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NEUROSCIENCE FOREFRONT REVIEW

AXON GUIDANCE IN THE AUDITORY SYSTEM: MULTIPLE FUNCTIONS
OF EPH RECEPTORS
K. S. CRAMER a* AND M. L. GABRIELE b

aDepartment of Neurobiology and Behavior, University of

California, Irvine, Irvine, CA 92697, United States

bDepartment of Biology, James Madison University,

Harrisonburg, VA 22807, United States
Abstract—The neural pathways of the auditory systemunder-

lie our ability to detect sounds and to transformamplitude and

frequency information into rich and meaningful perception.

While it shares some organizational features with other sen-

sory systems, the auditory systemhas someunique functions

that imposespecial demandsonprecision in circuit assembly.

In particular, the cochlear epithelium creates a frequencymap

rather than a space map, and specialized pathways extract

information on interaural time and intensity differences to

permit sound source localization. The assembly of auditory

circuitry requires the coordinated functionofmultiplemolecu-

lar cues. Eph receptors and their ephrin ligands constitute a

large family of axonguidancemoleculeswithdevelopmentally

regulated expression throughout the auditory system. Func-

tional studies of Eph/ephrin signaling have revealed impor-

tant roles at multiple levels of the auditory pathway, from

the cochlea to the auditory cortex. These proteins provide

graded cues used in establishing tonotopically ordered con-

nectionsbetweenauditoryareas, aswell asdiscrete cues that

enable axons to form connections with appropriate postsyn-

aptic partners within a target area. Throughout the auditory

system, Eph proteins help to establish patterning in neural

pathways during early development. This early targeting,

which is further refined with neuronal activity, establishes

the precision needed for auditory perception.
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INTRODUCTION

Mature neural circuitry in the auditory system reflects

the culmination of multiple coordinated developmental

processes. In early embryonic development,

morphogenesis of the elaborate structures in the inner

ear relies on multiple signaling pathways. Mechanisms

for cell fate specification in the peripheral and central

portions of the auditory system are just beginning to be

understood. During late embryonic and early postnatal

development, axons are guided to appropriate targets

and form synapses, which in some parts of the auditory

pathway exhibit highly specialized structures. The extent

and mechanisms of neuronal migration remain elusive.

Some of these processes likely share molecular

mechanisms with other developing systems, whereas the

differences are likely to shed light on the specializations

needed for auditory function. In this review we focus on

the mechanisms by which axons of cells in the auditory

system are guided to their targets. At each level of the

auditory system, axons project to appropriate target

regions, which include specialized nuclei or cortical

http://dx.doi.org/10.1016/j.neuroscience.2014.06.068
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areas. Here we consider specifically the guidance of

auditory axons to appropriate regions or cell types within

their target nucleus or cortical area, and we highlight the

role of a family of axon guidance molecules, the Eph

receptors and their ephrin ligands, in this targeting.
EPH RECEPTORS AND EPHRINS

Eph proteins, including the Eph receptors and their

ligands, the ephrins, are broadly expressed in the

developing auditory system (for reviews see Bianchi

et al., 2002; Pickles, 2003; Cramer, 2005; Gabriele

et al., 2011). They provide multiple mechanisms for sig-

naling and for generating precise connectivity. Eph/ephrin

interactions generally regulate cellular movement and

adhesion, and thus these proteins play significant roles

not only in axon guidance, but also in cell migration, angi-

ogenesis, cancer, synaptogenesis, and synaptic plasticity

(Lai and Ip, 2009; Pasquale, 2010; Bush and Soriano,

2012). The basis for this broad array of functions lies in

their complex interactions in a variety of biological

contexts.
Binding properties

Eph receptors, the largest family of receptor tyrosine

kinases in vertebrates, were first identified from an

erythropoietin-producing hepatocellular carcinoma (Hirai

et al., 1987). Eph receptors and ephrins (Eph receptor

Interacting proteins), are divided into the A and B classes

on the basis of sequence homology and binding affinity

(Gale et al., 1996). In mammals there are ten EphA recep-

tors (EphA1–A10) and six EphB receptors (EphB1–B6).

Ephrin-A proteins (A1–A6) bind to all of the EphA recep-

tors and ephrin-B proteins (B1–B3) bind to all the EphB

receptors. The broad binding properties within each class

provide considerable redundancy, and several family

members are often co-expressed in populations of cells.

Exceptions to these binding restrictions provide some

degree of crosstalk between the A and B families: EphA4

can bind to both ephrin-A and ephrin-B ligands, and

EphB2 can bind to ephrin-A5 (Gale et al., 1996;

Himanen et al., 2004; Himanen, 2012).

Ephrins are unusual as ligands for receptor tyrosine

kinases in that they are attached to cell membranes,

thereby facilitating cell–cell interactions. Ephrin-A

proteins are tethered to the plasma membrane with a

glycosyl phosphatidyl inositol (GPI) linkage, whereas

ephrin-B ligands are integral membrane proteins with a

transmembrane domain. Several facets of Eph/ephrin

signaling result from this property of ephrins. First, as

cells must come into contact with one another, the

signaling occurs at small distances and thus tends to be

important for axon targeting over limited areas. In the

auditory pathways discussed here, Eph protein signaling

generally regulates choice of location or postsynaptic

partner within a designated target area. Second, the

association of both Eph receptors and ephrins with cell

membranes facilitates bidirectional signaling. In addition

to traditional forward signaling, reverse signaling also

occurs, whereby the activation of ephrins by Eph

receptor binding activates cell signaling events in the
cell expressing the ephrins (Davy et al., 1999; Huai and

Drescher, 2001; Cowan and Henkemeyer, 2002;

Kullander and Klein, 2002; Lim et al., 2008). It was initially

thought that Eph/ephrin interactions elicited only che-

morepulsion in growth cones through forward signaling;

however, it has now been shown that both forward and

reverse signaling are active in axon guidance, and that

interactions may be attractive or repulsive (for review

see Xu and Henkemeyer, 2012; Klein and Kania, 2014).
Regulation of Eph/ephrin signaling

Unlike most receptor tyrosine kinases, which can be

activated by a single molecule of ligand, Eph receptors

are unusual in that their activation requires membrane

attached or clustered ligands (Davis et al., 1994). Acti-

vated Eph receptors are arranged as a tetramer with two

ephrin molecules and two Eph receptors. Moreover, this

binding results in formation of large clusters of activated

Eph receptors, which reside in plasma membrane micro-

domains known as lipid rafts (Marquardt et al., 2005;

Janes et al., 2012). These clusters can contain multiple

types of Eph receptors, and may serve as an additional

mechanism for crosstalk between the Eph subclasses

(Janes et al., 2011; Nikolov et al., 2013). Multiple Eph

receptors and ephrins are often expressed within a single

tissue or cell. Ephrins can bind to Eph receptors within the

same cell in cis, thereby inhibiting protein interactions with

molecules on other cells in trans (Arvanitis and Davy,

2008; Kao and Kania, 2011; Falivelli et al., 2013).

While ephrins are generally associated with cell

membranes, the extracellular domain of the proteins can

be cleaved by metalloproteases. This cleavage was

originally observed for ephrin-A proteins and is seen as

a mechanism to promote contact-mediated cell

repulsion. Further, it has been shown that the cleaved,

soluble extracellular domains of the Eph proteins can in

some cases have signaling properties on their own

(Ieguchi et al., 2013). To facilitate repulsion between cells

expressing EphB receptors and ephrin-B ligands, it is

thought that endocytosis of the bound complex is needed

(Zimmer et al., 2003). However, cleavage of EphB pro-

teins by matrix metalloproteases has also been reported

(Lin et al., 2008).
Axon guidance

Eph receptors and ephrins have a significant role in axon

guidance in many areas of the developing nervous

system. This function was first discovered in the

retinotectal pathway of the chick embryo, in which

retinal ganglion cells express a gradient of EphA3 along

the nasal-temporal axis and the tectum expresses an

opposing gradient of ephrin-A2 and ephrin-A5 in the

recipient anterior–posterior axis (Cheng and Flanagan,

1994; Cheng et al., 1995; Drescher et al., 1995). A similar

pattern was seen in mammals, with EphA5 expressed in a

gradient in retinal ganglion cells. Mutations in these eph-

rin-A genes disrupt mapping along this axis in the superior

colliculus and in the lateral geniculate nucleus (LGN). The

effects are more pronounced when spontaneous activity

is blocked, suggesting that topography requires both fine
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axon guidance and subsequent activity-dependent

refinement (Feldheim et al., 2004; Pfeiffenberger et al.,

2006; Cang et al., 2008b; Triplett and Feldheim, 2012).

Interestingly, mutations in ephrin-A proteins resulted in

erroneous placement of eye-specific layers in the LGN

(Pfeiffenberger et al., 2005), and overexpression of

EphA5 in ferrets resulted in an alteration of eye-specific

projections (Huberman et al., 2005). In addition, control

of retinal ganglion cell growth at the optic chiasm is regu-

lated by ephrin-B proteins at the midline (Petros et al.,

2009; Chenaux and Henkemeyer, 2011). These studies

in the visual system demonstrate roles for Eph proteins

in both graded axon guidance as well as in guidance at

discrete choice points.
Fig. 1. Mapping of afferents from the auditory periphery to the

cochlear nucleus complex. Precise topography (indicated by shades
of blue in this and all subsequent figures) preserves centrally the

frequency order established in the cochlea. The organ of Corti, SGNs,

and their developing connections exhibit complex complementary

and overlapping Eph/ephrin expression patterns. Guidance mecha-

nisms involving both subfamilies are responsible for accurate circuit

assembly (inset key). Inner radial bundle formation and proper

fasciculation require ephrin-B2/EphA4 signaling between growing

SGN peripheral processes and the surrounding otic mesenchyme.

Ephrin-A5-expressing outer hair cells (OHCs) repel EphA4-positive

type I SGNs that preferentially map to the inner hair cell (IHCs) rank.

A subpopulation of type I SGNs are ephrin-A5-positive (purple
stripes). LF = low frequency, HF = high frequency.
PERIPHERAL AUDITORY PATHWAYS

Organization of peripheral auditory circuits

Neural processing of auditory stimuli in mammals begins

in the cochlea, where sensory receptors known as hair

cells in the organ of Corti encode changes in sound

pressure that are transduced through movement of the

basilar membrane. Deflections in hair cell stereocilia in

response to this movement result in transmitter release

onto distal processes of spiral ganglion neurons

(SGNs). Because the basilar membrane varies

systematically in its mechanical properties, there is a

strong correlation between position in the organ of Corti

and the frequency that elicits the largest displacement.

This relationship forms the basis of tonotopy, whereby

ordered representations of frequency are seen within

auditory areas. Topographic connections convey this

frequency map to SGNs. Central projections of spiral

ganglion cells then propagate this map into the central

auditory system.

The peripherally projecting axons of SGNs form radial

bundles that innervate the hair cells (Rubel and Fritzsch,

2002). Mammals have two types of auditory hair cells.

Along the organ of Corti, there is one row of inner hair

cells and three rows of outer hair cells. These cells have

distinct functions and innervation patterns (Kiang et al.,

1982). Inner hair cells contact peripheral processes of

numerous type I SGNs. In contrast, outer hair cells are

more sparsely innervated, making contact with relatively

few type II SGNs (Fig. 1). Genetic fate mapping studies

suggest that these subtypes of SGN are determined at

early developmental ages, and that projections are corre-

lated with their neurogenesis (Koundakjian et al., 2007).

Initial projections may undergo some refinement,

however, as individual SGN axons have been shown to

initially contact both inner and outer hair cells (Echteler,

1992).
Eph/ephrin signaling and axon guidance in
peripheral auditory axons

Several studies have demonstrated that Eph receptors

and ephrins are expressed in the developing inner ear

in mice (Henkemeyer et al., 1994; Bianchi and Gale,

1998; Bianchi et al., 2002; Pickles et al., 2002; Zhou

et al., 2011; Coate et al., 2012; Defourny et al., 2013).
SGNs express ephrin-B1 and ephrin-B2, and growth of

SGN processes is inhibited in vitro by EphB2 through

reverse signaling (Bianchi and Gray, 2002; Zhou et al.,

2011). Null mutations in EphB1–3 or ephrin-B1 lead to

excessive growth of SGN axons beyond the third row of

outer hair cells (Zhou et al., 2011). These studies suggest

that EphB signaling delimits the region through which

SGN axons grow. This view is supported by studies of

SGN axon fasciculation. EphA4, which binds both

ephrin-A and ephrin-B ligands, is needed for normal

fasciculation of SGN axons in their peripheral trajectories

(Coate et al., 2012). SGN peripheral axons in mice lacking

EphA4 were more splayed and formed significantly smal-

ler fascicles. Ephrin-B2 mutations resulted in a similar

effect, suggesting that ephrin-B2/EphA4 signaling is

needed for proper fasciculation.

During formation of peripheral projections, EphA4 is

expressed in type I SGNs, with very limited expression

in type II SGNs, and Ephrin-A5 is expressed in outer

hair cells, but not inner hair cells (Defourny et al., 2013).

In ephrin-A5�/� mice, outer hair cell innervation is more
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extensive, largely due to type I SGN axons that extend

past inner hair cells into the inappropriate region. The dis-

tinct expression pattern of ephrin-A5 suggests that this

protein acts on growing SGN axons via forward signaling.

This study provides further evidence that Eph signaling

provides instructive signals that culminate in appropriate

peripheral auditory connections. An interesting possibility

is that Eph molecules participate in correction of initial

errors in cell contacts (Echteler, 1992).

Central projections from the cochlea toward the

brainstem travel within the VIIIth cranial nerve, which

contains processes from auditory and vestibular ganglia.

Expression of Eph proteins in central axons has been

demonstrated in chick embryos (Siddiqui and Cramer,

2005). During the formation of auditory circuitry these

fibers express several Eph receptors and ephrins from

both classes. Expression of EphA4 is graded in a manner

consistent with the future frequency axes, but the role of

the protein in forming topographic maps has not been

tested. Interestingly, EphB2 and EphA4 have comple-

mentary expression patterns in the VIIIth nerve (Siddiqui

and Cramer, 2005), with greater EphA4 expression in

putative auditory regions of the nerve and greater EphB2

expression in putative vestibular regions. Misexpression

of these genes or treatment with inhibitory fusion proteins

did not result in axon mistargeting to inappropriate audi-

tory vs. vestibular regions (Allen-Sharpley et al., 2013).

Instead, these manipulations resulted in a shifting of the

boundaries demarcating the auditory and vestibular pro-

jection areas of the nerve within the brainstem. In mice,

EphA5 shows significantly more expression in the spiral

ganglion than in vestibular ganglia (Lu et al., 2011), but

the contribution of this protein to modality-specific target-

ing is not known.
AUDITORY BRAINSTEM

Topographic mapping from sensory epithelia into higher

sensory areas is a feature shared with other systems,

and hence tonotopy is similar to retinotopy or

somatotopy. However, the auditory system is unique in

that the stimulus frequency, and not the stimulus

location, is mapped along the sensory receptive surface.

Thus, while these systems may share common

mechanisms to establish topographic projections, the

central auditory system incorporates specific circuitry to

obtain location information from binaural cues.
Eph proteins shape connections in avian auditory
brainstem

Neuroanatomical and electrophysiological studies in birds

have advanced our understanding of the role of brainstem

nuclei in sound localization (Carr and Konishi, 1990;

Hyson, 2005). In chicks, the central projections of the

cochlear ganglion bifurcate and terminate in n. angularis

and n. magnocellularis (NM) (Rubel and Fritzsch, 2002).

NM axons also bifurcate, sending one branch to ipsilateral

n. laminaris (NL) and the other branch to contralateral NL.

Ipsilateral NM axon branches terminate on dorsal dendrites

and somata of NL neurons, whereas contralateral
projections terminate on ventral NL dendrites and somata

(Young and Rubel, 1983). The contralateral projection

creates a delay line through which signals from NM

require longer time to reach lateral NL cells than to reach

medial NL cells. This circuitry, together with fine coinci-

dence detection in NL neurons, allows for the computation

of interaural time differences (ITD’s) used to localize low-

frequency sounds (Overholt et al., 1992; Hyson, 2005;

Koppl and Carr, 2008).

The NM–NL projection thus contains a graded map

alongside a binary separation of ipsilateral and

contralateral projections. Eph protein signaling has a

demonstrated role in both aspects of this projection.

During the formation of these connections, which are

seen by embryonic day 10 (E10), EphA4 is more heavily

expressed on dorsal dendrites of NL (Cramer et al.,

2000). In this dorsal region, a concentration gradient is

seen so that high frequency regions display more

expression than do low-frequency regions (Person

et al., 2004). Disruption of EphA4 using in ovo plasmid

electroporation resulted in errors in dorsal–ventral segre-

gation of inputs, as well as broadening the topography of

the NM–NL projection (Cramer et al., 2004; Huffman and

Cramer, 2007).

While EphA4 has an asymmetric dorsoventral

expression pattern, several other Eph proteins are

expressed in both dorsal and ventral regions (Cramer

et al., 2002). EphB2 is expressed similarly on both sides,

and appears to work together with EphA4 in restricting

NM inputs appropriately. When EphB2 signaling was

blocked using either electroporation or treatment with

inhibiting fusion proteins, axons made errors in dorsoven-

tral targeting; when both EphB and EphA signaling were

blocked, this effect was significantly greater

(Allen-Sharpley and Cramer, 2012). Graded expression

of ephrin-B2, a ligand for EphA4 and EphB2, was observed

along the frequency axis in NL cell bodies, as well as in the

glial cells alongside NL (Person et al., 2004). The contribu-

tions of ephrin-B2 to tonotopy and patterning in this path-

way have not yet been tested. However, unlike the

opposing gradients seen in central projections of the retina,

the gradients seen in this pathway appear to be parallel.

Formation of brainstem pathways in the hindbrain in

chick embryos requires an extended period of migration

and morphogenesis (Rubel et al., 1976; Cramer and

Rubel, 1998). At the earliest ages the hindbrain is divided

into distinct rhombomeres. Movement across rhombo-

mere boundaries is limited at early ages, at least in part

by Eph protein-mediated repulsion at these boundaries

(Xu et al., 1999). NM and NL neurons are born early in

the hindbrain, from embryonic day 2 (E2) to E4 (Rubel

et al., 1976). Precursors for NM and NL then coalesce

to form a laterally oriented auditory anlage at about E7

(Book and Morest, 1990). The nuclei are then separate

and move medially, and NL takes on its characteristic

laminar appearance by E9–10, when the synapses from

NM inputs form. Thus, the period of axon guidance and

synaptogenesis coincides with the formation of the

mature nuclei (Hendricks et al., 2006). Eph protein signal-

ing appears to influence both processes. Disruption of

EphA4 and EphB2 not only alters axon targeting, but also
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results in abnormally shaped auditory nuclei (Cramer

et al., 2004; Allen-Sharpley and Cramer, 2012). These

studies suggest that Eph proteins may coordinate the

position of cells together with their arriving inputs. This

dual role of Eph signaling in migration and axon targeting

has been seen in several regions of the developing mam-

malian cerebral cortex (North et al., 2013) and suggests a

potential role for coordinating cues that influence cell

movement and axon outgrowth.
Fig. 2. Altered brainstem projections in mice with mutations that

reduce EphB signaling. (A) Normal pathway from AVCN and PVCN

(indicated as VCN) to MNTB in wild type mice. Nearly all of the

projections are contralateral, terminating in a calyx of Held in the

appropriate frequency region. Blue color gradients refer to frequency
Sound localization circuits in mammals

In mammals, central SGN axons entering the brainstem

branch and project tonotopically to three subdivisions of

the cochlear nucleus, the anterior ventral cochlear

nucleus (AVCN), the posterior ventral cochlear nucleus

(PVCN), and the dorsal cochlear nucleus (DCN).

Branches of axons from AVCN project to ipsilateral and

contralateral medial superior olive (MSO), with inputs

segregated onto lateral and medial dendrites,

respectively, in a pathway that detects ITD’s. In

addition, the globular bushy cells of the ventral cochlear

nuclei (VCN) project to the medial nucleus of the

trapezoid body (MNTB). These axons terminate on

principal cells of the contralateral MNTB in a large

synapse, the calyx of Held, which encapsulates the

postsynaptic neuron (Cant, 1992). MNTB neurons provide

inhibitory input to a number of auditory brainstem nuclei,

including the MSO. Another target is the ipsilateral lateral

superior olive (LSO), where cells receive tonotopically

matched excitatory input from the spherical bushy cells

of the ipsilateral ventral cochlear nucleus. This pathway

allows for detection of interaural level differences (ILD’s),

a cue used to determine locations of high frequency

sounds.

axis; dark blue represents high frequencies. LSO, lateral superior

olive; MSO, medial superior olive. (B) Mutations that block reverse

signaling through ephrin-B receptors result in a significant number of

ipsilateral calyceal projections (Hsieh et al., 2010). These ipsilateral

projections in most cases appear as branches from contralaterally

projecting VCN axons. In some cases, ipsilateral projections grow

directly to the MNTB in the absence of a contralaterally projecting

branch. For clarity, MSO and LSO are omitted; these nuclei have not

been studied in the context of Eph signaling.
Eph proteins shape multiple aspects of brainstem
pathways

Studies of mutant mouse lines have revealed several

roles for Eph proteins in the circuitry of the auditory

brainstem. Evidence for a role in establishing tonotopy

comes from a study in which animals were exposed to

pure tones and then histologically processed to examine

expression of the immediate early gene c-fos (Miko

et al., 2007). Mice with reduced levels of ephrin-B2

showed increased positional spread of c-fos-positive cells

in DCN in response to pure tone stimulation. Additionally,

mice lacking EphA4 showed a shift in the position of

c-fos-positive cells in MNTB in response to pure tones.

The results suggest that ephrin-B2 and EphA4 are

needed to form appropriately restricted tonotopic maps

in some of the auditory brainstem nuclei. Expression stud-

ies showed gradients during development in several

areas of the developing brainstem, consistent with this

result. The altered frequency bands may reflect a role

for Eph proteins in topographic mapping to these nuclei.

Eph proteins have an additional role in establishing

VCN–MNTB projections. While this projection is

normally strictly contralateral, a significant number of

ipsilateral terminations are seen in ephrin-B2lacZ/+ mice

and in EphB2�/�; EphB3�/� mice (Hsieh et al., 2010;
Nakamura and Cramer, 2011). These ipsilateral projec-

tions have calyceal terminations that form at the same

time as normal contralateral connections. Unlike the aber-

rant growth of vestibular inner ear efferents seen in

embryonic EphB2�/�; EphB3�/� mice, this ipsilateral pro-

jection is not eliminated at later ages. The connections to

ipsilateral MNTB in most cases arise from axon branches

that project contralaterally, but in some cases ipsilateral

calyces appear to emerge directly from VCN (Fig. 2).

These latter projections could reflect pruning of the con-

tralateral branch, but could also indicate a failure of

VCN axons to reach and cross the midline. The axon

guidance molecules netrin-1 and DCC are needed for

VCN axon growth to the midline (Howell et al., 2007),

and absence of Robo3 receptor in VCN cells results in

an entirely ipsilateral projection to VCN (Renier et al.,

2010). In EphB mutants it appears that the majority of
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axons reach the midline, and that the mutations result in a

more favorable environment for ipsilateral axon branches

that may be stabilized in ipsilateral MNTB. These results

together highlight the role of Eph signaling in determining

local targets; in this case, once the axons have been

instructed by other signals to cross the midline and syn-

apse in contralateral MNTB. Consistent with this view,

these mutations also lead to an enhancement of induced

ipsilateral connections after unilateral cochlear removal

during early postnatal development (Nakamura et al.,

2012; Nakamura and Cramer, 2013).
AUDITORY MIDBRAIN

Continuous and compartmentalized pathways in the
inferior colliculus (IC)

The IC is a strategically located midbrain hub that

integrates a multitude of converging inputs. Its position

and rich multi-tiered innervation scheme emphasize its

pivotal role coordinating both ascending and descending

auditory circuits. In addition to its vast array of auditory

afferents (Casseday et al., 2002), the IC also receives

non-auditory inputs and is thereby thought to be involved

in aspects of multisensory integration (Jain and Shore,

2006; Zhou and Shore, 2006). While purely auditory areas

of the IC reliably preserve the tonotopic order established

in the periphery (Merzenich and Reid, 1974; Schreiner

and Langner, 1997; Malmierca et al., 2008), such a

frequency continuum is less apparent in certain multi-

modal regions where topographically mapped inputs

target discrete, or discontinuous terminal fields.

The IC is functionally organized into a central nucleus

(CNIC), lateral or external cortex (LCIC, ECIC: Loftus

et al., 2008), and dorsal cortex (DCIC). Besides each

exhibiting a unique connectivity, substantial intrinsic and

commissural projections functionally link these major sub-

divisions (Saldaña and Merchán, 1992; Malmierca et al.,

1995). The CNIC and LCIC in particular provide an intrigu-

ing model for considering guidance mechanisms as each

has tonotopically defined regions, yet differ significantly in

other basic organizational features.

The CNIC is the largest subdivision and the most

thoroughly studied to date, as it is the site of

convergence for ascending streams that process in

parallel complex spectral, temporal, and spatial signal

attributes. It receives direct projections from the cochlear

nuclear complex, as well as numerous pathways arising

from various nuclei of the superior olivary complex

(SOC) and lateral lemniscus (Winer and Schreiner,

2005). Despite its homogeneous appearance in routine

cellular stains, the CNIC exhibits a layered arrangement

consisting of a series of fibrodendritic or isofrequency lam-

inae that run perpendicular to its tonotopic axis (Morest

and Oliver, 1984; Oliver and Morest, 1984). Inputs identify

precise sublayers of target isofrequency laminae and

terminate in characteristic patterns of alternating axonal

layers. Spatial alignment of converging layered afferents

is well documented (Shneiderman and Henkel, 1987;

Oliver et al., 1997; Loftus et al., 2004, 2010; Malmierca

et al., 2005) and thought to define functional compart-

ments or CNIC synaptic domains that receive various
monaural and binaural input combinations (Oliver, 2005).

Assembly of such complex circuitry requires considerable

topographic precision and is necessary for the accurate

assimilation of various stimulus features (Ehret and

Merzenich, 1985; Schreiner and Langner, 1997) before

being conveyed on to the thalamus and cortex.

Far less is known concerning the topographic

mapping and functionality of the LCIC. In rodent, the

LCIC has a layered structure (Faye-Lund and Osen,

1985). Its deepest aspect, Layer 3, exhibits a clear fre-

quency order with refined axonal layers similar to those

in the adjacent CNIC. Layer 3 inputs are also comparable

to its neighbor, arising primarily from lemniscal, intrinsic,

or commissural origins (Saldaña and Merchán, 1992;

Malmierca et al., 1995; Saldaña et al., 2009). In contrast,

LCIC Layers 1 and 2 lack any evidence of a tonotopic

organization and receive a largely unique set of connec-

tions. Despite considerable connections from the CNIC

itself and modest inputs from lateral lemniscal nuclei

(Rockel and Jones, 1973; Coleman and Clerici, 1987;

González-Hernández et al., 1996), the heaviest

influences to these more superficial areas arise primarily

from the auditory cortex (Herbert et al., 1991; Saldaña

et al., 1996; Druga et al., 1997; Winer et al., 1998) and

extramodal sources, including the dorsal column nuclei

(Li and Mizuno, 1997), spinal trigeminal tract (Aitkin

et al., 1981), and basal ganglia (Olazábal and Moore,

1989; Shammah-Lagnado et al., 1996). Interestingly,

projection patterns to these multimodal areas are not lay-

ered, but rather appear to either preferentially target a

periodic network of Layer 2 modules (Chernock et al.,

2004; Zhou and Shore, 2006; Malmierca et al., 2011;

Ouda and Syka, 2012), or spare these clusters of pre-

sumptive GABAergic cells and terminate in surrounding

extramodular domains. Such patch-matrix-like distribu-

tions, while common in other sensory and motor systems

(striatum: Gerfen and Engber, 1992, visual: Illing, 1996,

somatosensory: Petersen, 2007, olfactory: Imai et al.,

2010), are conspicuously absent from most auditory

structures. Taken together, the CNIC and LCIC provide

a promising model system for examining emergent topo-

graphic, laminar, and modular arrangements prior to

experience.

Eph signaling in IC circuit assembly

Since patterns of afferent projections define functional

compartments that occur within and between IC

subdivisions, it is essential to understand the

mechanisms that shape its early topography.

Innervation of the nascent IC and the subsequent

emergence of its orderly connectivity occur prior to

hearing onset (postnatal day 12 in rat and mouse). In

short, pioneer fibers invade appropriate subdivisions of

the embryonic IC and exhibit initially diffuse projection

distributions. Shortly after birth, characteristic CNIC

layers become apparent as axonal arbors refine

themselves, coupling selective pruning with continued

elaboration within appropriate postsynaptic sublayers

(Kandler and Friauf, 1993; Gabriele et al., 2000a,b,

2007; Henkel et al., 2007; Fathke and Gabriele, 2009).

Bilateral LSO patterns and those arising from the



Fig. 3. Schematic of proposed continuous vs. discrete Eph/ephrin

mapping of the auditory midbrain. The CNIC and deep LCIC exhibit

characteristic frequency laminae (shades of blue) that receive

tonotopic inputs from multiple lemniscal sources (including the

cochlear nuclei, LSO, MSO, SPN, DPO, VNLL, and DNLL). Graded

expressions of certain Eph/ephrins along the ventromedial-to-

dorsolateral CNIC frequency continuum appear to influence axonal

targeting prior to experience. Ephrin-As are also highly expressed in

the nascent CNIC, and while not yet quantified, may provide

positional information necessary for mapping afferents along addi-

tional IC axes. While less characterized, inputs to more superficial

aspects of the LCIC are multimodal, lack a clear frequency order, and

exhibit discontinuous modular or extramodular projection distribu-

tions. Descending inputs from the auditory cortex as well as intrinsic

and commissural connections from the CNIC appear to spare Layer 2

modules (green, purple), while somatosensory inputs arising from the

dorsal column and spinal trigeminal nuclei preferentially target these

domains (red, orange). In lieu of continuous gradients, LCIC

Eph/ephrin expression is conspicuously modular (gray), suggesting
a role in instructing discrete maps that reflect ‘‘type’’ rather than

‘‘position/frequency’’ of inputs. SPN= superior paraolivary nucleus;

DPO= dorsal periolivary group.
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contralateral DCN and dorsal nucleus of the lateral lem-

niscus (DNLL) all exhibit remarkable projection specificity

prior to experience, targeting defined synaptic domains of

frequency-band laminae (Fathke and Gabriele, 2009).

Much like their layered counterparts in the CNIC, modular

(Wallace et al., 2013) and extramodular (Torii et al., 2013)

LCIC arrangements emerge during early postnatal

development.

The precision with which IC inputs adhere to the local

cytoarchitectural framework in the absence of

experience suggests involvement of close-contact

signaling mechanisms. An important first step in
assessing whether Eph/ephrins play an instructive role in

auditory midbrain map formation is the identification of

protein expression patterns that correlate with the early

period of projection shaping (Fig. 3). Localization studies

utilizing immunocytochemical and X-Gal staining

approaches in lacZ mutants show a transient expression

of EphA4 and ephrin-B2 in the IC leading up to the

functional onset of hearing (Gabriele et al., 2011). In rat

and mouse, each is expressed in a graded fashion across

the tonotopic axis of the CNIC, with protein most concen-

trated in ventromedial, high-frequency regions. CNIC

gradients are steep at birth through P4 (period of axonal

sorting), before flattening to more homogeneous expres-

sion as experience ensues (Miko et al., 2007; Gabriele

et al., 2011). In contrast to their continuous CNIC expres-

sion, both exhibit discrete, discontinuous patterns in the

LCIC, with protein localized to presumptive modular fields

that mimic those neurochemically described in the adult

(Chernock et al., 2004; Malmierca et al., 2011; Ouda and

Syka, 2012). This pattern remains prominent throughout

the first postnatal week prior to being noticeably downreg-

ulated by P12. EphA4 and ephrin-B2-positive cells are

also evident during this period in several auditory brain-

stem nuclei that send patterned inputs to the IC, namely

the cochlear nuclei, LSO, DNLL, and ventral nucleus of

the lateral lemniscus (VNLL).

To assess Eph/ephrin cues in establishing continuous

CNIC and discrete LCIC maps, a recent study explored

the specific involvement of ephrin-B2 in developing

topographic projections from the LSO to IC (Wallace

et al., 2013). In contrast to the strict tonotopy observed

in wild-type mice, ephrin-B2lacZ/+ mutants (compromised

reverse signaling) lacked any clear projection topography.

Whereas focal LSO dye placements in WTs resulted in

one or two frequency-matched axonal layers in the CNIC,

comparably sized placements consistently yielded

unrefined projection distributions encompassing a larger

frequency axis extent in heterozygous mutants. Interest-

ingly, ephrin-B2 reverse signaling was not required for

aspects of pattern formation as characteristic CNIC layers

still form prior to experience.

If previous findings in the retinotectal and other

analogous systems are any indication (Luo and

Flanagan, 2007), accurate IC map construction likely

involves additional Eph/ephrin members, as well as

potentially complex interactions with other signaling fami-

lies. In addition to EphA4 and ephrin-B2, ephrin-A2 and

ephrin-A5 mRNA is present in the embryonic IC (Zhang

et al., 1996). EphA7-Fc chimeric protein binding studies

reveal the presence of ephrin-As in the P4 mouse IC

(Torii et al., 2013). In this same study, EphA7 overexpres-

sion in the auditory cortex significantly alters targeting of

corticocollicular projections to the DCIC and LCIC.

Descending inputs that normally avoid Layer 2 modules

exhibit a more even LCIC distribution pattern. More

recently, comprehensive in situ hybridization studies

implicate a host of other EphA/B proteins in the develop-

ing IC (www.brain-map.org; Allen Institute for Brain

Science). Finally, preliminary studies suggest ephrin-B3

midbrain expression patterns are complementary to those

for EphA4 and ephrin-B2 (Klotz et al., 2013). Ephrin-B3 is

http://www.brain-map.org
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also highly expressed in the mesencephalic midline (Noftz

et al., 2014), yet it remains to be determined whether it is

involved in crossing decisions for intercollicular and com-

missural auditory fibers. Taken together, the temporal and

spatial correlation of afferent shaping and Eph/ephrin

expression patterns suggest their involvement in the IC

circuit construction. Future experiments employing a vari-

ety of approaches are necessary to determine the precise

interactions that instruct IC topography.

THALAMUS AND AUDITORY CORTEX

Neurons from IC project to the auditory thalamus, where

they form tonotopic projections terminating in the medial

geniculate body (MGB). Eph receptors and ephrins are

expressed in the developing MGB as in other thalamic

nuclei (Intskirveli et al., 2011; Lehigh et al., 2013; Torii

et al., 2013), with graded expression of some family mem-

bers. The distinct expression patterns of Eph proteins in

the developing thalamus suggest a role in defining bound-

aries between distinct nuclei (Lehigh et al., 2013).

The role of Eph proteins in guidance of MGB axons to

appropriate locations in the primary auditory cortex has

not been tested. Nonetheless, Eph proteins have

multiple roles in every stage of cortical development

(North et al., 2013), and thus an understanding of their

integrated function will be of value in understanding

assembly of auditory pathways. Eph proteins regulate

areal specification of the cortex and guidance of thalamo-

cortical axons to the appropriate cortical areas (Dufour

et al., 2003; Robichaux et al., 2014). They influence

cortical cell migration (Steinecke et al., 2014), laminar

specification (Mann et al., 2002), topography (Cang

et al., 2008a), and columnar organization (Torii et al.,

2009; Dimidschstein et al., 2013). In primary auditory cor-

tex, null mutations in EphB2 and EphB3 result in

degraded frequency selectivity (Intskirveli et al., 2011).

This result could signify an effect on thalamocortical

topographic mapping, but could also reflect divergent

projections in lower auditory areas.

CONCLUSIONS

Eph receptors and ephrins make multiple contributions to

the organization of neural circuitry. Emerging evidence

suggests that this protein family has a significant role in

the development of auditory pathways, from the

peripheral projections to the auditory cortex. Early in

development, Eph signaling influences the movement of

cells as nuclei form and at the same time regulates the

growth of their axons to appropriate targets. Later in

development, the function in axon guidance dominates,

as Eph signaling seems to fine tune projections that

have arrived in the correct target. Throughout this

process, these molecules seem to work together with

other cues, including other axon guidance signals as

well as activity-dependent refinement known to occur in

topographic mapping.

As a consequence of cell contact-mediated binding,

Eph/ephrin signaling appears to be most important for

selection of regions within a target, rather than for

selecting a target region. These subregions include
topographic locations that rely on graded expression

patterns, resulting in tonotopic maps. They also include

discrete locations, such as inner vs. outer hair cells,

dorsal vs. ventral NL dendrites, ipsilateral vs.

contralateral nuclei, or modular vs. extramodular

domains. In many cases, Eph proteins serve as an

inhibitory signal that delineates compartments permitting

axon growth. Nearly every stage of auditory system

development exhibits expression of several ligands and

receptors. These proteins have overlapping binding

properties and function in many stages of neural

development, including proliferation, migration, axon

guidance, and synaptogenesis. Their expression and

signaling capabilities help to coordinate the formation of

auditory nuclei, axon growth, and precise formation of

synapses throughout the auditory system.
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