sample, the corresponding integsr sequence «x is computed and stored

as an array of length AM.
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o The set of all polynomials is finally gathered in a cell array.

3.4 Computation of expectation of products
3.4.1 DProducts of two polynomials

By definition, Hermite polynomials in standard normal variables are orthogonal with
respect to the expectation operater :

(3.4) B {05(6) ba()] = b0

where 4,, is the Kronecker symbol. By extension, the polynomials {¥;, j =10, ... P—-1}
are also orthogonal and satisfy :

M
(3.5) E[lq-Ug]=dap- || !
i=1

where dq g 18 the Kronecker symbol, whose value is 1 if sequences e and £ are identical
and 0 otherwise.

3.4.2 The product of two polynomials and a standard normal variable

When dealing with Gaussian random fields within SSFEM, the coefficients ¢y =
E [£;9,%,] are required. For further derivation, let us consider that W, (resp. ¥) corre-
sponds to the integer sequence « (resp. B, see Eq.(3.2). From the independence of the
standard normal variables {£;, ... &ur}, it follows that .

(3.6) Cijh = BlETaTp] = B & ba, (&) ba(&)] - | [ B ba, (&) s, (8)]
{#i

Thus if for any given jy # ¢, «y, and f,, are different, the above product vanishes
due to the orthogomality of b, and By, . Otherwise, « and 5 differ only by their i-th
component and £q.{3.6) reduces to :

(37) _ Cisk = E [é—iqlag’ﬁ] [é-if)ab fz)bﬁl gz Ha’l
{4

The problem is now reduced to that of computing ¥ [£h,(£)h,{£)], when £ is a standard
normal variable, and b, , b, are Hermite polynomials in £.

Introducing the probability density function of £, one gets :

@8) BIEb(E(] = [ = tple) bele)ze i i
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By partial integration, the above expression becomes :

B9 BlEnEE] =B | & (uonen] =7 [T2a, e + Dy
Using Eq.(3.3-b), one finally gets :
(3.10) E[£8,(6)04(&)] = Pl dpo1,0 + 1 6p01

This result is substituted for in Eq.(3.7) to eventually get -

3.4.3 Products of three polynomials

When dealing with lognormal random fields within SSFEM, the coeflicients {diw =
E [¥,9,¥,]} are required. From Eq.(3.2) and the independence of the standard normal
variables {&:, ... &pr}, it follows that :

(3.11) diji = H E [ba; NP (f!)ﬁfn (&17]

(=3

which requires the expectation of a product of three Hermite polynomials in &;. Unfor-
tunately, no simple formula similar to Eq.(3.10) can be derived in this case. Thus the
rather inefficient following algorithm is used :

e The coefficients of the polynomial product is algebraically computed using a MAT-
LAB built-in function :

ar+Bitm

(3.12) Q&) = b0, ()05 (E)04(E) = D an&

r={

s Using the linearity of the expectation operator and the closed form solution for
the moments of the standard normal variable §;, one obtains :

a8t !

(313) E [Q5 (&)] =E [Ejﬁ'! (&)bﬁi (&)?}'}&' (gl)] = Z Gy m

s Eq.(3.13) is used for [ = 1, ..M and the results are multiplied according to
Eq.(3.11).

Due to the symmetry in the subscripts of the coefficients subscripts, only those di;; that
are associated with 0 <4 < j < k < P — 1 are computed and stored.
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3.5 Conclusion

This technical section has described the practical implementation of the polynomial
chaos. All the basis polynomials and related coefficients are eventually gathered in a
single object called PC, defined as a MATLAB structure. It is emphasized that except in
Ghanem and Spanos {19815), no details about the implementation of SSFEM could be
found in the literature. The method proposed by Ghanem and Spanos used symbolic
caleulus, which is much more complicated to implement than the approach proposed in
the present report. It is believed that the present chapter provides new solutions to this
problem.

4 SSFEM Analysis

As any finite element software, the core of the SSFEM program consists in computing
clement stiffness matrices and nodal forces, assembling element contributions and solving
the obtained linear system. These different steps are described in detail in the sequel.

4.1 Element stochastic stiffness matrix

In the context of two-dimensional elastic problems with spatially variable Young’s mod-
ulus, the element stiffness matrix is given by (Chapter 5, Section 2) :

(3.14) k@)= | H(z,8 BT D, BdO,
4D

where H{z, 8) is the random feld representing the material Young’s modulus and D,
is the elasticity matrix computed with unit Young’s modulus. Substituting for the trun-
cated series expansion (2.1) into (3.14) leads to computing the following deterministic
matrices :

e the mean element stiffness motriz :

(3.15) k‘f:/ n BT . D, BdQ,

e

o MM weighted element stiffness matrices

(3.16) kf:f Hiz)BL-D, BdQ, i=1,.M
£l
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For 4-node isoparametric elements, a 2 x 2 Gaussian integration scheme was used
to compute these integrals®.

Equivalent nodal forces resulting from initial stresses o, and body forces b were com-
puted as follows :
(3.17) fe=| —BT0,dQ. + [ NT-bdQ,

£ e
where IV stands for the masrix of the element shape functions and B for the matrix
vielding the strain components from the zodal displacements.

4.2 Assembly procedures

A standard assembling technique is used to get the mean and weighted globol stiffness
matrices, i.e. :

(3.18-a) K = Uff:U[ uBY . D, BdS,
e € €

(3.18-b) K; = | Jk =] | Hi{z)B" D,-Bdf,
e ) e /0

This step is called the first level of assembly.

The Galerkin technique associated with SSFEM then leads to the following system of
equations using the above matrices (see Part 1, Eq.(5.22)) :

M P-1
(3.19) > K- Uj=Fp k=0,..P~1

=0 =0
where the terms corresponding to i = O are the mean quantities, i.e., K, = K and
U, = T7. Moreover, in case of deterministic loading, the vectors F appearing in the
- right hand side of Eq.(3.19) are all zero except the first one F',. Introducing the notation :

M M
(320) Kjk=Zeiiji:Coij+Zczij'i _j‘,]n: ,...P*“l
i=0 i=1

Egs.{3.19) can be cast in the following form :

Koo v KO,P—}. Uo Fo
(3.21) I\f:zo e Kl,'P—l _ g1 _ O
Kp i, ... Kpogp Up_; 0

2A 3 x § scheme was tried but gave practically the same result for larger computation time, and was
+hns abandoned.
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which may be rewritten formally as :

(3.22) K- U=F

Building the above matrix & from the K ;; matrices is called the second level of asserubly.
In implementation, the matrices K ;; are first computed using (3.20). Attention is paid
to summing up only those terms associated with ¢;;; # 0. Then K is plugged into the
large matrix K as indicated in (3.21). The number of unknowns in the system (3.21)
I8 N x P, where N is the number of degrees of freedom of the structure (i.e. twice
the number of nodes in two-dimensional continuum analysis), and P is the size of the
polynomial chaos basis.

4.3 Application of the boundary conditions

The boundary conditions are assumed to be deterministic and given in terms of 2 setf
of fized degrees of freedom T (i.e. for which the nodal displacement is set to zero).
Considering Eq.(3.21), this writes :

(3.23) uf =0 VkeZ,¥Vji=0,..P—-1

where u;* is the k-th component of vector U; in (3.21).

The Lagrange multiplier technique is used, where a partial back-substitution of the
constraints equations {u;* = 0} leads to the following operations onto the global stiffness
matrix fC :

e VESZ Vj=0,.. P-1, row and column #(j N + k) are all set to zero, then
the diagonal term is set equal to 1.

e The corresponding right-hand side component F},f“ is set equal o 0.

However the same result can be obtained with greater compusational efficiency by apply-
ing the boundary conditions onto the K, matrices bgfore the second level of assembly.
Precisely, the following operations are applied on each K by

e ifp3# g for each k € Z, row and column #k of K, are set equal to 0.

e if p = g, the same operation is applied, then the diagonal term K polk, k) 1s set
equal to 1. '
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4.4 Storage and solver

As in deterministic finite element analysis, all the matrices involved in the calculation
(i.e K.K;,, K &) are sparse, that is, contain a great number of zeros. Thus the sparse
storage option in MATLAB is used in their declaration. In this case, only the non zero
terms of ars stored together with the indices of their pesition.

After having declared these matrices as sparse, the user can perform any operation
without worrying about the storage issues, which greatly simplifies the implementation.
The solution of the problem, é.e. U = {U,, ... Up_1} is finally obtained using a MATLAB
buili-in solver.

By running examples, it appeared that the most time consuming step in the analysis is
the second level of assembly. The solving step itself usually represented a small fraction
of the total computation time. This can be explained by the fact that an inferpreted
code is used for the assembly steps, whereas the solver is a compiled MATLAB routine.
A different behavior would be expected if the program were to be fully compiled.

5 SSFEM post-processing

The crude output of the SSFEM analysis is a set of nodal displacement coefiicients
U ={U,, ..Up_1} which allow to represent the random vector of nodal displacements
as :

(3.24) U©) =S U, 7 ({01
=0

5.1 Strain and stress analysis

For any given element €., let us gather the nodal displacements into a vector :

P-1
(3.25) () = > uf s ({&(0)1H5)

The strain- and stress components at a given point @ are random variables obtained as :

(328) e, 8) = Ble) S wl; ({GO)HL)

i=t

M P-1
G2 o) = {wz@(@ﬂ D, B(=) 3 us ¥; ({6(0) L)
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5.2 Second moment analysis

The second order statistics of the nodal displacements are given by :

(3.28) EU] = U=U,
P-1
(3.29) Cov[U,U}] = > E[W U, - UT

Similar results can be obtained for strain and stress components by means of Egs.(3.26)-
(3.27).

5.3 Reliability analysis

As described in Part I, Chapter 4, reliability analysis is based on the definition of a
limit state function depending on the output of the mechanical analysis. For the sake of
simplicity, only displacement-based limit state functions are considered in the sequel :

(3.30) g(U(8)) = v —u(8)

where w*(f) is a (random) nodal displacement under consideration and u is a prescribed
threshold. Substituting the i,-th component of the vectorial equation (3.24) in (3.30)
yields the following analytical polynomial expression of the limit state function in terms
of M standard normal variables {&,(6)}M, -

P-1
(3.31) g(UE) =u— ) ulr ¥, ({&(6) HLy)

=0
In the latter equation, the coefficients u;" are known {from the analysis stage, see section 4.

A FORM analysis using the iHLRF algorithm can be carried out to determine the design
point £° and the corresponding values of the reliability index f and the probability of
failure. Thereafter, importance sampling around the design point can be performed in
order to get a more accurate value of the probability of failure. This is computationally
cheap since the expression of the limit state function is analytical.

It is emphasized that the limit state function is already defined in terms of standard nor-
mal variables, which avoids any probabilistic transformation within the iHLRF algorithm
(see Part I, Chapter 4, Section 2.4).

Moreover, the gradient of g(U(6)) can be given a closed form expression. Indeed, recalling
the integer sequence representation (3.2) of ¥, = ¥, one gets :

. 0if oy = 0
(3.32) @i{’ﬁ:{ ok

Gk 0 By o (Ek) - T lis Doy (&) otherwise
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5.4 Probability density function of a response quantity

The probability density function (PDF) of u® can also be determined using sensitivity
analysis. From (3.31) one gets :

(3.33) Pr=Pu<u~)=1=F,(u

where F_ is the cumulative distribution function {(CDF) of random variable u%. Using |
now Eq.(4.84) of Part I, the PDF of u® is : '

dF; dP d
3.34) ful) = o o 8 o(au) L
Using Eq.{4.82} of Part I, one has :
a8 1 9glg, W
235 & " [Vo@E @), W] o

In this expression, the derivative of g with respect to u is simply 1 due to the form of
(3.31). Thus substituting for (3.35) in (3.34) finally yields :

o p{Aw)
(3.36) Jaolt) = | Ve g(UE (), ) |

To compute the entire PDF of a nodal displacement, a FORM analysis is carried out for
different thresholds u, for which Eq.(3.36) is evaluated.

6 Conclusions

This chapter has presented the implementation of the Spectral Stochastic Finite El-
ement Method (SSFEM) in the MATLAB environment. Object-oriented programming
was aimed at, first to allow a versatile utilization of the code, second to build a base for
later implementation in a true object-oriented language like C++. '

An original implementation of the polynomial chaos basis was proposed, which is believed
to be.simpler than the only other implementation found in the literature, s.e. that by
Ghanem and Spanos {19915},

The SSFEM procedure was described in detail from data pre-processing to solution and
to post-processing. Resulis obtained from the second moments (resp. reliability) post-
processing should now be compared with other approaches, i.e. perturbation method and
Monte Carlo simulation (resp. direct coupling between a deterministic finite element code
and the FORM procedure). This is the goal of Chapter 4 (resp. Chapter 5).




Chapter 4

Second moment analysis

1 Introduction

The aim of this chapter is to compare second moment methods for elastic two-
dimensional mechanical problems invelving spatial variability of material properties.
Precisely, modeling the Young’s modulus of the material as a random field, the mean
value and standard deviation of response guantities such as nodal displacements are
computed. Three different methods have been implemented.

o The crude Monte-Carlo simulation consists in simulating samples of the random
field, then carrying out a deferministic finite element analysis of the mechanical
problem, and finally, statistically treating the response quantities of interest.

» The perturbation method presented in Part I, Chapter 3, Section 2 is applied at
first and second order, the specific formulation associated with random fields being
first discussed. '

e The SSFEM method is applied followed by the post-processing procedure described
~ in Chapter 3, Section 5.2.

These three approaches are applied to compute the statistics of the settlement of a
foundation over an elastic layer, whose heterogeneity is accounted for by modeling its
Young’s modulus as a random field.




134 Chapter 4. Second moment analysis

2  Monte Carlo simulation

2.1 Introduction

The principle of the Monte Carlo method is to simulate a large number of samples (here
realizations of the random field) then compute for each sample the response quantity
under consideration (here a given nodal displacement) and then perform a statistical
treatment of the sample population.

This approach requires being able to analyze by finite elements a structure whose ma-
terial properties (e.g. Young’s modulus) are realizations of a random field. To properly
take into account the spatial variability, a deterministic finite element code called FEMRF
was implemented for two-dimensional elastic problems.

2.2 The finite element code FEMRF

The only difference between FEMRF and a standard finite element code is in the way
the element stiffness matrices are computed. Considering a realization H(x, #,) of the
random field modeling the material Young’s modulus, the element stiffness matrix is
given by {See Eq.3.14} :

(4.1) k(6= | H(z,8,)BY(z) D, Blz)ds,

Using the iseparametric formulation, this integral is recast over a reference domain £z

(unit square in the case of 4-node quadrangles) as follows :

(4.2) k(0,)= [ H{z(n), 6) BY(n)- Do - B(n) |Tan| dr

fim
Where. Tz 18 the determinant of the mapping x(n).
Using Gaussian integration, the latter equation becomes :
NPG

(4.3) k°(6,) ~ Z wi H{x(n;) , o) BT("L‘) Dy B(ny) | Tl
i=1

where NPG is the number of integration points, whose coordinates are i, and related
weights are w;. Thus Fq.{4.3) requires the evaluation of the current realization §, of the
random fleld at point x(n,).
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In practical calculations, H{z{n,), ;) is replaced by a truncated series expansion as
follows . '

M
(4.4) H(z(n), 0) = ju—i-Z:Ht &)  if H() Gaussian
M
(4.3) H{z(n,), 6) = exp|A+ ZIL £(6,)| if H(-) lognormal, A be-
=1 ing the mean value of

the underlying Gaussian
field in this case.

Adequate routines have been implemented to compute Eqgs.(4.4)-{4.5) depending on the
nature of the random field. They are called by the roufine computing the element stiffness
matrix Bq.(4.3).

In the context of Monte-Carlo simulation, #, corresponds to the generation of M random
numbers £ = {£;{6,), ... £x(f,)} according to a standard normal distribution. This is
done using the MATLAB built-in random number generator.

2.3 Statistical treatment of the response

Unbiased estimates of the mean and variance of a given statistical sample are given by

..
. 1 EAE 1114
(46) BYCU] = ZU(&-)
Ngim
(4.7) Var'lU] = —— j{:{I ) — Nam (EM°[U])*

where N, is the number of samples considered, U (6;) is the nodal displacement vector
associated with sample 6;, and UZ(f;) is the vecior containing the square values of the
nodal displacements.

In implementation, the sums 3. U(6;) and 3, U?(f;) are updated continuously after
each finite element run. The accuracy of the Monte-Carlo simulation is estimated by the
coefficient of variation of the empirical mean {4.6), which is given by :

VarMC [U]
\/ sam EMC [U]

Typical values for COVMC are 0.01 - 0.05.

(4.8) COVME




136 Chapter 4. Second moment analysis

2.4 Remarks on random fields representing material properties

A number of papers published on stochastic finite element methods including random
fields (e.g. Liu et al. (19865,a); Ghanem and Spanos (1891a,5); Deodatis and Shinozuka
(1991); Anders and Hori (1999)) assess the validity of the proposed approach by com-
paring the results with those obtained by a Monte Carlo simulation. In practice, these
authors use Gaussian random fields.

When material properties are modeled, the use of Gaussian random fields is question-
able. Indeed realizations of Gaussian random variables can be negative valued, whereas
the material properties are positive in nature. The results obtained by Monte Carlo sim-
ulation in this case are definitely doubtful due to the possible negative outcomes. Either
these negative outcomes have to be discarded, which introduces a bias in the simulation,
or non physical results (e.g. corresponding to negative Young’s modulus) are included.
Moreover, the general result, which says that Monte Carlo simulation is asymptotically
exact (the more samples, the best result) does no longer hold : in this case indeed, the
more samples, the more non physical outcomes.

This problem has not received much attention in the literature, the authors of the papers
mentioned above do not even bring up the question. From the remarks above, the follow-
ing strategy will be adopted in the present study : Monte Carlo simulation of Young's
modulus will only be performed with lognormal distributions.

3 Perturbation method for structures with spatially
varying materials properties

3.1 Imntroduction

The perturbation method is based on a Taylor series expansion of the quantities involved
in the equilibrium equation K - U = F. In this chapter, the randomness in the input
is limited to spatial variability of the material Young's modulus. Thus the basic vari-
ables used in the Taylor series expansion are M independent standard normal variates
& ={&, ...&y} used in the random fleld discretization, and the formulation of the per-
turbation method presented in a general context in Part I, Chapter 3, Section 2 can be
simplified.
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The second order Taylor series expansions of K{€) and U(€) respectively are :

(49) K(E) A K '“i“ZKIé:z ! “ZZK é.zfj
i=] =1
(4.10) Ug) ~ U°+ZU!’@ ZZU &&

where the notation used in the above equations has besn introduced in Part I, Chapter 3,
Section 2. Moreover, the load vector F' is assumed deterministic in the sequel.

3.2 Derivatives of the global stiffness matrix

The perturbation method is “distribution-free” in essence, which means that the input
should be Hmifed to the second moments of the basic random variables. However, when
random fields are used, the Taylor series expansmn depends on the discretization scheme
implicitly selected.

In the following derivations, the series expansion discretization schemes of a Gaussian
random field are implicitly considered. Under this assumption, the global stiffness matrix
has the form :

M
(4.11) K(g) = Uf Lﬁ ZHi(m)@} BT D, Bd0
e 5% £ i=1 ’
Thus the derivative of K with respect to & is :
oK |
4.12 K= z)BT-D,-BdQ
( ) 35; £=0 U d

that is, the global weighted siiffness matriz K, see Egs.(3.16)-(3.18-b). Furthermore, the
second derivatives K ff are all zero.

From Eqs.{4.9)- (4.10), the Taylor series expansion of the equilibrium equation is :

(4.13) (K(}—%—ZK;T) (UG ; ZUI§Z+~ZZUII§1€J) =

=1 =1 j=1

By identifying the coefficients of £ and &¢&; on both sides, one finally gets :

(414) U° = K;''F
(418) U] = ~-K;' K, U=-L; U where L;=K,' K,
Ir I - ;
(416) Ul = Ujj=-K;'|K{ - Ul+K! Ull=-(L; Ul +L; U
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3.3 Second moments of the response

The second-order statistics of the response can be now computed from Eqs.(4.10},(4.14)-
(4.16). Recalling that {£;, ... &} are independent standard normal variables, it follows
that

(4.17-a) Elg] =

(4.17-b) Covlé, & = 6y  (Kronecker symbol)

Thus the first- and second-order estimates of the nodal displacement mean values are :
(4.18-a) . El[U] = U’

M
1
&b 1T 0y = 2 770
(4.18-b) Bl = U +2£§=1jL7, U

The first-order approximation of the covariance matrix of U is:
l T
(4.19) Cov'lU, U)=> Ul-U]
i=1

The second-order approximation of the covariance matrix of U can be easily derived
using the following properties :

(4.20-a) BlG& & = 0
(4.20-b) Bl&G&EE] = bibu + Sudp + Gubji

After some algebra, one finally obtains :

MM MM
1 r 1 T
11 1 I il T yrll
(4.21) Cov'[U, U] = Cov U, Ul+ 1 5;1 ;:1 Ui Uz + 3 ;:1 jgzl Ui Uy

3.4 Remark on another possible Taylor series expansion

In the above derivations, the random field was implicitly considered as Gaussian to carry
out the Taylor series expansion of K. If it were to be considered as lognormal (which, in
some sense, corresponds to selecting a different point around which the expansions are
carried out}, the global stiffness matrix would write :

M
(422) K(E) = U/ exp {)\ -+ E Hz(m) &\} BT - Dg - BdQ
. e ik i=1 N
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In this case, the derivatives of K with respect to & are :

K
: K] = m*‘ B f *Hi(x) BT - D, -
(4.23) ] 5% gzﬂ—lel ee Hiz) BT - D, Bd
K
4.24 K = = =] 1/ AH{z) H;(z) BY - D, Bd{}
( ) &y aé-lafj 5:0 - Qﬁe (m) 3(9:)

It is emphasized that the value of the random field computed for & = 0 {i.e €*) is not
the mean value of the field. The latter is indeed p = e*¢*/2, where ¢ is the standard
deviation of the approximate underlying Gaussian field. This means that the expansion
in this case would not be carried out around the mean value K,. Thus the accuracy of
the results is expected to be worse than that obtained in the previous section. Moreover,
the computation of the second order terms U{f now involves the non zerc matrices K ;-rf .
which makes the whole computation much more time consuming. This type of expansion
will not be used in the numerical applications.

4 Settlement of a foundation on an elastic soil mass

4.1 Deterministic problem statement

Consider an elastic soil layer of thickness ¢ lving on a rigid substratum. A superstructure
to be founded on this soil mass is idealized as a uniform pressure P applied over a length
2 B of the free surface (see Figure 4.1). The soil is modeled as an elastic linear isotropic
material. A plane strain analysis is carried out. '

Figure 4.1: Settlement of a foundation - problem statement

Due to the symmetry, kalf of the structure is modeled by finite elements. Rigorously
speaking, there is no more symmetry in the system when random material properties are
introduced. However, it is believed that this simplification does not significantly influence
the results. The parameters selected for the computation are gathered in Table 4.1.
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A refined mesh was first used to get the “exact” maximum displacement under the
foundation (point A in Figure 4.1). Then different meshes were tried in order to design
an optimal mesh, i.e. allowing to get 1% accuracy in the maximum settlernent using the
smallest number of elements. The mesh displayed in Figure 4.2-a was eventually chosen.
It contains 99 nodes and 80 elements.

Table 4.1: Settlement of a foundation - Parameters of the deterministic model

Soil layer thickness t 30m
Foundation width 2B 10m
Applied pressure P 0.2 MPa
Soil Young's modulus | £ 50 MPa
Seil Poigsson's ratio v 0.3

[ Mesh width L 60 m

& - Mesh b - Deformed shape

Figure 4.2: Settlement of a foundation - Mesh and deformed shape obtained by a deter-
ministic analysis

For the input parameters given in Table 4.1, the maximum displacement obtained
with the most refined mesh is u§®* = 5.49 cm, the value obtained with the mesh
in Figure 4.2-a is u, = 5.43 cm. The deformed shape is plotted in Figure 4.2-b.

4.2 Case of homogeneous soil layer
4.2.1 Closed form solution for lognormal Young’s modulus

In this section, the Young’s modulus E of the soil layer is assumed to be homogeneous
and follow a lognormal distribution LN (A, ¢), that is:

(4.25) E=eMte  £=N(0,1)
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where the parameters (1, () can be computed from the mean ug and coefficient of
variation ég = gg/pug of E by :

(4.26) (= (1 +8)

1
(4.27} A = Inpug-— 5{2

Due to the linearity of the problem, the maximum settlement U, corresponding to any
value F of the Young’s modulus can be computed as :

ﬁlz_}i,:

(4.28) UalB) = uo

Using Fg.(4.25), the above equation rewrites :
(4.29) Us(E) = eoluonm)-A=(€

Thus the maximum  settlement U4 follows a  logonormal  distribution
LN(In(u, pg) — A, —¢), whose mean value and standard deviation, after some
basic algebra, are given by :

(4.30) tr, = uo{l+6%)
(4.31) Uy = Hua OB = Uebp (1+6%)

These analytical expressions are used in the sequel to assess the validity of the first-
and second order- perturbation and SSFEM methods. Results are presented for different
coeffcients of variation &z.

4,2.2 Numerical results

The different softwares developed for dealing with random fields are used in this example

by setting the correlation length of the random field equal to £ = 10000 m, and by
choosing only one random variable (M = 1) in the discretization procedure. SSFEM is
applied considering the random field as lognormal. The perturbation method corresponds
to the derivation in Section 3.3, 7.e assuming implicitly a Gaussian representation of the
random field.

Perturbation method Results regarding the perturbation method are given in Fig-
ure. 4.3, Considering a “cood” approximation as one giving less than 5% discrepancy
from the exact resuls, it appears that the {constant) first-order estimate of the mean is
acceptable only for dz < 0.2, In contrast, the second-order estimate is almost the exact
value, whatever dg in the range under consideration. This can be partially explained by
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distribution - SSFEM results

the fact that the ezact Taylor series expansion of the stifiness matrix has only constant
and linear terms.

The first-order estimate of the standard deviation is linearly increasing with g, which is
a fair approximation as long as ég < 0.2. The second-order estimate gives much better
accuracy for larger COV ép.

As a conclusion, it is seen on this example that the first-order perturbation method can-
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not be expected to give satisfactory results for medium to large coefficients of variation
of the input random field. In contrast, the second-order approach is much more accurate,
whatever the value of §p. Furthermore, using the expansion described in Section 3.3, the
latter is inexpensive to apply due to the fact that the second-order derivatives K ff are
all zero,

SSFEM method Results regarding the SSFEM approach are given in Figure 4.4 for
different orders of expansion. As only one random variable is used to discretize the
underlying random field, the size of the polynomial chaos of order pis P =p+ 1. The
polynomial chaos is used to expand both the global stiffness matrix and the vector of
nodal displacements, as described in Part I, Chapter 5, Section 4.1.

It appears that a good accuracy is obtained with p = 3 for any COV of the Young's
modulus, whereas p = 2 is enough if the COV dg is less than 0.3. It can be seen in
Figure 4.4-b that the first order result is closer fo the exact solution than the second
order. No satisfactory explanation to this behavior could be found.

4.3 Case of heterogeneous soil layer
4.3.1 Problem statement

To account for the heterogeneity in the soil, the Young’s Modulus is now modeled as a
homogeneous lognormal random field having the following properties :

o mean value : pp = 30 MPa,

e standard deviation : op = up % §p where the coeflicient of variation ég varies
within [0, 0.5],

e ezponential square correlation structure with correlation length ¢ = 30 m.

The discretized lognormal field is obtained by exponentiation of an EQOLE expansion of
the underlying Gaussian field.

Different EOLE grids were tried, each of them corresponding to a uniform mesh, whose
element size Lgp satisfies Lrp/f = 1/2-1/10. The mean of the error variance {2.50) has
been computed in each case for different orders of expansion M, the results are reported
in Table 4.2.

If selecting a tolerance of 10% for the accuracy in the discretization, it appears from
Table 4.2 that M = 4 should be selected. For our choice of parameters, the refinement
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Tahle 4.2: Settlement of a foundation - Mean error & in the EOLE discretization (See

Eq.{2.50})
M| Ler/t=1/2 | Lgr/f=1/3 | Lgr/=1/4 | Lrp/t=1/5| Lgp/t = 1/10
1 0.467 0.462 0.461 0.460 0.459
2 0.235 0.228 0.226 0.225 0.224
3 0.151 0.143 0.140 0.139 0.138
4 0.085 0.078 0.076 0.075 0.074
5 0.048 0.041 0.038 0.037 0.036

of the EOLE grid does not significantly improve the accuracy, for a given M. Thus

Lrr/f=1/2 is selected in the computations, which corresponds to a b x 3 point grid.

As there is no closed form solution to the statistics of the response, a Monte Carlo
simulation is performed. For each coeffcient of variation §z, 1000 samples are used (the
obtained simulation error measured by Eq.(4.8) is increasing from 0.1% to 1.5% when
the COV of the input random field varies from 0.05 to 0.5)

4.3.2 Numerical results

The mean value py, and the standard deviation oy, of the maximum settlement Uy are
plotted in Figure 4.5 ag a function of the COV of the input.

Mente Carfo
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Perturbation 1st
Perturbation 2nd

sot}]
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0.1 a2 0.3
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0.4

0.5

a - Mean value of mazimum settlement

Figure 4.5: Settlement of a foundation - Young’s modulus modeled by a lognormal ran-

dom field

- Monte Carle
—&—  Order PC =1
—&—  Ordar PC =2
--0--  Perlurbation 15t
- Perturbation 2nd
. g
7 o]
B
-
fi] o 8.2 0.3 0.4
Cosficient of variation &E

05

b - Standard deviation of mazimum settlement




4. Settlement of a foundation on an elastic soil mass 145

For any COV, uy, and oy, are smaller than the values they take in case of homogeneous
Young’s modulus {See Figures 4.3-4.4). As in the case of homogeneous Young’s modulus,
the first-order estimate of the mean has acceptable accuracy only if §p < 0.2. The first-
order estimate of the standard deviation is reasonably accurate for the range of dg
considered. Both the second-order perturbation and the second-order SSFEM methods
give good accuracy for any COV in the range under consideration.

4.4 Efficiency of the approaches

In order to fully compare the three methods used in this chapter, computation times
have been reported in Table 4.3. The time unit corresponds o a deterministic analysis
with constant Young’s modulus.

Table 4.3: Settlement of a foundation - Comparison of computation times

Method CPT

Deterministic finite element analysis with 1
constant Young’s modulus

Deterministic finite element analysis with
Young’'s modulus cbtained from discretized 4.47
random field

Monte Carlo simulation (1000 samples) 4508
18t order perturbation method 118
2nd order perturbation method 21

1st order SSFIEM 19.5
2nd order SSFEM 1446

Regarding the Monte Carlo simulation, the computation time comes almost only from
the successive deterministic finite element runs. The second order perturbation method
requires about twice as much time as the first order.

As far as SSFEM is concerned, there is a huge difference between the computational
cost of the first- and the second-order methods. Higher order compufations could not
be carried out. This can be explained by the fact that the discretization of the random
field required M = 4 random variables fo get an acceptable accuracy, leading to a
large size of the polynomial chaos basis even for small order (e.g., p = 3). Completely
different computation times would have been observed in the first example {i.e in case
of lognormal Young’s modulus), where only one random variable was used.
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Tt is emphasized that the computed times reported in Table 4.3 are related to the dis-
cretization scheme employed (here EOLE) and would be different if another discretiza-
tion scheme was chosen. They are of course related to the MATLAB implementation,
i.e., in an interpreted language. They would probably be completely different in a fully
compiled implementation. |

5 Conclusions

In this chapter, three second moment methods have been presented in the context of
spatial variability of material properties and applied to a geomechanical problem.

The particular formulation of each method in the present context has been derived. It
appears that the perturbation method is inexpensive to apply up to second order, due
to the fact that the second-order derivatives of the stiffness matrix with respect to the
basic random variables are zero.

The accuracy of each method has been investigated for different values of the coefficient of
“variation of the input random field. The cost of each approach has been finally evaluated.

After compiling all the results, it appears that the second-order perturbation method is
the most attractive for problems involving random fields, because it is inexpensive and
accurate even for large coefficients of variation of the input. The SSFEM approach also
gives accurate results when applied at second and higher orders. The computation time
may however blow up when rmore than 2 or 3 random variables are used to discretize
the random field.




Chapter 5

Reliability analysis of mechanical
problems involving random spatial
variability

1 Introduction

The aim of this chapter is to compare twe different approaches for solving reliability
problems based on elastic two-dimensional analyses involving random spatial variability
of material properties.

¢ The first approach called direct coupling cansists in coupling a determingstic finite
element code with the iHLRF algorithm presented in Part I, Chapter 4. To take
into account the spatial variability, the deterministic code FEMRF described in
Chapter 4, Section 2.2 is used. Details are given in Section 2.

e The second approach consists in post-processing the results of a SSFEM analysis
as described in Chapter 3, Section 5.3.

Both approaches are applied to compute the reliability index associated with the maxi-
mum settlement of a foundation lying on an elastic soil layer. -

A parametric study is carried out using a Gaussian (resp. lognormal) random field in
Section 3 (resp. Section 4). Comparisons of the two approaches described above are made
by varying successively :

e the order of expansion in the random field discretization as well as that of the
polynomial chaos expansion,
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e the admissibie threshold in the limit state function,
e the correlation length of the random field,

e the coefficient of variation of the input.

Efficiency is investigated by comparing the computation time required by each approach.

Remark As already stated in Chapter 4, Gaussian random felds are not well suited
to model material properties, due to possible negative cutcomes. In the context of re-
liability analysis, even the computed design point could happen to correspond to non
physical values, for instance when large coefficients of variation of the input are consid-
ered. However, as Gaussian random fields have been used extensively in the literature
together with the Karhunen-Loéve expansior, they will be used for comparison purposes
in Section 3.

2 Direct coupling approach : key points of the imple-
mentation

2.1 Utilization of the finite element code FEMRF

In the context of FORM analysis, a given realization of the basic random variables
£(0,) = {€1(0,), - &Exr(8,)} is provided by the iHLRF algorithm at each iteration. A
deterministic finite element analysis is carried out with FEMRF, where £(f,) is used in
the computation of the element stiffness matrices, see Eqs.(4.3)-{4.5).

2.2 Direct differentiation method for gradient computation

The FORM analysis requires the computation of the gradient of the limit state function.
As already described in Part I, Chapter 4, Section 3, the most effective method for this
purpose is the so-called direct differentiation method. The general formulation presented
in that section is now applied to problems for which the randomness is limited to random
fields describing the material’s Young’s modulus.

The Himit state function under consideration in the present study is :

(1) g(U(€) = u— u(€)

where u'* is the nodal displacement under consideration and u is a prescribed threshold.
Accordingly, the gradient of the limit state function with respect to the basic random
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variables £ = {&, ...&ur} is given by ¢

(3.2) | Ve (U(€) = Vi g(U) - VU (€)
Furthermore, due to the form of (5.1}, one has :

(5.3) ViglU)=1[0,..0,~-1,0,..]

where the only non zero component is the i,-th one. The gradient of U with respect to
£ is obtained from Hqs.(4.57)-(4.60) of Part I :

(5.4) %:—K-I-U{f BT-g};-BdQ-ue}

where K is the global elastic stiffness matrix, B the matrix yielding the strain com-
ponents from the nodal displacements u,., and D is the elasticity matrix. In case of
Gaussian random fields, the latter has the form :

(5.5) D=H{z)D,~ (u+ Yy  Hiz)) D,

f=1

Hence the partial derivative is :

_ 0D  OH(z) o
Substituting (5.6} in (5.4) yields :
(5.7) g?m —K*l-U{/ Hi(m)BT-DU-BdQ-uE}
. ; = 1o,

Comparing the latter equation with (3.18-b), one finally obtains :

ou

- -—K_l'- K,’ - U
9E;
where K; is the i-th global weighted stiffness matrix. Substituting for Egs.(5.3) and
(5.8) in {5.2) finally gives the following closed-form expression for the gradient of the
limit state function :

(5.8)

(5.9) Vedl(UE) =10,..0,1,0, ] K7 [K;-U, ... Ky-Ul

£
&

For optimal efficiency, the lefimost product A=1[0, ...0, 1, 0, ..]- K™% is carried out
first. Then the products K, - U are evaluated and arranged column-wise in a matrix of
size N » M. This matrix is eventually multiplied by A. This procedure is the so-called
adjoint method described in Part 1, Chapter 4, Section 3.2.
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3 Settlement of a foundation on an elastic soil mass -
Gaussian input random field

3.1 Introduction

The deterministic problem under consideration has been described in Chapter 4, Sec-
tion 4.1. The assessment of the serviceability of the foundation is now investigated.
The limit state function considered in the sequel is defined in terms of the maximum
gettlament 74 &t the center of the foundation :

(5.10) . g(UE)) =u—Ualg)

where u is a given threshold.

In this section, the random field modeling the Young’s modulus of the soil is supposed
t0 be Gaussian, and has the following properties :

e mean value ugp = 50 MPa,

¢ variable standard deviation og, corresponding to a coeflicient of variation dg =
UE/,U'E < [05 95}7

o exponential autocorrelation function. As all the applications of SSFEM found in
the literature make use of this kind of correlation structure together with the
Karhunen-Loéve discretization scheme, this form is assumed in this section. To get
a fair representation of the random field (i.e., & < 10%) with a manageable number
of terms in the expansion (i.e., M < 4), the random field is assumed to be one-
dimensional along the depth. This corresponds to a luyered structure for the soil
mass, which is physically meaningful. In actual computations, the two-dimensional
random field tooibox is used with a different correlation length in each direction
{see Chapter 2, Section 2.1), i.¢ £; = 10000 m, £, = 30 m.

s variable admissible maximum settlement u.

3.2 Influence of the order of expansion

In this section, the coefficient of variation of the random field is set equal to 0.2, and
the threshold in the Hmit state function is set to 10 cm. It is noted that the maximum
settlement u, obtained from a deterministic finite element analysis with homogeneous
Young’s modulus equal to 50 MPa is u, = 5.42 ecm.
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3.2.1 Direct coupling

The reliability index Sgree 1s computed for different orders of expansion A of the in-
put random field. Results are reported in Table 5.1 together with the accuracy of the
discretization (estimator € defined in Fq.(2.50)).

Table 5.1: Influence of the accuracy in the random field discretization - Direct coupling
approach

M g Bairect
1 (.269 2.654
2 0.129 2.631
3 0.082 2.627
4 (.060 2.627
2 0.048 2.627

3.2.2 SSFEM +FORM

When applying the SSFEM method, the order p of the polynomial chaos expansion has
to be specified. Together with the order of expansion M, this defines the size P of the
polynomial chaos basis (see Eq.(5.58) in Part I). :

The reliability index fBssrgar is computed for different values of M and p, the results -
are reported in Table 5.2 together with the value fyyee obtained by direct coupling.

3.2.3 Amnalysis of the resuif;s

For our choice of parameters, it appears that the direct coupling allows to get 2-digit ac-
curacy in the reliability index Bgipree: 28 soon as M > 2, which corresponds approximately
to & < 10%.

For each value of M, Bgsppar converges 1o Surec: when the order p of the polynomial
chaos expansion is increased. At least p = 3 should be selected to have 5% accuracy in
the reliability index.

Is it noted that for the finite element model under consideration (which has 198 degrees
of freedom), the maximum size of the polynomial chacs basis that leads to reasonable
computation times is P=21. This corresponds to (M = 2,p = 5). The size of the
resulting SSFEM systern of equations is 198 x 21 = 4148,
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Table 5.2: Influence of the orders of expansion M and p - SSFEM approach

M Bdirect p P Bssrenm
1 2 4.665
2 3 3.008
1 2.604 3 4 2,741
4 5 2.685
5 6 2681
i 3 4.510
2 § 2.904
2 2.631 3 10 2.656
4 15 2.611
5 21 2.614
1 4 4,487
3 2.627 2 10 2.880
3 20 2.645
4 2.627 1 5 4.480
2 15 2.885

3.3 Influence of the threshold in the limit state function

In this section, the accuracy of SSFEM for increasing values of the reliability index
is investigated. The order of expansion is M = 2 (¢ = 0.129) and the coeflicient of
variation of the input is 0.2. The reliability index is computed for different thresholds
of maximum settlement u by means of direct coupling and SSFEM (different orders of
polynomial chaos expansion are used in this case). Results are reported in Table 5.3.

When direct coupling is used, it is observed that the number of iterations required by the
iHLRF algorithm to get the design point increases with Bairect. However the accuracy of
the results does not depend on the value of 4 (the same computations have been carried
out using 3 terms in the Karhunen-Lodve expansion; the results are equal to those given
in Table 5.3 with less than 1% discrepasncy).

When using SSFEM up to order 5, it appears that fair results (i.e less than 5% dis-
crepancy between Bssprar and Byirec:) are obtained only for u < 20 cm (B =~ 4}. For
£ > 5, a good accuracy using SSFEM would require higher orders of expansion (p > 5),
which becomes intractable in our example. Moreover, the example was cooked up so
that M = 2 provides a sufficient accuracy in the discretization, which then allows to
use up to 5-th order polynomial chaos expansions. Usually, the number of random vari-
ables necessary to get a good discretization is larger {e.g. > 4), and only the second
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order SSFEM method would be practically applicable. From Table 5.3, it is seen that,
on the present example, the second order SSFEM method gives a fair estimation of the
reliability index only if the latter is less or equal then 4.

It is noticed that, if the SSFEM program was implemented in a fully compiled language,
and thus much faster than the current implementation in MATLARB , one or wo additional
orders in the polynomial chaos expansion may be affordable. In any case, there would
be a limit value for 8 for which the results are no more accurate.

As a conclusion, the estimation of large reliability indices by direct coupling requires
possibly additional iterations, but this corresponds to a constant order of magnitude
of the computer processing time. In contrast, using SSFEM in this context requires
increasing the order of expansion p, leading rapidly to intractable calculations.
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Table 5.3: Influence of the threshold in the limit state function - Direct ccupling and
SSFEM results

u (em) Bairect # Iterations

Bssren
0.392
(.504
(0.564
(.564
0.552
2.451
1.859
1.821
1.842
1.858
4.509
2.904
2.655
2.610
2.614
6.568
3.787
3.298
3.161
3.126
9,606
4,926
4,065
3.782
3.674

14.803
6.523
5.054
4.535H
4.304

25.006
9.093
6.498
2.5064
5.118

6 0.553 4

8 1.856 6

RS S R IS I R ] S s

M [ G| B e ] S

10 2.631 7

12 3.143 7

P VR S B

15 3.648 10

20 4.139 12

30 4.601 13
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3.4 Influence of the correlation length of the input

In this section, the case of short correlation length of the input random field is inves-
tigated. The random feld representing the Young’s modulus is one-dimensional along
the depth and its correlation length is 10 m. The coefficient of variation of the field is
0.2 and the threshold in the limit state function is u, = 10 c¢m. The reliability index is
computed for different orders of expansion M (direct coupling) and different orders of
polynomial chaos expansion p (SSFEM). Results are reported in Table 5.4 together with
the mean of the error variance & of the discretized field.

Table 5.4 Influence of the correlation length of the input random field (£ = 10 m} -
Direct coupling and SSFEM results

Bssrinm
6.198
3.978
3.583
3.474
3.443
5.778
3.690
3.327
3.232
3.208
5.671
3.625
3.2Y7
5.646
3.608

M £ Isciz"reci

[l I o

1 0.550 3.441

£.335 3.215

e | Qo BRI = Oy | G2

3 0.232 3.181

4 0.175 3.180

DO b QO N ] G

5 .140 3.179
10 0.071 3.179

When comparing column#2 of Table 5.4 with column#2 of Table 5.1 {which corresponds
to £ = 30 m), it is seen that, in order to get an acceptable discretization error, a larger
number of terms A is now required. However, as soon as M > 5, ie, & < 14%, a
two-digit accuracy on the reliability index is cbtained when direct coupling is used.

When using SSFEM, it appears that fair results (i.e less than 5% discrepancy between
Bssren and Bures) are obtained as soon as M > 2-3, and p > 3. Higher orders of
polynomial chacs expansion are intractable.
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As a conclusion, the direct coupling approach is applicable whatever the correlation
length of the field, because it is still computationally inexpensive even when M = 10 or
more. In contrast, it would not be possible to apply SSFEM with p > 2 when M is more
than 10, which means that the obtained reliability index would probably be inaccurate.

3.5 Influence of the coefficient of variation of the input

In this section, the order of expansion A is set equal to 2 and the thresheld in the limit
state function is u =20 cm. The reliability index is computed for different coefficients of
variation of the input random field. Results are reported in Table 5.5.

When the direct coupling is used, convergence of the iHLRF algorithm is always obtained,
the number of iterations required varying from 4 to 12 depending on the level of § (the
higher 3, the more iterations). The values obtained are within 1% of those obtained with
M = 3. It is observed that the relability index strongly decreases when the variability
of the input increases.

When SSFEM is used, bad results are obtained for ép = 0.1 as expected, because this
value induces a relatively large reliability index {see Section 3.3). For larger éz however,
the results are not very good either. Some FORM analyses carried out after SSFEM do
not converge, some others converge to a wrong design poing, especially when the order
of the pelynomial chaos is large. This may be explained by the fact that the polynomial
response surface associated with SSFEM is undulatory in this case (due to higher order
polynomials} and may have several local design points. As an example, for the case of
5p=>0.4, it is observed that the convergence to the true reliability index is not monotonic
with increasing p. Thus the result obtained for a given order cannot be a priori positioned
with respect to the true value.

From these examples, it appears that SSFEM coupled with FORM cannot be applied
safely for large coefficients of variation of the input (e.g. §z > 0.3}, whereas the results
obtained by the direct coupling are reliable whatever dg.

3.6 One-dimensional vs. two-dimensional random fields

As mentioned in Section 3.1, the random field modeling of the Young’s modulus was
one-dimensionel in the previous applications. This was necessary to get an acceptable
discretization error & with a manageable number of terms in the expansion (M = 2-3).

The random field is now considered to be two-dimensional and tsotropic, with a correla-
tion length £ = 30 m. The coeflicient of variation of the field is set equal to 0.2 and the
threshold in the limit state function is u =10 cm. The direct coupling and the SSFEM
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Table 5.5: Influence of the coefficient of variation of the input random field - Direct
coupling and SSFEM results (M = 2)

05

faiz‘rect

JBSSFEM

0.1

8.277

30.706

13.769

10.702

9.578

9.043

0.2

4.132

14.803

6.523

5.054

4.535

4.303

0.3

2.759

9.257

3.925

2.994

2.666

2.467

0.4

2.069

6.301

2.455

1.708

0.807t

2.0457

0.5

1.655

4.380

1.370

3.062

1.592°

Y b | Qo 0] bl ] | Q0 B0 ke | O] ] Qo ] el en] ] 0] b0 e | Ot ] Lol b | TS

1.237

T For these values, the iHLRF algorithm applied after SSFEM has not converged after 30

iterations.

method are applied with different orders of expansion M and p. Results are reported in

Table 5.6

It can be seen from column #2 that the discretization error & is much larger than
that obtained for a one-dimensional random field. For instance, even 50 terms in the

Karhunen-Loéve expansion do not allow to have & < 5%.

The direct coupling can still be applied up to this order of expansion though, In-
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Table 5.6: Influence of the choice of a one-dimensional vs. two-dimensional input random
field - Direct coupling and SSFEM results

M £ Bairect p Bssrrar
1 7.647
2 4,924
1 0.586 4,212 3 4.427
4 4.281
3 4,232
1 5.823
2 2 3.748
(.442 3.271 3 3.387
4 3.203
! 3.269
1 5.736
3 0.362 3.239 2 3.692
3 3.343
1 5.303
4 0.303 3.019 2 3.414
3 3.098
5 0.273 2.046 . -
10 0.177 2.876 - .
50 0.059 2.826 . .

deed, as it will be explained in Section 3.7, the computation time for direct coupling
is approximately linear with M. The best result obtained with direct coupling here is
Bairect = 2.826. which is probably a slight over-estimate of the true reliability index.

In contrast, as already mentioned above, SSFEM is limited to a rather small ocrder of
expansion in practice, and thus gives poor results in the case under consideration in this
section: the best result obtained by the method is here for M = 4 and p = 3 yielding
Bssren = 3.098, which means at best 10% accuracy in the reliability index.

3.7 Ewvaluation of the efficiency

In this section, a comparison between the computer processing time (CPT) required by
the direct coupling and the SSFEM methods is carried out. CPT corresponding to the
set of parameters used in Section 3.2 are reported in Table 5.7. The bold characters
correspond to choices of parameters (M, p) giving a fair estimation of the reliability




3. Settlement of a foundation - Gaussian input random field 159

index.

Table 5.7: Computer processing time required by direct coupling and SSFEM methods -
Gaussian random fields

CPT 1 Direct cpTt
M Coupling (") p SSFEM (")

2.3
2.5
3.2
40
48
3.9
8.0
22.6
58.2
129.0
4.7
30.3
296.4
1888.7
8.7
127.4
§ 11.4

Favl

1 20.6

2 33.6

3 43.7

4 53.8

B[ | kel T RO e T s | LS B ] o e | Cas

[y

5 65.8

t The CPT for a deterministic finite element run with constant Young's modulus was 0.57".

From column #2 of Table 5.7, one can see that the CPT required by the direct coupling is
increasing linearly with the order of expansion M. This can be easily explained: the only
step that is modified in the finite element analysis when M is changed is the computation
of the element stiffness matrices. Each of these matrices requires the evaluation of the
random field realization at four points (the Gauss points}, and each evaluation takes a
time exactly proportional to the order of expansion M (See Eq.(4.4)). The number of
gradients computed is alsc proportional to A,

In contrast, when using SSFEM, the CPT increases extremely fast with the order of
the polynomial chaos expansion. Thus the method can be efficiently applied only when
a small number of terms M allows to describe the random field accurately, and when
the reliability index under consideration is sufficiantly small so that the second order
SSFEM already gives a fair estimate.
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3.8 Application of importance sampling
3.8.1 Introduction

The SSFEM approach allows to get an approximation of the random response of the
structure in terms of polynomials in standard normal variables, see Eq.(3.1). In the
context of reliability analysis, this allows to define analytical limit state functions, as
described in Chapter 3, Section 5.3.

With such an expression, all kinds of methods can be used to determine the probability
of failure of the system. So far, only the first-order reliability method (FORM) has been
applied. It could be argued that FORM is not the better way of post-processing the
SSFEM results, since:

s the analytical polynomial expression of the limit state function contains informa-
tion that is lost when the linearization resulting from FORM is used.

e the limit state surface obtained from SSFEM could be globally accurate, however
not necessarily around the true design point, which means that applying FORM
could give poor results.

Moreover, since the limit state function is inexpensive to evaluate due to its analytical
expression, simulation methods such as importance sampling become attractive.

3.8.2 Numerical results

An importance sampling routine has been developed in MATLAB in order to post-process
the SSFEM results after FORM analysis. The sampling probability density function is
Gaussian with unit standard deviation and it is centered on the design point determined
by FORM.

The same choice of parameters as in Section 3.2 is made in the current section. For each
order of expansion M (resp. p), importance sampling is applied using 10,000 samples.
The obtained probability of failure is then transformed into the reliability index S£2pgas
for comparison purposes. The results are gathered in Table 5.8.

The first-order reliability method is exact for M == 1 whatever p (because the limit
state surface is reduced to a single point), and when p = 1 whatever M (because the
limit state surface is an hyperplane). For all these cases, it can be seen in Table 5.8 that
importance sampling gives exactly the same results as FORM (the last-digit discrepancy
being explained by the fact that only 10,000 samples are used in the simulation).
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Table 5.8: Post-processing of the SSFEM results - Comparison between FORM and
" importance sampling

i p BiSiE SSrem
1 4.665 £.669
2 3.008 3.012
1 3 2741 2738
4 3685 2689
1 4510 1515
2 2.004 2.301
2 3 2.656 2.633
4 9.611 2.518
5 2.614 2580
1 4,487 4.490
3 2 2.889 2872
3 2.645 2.608

Significant discrepancies between the two approaches appear only for higher orders of
polynomial chaos expansion, e.g., p > 3. In any case, they do not exceed 2% of the value
of the reliability index, which means that the FORM result is satisfactory in all cases.

From this short study, the following conclusions can be drawn :

e for the example under consideration, the limit state surface defined analytically
after the SSFEM analysis is sufficiently smooth so that the first-order reliability
method gives good results.

e after having determined the design point by FORM, importance sampling allows to
evaluate more accurately the probability of failure at low cost, due to the analytical
definition of the limif state function.

e the fact that S5G8M, ans 8Lz, are close indicates that errors observed in the
reliability estimates by SSFEM in the previous sections are due to the truncation
of the polynomial chaos expansions and not due to the FORM approximation.

3.9  Probability distribution function of a response quantity

As already mentioned, after the SSFEM solution is obtained, any additional reliability
analvsis is computationally inexpensive due to the fact that the limit state function is
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defined analytically and thus easy to evaluate. This allows to compute at low cost the
probability density function of a response quantity, as described in Chapter 3, Section 5.4.

As an example, the PDF of the nodal displacement U, (corresponding to the maximum
settlement) is plotted in Figure 5.1. 200 points are used, i.e., 200 reliability problems
are solved!. To improve the efficiency, the starting point of each analysis is chosen as the
design point of the previous analysis. This allows convergence of the IHLRF algorithm
within 3 iterations.

50 F T T 3 T

A5+ A

40+ .

N
fan ]
Y

! £

0 ; :
=0.12 =04 —0.068 -0.08 -0.04 -0.62 0
u

Figure 5.1: Probability density function of the maximum displacement obtained by mui-
tiple FORM analyses after SSFEM

It can be seen that the obtained PDF has its mode close to u, = —5.42 cm (which is
the value obtained from a deterministic finite element analysis) and that it looks like
a lognormal distribution, in agreement with the results of Chapter 4, Section 4.2. It
should be emphasized that the far tails of the PDF computed by this method may be
inaccurate, as observed in Section 3.3.

3.10 Conclusions

From the above comprehensive parametric study, the following conclusions can be
drawn :

LThis is done in a matter of seconds on a personal computer.
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e The reliability index Jairees obtained by direct coupling of the iHLRF algorithm and
a deterministic finite element code converges to a limit when the discretization error
£ tends to zero. This convergence is always obtained by upper values. As soon as
£ < 10%, the method gives a 2-digit accaraéy for §, whatever its value (at least in
the range [0.5, § that has been considered).

The CPT for each iteration is increasing linearly with the order of expansion
M. When an accurate discretization of the random field requires a large order of
expansion {e.g. M = 50}, the method is still applicable.

The number of iterations in the iHLRF algorithm tends to increase with the value
of 8 (from 4 to 13 in our examples).

The accuracy of the first-order reliability index is insensitive to the coefficient of
variation of the field.

Generally speaking, the reliability index fAssrrar obtained for a given discretization
error £ (i.e a given M) converges to Sgimece When the order p of the polynomial
chaos increases. This means that SSFEM may be applicable in some cases to
solve reliability problems. However, this convergence presenis an unstable behavior,
which makes the method uareliable.

When 8 = 2 = 3, the value p = 3 is required to get 5% accuracy on the result
(Section 3.2). When £ is larger (8 = 4 — 8, Section 3.3), the convergence is much
slower and p = 3 yields more than 15% error on 5.

- In practice, the size of the polynomial chaos basis was limited 1o P = 21 to get
reasonable computer processing times®. This makes the method inapplicable :

— when the correlation length of the input random feld is small to medium, be-
cauge of the large number of terms required in the Karhunen-Loéve expamlon
for a fair discretization (Section 3.6).

— when the reliability index is large, because of the high order of the polynomial
chaos expansion reguired.

Furthermore, when large coefficients of variation of the input are used (65 > 0.3},
the SSFEM approach followed by FORM may not converge or nzay converge to a
wrong result {Section 3.5).

Finally, it is noted that importance sampling after FORM analysis is inexpensive
to carry out due to the analytical expression of the limit state function. Thus it
allows to refine the evaluation of the probability of failure of the system at low
cogt.

2Slightly greater values can certainly be chtained in a fully compiled implementation. However, this
does not change fundamentally the conclusions.
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e When both methods are employed and give the same results, the SSFEM analysis
can be post-processed to compute the PDF of the response quantity appearing
in the limit state function {see derivations in Chapter 3, Section 5.4}. It can also
be used to perform several FORM analyses with different limit-state functions.
This seems o be the only case where SSFEM could give something more than the
direct coupling approach. The direct coupling results are needed however in order
to check the validity of the SSFEM solution.

4 Settlement of a foundation over an elastic soil mass -
Lognormal input random field

4.1 Introduction

In this section, the direct coupling and SSFEM methods are applied together with a
one-dimensional lognormal random field modeling the Young’s modulus of the material.

As far as direct coupling is concerned, the only difference with the preceding section
is the way the random field realizations are evaluated in FEMRF: Eq.(4.5) is now used
instead of Eq.(4.4). As far as SSFEM is concerned, the introduction of lognormal fields
requires the stiffness matrices to be expanded into the polynomial chaos, as expiaﬁned
in Part I, Chapter 5, Section 4.1. '

It is emphasized that the discretization of the random field is not exactly identical for the
two approaches. When using the direct coupling, it corresponds to the exponentiation
of a truncated series expansion of a Gaussian field. When using SSFEM, it corresponds
to a truncated polynomial chaos expansion such as that described in Part I, Chapter 5,
Section 4.1.

The deterministic problem under consideration is the same as in Section 3. The mean
value and coefficient of variation of the Young’s modulus are pz = 50 MPa and 65 = 0.2
respectively. The autocorrelation function is exponential, the correiation length in each
direction being £, = 10000 m and ¢, == 30 m respectively. The threshold in the limit
state function is u= 10 cm.

The parametric study presented in this section is Hmited to the influence of the orders
of expansion on the reliability index, as well as the threshold in the limit state function.
Indeed, it is believed that the poor results obtained in Section 3 for small correlation
length and/or large coefficient of variation of the field would not be better when a
lognormal field is considered.
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4.2 Influence of the orders of expansion

The reliability index is computed by both approaches for different orders of expansion
M and p, the results are reported in Table 3.9,

Table 5.9: Influence of the orders of expansion M and p - Lognormal input random field

M Bairect p P BssrEM
1 2 4. 717
. 2 3 3.714
1 3.528 3 4 3.569
4 5 3.561
5 6 - 3.560
1 3 1.562
2 3.452 2 ) 3.617
3 10 3.474
4 15 3467
3 3.447 1 4 4,539
2 10 3.606
4 3.447 1 5 4.532
2 15 3.603

Focusing on column #2, it appears that the direct approach gives a 2-digit accuracy for
the reliability index as soon as M > 2, as in the case of Gaussian input random field.

Broadly speaking, Ossrgps tends to Sgree when the order of the polynomial chaos ex-
pansion p increases. However, there seems to be a slight discrepancy in the limit. For
instance, for M=1, Sss5rzas converges to 3.560 instead of 3.528. This comes from the fact
that the representations of the lognormal field are not identical in the two approaches,

as mentioned above.

4.3 Influence of the threshold in the limit state function

In this section, the accuracy of SSFEM for increasing values of the reliability index is
investigated. The order of expansion of the input random field is A/ = 2. The reliability
index is computed for different thresholds of maximum settlement u by means of direct
coupling and SSFEM (different orders of polynomial chaos expansion are used in this
case). Results are reported in Table 5.10.
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Table 5.10: Influence of the threshold in the limit state function - Lognormal input
random field

Bssram
0.401
0.477
(.488
(.488
2.481
2.195
2.165
2.166
4.562
3.617
3.474
3.467
6.642
4.858
4.3h9
4.534
9.763
6.494
5.918
5.846

14.964
8.830
7737
7.561

25.367

12,655
16.475
10.044

u (cm) Biirect # Iterations

6 0.473 4

10 3.452 6

12 4.514 B

15 5.810 7

I

20 7480

30 9,829 8
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When direct coupling is used, it is observed that the number of iterations required by
the iHLRF algorithm to get the design point increases slightly with Bgirect, however not as
much as in the case of Gaussian fields (see Table 5.3). The accuracy of the results does
not depend on the value of 5 (the same computations have been carried out using 3 terms
in the Karhunen-Loéve expansion; the results are equal to those given in Table 5.10 with
less than 1% discrepancy).
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Asfar as SSFEM is concerned, there is convergence of Sggrpar to a limit when p increases.
This limit is always slightly greater than Su.. because of the difference in the random
field discretization schemes. It is noted that the convergence rate related to increasing p
ig better than in the Gaussian case. When using a 4-th order polynomial chaos expansion,
the reliability index is obtained within 1-2% accuracy whatever its value.

In other words, SSFEM applied with lognermal random fields appears to be more reliable
than in the case when it is applied with Gaussian fields. This is an interesting property,
since lognormal fields are more suited to modeling material properties. The fact that the
polynomial chaos expansion has to be used also for representing the input field seems
not deteriorate the accuracy of the results.

4.4 Evaluation of the efficiency

The computer processing time required by both approaches is reported in Table 5.11 for
different values of the orders of expansion A/ and p.

Table 5.11: Computer processing time required by direct coupling and SSFEM methods -
Lognormal random fields

CPT Direct CPT
M Coupling (") SSFEM (")

3

3.5
5.5
8.8
16.6
36.3
5.6
23.1
324.2
2952.6
8.2
188.2
116
829.0

13.4

! 22.4

I3

31.2

3 40.5

4 49.8
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5 58.8

By comparing the results in Table 5.11 with those in Table 5.7, the fdilowing conclusions
can be drawn :
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e As far as direct coupling is concerned, almost the same CPT is observed, whether
the random field is Gaussian or lognormal. This is explained by the fact that the
only difference between the two calculations is an exponentiation operation each
time the random field is evaluated.

e As far as SSFEM is concerned, the CPT reported in Table 5.11 are much greater
than those reported in Table 5.7. There are two main reasons explaining this
difference:

— if N, is the number of finite elements in the structural model, the Gaussian
SSFEM method requires computing (M + 1) x N, element stiffness matrices
and assembling at first level { M +1) global stiffness matrices. In the lognormal
case, these numbers are P x N, and P respectively {P is the size of the
polynomial chaos basis, see Eq.(5.58) in Part I}. As it has been mentioned
already, P 3> M as soon as the order of the polynomial chaos expansion p is
large.

— The second level of assembling requires more computational effort since, for
a given pair (M , p}, there are much more non zero d;;.-coefficients (related
to the lognormal case) than cyy;, coefficients (related to the Gaussian case) in
the summations (See Eq.(3.20)).

As a conclusion, for values of M and p for which Sssrea is a fair estimate of the true
reliability index, the computer processing time is so large that the SSFEM method is
not efficient at all (see numbers printed in bold characters in Table 5.11).

4.5 Conclusions

The parametric study carried out using lognormal input random fields has shown that :

o the direct coupling gives accurate results, whatever the value of the reliability
index, at a cost similar to that obtained when using Gaussian fields.

e the SSFEM method gives better results with lognormal fields than with Gaussian
random fields. Using a 4-th order polynomial chaos expansion allows to get 1-2%
accuracy on the reliability index. However, the computation time in this case is
huge compared to that of the direct coupling (about 100 times when M = 2).
Practically the method could be applied only when the correlation length is large,
so that the Karhunen-Loéve expansion with M = 1 — 2 terms would be suffi-
ciently accurate. Otherwise, SSFEM is inappropriate due to the huge computation
required for obtaining a fair estimate of the reliability index.
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5 Conclusions

In this chapter, reliability problems have been solved using two different methods, namely
the direct coupling between the iHLRF algorithm and a deterministic finite element code,
and the SSFEM method post-processed by the same algorithm. Both methods have been
applied to assess the serviceability of a foundation lying on an elastic heterogeneous soil
layer. The Young’s modulus of the soil was successively modeled as a Gaussian and
lognormal random field.

The case of Gaussian random fields with exponential autocorrelation function has been
investigated first, because this type of fields has been extensively used in the literature,
however without convineing comparisons or appreciation of the results. It appears that
a falr discretization of the field may require more than a few terms, even when the
correlation length is not small. The accuracy in the discretization turns out to be a key
issue. It is noted that this point is never discussed in the papers making use of this kind
of expansions together with SSFEM.

Whatever the parameters, the direct coupling appears robust and fast, the cost of the
analysis increasing linearly with the order of expansion of the input random field.

As far as SSFEM is concerned, fair resulis can sometimes be obtained, usually using a
high order polynomial chacs expansion {p = 3—5}. When more than 2 terms are used in
the random field discretization, the cost becomes rapidiy prohibitive. Consequently, only
results ocbtained with a low order polynomial chaos expansion are available in this case.
They appear poor compared to those obtained by direct coupling. In some cases, the
computed reliability index may not even be correct (for instance when large coefficients
of variation of the input are considered).

The case of lognormal random fields has been investigated as well. The direct coupling
provides reliable results, approximately at the same cost as in the Gaussian case. The 85-
FEM approach appears more stable than in the Gaussian case. However the computation
cost for a given choice of (M, p) is even greater than in the Gaussian case (practically,
the size of the polynomial chaos basis was limited to P = 15 in our calculations).

As a conclusion, the direct coupling appears far better than the SSFEM approach for
solving reliability problems, because it is robust and fast. The SSFEM approach could
however be applied ogether with the direct coupling in some cases (4.e. when it has proven
accurate for the selected parameters) to compute probability distribution functions of
response quantities in an efficient way, or to determine reliability indices for multiple
response quantities.




Chapter 6

Conclusion

The goal of the second part of the present study was to compare different methods
taking into account spatial variability of the material properties in the mechanical anal-
ysis. In order to be able to compare a broad spectrum of methods, attention has been
focused on elastic two-dimensional problems. For this purpose, different routines have
been developed in the MATLAB environment, namely :

e a random field discretization toolbox,

e a deterministic finite element code called FEMRF, which iakes into account the
spatial variability of the Young’s modulus in elastic mechanical analysis,

e asoftware implementing the SSFEM method (including an original implementation
of the polynomial chaos), -

e the iHLRF algorithm for finding the design point in FORM analysis,

e additional routines for perturbation analysis, Monte Carlo simulation and impor-
tance sampling.

The detailed implementation of the programs has been presented in Chapters 2-3. An
object-oriented programing was aimed at, in order to get easily extensible code.

The different programs were applied to compute the moments of the response of a
foundation lying on an elastic soil layer (up to second order), as well as to assess its
serviceability with respect to a maximum settlement criterion.

As far as second moment analysis is concerned, both the second-order perturbation and
SSFEM methods provide good results, whatever the coefficient of variation of the input
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random field. However, the former turns ocut to be computationally more efficient because
of the special form it takes for the considered application.

As far as reliability analysis is concerned, the direct coupling turns out fo be far better
than SSFEM, because it provides excellent accuracy whatever the type of random field
and the selected parameters. SSFEM can give fair results in some cases, but usnally at
a cost much greater than that of the direct coupling. Unfortunately, in some cases, it
converges to a wrong solution, which makes it unreliable.

It is noted that the perturbation method and the direct coupling approach have a far
larger scope than SSFEM, since they have been applied to all kinds of non-linear prob-
lems, whereas SSFEM is still more or less limited to linear problems.

As a conclusion, it is noted that the present study is the first attempt to compare a
broad spectrum of stochastic finite element methods on a given application. Throughout
the description of the implementation, it has been seen that these methods have more
in common than what the different research communities involved in their development
sometimes think, at least from a computational point of view. Of course, a single example
(i.e., the problem of the settlement of a foundation) cannot be used to draw general
conclusions of the superiority of some methods over others, but it gives at least a new
light on their respective advantages and shortcomings.
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