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Abstract

Development and Application of the Experiment-Selector Cross-Validated Targeted Maximum
Likelihood Estimator

by

Lauren Elizabeth Eyler Dang

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

This dissertation encompasses the development and application of the experiment-selector cross-
validated targeted maximum likelihood estimator (ES-CVTMLE) for analyzing hybrid randomized-
external data studies. The goal of these hybrid designs is to augment a small randomized controlled
trial (RCT) with external data – in the form of the control arm(s) of previous trials or real-world
healthcare data (RWD) – in order to increase power. Of course, inclusion of RWD may also increase
the causal gap, defined as the difference between the causal effect of interest and the statistical pa-
rameter that we will estimate from the data. The primary statistical challenges are 1) excluding
external data that would introduce bias of a magnitude large enough to worsen coverage for the
causal effect while still including unbiased external data frequently enough to improve power and
2) constructing confidence intervals that appropriately reflect that the causal gap may not be zero
when external data are integrated.

In Chapter 1, we describe the development of the ES-CVTMLE methodology, focusing on the
case where only external controls are available. We consider two methods of estimating the causal
gap: 1) a function of the difference in conditional mean outcome under control between the RCT and
combined experiments and 2) the estimated average treatment effect on a negative control outcome.
We then define criteria for selecting the experiment (RCT alone or RCT combined with external
data) that optimizes the estimated bias-variance tradeoff. To separate the data used for experiment
selection from the data used for effect estimation, we develop an experiment-selector cross-validated
targeted maximum likelihood estimator. We define the asymptotic distribution of the ES-CVTMLE
under varying magnitudes of bias and construct confidence intervals by Monte Carlo simulation.
We demonstrate the performance of the ES-CVTMLE compared to three other estimators for hybrid
randomized-external data designs using simulations and a re-analysis of the LEADER trial of the
effect of liraglutide versus placebo on cardiovascular outcomes.

In Chapter 2, we describe the development of the EScvtmle R software package to implement
the method described in Chapter 1. The software package also extends this methodology to allow
for integration of external data participants with both the active treatment and control arms of the
trial. We include vignettes demonstrating use of the EScvtmle package with the publicly available
WASH Benefits Bangladesh cluster RCT dataset.

The real data examples in Chapters 1 and 2 rely on following the Roadmap for Causal and
Statistical Inference, a structured process that guides the design, analysis, and interpretation of
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studies anywhere on the spectrum from a traditional RCT to a fully observational study. In Chapter
3, we describe this Causal Roadmap to an audience of clinical and translational researchers. We
also extend the Roadmap framework to consider how outcome-blind simulations may be used for
quantitative comparison of the characteristics of different potential study designs.

Chapter 4 represents the culmination of the previous work; we use a case study of semaglutide
and cardiovascular outcomes to demonstrate application of this extended version of the Causal
Roadmap to compare study designs involving traditional RCTs with a hybrid randomized-external
data design. We demonstrate how following the Causal Roadmap can help to define an external
control arm in a way that improves the plausibility of causal identification assumptions. We then
use simulations to demonstrate the tradeoffs between each of these potential designs. Finally, we
present a real data analysis using the ES-CVTMLE to estimate the effect of oral semaglutide versus
standard-of-care on risk of major adverse cardiovascular events based on the PIONEER 6 RCT
and considering augmentation with RWD from Optum’s de-identified Clinformatics® Data Mart
Database (CDM) (2007-2022).
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1 The Experiment-Selector CV-TMLE

1.1 Introduction
With the growing availability of observational data from sources such as registries, electronic

health records, or the control arms of previous trials, the power of randomized controlled trials
(RCTs) could potentially be improved while randomizing fewer participants to control status if we
were able to incorporate real-world data (RWD) in the analysis [1, 2, 3]. Running an adequately-
powered trial without external control data may be infeasible for rare diseases [4]. For severe dis-
eases without effective treatments or pediatric approvals of medications that have been shown to be
safe and efficacious in adults, inclusion of external control data may allow more trial participants
to be randomized to receive a potentially beneficial medication instead of placebo [2, 5].

Yet combining these data types comes with the risk of introducing bias from multiple sources,
including measurement error, selection bias, and confounding [6]. Data fusion estimators, dis-
cussed in detail in Related Literature below, aim to estimate the bias that may be introduced by
incorporating real-world data in order to decide whether to include RWD or how to weight RWD
in a hybrid RCT-observational analysis. These estimators may take a Bayesian [1, 7, 8, 3] or a fre-
quentist [2, 9, 10, 11, 12, 13] approach and use different criteria for inclusion of RWD and different
methods of confidence interval construction.

A key insight from this literature is that there is an inherent tradeoff between maximizing power
when unbiased RWD are available and maintaining close to nominal coverage across the spectrum
of potential magnitudes of RWD bias [11, 13]. The strengths and limitations of existing methods
led us to consider an alternate approach to augmenting the control arm of an RCT with external data
that incorporates multiple estimates of bias to boost potential power gains while providing robust in-
ference despite violations of necessary identification assumptions. Framing the decision of whether
to integrate RWD (and by extension, which RWD to integrate) as a problem of data-adaptive exper-
iment selection, we develop a novel cross-validated targeted maximum likelihood estimator for this
context that 1) incorporates an estimate of the average treatment effect on a negative control out-
come (NCO) into the bias estimate, 2) uses cross-validation to separate bias estimation from effect
estimation, and 3) constructs confidence intervals by sampling from the estimated limit distribution
of this estimator, where the sampling process includes an estimate of the bias, further promoting
accurate inference.

The remainder of this chapter is organized as follows. In Section 2, we discuss related data fu-
sion estimators. In Section 3, we introduce the problem of data-adaptive experiment selection and
discuss issues of causal identification, including estimation of bias due to inclusion of RWD. In
Section 4, we introduce potential criteria for including RWD based on optimizing the bias-variance
tradeoff and utilizing the estimated effect of treatment on an NCO. In Section 5, we develop an ex-
tension of the cross-validated targeted maximum likelihood estimator (CV-TMLE) [14, 15] for this
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new context of data-adaptive experiment selection and define the limit distribution of this estimator
under varying amounts of bias. In Section 6, we set up a simulation to assess the performance of our
estimator and describe four potential comparator methods: two test-then-pool approaches [2], one
method of Bayesian dynamic borrowing [3], and a difference-in-differences (DID) approach to ad-
justing for bias based on a negative control outcome [16, 17]. We also introduce a CV-TMLE based
version of this DID method. In Section 7, we compare the causal coverage, power, bias, variance,
and mean squared error of the experiment-selector CV-TMLE to these four methods as well as to
a CV-TMLE and t-test for the RCT only. In Section 8, we demonstrate the use of the experiment-
selector CV-TMLE to distinguish biased from unbiased external controls in a real data analysis of
the effect of liraglutide versus placebo on improvement in glycemic control in the Central/South
America subgroup of the LEADER trial.

1.2 Related literature
A growing literature highlights different strategies for combined RCT-RWD analyses. One set

of approaches, known as Bayesian dynamic borrowing, generates a prior distribution of the RCT
control parameter based on external control data, with different approaches to down-weighting the
observational information [1, 7, 8, 3]. These methods generally require assumptions on the dis-
tributions of the involved parameters, which may significantly impact the effect estimates [18, 5].
While these methods can decrease bias compared to pooling alone, multiple studies have noted ei-
ther increased type 1 error or decreased power when there is heterogeneity between the historical
and RCT control groups [5, 2, 18, 19, 20].

This tradeoff between the ability to increase power with unbiased external data and the ability
to control type 1 error across all potential magnitudes of bias has also been noted in the frequentist
literature [11, 13]. A simple “test-then-pool” strategy for combining RCT and RWD, described by
Viele et al.[2], involves a hypothesis test that the mean outcomes are equal in the RCT and RWD
control arms; datasets are only combined if the null hypothesis of the test is not rejected. However,
when the RCT is small, tests for inclusion of RWD are also underpowered, and so observational
controls may be inappropriately included even when the test’s null hypothesis is not rejected [21].
Thus, such approaches are subject to inflated type 1 error in exactly the settings in which inclusion
of external controls is of greatest interest.

Subsequently, several estimators that are more conservative in their ability to maintain nominal
type 1 error control have been proposed. For example, Rosenman et al.[9] have built on the work of
Green and Strawderman[22] in adapting the James-Stein shrinkage estimator [23] to weight RCT
and RWD effect estimates in order to estimate stratum-specific average treatment effects. Another
set of methods aims to minimize the mean squared error of a combined RCT-RWD estimator, with
various criteria for including RWD or for defining optimal weighted combinations of RCT and
RWD [10, 11, 12, 13]. These studies reveal the challenge of optimizing the bias-variance tradeoff
when bias must be estimated. Oberst et al.[13] note that estimators that decrease variance most with
unbiased RWD also tend to have the largest increase in relative mean squared error compared to the
RCT only when biased RWD is considered. Similarly, Chen et al.[11] show that if the magnitude of
bias introduced by incorporating RWD is unknown, the optimal minimax confidence interval length
for their anchored thresholding estimator is achieved by an RCT-only estimator, again demonstrating
that both power gains and guaranteed type I error control should not be expected. Yang et al.[10],
Chen et al.[11], and Cheng and Cai[12] introduce tuning parameters for their estimators to modify
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this balance. Because no estimator is likely to outperform all others both by maximizing power
and maintaining appropriate type 1 error in all settings, different estimators may be beneficial in
different contexts where one or the other of these factors is a greater priority. While these methods
focus on estimating either the conditional average treatment effect [10, 12] or the average treatment
effect [11, 13] in contexts when treatment is available in the external data, in this chapter we focus
on the setting where a medication has yet to be approved in the real world.

An alternate approach to estimating bias, used mostly for observational data analyses, involves
the use of an NCO. Because the treatment does not affect an NCO, evidence of an association
between the treatment and this outcome is indicative of bias [24]. Authors including Sofer et al.[16],
Shi et al.[25], and Miao et al.[26] have developed methods of bias adjustment using an NCO. Yet
because there may be unmeasured factors that confound the relationship between the treatment and
the true outcome that do not confound the relationship between the treatment and the NCO, an
NCO-based bias estimate near zero does not rule out residual bias [24].

In summary, methods that estimate bias to evaluate whether to include RWD or how to weight
RWD in a combined analysis most commonly rely either on a comparison of mean outcomes or
effect estimates between RCT and RWD (e.g., [2, 3, 10, 13]) or on the estimated average treatment
effect on an NCO (e.g., [17]). The latter approach requires additional assumptions regarding the
quality of the NCO [17, 24]. Bias estimation is a challenge for both approaches, leading to a tradeoff
between the probability that information from unbiased RWD is included and the probability that
information from biased RWD is excluded [11, 13]. We discuss both options for bias estimation
and our proposal to combine information from both sources below.

1.3 Causal Roadmap for hybrid RCT-RWD trials
In this section, we follow the causal inference roadmap described by Petersen and van der

Laan[27] to explain this data fusion challenge. Please refer to Supplementary Table A.1 in Ap-
pendix A.1 for a list of symbols used in this chapter. For a hybrid RCT-RWD study, let S indicate
the experiment being analyzed, where si = 0 indicates that individual i participated in an RCT,
si ∈ {1, ..., K} indicates that individual i participated in one of K potential observational cohorts,
and S ∈ {0, s} indicates an experiment combining an RCT with dataset s. We have a binary in-
tervention, A, a set of baseline covariates, W , and an outcome Y . W may affect inclusion in the
RCT versus RWD. Assignment to active treatment, A, is randomized with probability p for those
in the RCT and set to 0 (standard of care) for those in the RWD, because the treatment has yet to
be approved. Thus, A is only affected by S and p, not directly by W or any exogenous error. Y
may be affected by W , A, and potentially also directly by S. The unmeasured exogenous errors
U = (UW , US, UY ) for each of these variables could potentially be dependent. The full data then
consist of both endogenous and exogenous variables. Our observed data are n independent and
identically distributed observations Oi = (Wi, Si, Ai, Yi) with true distribution P0.

A common causal target parameter for RCTs is the average treatment effect (ATE). With multiple
available datasets, there are multiple possible experiments we could run to evaluate the ATE for the
population represented by that experiment, where each experiment includes S=0 with or without
external control dataset s. With counterfactual outcomes [28] defined as the outcome an individual
would have had if they had received treatment (Y 1) or standard of care (Y 0), there are thus multiple
potential causal parameters that we could target, one for each potential experiment:
ΨF

s (PU,O) = EW |S∈{0,s}[E(Y
1 − Y 0|W,S ∈ {0, s})] for s ∈ {0, ..., K}.

3



1.3.1 Identification
Next, we discuss whether each of the potential causal parameters, ΨF

s (PU,O), is identifiable from
the observed data.
Lemma 1: For each experiment with S ∈ {0, s}, under Assumptions 1 and 2a-b below, the
causal ATE, ΨF

s (PU,O), is identifiable from the observed data by the g-computation formula [29],
with statistical estimand

Ψs(P0) = EW |S∈{0,s}[E0[Y |A = 1, S ∈ {0, s},W ]− E0[Y |A = 0, S ∈ {0, s},W ]]. (1.1)

Assumption 1 (Positivity (e.g., [30, 31])): P (A = a|W = w, S ∈ {0, s}) > 0 for all a ∈ A and
all w for which P (W = w, S ∈ {0, s}) > 0. This assumption is true in the RCT by design and
may be satisfied for other experiments by removing RWD controls whoseW covariates do not have
support in the trial population.

Assumption 2 (Mean Exchangeability (e.g., [32, 33])):
As described by Rudolph et al.[32] and subsequently named by Dahabreh et al.[33],
Assumption 2a (“Mean exchangeability in the trial” [33]): E[Y a|W,S = 0, A = a] = E[Y a|W,S =
0]. This assumption is also true by the design of the RCT.
Assumption 2b (“Mean exchangeability over S” [33]): E[Y a|W,S = 0] = E[Y a|W,S ∈ {0, s}]
for every a ∈ A. Assumption 2b may be violated if unmeasured factors affect trial inclusion
or if being in the RCT directly affects adherence or outcomes [32, 34]. Dahabreh et al.[34] note
that Assumption 2b is more likely to be true for pragmatic RCTs integrated with RWD from the
same healthcare system. Nonetheless, we may not be certain whether Assumption 2b is violated
in practice.

1.3.2 Bias estimation
One approach to concerns about violations of Assumption 2b would be to target a causal pa-

rameter that we know is identifiable from the observed data. As noted by Hartman et al.[35],
Balzer et al.[36], and Dahabreh et al.[37], we may consider interventions not only on treatment
assignment but also on trial participation. The difference in the outcomes an individual would have
had if they had received active treatment and been in the RCT (Y a=1,s=0) compared to if they had
received standard of care and been in the RCT (Y a=0,s=0), averaged over a distribution of covari-
ates that are represented in the trial, gives a causal ATE of A on Y in the population defined by
that experiment. Under Assumptions 1 and 2a, this “ATE-RCT” parameter for any experiment,
Ψ̃F

s (PU,O) = EW |S∈{0,s}[E(Y
a=1,s=0−Y a=0,s=0|W,S ∈ {0, s})], is equal to the following statistical

estimand:
Ψ̃s(P0) = EW |S∈{0,s}[E0[Y |A = 1, S = 0,W ]− E0[Y |A = 0, S = 0,W ]]. (1.2)

Nonetheless, by estimating this parameter, we would not gain efficiency compared to estimating the
sample average treatment effect for the RCT only [38].

Another general approach to addressing concerns regarding violations of Assumption 2b would
be to estimate the causal gap or bias due to inclusion of external controls. In order to further explore
this option, we consider two causal gaps as the difference between one of our two potential causal
parameters and the statistical estimand Ψs(P0) for a given experiment with S ∈ {0, s}:

1. Causal Gap 1: ΨF
s (PU,O)−Ψs(P0)

2. Causal Gap 2: Ψ̃F
s (PU,O)−Ψs(P0)
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While these causal gaps are functions of the full and observed data, we can estimate a statistical
gap that is only a function of the observed data as

Ψ#
s (P0) = Ψs(P0)− Ψ̃s(P0)

= EW |S∈{0,s}[E0[Y |A = 0, S = 0,W ]]− EW |S∈{0,s}[E0[Y |A = 0, S ∈ {0, s},W ]]
(1.3)

Lemma 2: Causal and Statistical Gaps for an experiment with S ∈ {0, s}
If Assumption 2b is true, then ΨF

s (PU,O) = Ψ̃F
s (PU,O), Ψ#

s (P0) = 0

Causal Gap 1: ΨF
s (PU,O)−Ψs(P0) = 0

Causal Gap 2: Ψ̃F
s (PU,O)−Ψs(P0) = 0

Ψ#
s (P0) may thus be used as evidence of whether Assumption 2b is violated. If we were to bias

correct our estimate Ψs(P0) by subtracting Ψ#
s (P0), we would again be estimating Ψ̃s(P0), with no

gain in efficiency compared to estimating the sample ATE from the RCT only [38]. Nonetheless,
the information from estimating Ψ#

s (P0) may still be incorporated into an experiment selector, s⋆n,
discussed below.

1.4 Potential experiment selection criteria
A natural goal for experiment selection would be to optimize the bias-variance tradeoff for

estimating a causal ATE. Such an approach of determining combinations of RCT and RWD that
minimize the estimated mean squared error is taken by Yang et al.[10], Cheng and Cai[12], Chen et
al.[11], and Oberst et al.[13]. Next, we discuss the challenge of selecting a truly optimal experiment
when bias must be estimated from the data. We then introduce a novel experiment selector that
incorporates bias estimates based on both the primary outcome and a negative control outcome.

Ideally, we would like to construct a selector that is equivalent to the oracle selector of the
experiment that optimizes the bias-variance tradeoff for our target parameter:

s0 = argmin
s

σ2
D∗
Ψs

n
+ (Ψ#

s (P0))
2

where

D∗
Ψs
(O) =

I(S∈{0,s})
P (S∈{0,s})((

I(A=1)
ga0 (A=1|W,S∈{0,s}) −

I(A=0)
ga0 (A=0|W,S∈{0,s}))(Y −Q

{0,s}
0 (S ∈ {0, s}, A,W ))

+Q
{0,s}
0 (S ∈ {0, s}, 1,W )−Q

{0,s}
0 (S ∈ {0, s}, 0,W )−Ψs(P0))

is the efficient influence curve of Ψs(P0), Q{0,s}
0 (S ∈ {0, s}, A,W ) = E0[Y |S ∈ {0, s}, A,W ],

and ga0(A = a|W,S ∈ {0, s}) = P0(A = a|W,S ∈ {0, s}). Our statistical estimand of interest is
then Ψs0(P0).

The primary challenge is that s0 must be estimated. We thus define an empirical bias squared
plus variance (“b2v”) selector,

s⋆n = argmin
s

σ̂2
D∗

Ψs

n
+ (Ψ̂#

s (Pn))
2 (1.4)

If, for a given experiment with S ∈ {0, s}, Ψ#
s (P0) were given and small relative to the standard

error of the ATE estimator for that experiment, nominal coverage would be expected for the causal
target parameter. If bias were large relative to the standard error of the ATE estimator for the
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RCT, then the RWD would be rejected, and only the RCT would be analyzed. One threat to valid
inference using this experiment selection criterion is the case where bias is of the same order as
the standard error σD∗

Ψs
/
√
n, risking decreased coverage. We could require a smaller magnitude

of bias by putting a penalty term in the denominator of the variance as s⋆n = argmin
s

σ̂2
D∗

Ψs
/(n ∗

c(n)) + (Ψ̂#
s (Pn))

2 where c(n) is either a constant or some function of n. A similar approach is
taken by Cheng and Cai[12] who multiply the bias term by a penalty and determine optimal weights
for RCT and RWD estimators via L1-penalized regression. However, finite sample variability may
lead to overestimation of bias for unbiased RWD and underestimation of bias similar in magnitude
to σD∗

Ψs
/
√
n. In order to make c(n) large enough to prevent selecting RWD that would introduce

bias of a magnitude that could decrease coverage for the causal parameter, we would also prevent
unbiased RWD from being included in a large proportion of samples.

This challenge exists for any method that bases inclusion of RWD on differences in the mean or
conditional mean outcome under control for a small RCT control arm versus a RWD population.
It also suggests that having additional knowledge beyond this information may help the selector
distinguish between RWD that would introduce varying degrees of bias. Intuitively, if we are not
willing to assume mean exchangeability, information available in the RCT alone is insufficient to
estimate bias from including real world data in the analysis precisely enough to guarantee inclusion
of extra unbiased controls and exclusion of additional controls that could bias the effect estimate;
if the RCT contained this precise information about bias, we would be able to estimate the ATE of
A on Y from the RCT precisely enough to not require the real world data at all. Conversely, if we
were willing to assume mean exchangeability, then simply pooling RCT and RWD would provide
optimal power gains but also fully relinquish the protection to inference afforded by randomization.

1.4.1 Additional knowledge to improve experiment selector
One additional source of information regarding bias is the estimated effect of the treatment on a

negative control outcome. An NCO is not affected by the treatment but is affected by unmeasured
factors that are associated with both the treatment and the outcome [24]. A non-zero estimated
ATE of treatment on the NCO is therefore either due to finite sample variability or due to these
unmeasured common causes. NCOs have been used primarily in observational analyses to detect
and/or adjust for unmeasured confounding [16, 26, 25, 17]. In order to fully adjust for bias using an
NCO, we must assume U-comparability: that the unmeasured factors that confound the treatment-
outcome relationship are the same as the unmeasured factors that confound the treatment-NCO
relationship [24]. When this assumption is not met, the estimated effect of treatment on the NCO
represents some unknown percentage of the total bias that comes from incorporating real-world
data.

Again using the g-computation formula [29], we may define an estimand of the ATE of treatment
on the NCO as
Φs(P0) = EW |S∈{0,s}[E0[NCO|W,A = 1, S ∈ {0, s}]− E0[NCO|W,A = 0, S ∈ {0, s}]] (1.5)

Then, we could add our estimate Φ̂s(Pn) to our estimate of the bias, with selector “+nco”:

s⋆⋆n = argmin
s

σ̂2
D∗

Ψs

n
+ (Ψ̂#

s (Pn) + Φ̂s(Pn))
2 (1.6)

Because Ψ#
s=0(P0) is deterministically 0 with only RCT data, whereas Φ̂s=0(Pn) may be esti-

mated but with greater variability than Φ̂s>0(Pn) due to the smaller size of the RCT compared to
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RCT plus RWD, s⋆⋆n helps to promote the inclusion of unbiased external controls. If only biased
external controls are available, however, Φs>0(P0) has a larger magnitude for the combined RCT-
biased RWD experiment because unmeasured confounding makes this statistical quantity not truly
zero. We would expect that including Φ̂s(Pn) in the selector should thereby increase the probabil-
ity that biased RWD is rejected. Yet we must note that this selector relies on the assumption that
the unmeasured factors that affect the treatment-outcome relationship affect the treatment-NCO re-
lationship in the same direction. Otherwise the sum Ψ̂#

s (Pn) + Φ̂s(Pn) will negate some of the
true bias from including external controls. This consideration should be made when selecting an
appropriate NCO, but is still weaker than assumptions necessary for bias adjustment using an NCO.

We also consider selector “nco only” based only on Φ̂s(Pn):

s⋆⋆⋆n = argmin
s

σ̂2
D∗

Ψs

n
+ (Φ̂s(Pn))

2 (1.7)

Nonetheless, because we cannot learn from the data what percentage of the true bias is accounted
for by this estimate, we choose to combine rather than replace our estimate Ψ̂#

s (Pn) with this in-
formation. We will compare these options with the originally-proposed selector s⋆n. The advantage
of s⋆⋆n compared to introducing a penalty term in the denominator of the selector’s variance term is
that the penalty term makes the selector less likely to include any real-world data, while s⋆⋆n has the
potential to promote inclusion of unbiased RWD while discouraging the inclusion of biased RWD.

1.5 CV-TMLE for data-adaptive experiment selection
Now that we have defined potential experiment-selection criteria, we must use the data both to

select and analyze the optimal experiment. If we select s⋆n in a manner that is not outcome-blind, we
should not expect to obtain valid inference if we both select the experiment and evaluate our target
parameter based on the same data [15]. Cross-validated targeted maximum likelihood estimation
(CV-TMLE) was previously developed as a method to obtain valid inference for other data-adaptive
target parameters [14, 15, 39]. We build on this previous work by developing a CV-TMLE for data-
adaptive experiment selection, which poses new challenges for inference, described below.

First, we randomly split the data into V samples with an experiment-selection set consisting of
(V − 1)/V of the data and an estimation set consisting of 1/V . For each split, v, the estimation
set has empirical distribution Pn,v with estimation set subjects assigned V̄i = v. The experiment-
selection set has empirical distribution Pn,vc , and therefore the experiment-selection observations
have V̄i ̸= v. For each split, the experiment-selection set is used to define a data-adaptive target
parameter mapping based on a fold-specific selection criterion, s⋆n(vc). The fold-specific target
parameter then becomes ΨF

s⋆n(v
c)(PU,O), the causal ATE of A on Y in the experiment selected based

on the experiment-selection set for fold v. The overall target parameter, ψ0, and statistical estimand,
ψn,0, are then averages of the fold-specific parameters and estimands:

ψ0 =
1
V

∑V
v=1Ψ

F
s⋆n(v

c)(PU,O)

ψn,0 =
1
V

∑V
v=1Ψs⋆n(v

c)(P0)

Our modified ES-CVTMLE estimator for data-adaptive experiment-selection is then:

ψn =
1

V

V∑
v=1

Ψ̂s⋆n(v
c)(Q

{0,s},∗
n,v )
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whereQ{0,s},∗
n,v indicates training of initial estimators of the outcome regressionQ{0,s}

n,vc and treat-
ment mechanism gan,vc on the experiment-selection set for fold v with TMLE targeting of the initial
Q

{0,s}
n,vc on separate or pooled estimation sets, as described in Algorithm 1 below. In contrast, as

used in the bias estimates, Q{0,s},∗
n,vc indicates training and targeting of the outcome regression us-

ing experiment-selection set data for fold v. All bias and ATE estimates are obtained using TMLE,
which is a doubly-robust plug-in estimator that targets initial model fits to optimize the bias-variance
tradeoff for the target parameter [40, 41]. In the case of the ATE, TMLE is asymptotically unbi-
ased if either the outcome regression or the treatment mechanism are estimated consistently and is
asymptotically efficient if both are estimated consistently [41]. A detailed description of targeted
maximum likelihood estimation of the bias term Ψ̂#

s (Pn) may be found in Appendix A.2. The
empirical selectors, based on experiment-selection set data for each fold, are then

s⋆n(v
c) = argmin

s

σ̂2
D∗
Ψs,n,vc

n
+ (Ψ̂#

s (Q
{0,s},∗
n,vc , Qs,∗

n,vc))
2

s⋆⋆n (vc) = argmin
s

σ̂2
D∗
Ψs,n,vc

n
+ (Ψ̂#

s (Q
{0,s},∗
n,vc , Qs,∗

n,vc) + Φ̂s(Q
NCO,∗
n,vc ))2

where Qs = E[Y |S ∈ {0, s}, S, A,W ], QNCO = E[NCO|S ∈ {0, s}, A,W ], and

D∗
Ψs,n,vc

(O, V̄ ) = I(S∈{0,s},V̄ ̸=v)

Pn(S∈{0,s},V̄ ̸=v)
(( I(A=1)

gan,vc (A=1|W,S∈{0,s}) −
I(A=0)

gan,vc (A=0|W,S∈{0,s}))

(Y −Q
{0,s},∗
n,vc (S ∈ {0, s}, A,W ))

+Q
{0,s},∗
n,vc (S ∈ {0, s}, 1,W )−Q

{0,s},∗
n,vc (S ∈ {0, s}, 0,W )− Ψ̂s(Q

{0,s},∗
n,vc ))

Algorithm 1 describes the overall estimation process for the experiment-selector CV-TMLE.
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Algorithm 1 CV-TMLE for Data-Adaptive Experiment Selection
1: To ensure Assumption 1, trim data so no W values are not represented in RCT.
2: Divide On = (O1, ..., On) into V folds stratified on S with experiment-selection set On

vc =
{Oi : i = 1, ..., n, V̄i ̸= v} and estimation set On

v = {Oi : i = 1, ..., n, V̄i = v}.
3: For v ∈ {1, ..., V },

1. For all I(S ∈ {0, s}) subsets of On
vc experiment-selection sets

• Estimate: Qs
n,vc , Q

{0,s}
n,vc , QNCO

n,vc , gsn,vc §, gan,vc ,
σ̂2
D∗
Ψs,n,vc

n

• Use TMLE to estimate Ψ̂#
s (Q

{0,s},∗
n,vc , Qs,∗

n,vc), Φ̂s(Q
NCO,∗
n,vc )

• Select experiment based on s⋆n(vc), or s⋆⋆n (vc)

4: For all On
v estimation sets

• For all S ∈ {0, s}
1. Pool all S ∈ {0, s} subsets of On

v across all v
2. Estimate coefficient for TMLE update ϵs using logistic regression of binary or

scaled-continuous Y on

H∗
s (A,W )† =

I(A = 1)

gan,vc(A = 1|S ∈ {0, s},W )
− I(A = 0)

gan,vc(A = 0|S ∈ {0, s},W )

with offset logit(Q{0,s}
n,vc (S ∈ {0, s}, A,W )) pooled across all v based on initial re-

gressions trained in experiment-selection sets.
• For all v ∈ {1, ..., V }

1. Select the I(S ∈ {0, s⋆n(vc)}) subset of On
v

2. Use ϵs⋆n(vc) to obtain targeted estimates¶

Q
{0,s⋆n(vc)},∗
n,v (S ∈ {0, s⋆n(vc)}, 1,W ) =

logit−1(logit(Q
{0,s⋆n(vc)}
n,vc (S ∈ {0, s⋆n(vc)}, 1,W )) +

ϵs⋆n(vc)

gan,vc (A=1|S∈{0,s},W )
)

Q
{0,s⋆n(vc)},∗
n,v (S ∈ {0, s⋆n(vc)}, 0,W ) =

logit−1(logit(Q
{0,s⋆n(vc)}
n,vc (S ∈ {0, s⋆n(vc)}, 0,W ))− ϵs⋆n(vc)

gan,vc (A=0|S∈{0,s},W )
)

Ψ̂s∗n(v
c)(Q

{0,s⋆n(vc)},∗
n,v ) =

1
n

∑n
i=1

I(Si∈{0,s⋆n(vc)},V̄i=v)

Pn(S∈{0,s⋆n(vc)},V̄=v)
[Q

{0,s∗n(vc)},∗
n,v (Si ∈ {0, s⋆n(vc)}, 1,Wi)−

Q
{0,s∗n(vc)},∗
n,v (Si ∈ {0, s⋆n(vc)}, 0,Wi)]

5: Calculate ψn = 1
V

∑V
v=1 Ψ̂s⋆n(v

c)(Q
{0,s⋆n(vc)},∗
n,v )

§: gs = P (S = 0|S ∈ {0, s}, A = 0,W )
†: An alternative method that may be more stable in the context of practical positivity violations is to “target the weights”
[42, 43, 44] by using clever covariate H∗

s (A,W ) = I(A = 1) − I(A = 0) and weights I(A=1)
ga
n,vc (A=1|S∈{0,s},W ) +

I(A=0)
ga
n,vc (A=0|S∈{0,s},W ) .

¶: Re-scale Q{0,s⋆n(v
c)},∗

n,v to the original outcome scale if using scaled-continuous Y
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1.5.1 Asymptotic distribution of the experiment-selector CV-TMLE
Next, we examine the asymptotic distribution of the ES-CVTMLE. Unlike the CV-TMLE for

data-adaptive target parameter estimation developed by Zheng and van der Laan[14], the limit dis-
tribution of the ES-CVTMLE depends on the amount of bias introduced by a given real-world
dataset. The finite sample challenge for selecting an optimal experiment depends on the magnitude
of this true bias relative to the standard error of the ATE estimator, which in turn depends on the
sample size. As noted by Yang et al.[10] for their elastic integrative analysis estimator, in order to
understand the behavior of a selector in the context of this finite sample estimation challenge, we
must understand the behavior of the selector when the bias is not fixed but rather dependent on the
sample size. To accomplish this goal, define P0,n as the true data distribution dependent on n. In
order to define the limit distribution, let us also define the following quantities.

Definitions Relevant for Asymptotic Distribution

Zn(s, v) =
√
n(Ψ̂s(Q

{0,s},∗
n,v )−Ψs(P0)) ≈ 1√

n

∑n
i=1D

∗
Ψs,v

(Oi, Vi)

Zn = (Zn(s, v) : s = 1, ..., K, v = 1, ..., V ) ∼ Z = (Z(s, v) : s = 1, ..., K, v = 1, ..., V )

D∗
Ψs,v

(O, V̄ ) = I(S∈{0,s},V̄=v)

P (S∈{0,s},V̄=v)
(( I(A=1)

ga(A=1|W,S∈{0,s}) −
I(A=0)

ga(A=0|W,S∈{0,s}))

(Y −Q{0,s}(S ∈ {0, s}, A,W ))
+Q{0,s}(S ∈ {0, s}, 1,W )−Q{0,s}(S ∈ {0, s}, 0,W )−Ψs(P0))

Z#
n (s, v

c) =
√
n(Ψ̂#

s (Q
{0,s},∗
n,vc , Qs,∗

n,vc)−Ψ#
s (P0,n)) ≈ 1√

n

∑n
i=1D

∗
Ψ#

s ,v
(Oi, Vi)

Z#
n = (Z#

n (s, v) : s, v) ∼ Z# = (Z#(s, v) : s, v)

Z#+Φ
n (s, vc) =

√
n(Ψ̂#

s (Q
{0,s},∗
n,vc , Qs,∗

n,vc) + Φ̂s(Q
NCO,∗
n,vc )− (Ψ#

s (P0,n) + Φs(P0,n))) ≈
1√
n

∑n
i=1(D

∗
Ψ#

s ,v
(Oi, Vi) +D∗

Φs,v
(Oi, Vi))

Z#+Φ
n = (Z#+Φ

n (s, v) : s, v) ∼ Z#+Φ = (Z#+Φ(s, v) : s, v)

D∗
Ψ#

s ,vc
(O, V̄ ) = I(S∈{0,s},V̄ ̸=v)

P (S∈{0,s},V̄ ̸=v)
(( I(S=0,A=0)

g(S=0,A=0|S∈{0,s},W )
)(Y −Qs(S ∈ {0, s}, S, A,W ))

− I(A=0)
ga(A=0|S∈{0,s},W )

(Y −Q{0,s}(S ∈ {0, s}, A,W )) +Qs(S ∈ {0, s}, S = 0, A =

0,W )−Q{0,s}(S ∈ {0, s}, A = 0,W )−Ψ#
s (P0,n))

D∗
Φs,vc

(O, V̄ ) = I(S∈{0,s},V̄ ̸=v)

P (S∈{0,s},V̄ ̸=v)
(( I(A=1)

ga(A=1|S∈{0,s},W )
− I(A=0)

ga(A=0|S∈{0,s},W )
)

(NCO −QNCO(S ∈ {0, s}, A,W ))
+QNCO(S ∈ {0, s}, 1,W )−QNCO(S ∈ {0, s}, 0,W )− Φs(P0,n))

D∗
(#+Φ)s,vc

(O, V̄ ) = D∗
Ψ#

s ,vc
(O, V̄ ) +D∗

Φs,vc
(O, V̄ )

Next we consider the distribution of the standardized selectors, which are random variables that
depend on the distribution of Z#

n (s, v
c) or Z#+Φ

n (s, vc). Multiplying the selector by n and adding
and subtracting the true value of the bias yields a standardized selector
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s⋆n(v
c) = argmin

s
σ̂2
D∗

Ψs,n,vc
+ (Z#

n (s, v
c) +

√
n(Ψ#

s (P0,n)))
2

s⋆⋆n (vc) = argmin
s

σ̂2
D∗

Ψs,n,vc
+ (Z#+Φ

n (s, vc) +
√
n(Ψ#

s (P0,n) + Φs(P0,n)))
2

Let s⋆n = (s⋆n(v
c) : v) and s⋆⋆n = (s⋆⋆n (vc) : v) represent the multivariate standardized selectors

applied across all experiment-selection sets. Let P ∗
n,v denote training of initial estimators of the

outcome regressionQ{0,s}
n,vc and treatment mechanism gan,vc on experiment selection sets with TMLE

targeting on separate or pooled estimation sets to generateQ{0,s},∗
n,v for fold v. Let P ∗

n,vc denote train-
ing and TMLE targeting of the relevant outcome regressions for each bias parameter on experiment
selection sets for fold v.

Theorem 1: Under conditions of convergence of second-order remainders, consistency of EIC
estimation, and a Donsker class condition for bias term estimation specified in Appendix A.3, s⋆n(vc)
and s⋆⋆n (vc) approximate the limit processes s̄⋆(vc) and s̄⋆⋆(vc) such that

S̄⋆(vc) ∼ argmin
s

σ2
D∗

Ψs,vc
+ (Z#(s, vc) +

√
nΨ#

s (P0,n))
2

S̄⋆⋆(vc) ∼ argmin
s

σ2
D∗

Ψs,vc
+ (Z#+Φ(s, vc) +

√
n(Ψ#

s (P0,n) + Φs(P0,n)))
2

and the standardized experiment-selector CV-TMLE,
√
n(ψn − ψn,0) = H(Z#, Z,Ψ#(P0,n))) + oP (1)

or
√
n(ψn − ψn,0) = H(Z#+Φ, Z,Ψ#(P0,n),Φ(P0,n)) + oP (1)

converges to a mixture of normal distributions defined by the sampling process depicted in Defini-
tion 1 below. The Proof of Theorem 1 may be found in Appendix A.3.

Definition 1. Limit Distribution for Experiment-Selector CV-TMLE
Across all s = 0, ..., K and v = 1, ..., V , define the stacked vector of standardized experiment-

selection set bias estimators and estimation set ATE estimators as

Z̃ = (Z#, Z) ∼ N(
→
0 , Σ̃) or Z̃ = (Z#+Φ, Z) ∼ N(

→
0 , Σ̃)

where Σ̃ is depicted in Figure 1.1, and

Σ#((s1, v
c
1), (s2, v

c
2)) =

E[D∗
Ψ#

s1
,vc1
(O, V̄ ) ∗D∗

Ψ#
s2

,vc2
(O, V̄ )]

Σ#+Φ((s1, v
c
1), (s2, v

c
2)) =

E[D∗
(#+Φ)s1 ,v

c
1
(O, V̄ ) ∗D∗

(#+Φ)s2 ,v
c
2
(O, V̄ )]

ΣΨ((s1, v1), (s2, v2)) =
E[D∗

Ψs1 ,v1
(O, V̄ ) ∗D∗

Ψs2 ,v2
(O, V̄ )]

ΣΨ,#((s1, v1), (s2, v
c
2)) =

E[D∗
Ψs1 ,v1

(O, V̄ ) ∗D∗
Ψ#

s2
,vc2
(O, V̄ )]

ΣΨ,#((s1, v1), (s1, v
c
1)) = 0

Figure 1.1: Covariance Matrix Σ̃

The limit distribution of the experiment-selector CV-TMLE is then defined by sampling from Z̃,
calculating s̄⋆ or s̄⋆⋆, and finally calculating
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H(Z#, Z,Ψ#(P0,n)) =
1
V

∑V
v=1(Z(s̄

⋆(vc), v))

or H(Z#+Φ, Z,Ψ#(P0,n),Φ(P0,n)) =
1
V

∑V
v=1(Z(s̄

⋆⋆(vc), v)).

Asymptotic distribution of selector under varying magnitudes of bias

Table 1.1: Limit Distribution of Selector with Different Magnitudes of True Bias

Magnitude of Bias Limit Distribution of Selector
Small√

nΨ#
s (P0,n)

p→ 0
S̄⋆(vc) ∼ argmin

s
σ2
D∗

Ψs,vc
+ (Z#(s, vc))2

Intermediate√
nΨ#

s (P0,n)
p→ C

where C is a constant
S̄⋆(vc) ∼ argmin

s
σ2
D∗

Ψs,vc
+ (Z#(s, vc) + C)2

Large√
nΨ#

s (P0,n)
p→ ∞ S̄⋆(vc) = 0

As shown in Table 1.1, although the random selector depends on Ψ#(P0,n), it converges to a limit
distribution that does not depend on n, and which is known if bias is small, known up to a constant
if bias is intermediate, and degenerate, selecting 0 with probability 1, if bias is large. To obtain
inference for the experiment-selector CV-TMLE, we use Monte Carlo simulation to generate 1000
samples from the estimated limit distribution and define 95% confidence intervals based on the
quantiles qp of these samples as ψn + ( q

0.025
√
n
, q

0.975
√
n
).

In the case where RCT-only is selected in all experiment-selection sets, we use influence curve-
based variance estimates consistent with a standard CV-TMLE procedure, with confidence intervals
estimated as ψn ± 1.96 ∗ ( 1

V

∑V
v=1

σ̂2
D∗s=0,n,v

ns=0
)1/2 [14, 15] where

D∗
s=0,n,v = ( I(A=1)

gan,vc (A=1|W,S=0)
− I(A=0)

gan,vc (A=0|W,S=0)
)(Y −Qs=0

n,vc(A,W ))

+Qs=0
n,vc(1,W )−Qs=0

n,vc(0,W )− Ψ̂s=0(P
∗
n,v)

estimated among RCT estimation set observations for fold v. We use plug-in estimates for the
relevant components of the efficient influence curves and for the bias terms in the selector. Because
we overestimate bias for truly unbiased RWD, we expect the confidence intervals to be conservative
in this case. Nonetheless, as shown through simulations below, this method of determining confi-
dence intervals provides close to nominal coverage with both intermediate and large magnitudes of
bias.

1.6 Simulations
The following simulation compares the ES-CVTMLE to an RCT-only t-test and an RCT-only

CV-TMLE using the tmle R package [45], as well as four other data fusion methods described below
across several magnitudes of external data bias and when the U-comparability assumption needed
for bias adjustment with an NCO is false.
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1.6.1 Data generation
We generate a small RCT (S=0) of 150 observations with probability of randomization toA = 1

of 0.67. The goal is to mimic a situation where, for ethical reasons, it is desirable to randomize more
participants to active treatment. We also simulate three candidate real-world datasets S ∈ {1, 2, 3}
of 500 observations each, all with A = 0. Thus, no treatment is available outside the trial. Dataset
S = 1 has the same data-generating distribution as the RCT except that all A = 0, so any apparent
bias in S = 1 is due to finite sample variability. There are two unmeasured bias variablesB1 andB2

that are deterministically 0 in S = 0 and S = 1 and are generated as follows in S ∈ {2, 3}. For this

simulation, biased RWD could be included if it is approximately

√
σ̂2
D∗
Ψs=0,n,vc

n
−

σ̂2
D∗
Ψs∈{0,2},n,vc

n
=

B = 0.21. We then generateB1 andB2 as normally distributed random variables such that average
total bias in S = 2 is ≈ B (intermediate bias) and in S = 3 is ≈ 5 ∗ B (large bias). The outcome,
Y is a function of both B1 and B2, while the NCO is only a function of B1, so the U-comparability
assumption is not true. Appendix A.4 contains further details regarding the data generating process
and specifications for TMLE-based estimators used in this simulation.

1.6.2 Comparators
For each combination of S = 0 with one of S ∈ {1, 2, 3}, we compare our ES-CVTMLE with

potential selectors s⋆n (b2v), s⋆⋆n (+nco), and s⋆⋆⋆n (nco only) to four other data fusion estimators.
These comparators were selected because they were developed for the context of augmenting a
control arm of an RCT with external control data, they are commonly referenced, and they include
methods for confidence interval construction. We introduce new versions of the test-then-pool ap-
proach originally described by Viele et al.[2] and the NCO-based difference-in-differences approach
described by Sofer et al.[16] and Shi et al.[17], where our modifications use CV-TMLE estimators
of the relevant parameters.
Test-then-pool

For the “test-then-pool” approach described by Viele et al.[2], a hypothesis test is conducted
for a difference in the mean outcome of the trial controls and the mean outcome of the external
controls. RCT and real-world data are combined if the null hypothesis is not rejected; if the null
hypothesis is rejected, then the RCT data are analyzed without integration of RWD [2]. The original
test-then-pool used an unadjusted estimator of the difference in mean outcome under treatment and
control [2]. For the sake of comparison with other TMLE-based estimators, we include here both
the method previously described, together with a minor extension that incorporates adjustment for
baseline covariates for the sake of efficiency. For the unadjusted version, both the hypothesis test
for including RWD and the treatment effect estimate are obtained using Welch’s t-test with unequal
variances. For the adjusted version, we first use CV-TMLE to estimate the ATE of S on Y among
those with A=0 and decide to pool RCT and RWD if the 95% confidence interval for this estimate
includes zero. We then obtain an estimate of the ATE of A on Y in the pooled or RCT-only sample,
again using CV-TMLE. While the “test-then-pool” approach has been criticized for inappropriately
including biased data due to low power of the test [21], a byproduct of this limitation is that the
estimator is able to achieve large power gains when unbiased external controls are available. It is
thus an interesting comparator as a high-risk, high-reward strategy for data fusion.
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Meta-Analytic-Predictive priors
For comparison to a method of Bayesian Dynamic Borrowing, we use the RBesT R package [46]

based on Schmidli et al.[3]. As described by Schmidli et al.[3] but modified for consistency with
the above notation, θs = Ψ0

s,n,BDB(P ) is the mean outcome of controls in experiment S ∈ {0, s}.
The prior distribution of θs is assumed to be Normal(µ, τ 2). τ is an estimate of the between-study
heterogeneity that determines how much external control information is borrowed. For a continuous
outcome, Weber et al.[46] recommend a Half-Normal(0, σ

2
) prior distribution for τ , where σ is the

standard deviation of the outcome estimated from external studies. Because the choice of the prior
distribution of τ can impact results, Schmidli et al.[3] recommend conducting sensitivity analyses
with different parameterizations of this distribution.

A sampling distribution of θs is generated using a Markov Chain Monte Carlo algorithm and ap-
proximated with a mixture of conjugate prior distributions [3]. To protect against non-exchangeability
between external and trial controls, RBesT also provides a function to add a unit information prior
component to this mixture [3, 46]. The weight of that vague prior must be specified by the re-
searchers based on their beliefs regarding how likely the available control groups are to be ex-
changeable [3], with a suggested weight of 0.2 [46]. The control target parameter is estimated as
the mean of the posterior distribution E(θs|On). The posterior distribution of the treatment tar-
get parameter is estimated as a mixture of conjugate distributions based on a weakly informative
unit-information prior [46].
Negative control outcome (difference-in-differences approach)

Because our methods incorporate information from a negative control outcome, we also com-
pare simulation results to a simple bias adjustment approach that is also based on an NCO. Mul-
tiple authors have noted that under the following assumptions, adjustment for bias using an NCO
can be accomplished using a difference-in-differences approach [16, 17]. The first assumption is
U-comparability, which states that all of the unmeasured factors that affect the A-Y relationship are
the same as the unmeasured factors that affect the A-NCO relationship [24]. The second is “ad-
ditive equi-confounding”, which states that the unmeasured confounding has the same effect (on
the additive scale) on the primary outcome as on the NCO [16, 17]. Under these assumptions, an
estimator for the average treatment effect of A on Y for a given the experiment with S ∈ {0, s}
may be defined as Ψ̂DID

s (Pn) = Ψ̂s(Pn) − Φ̂s(Pn) [16, 17]. For a consistent comparison with the
rest of our methods, we use CV-TMLE to estimate both parameters. The efficient influence curve
of ΨDID

s is then D∗
ΨDID

s
= D∗

Ψs
−D∗

Φs
.

1.7 Simulation results
Table 1.2 shows the bias, variance, mean of the estimated variance, mean squared error (MSE),

95% confidence interval coverage, and power to detect the causal ATE (using α = 0.05) across
1000 iterations of this simulation. The standard CV-TMLE analyzed using the RCT data alone had
nominal coverage of 0.95 and power of 0.64. The RCT-only CV-TMLE had higher power than any
of the unadjusted estimators, with the RCT t-test having coverage of 0.96 and power of 0.24.

The test-then-pool approaches were able to increase power as high as 0.93 for the TMLE-based
test-then-pool when unbiased RWD were available. However, as bias in the RWD increased, the
coverage suffered, dropping as low as 0.79 for the TMLE-based test-then-pool with S = 2 and
0.76 for the t-test based test-then-pool with S = 3. Test-then-pool is thus a high-risk, high-reward
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approach to integrating observational and RCT data.
Because the U-comparability assumption is not true, the two methods that rely only on a bias

estimate of the ATE of A on the NCO also exhibited decreased coverage. Bias in the NCO-based
difference-in-differences approach increased as the bias in the available RWD increased, leading to
coverage of 0.84 for the most biased RWD dataset (S=3). When we only considered the estimated
ATE of A on NCO in the experiment-selector CV-TMLE (s⋆⋆⋆n (nco only)), coverage dropped as
low as 0.87, which was lower coverage than when we also included Ψ̂# as an estimate of bias in the
selector (discussed below).

With default specifications, RBesT [46] maintained coverage 0.94-0.97. Yet because this method
does not adjust for covariates, power remained similar to the t-test, with higher power achieved by
considering RWD with intermediate bias (power 0.32) than by considering unbiased RWD (power
0.29). Thus, while RBesT resulted in close to nominal coverage, this method had lower power than
alternative estimators, including an adjusted CV-TMLE using only the RCT data. MSE was higher
for the RBesT estimator than for any of the ES-CVTMLE estimators across all tested magnitudes
of external bias.

Next, we examine the experiment-selector CV-TMLEs with the b2v and +nco selectors. With
S = 3, these ES-CVTMLEs with selector s⋆n (b2v) or s⋆⋆n (+nco) were approximately equivalent
to the RCT-only CV-TMLE from the tmle R package. This makes sense because data with bias
this large was rejected, in which case the ES-CVTMLE algorithm is equivalent to a traditional CV-
TMLE from the RCT only. When unbiased external controls were available, coverage was 0.96 for
s⋆n (b2v) and s⋆⋆n (+nco), suggesting somewhat conservative confidence intervals consistent with the
fact that estimated bias is included in the limit distribution sampling procedure despite truly being
zero. Power increased compared to the RCT-only CV-TMLE in either case but was lower with s⋆n
(b2v) at 0.74, compared to 0.83 for s⋆⋆n (+nco), demonstrating the utility of including information
from the estimated ATE of A on the NCO in the selector for incorporating truly unbiased external
controls. With S = 2 (intermediate bias), coverage was 0.95 for s⋆n (b2v) and 0.92 for s⋆⋆n (+nco),
demonstrating that the experiment-selector CV-TMLE is able to maintain coverage close to 0.95
even with this challenging amount of bias and an imperfect NCO.

In this simulation, the ES-CVTMLE MSE was lower with either of the b2v or +nco selectors
compared to the RCT-only CV-TMLE when considering S = 1 and lower or the same when consid-
ering S = 2 or S = 3. Of all the compared estimators, the ES-CVTMLE with the s⋆n (b2v) selector
provided the largest power gains with unbiased RWD while maintaining 95% coverage across all
tested magnitudes of bias. However, the ES-CVTMLE with the s⋆⋆n (+nco) selector is the estimator
that decreased MSE the most when unbiased RWD were available without increasing MSE when
considering RWD with intermediate or large bias. If we were running this simulation to choose an
estimator for a proposed trial in a context when excessive randomization to control is considered un-
ethical but we still desire greater protection against biased conclusions than a purely observational
analysis could achieve, we might choose the ES-CVTMLE with the s⋆⋆n (+nco) selector because
it was able to boost power substantially when appropriate external controls were available while
keeping coverage close to nominal across a range of possible magnitudes of external bias, even
when we did not have a perfect NCO.
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Table 1.2: Results of Simulation - 1000 Iterations

Estimator (RWD) Bias Variance Mean Est. Var. MSE Coverage Power

RCT T-Test 0.005 0.206 0.219 0.206 0.96 0.24

RCT CV-TMLE 0.004 0.065 0.070 0.065 0.95 0.64

ES-CVTMLE s⋆n (b2v) (S=1) 0.003 0.054 0.058 0.054 0.96 0.74

ES-CVTMLE s⋆n (b2v) (S=2) -0.026 0.065 0.061 0.065 0.95 0.71

ES-CVTMLE s⋆n (b2v) (S=3) 0.005 0.065 0.071 0.065 0.95 0.64

ES-CVTMLE s⋆⋆n (+nco) (S=1) 0.005 0.045 0.044 0.045 0.96 0.83

ES-CVTMLE s⋆⋆n (+nco) (S=2) -0.028 0.059 0.052 0.060 0.92 0.76

ES-CVTMLE s⋆⋆n (+nco) (S=3) 0.005 0.065 0.071 0.065 0.95 0.64

ES-CVTMLE s⋆⋆⋆n (nco only) (S=1) 0.004 0.028 0.034 0.028 0.97 0.92

ES-CVTMLE s⋆⋆⋆n (nco only) (S=2) -0.152 0.036 0.038 0.059 0.87 0.95

ES-CVTMLE s⋆⋆⋆n (nco only) (S=3) -0.037 0.089 0.068 0.090 0.91 0.67

TTP (CV-TMLE) (S=1) 0.004 0.037 0.029 0.037 0.93 0.93

TTP (CV-TMLE) (S=2) -0.113 0.059 0.033 0.072 0.79 0.87

TTP (CV-TMLE) (S=3) 0.004 0.065 0.070 0.065 0.95 0.64

Diff-in-Diff (NCO) (S=1) 0.008 0.052 0.054 0.052 0.95 0.73

Diff-in-Diff (NCO) (S=2) -0.040 0.054 0.054 0.056 0.94 0.79

Diff-in-Diff (NCO) (S=3) -0.227 0.054 0.054 0.105 0.84 0.94

TTP (T-Test) (S=1) -0.001 0.122 0.090 0.122 0.93 0.53

TTP (T-Test) (S=2) -0.132 0.147 0.095 0.164 0.88 0.70

TTP (T-Test) (S=3) -0.128 0.359 0.182 0.376 0.76 0.35

RBesT [46] (S=1) -0.005 0.152 0.183 0.152 0.97 0.29

RBesT [46] (S=2) -0.052 0.157 0.185 0.159 0.96 0.32

RBesT [46] (S=3) -0.116 0.213 0.222 0.227 0.94 0.31

Caption: Mean. Est. Var.: Mean of variance estimates. S=1: unbiased RWD. S=2: RWD with intermediate bias. S=3:
RWD with large bias. Power: Probability that confidence interval < 0 across 1000 iterations. TTP: Test-then-Pool.

s⋆n = argmin
s

σ̂2
D∗

Ψs

n +(Ψ̂#
s (Pn))

2, s⋆⋆n = argmin
s

σ̂2
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n +(Ψ̂#
s (Pn)+ Φ̂s(Pn))
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s
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1.8 Real data application
Ultimately, the goal of the experiment-selector CV-TMLE is to facilitate integration of RCT

and real-world data in order to boost RCT power without introducing bias. As an initial test case
for this method, we have chosen an example where we have a fairly precise estimate of the true
causal effect of interest from a well-powered multisite and multi-region RCT. We use these data to
create a hypothetical scenario in which RCT data are only available from a subset of participants
from one region —- resulting in an under-powered trial — but candidate control arm-only data are
available from other regions (mimicking RWD of varying quality). We use this scenario to evaluate
the ability of our proposed methods and others to recover the initial RCT effect estimate.

To create such a scenario, we use de-identified data from the LEADER trial (Clinical Trial
NCT01179048). Initially reported by Marso et al.[47], this study evaluated the effect of an in-
jectable (subcutaneous) glucagon-like peptide-1 receptor agonist, liraglutide, on a primary com-
bined outcome of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. The
sample size for LEADER was 9340 patients. Because this trial was designed to evaluate relatively
long-term and rare outcomes, the sample size was large enough to estimate the effect of liraglutide
versus placebo (both added to standard of care therapy with oral antihyperglycemic drugs (OADs)
and/or insulin) on glycemic control (measured by hemoglobin A1c (HbA1c)) with great precision.

LEADER encouraged trial clinicians to optimize standard of care diabetes regimens beyond the
addition of liraglutide or placebo in order to achieve a target HbA1c of ≤ 7% for all trial partic-
ipants [48]. We thus would expect not only to see a difference in change in HbA1c between the
liraglutide and placebo arms but also to see a change in HbA1c from baseline in the placebo arm
due to modifications in patients’ baseline diabetes regimens. We would expect the major driver of
change in HbA1c in the placebo arm to be HbA1c at baseline.

Figure 1.2: Change in HbA1c by Trial Arm and Region Over Time

As shown in Figure 1.2, change in HbA1c differed by study region, with the largest average
changes in both the liraglutide and placebo arms taking place in the Central and South American
groups. Average baseline HbA1c was also higher in Central/South America (9.29) compared to
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Europe (8.31). If we were to mimic a small RCT by taking a limited sample of patients from Central
and South America and then augment the control arm with external controls from Central and South
America, we would expect those individuals who were randomized to placebo from within the same
region to be unbiased controls. However, if we were to augment the small Central/South America
RCT with external controls from Europe, and if we treated baselineHbA1c as an unmeasured factor
that causes the differences in placebo group outcomes by region, we would expect the following.
The treatment arm would only contain subjects from Central and South America, with a relatively
large average decrease inHbA1c. The addition of European controls to the placebo arm would lead
to a smaller average change inHbA1c among all controls, leading to an overestimate of the effect of
liraglutide compared to placebo on glycemic control compared to the effect estimate from the full
Central/South America LEADER subset.

This set-up implies the following directed acyclic graph:

Figure 1.3: Causal Graph for Analysis of LEADER Data

Lira.: Liraglutide

Based on our data set-up, region (Central/South America or Europe) affects treatment because
members of the Central/South America group may receive liraglutide or placebo, and participants
from Europe may only receive placebo. As we have noted, region also affects change in HbA1c in
the placebo arm. Because average baseline HbA1c was higher and average improvement in HbA1c

was larger for the Central/South America compared to European subgroups, this suggests that on
average, baseline diabetes regimens may have been less adequate in the Central/South America
LEADER sample. In reviews of barriers and facilitators for diabetes management in Latin America,
Blasco-Blasco et al.[49] and Aviles-Santa et al.[50] cite access to healthcare, limitations in health
system resources, and social determinants of health as challenges that impede optimal glycemic
control for many people. While these factors vary by country, differences in such underlying barriers
between the Central/South American and European subgroups of LEADER could explain at least
part of the noted difference in average baseline HbA1c.

We also have access to the following baseline covariates, W : age, sex, smoking status (never,
former, or current), diabetes duration, whether the patient is insulin naive at baseline, eGFR, and
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BMI. Based on this DAG, we would expect baseline HbA1c and W to block all paths from region
to the outcome, other than the path through treatment, but we will treat HbA1c as unmeasured.

The last ingredient for our analysis is an appropriate negative control. As shown in our causal
graph, we may hypothesize that regional differences in health care for patients with metabolic syn-
drome causing inadequate control of HbA1c may also lead to inadequate control of cholesterol.
This hypothesis is supported by Venkitachalam et al.[51]’s finding that both country-level health
systems factors and economic development metrics were significantly associated with prevalence
of elevated cholesterol among patients with a history of hyperlipidemia from thirty-six countries.
If this hypothesis is true, baseline cholesterol may serve as a negative control variable given that
it would be associated with unmeasured factors hypothesized to cause differences in the placebo
arm change in HbA1c by region while not being affected by liraglutide administered post-baseline.
Note also that we expect improvements in the adequacy of the baseline medication regimen to lead
to smaller improvements in HbA1c during the trial and also to be associated with lower levels of
baseline cholesterol. By defining our outcome as improvement in HbA1c, we satisfy our goal of
defining a negative control variable that should be affected by the unmeasured bias in the same
direction as the true outcome.

Our observed data thus consist of O = (S,W,C,A, Y ), where the W covariates are defined
above, C is baseline cholesterol level in mmol/L, A is a binary indicator of liraglutide versus
placebo, and Y is improvement in HbA1c from baseline to study month 12. S is an indicator
of study: 1 for the Central/South American “RCT” sample (random sample of 150 participants), 2
for extra controls from Central/South America (random sample of 500 participants not included in
study 1), and 3 for extra controls from Europe (random sample of 500 participants). For clarity, we
will refer to study 1 as C/S, a combination of studies 1 and 2 as C/S+, and a combination of studies
1 and 3 as Eu+. In order to demonstrate the case where we would like to increase the number of
patients receiving the intervention of interest in our “RCT”, we select S = 1 participants with a
probability of 0.67 of having been in the liraglutide arm and 0.33 of having been in the placebo
arm.

Overall missingness for change in HbA1c was 6%. Missingness for baseline cholesterol, which
was treated as an outcome for the estimate of the ATE of A on negative control in the selector
but was treated as a baseline variable in the TMLE for the ATE of A on Y, was 2%. Outcome
missingness was handled with inverse probability weights, consistent with the tmle package [45].
Specifically, we define a binary variable ∆ that indicates an outcome was not missing. Clever
covariates for all TMLEs were then modified to include the missingness indicator in the numerator
and missingness mechanism in the denominator. For example, the clever covariate for the ATE was
modified as H(A,W ) = ∆(2∗A−1)

g(∆=1|A,W )g(A|W )
. Missingness for baseline covariates, which was less

than 0.1% for all W variables, was imputed using the R package mice: Multivariate Imputation by
Chained Equations [52] separately for each study.

Our desired target causal parameter is the average treatment effect of liraglutide versus placebo
on improvement in HbA1c from baseline to 12 months in Central/South America. Due to random-
ization within the LEADER trial, this target parameter should be identifiable from dataset C/S and
C/S+ but not from Eu+ without adjustment for baseline HbA1c. We compare the following estima-
tors: a CV-TMLE from the tmle package [45] using C/S only, the experiment-selector CV-TMLE
considering C/S+ or considering Eu+, the RBesT package [46] considering C/S+ or considering
Eu+, and a t-test using C/S only. To further demonstrate what could happen if the ATE were esti-
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mated from data that includes biased controls without any evaluation of whether bias is present, we
also include standard CV-TMLEs based on the C/S+ and Eu+ datasets. We run this analysis 100
times with different random seeds.

For the TMLEs, we use the following specifications. We employ a discrete Super Learner for
all outcome regressions with a library consisting of linear regression [53], lasso regression (via R
package glmnet [54]), and multivariate adaptive regression splines [55]. When considering only
S = 1, we use the true randomization probability of 0.67 for P (A = 1). When external controls
are considered, we use a discrete Super Learner with library consisting of logistic regression and
lasso regression for the treatment mechanism. Because missingness was low, for the missingness
mechanism we use a linear model adjusting only for treatment unless the number of missing ob-
servations is less than five, in which case we employ an intercept only adjustment. We also use the
tmle package defaults of fitting a CV-TMLE, using a logistic fluctuation, and targeting the weights,
as described above.

1.8.1 Results of analysis of LEADER data
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Figure 1.4: Estimated ATE of Liraglutide v. Placebo on Improvement in HbA1c by Estimator

Caption: Boxplots of ATE and Relative confidence interval (CI) width with medians labeled. Relative width of CI
compared to RCT CV-TMLE from sample C/S. Full C/S: Full Central/South America sample from LEADER trial
(sample size 1182). C/S: Central/South American sample “RCT” (sample size 150). C/S+: C/S plus 500 additional

controls from Central/South America. Eu+: C/S + 500 additional controls from Europe. ES-CV-TMLE:
Experiment-selector CV-TMLE. CV-TMLE: Standard CV-TMLE from tmle package [45].

Figure 1.4 shows the ATE point estimates and relative confidence interval (CI) widths for each
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estimator compared to the standard CV-TMLE from the small C/S “RCT” sample for 100 iterations
of this real data analysis. The point estimate for the CV-TMLE from the full LEADER Central/South
America subgroup was 0.97. Because, without adjustment for baseline HbA1c, the remaining W
covariates are not very predictive of change in HbA1c, the point estimates and confidence interval
widths for the C/S “RCT” sample CV-TMLE were both similar to those from a t-test from C/S. The
narrowest CI was from the full LEADER Central/South America RCT CV-TMLE, followed by the
standard CV-TMLEs run on C/S+ and Eu+.

Using a standard CV-TMLE for the C/S+ datasets, the median point estimate was similar to
the full LEADER Central/South America estimate at 0.98. Yet without adjustment for baseline
HbA1c, the median ATE estimate for the standard CV-TMLE with Eu+ was severely biased at 1.37.
This example demonstrates what could happen in this analysis if we did not know about the regional
differences in baselineHbA1c and decided to augment a Central/South America RCT with European
controls with no analysis of bias.

Median (first and third quartile) values of the ATE estimate were 0.99 (0.83,1.17) for the C/S-
only CV-TMLE. The point estimates from the RBesT package [46] were similar though less variable
compared to the C/S subgroup estimates when dataset C/S+ was considered at 1.00 (0.85,1.12),
and confidence intervals narrowed to a median of 0.9 compared to the C/S-only CV-TMLE. The
experiment-selector CV-TMLEs considering C/S+ produced similar but slightly less variable results
with median (first and third quartile) values of 0.99 (0.89,1.13) for s⋆n (b2v) and 0.99 (0.84,1.09) for
s⋆⋆n (+nco). The median relative confidence interval width for the s⋆n (b2v) selector was 0.91, while
the median relative confidence interval width for the s⋆⋆n (+nco) selector was 0.81. These results
are consistent with the simulation results demonstrating that when unbiased external controls are
added, the ES-CVTMLE with the s⋆⋆n (+nco) selector leads to larger increases in power compared to
the ES-CVTMLE with the s⋆n (b2v) selector or the RBesT package [46] with default settings. The
relative confidence interval width for the experiment-selector CV-TMLE with C/S+ and selector
s⋆⋆n (+nco) is about half way between the CI width for the small C/S “RCT” sample and the CI
width for the standard CV-TMLE from C/S+ with no assessment for bias, but this is the price paid
for keeping the ATE estimates similar to estimates from the C/S “RCT” sample when biased Eu+
controls are considered.

When the Eu+ datasets were considered, the RBesT [46] median (first and third quartile) point
estimates were shifted slightly upwards to 1.09 (0.92,1.25), with a median confidence interval width
relative to the C/S-only CV-TMLE of 0.95. With the Eu+ datasets, the median (first and third
quartile) of the ATE estimates from the experiment-selector CV-TMLE were 1.02 (0.83,1.20) with
the s⋆n (b2v) selector and 1.02 (0.83,1.19) with the s⋆⋆n (+nco) selector. The experiment-selector
CV-TMLEs considering Eu+ had relative confidence interval widths that were similar to the C/S-
only standard CV-TMLE at a median of 1 for either selector. These results suggest that the ES-
CVTMLEs were less influenced by the biased external data than the RBesT [46] estimates were
and demonstrate the relative robustness of the ATE estimates from the experiment-selector CV-
TMLE when potentially biased external controls are considered.

1.9 Discussion
We introduce a novel cross-validated targeted maximum likelihood estimator that aims to select

the experiment (RCT or RCT plus external controls) that optimizes the bias-variance tradeoff for
the causal average treatment effect. To address the challenge that the selector may remain random
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asymptotically with small to intermediate magnitudes of external bias, we develop an algorithm for
confidence interval construction that samples from the estimated limit distribution and that includes
an estimate of the bias in this sampling process. Through simulations, we demonstrate that we are
able to improve power compared to a standard CV-TMLE from the RCT only when unbiased exter-
nal controls are available and maintain coverage close to 95%with intermediate to large magnitudes
of bias. In an analysis of the ATE of liraglutide versus placebo on improvement in 12 monthHbA1c

from the LEADER trial, we also demonstrate the ability of the experiment-selector CV-TMLE to
include external controls and narrow confidence intervals when additional unbiased controls are
available and to reject biased external controls in the majority of iterations, maintaining similar
confidence interval widths and point estimates compared to the sample “RCT”-only CV-TMLE.

The purpose of the experiment-selector CV-TMLE is to provide an estimator that is robust to
varying magnitudes of bias from a combined RCT-RWD analysis when, as may frequently happen in
partially observational studies, we are not certain whether the mean exchangeability assumption or
U-comparability assumptions are true. Many existing methods rely explicitly on these assumptions.
Others either rely on a comparison of mean outcomes or effect estimates for RCT versus external
participants [2, 11, 13, 12] or evaluate the effect of treatment on an NCO [17], but not both. Because
bias must be estimated from the data, attempts to optimize the bias-variance tradeoff may either
inadvertently exclude truly unbiased external data or include external data with a magnitude of bias
that may impact causal coverage. By including an estimate of the ATE of treatment on a negative
control outcome in our selector, we are able to more frequently include truly unbiased external
controls in our analysis. Yet we do not require the NCO to be perfect and show improved coverage
compared to an NCO-based bias-adjustment approach when the U-comparability assumption does
not actually hold. We thus aim to improve on existing methods by incorporating information from
both an estimated causal gap and from a negative control outcome to maximize our ability to select
an optimal experiment for analyzing a causal ATE. Another advantage of the experiment-selector
CV-TMLE is that it attempts to learn how much external information to include only from the data,
rather than requiring a researcher to specify a level of confidence in the external controls as is
required in some Bayesian dynamic borrowing approaches [3] or to specify the value of a tuning
parameter as is required by some frequentist approaches [11, 10].

The largest limitation of the experiment-selector CV-TMLE is that, because we cannot guaran-
tee 95% coverage, the performance may depend on characteristics of the proposed analysis. Once
again, this limitation is not unique to our estimator, as other data fusion estimators have demon-
strated either increases in type 1 error or relative MSE or decreases in power with differing magni-
tudes of external data bias [5, 2, 11, 13, 18, 19, 20, 10, 12]. Yet because of this limitation, it would
be important to conduct an outcome-blind simulation that is as true to a proposed study as possible,
prior to implementing this estimator in a different context. Outcome-blind simulations can address
differences in estimator performance for differing study characteristics and estimator specifications,
such as different RCT and RWD sample sizes, the relative predictiveness of the covariates for the
outcome, the candidate algorithms, the number of cross-validation folds, and the outcome type. For
example, it is possible that for a given study design, the optimal bias-variance tradeoff across vary-
ing magnitudes of potential bias could actually be achieved by adding a smaller number of external
controls than are available. A future version of the selector could consider adding different num-
bers of external controls based on, for example, increasing numbers of propensity-score matched
external participants. In future work, we also intend to evaluate the experiment-selector CV-TMLE
in a wider variety of contexts, including extending the methods to include time-to-event outcomes.
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This real data analysis allowed the opportunity to test the experiment-selector CV-TMLE in a
setting where we understand the “unmeasured” factors causing external controls to be biased or
unbiased. In the future, we intend to test this method when attempting to combine real electronic
health records data with a small RCT sample, again with the aim of replicating the full trial results.
While this approach may prove viable in some settings, we suggest that in order to optimize the
probability both that RWD is included and that bias is truly minimal, in many cases a preferable
approach will be to prospectively specify a hybrid RCT-RWD study, allowing protocols and mea-
surements to be made as similar as possible. We do not intend these methods to be a replacement
for a traditional randomized controlled trial when it is feasible to run one for the sake of evaluating
the efficacy of a new drug that has yet to be approved. Yet we hope that the experiment-selector
CV-TMLE may ultimately be able to provide evidence to support conclusions from under-powered
RCTs conducted for rare diseases, to allow randomization of more patients to the intervention arm
for medications evaluated for severe diseases with few treatment options, and to contribute robust
evidence to the evaluation of previously approved drugs for new populations and indications.
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2 The EScvtmle R Package

2.1 Introduction
In recent years, studies that integrate randomized controlled trial (RCT) data with external data

to estimate a causal effect have become increasingly popular. For example, a recent case study
from the Food and Drug Administration (FDA)’s Complex Innovative Trial Design (CID) program
proposed a standard RCT for estimation of the effect of an experimental medication on progression-
free survival for patients with diffuse large B-cell lymphoma yet was not adequately powered for the
outcome of overall survival [56]. To improve efficiency for estimating the effect on this secondary
outcome, the Sponsor proposed augmenting the control arm of their study with data from the con-
trol arm of another clinical trial [56]. In another example, Brunner et al.[57] report a small RCT
(sample size 93 children with systemic lupus erythematosus (SLE)) of the effect of Belimumab on
the SLE Responder Index (SRI4) response rate. The authors note that this “study [is] not pow-
ered for statistical testing” [57], because childhood-onset SLE is so rare, but consider integrating
information from adult trials of Belimumab to improve study power.

These two trials demonstrate common motivations for conducting such hybrid randomized-
external data studies. For rare diseases, it may be challenging to recruit sufficient participants
to estimate — with adequate precision — the effect of a new medication, particularly when the
outcome is rare, as well [4]. In other cases, patients or the parents of pediatric patients may wish
to minimize the probability that trial participants are randomized to control status because prior
data from trials in adults or for a different form of the same drug suggest that the active treatment
is very likely to be beneficial [2]. Conversely, for severe diseases with limited existing treatment
options, participants may desire a higher probability of randomization to any treatment that has the
possibility of improving on the existing standard of care [58]. In such cases, including external data
can decrease the number of required total or control participants. Because the FDA’s Real World
Evidence Program considers the incorporation of non-randomized data in the regulatory approval
process [59] and the FDA’s CID Program encourages the use of innovative designs [56], we expect
the number of such hybrid RCT-external data studies to increase over time.

In order to protect against biased conclusions when external data are observational or from a
different population or setting, there has been growing interest in developing methods that estimate
causal bias in order to decide if and how to integrate external with randomized data. Regardless
of whether a Bayesian (e.g., [8, 3]) or Frequentist (e.g., [10, 11, 12, 13, 60]) approach is taken,
these methods estimate bias or determine the degree of information borrowing based on the dif-
ference in mean outcomes, conditional mean outcomes, or parameter estimates between the RCT
and external data sources. Yet finite sample variability in bias estimation leads to a tradeoff be-
tween the probability that unbiased data are integrated, leading to an improvement in efficiency,
and the probability that biased external data are excluded, protecting against increases in type 1
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error [13]. While no method can both guarantee nominal coverage regardless of the potential mag-
nitude of external data bias and gain efficiency over an estimator using the RCT alone [11], we
recently developed the experiment-selector cross-validated targeted maximum likelihood estimator
(ES-CVTMLE) methodology to address some of the limitations of existing methods for analyzing
hybrid randomized-external data studies [60].

First, to modify the balance of the tradeoff between efficiency gains with unbiased data and
type 1 error control with biased data, some estimators require the user to specify the value of a
tuning parameter (e.g., [3, 11]). Rather than relying on such a subjective process, the ES-CVTMLE
incorporates a second objective assessment of bias by estimating the average treatment effect (ATE)
on a negative control outcome (NCO). A second advantage is that the ES-CVTMLE uses targeted
maximum likelihood estimation (TMLE) to estimate both the bias terms and the target parameter
— in this case the average treatment effect (ATE). Because TMLE is an efficient, doubly-robust
plug-in estimator, where initial estimates of the outcome regression and treatment mechanism are
estimated non-parametrically using the SuperLearner machine learning prediction algorithm [61],
TMLE minimizes statistical assumptions, optimizes the statistical bias-variance tradeoff for the
target parameter, and respects the bounds of the statistical model [41]. Furthermore, CV-TMLE
promotes accurate inference for data-adaptive target parameters by separating parameter definition
and nuisance function estimation from effect estimation using cross-validation [62, 15].

Several existing software packages conduct TMLE but are not set up to handle the extra chal-
lenges of data-adaptive experiment selection. The tmle R package performs TMLE or CV-TMLE
to estimate the effect (ATE and relative risk, among other parameters) of a binary treatment on an
outcome [45]. The ltmle R package [63] implements TMLE for longitudinal data structures. The
tlverse software ecosystem [64] extends the functionality of the original two packages to complex
parameters including the effects of optimal individualized treatment regimes, stochastic treatment
regimes, and mediation analysis. Nonetheless, none of these packages handle the two primary chal-
lenges of the ES-CVTMLE methodology: causal bias estimation and variance estimation for the
ES-CVTMLE, which converges to a mixture of normal distributions [60].

Reliable software is necessary to ensure that complex statistical methods are made available
for broad use in a manner that is reproducible and transparent. To increase accessibility of the
experiment-selector CV-TMLE methodology, we have developed the EScvtmle R package, avail-
able on CRAN at https://cran.r-project.org/web/packages/EScvtmle/index.html. The
purpose of this chapter is to describe the use of this package, including handling of different sit-
uations such as missing outcomes and cluster-randomized datasets. We also introduce a minor
extension from the methods described in Chapter 1 to allow for active treatment in the external
data. Then, we use a publicly available real data example (included with the package) from the
WASH Benefits Bangladesh cluster randomized controlled trial [65] to demonstrate the use of the
EScvtmle R package. Finally, we discuss plans for future extensions of the package.

2.2 Statistical background
Full details of the ES-CVTMLE methodology may be found in Chapter 1. We provide an ab-

breviated review of this method here. Throughout, we will use A to refer to the binary intervention
of interest with A = 1 for active treatment and A = 0 for control, W to refer to baseline covariates,
Y to refer to the primary outcome, and S to refer to the study in which an individual participated,
with S = 1 indicating the primary RCT. We may then define multiple possible experiments that
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could be run as S = 1 (RCT-only) or S ∈ {1, s} as RCT combined with external dataset s. While
the experiment-selector CV-TMLE may theoretically consider any number of experiments, the ES-
cvtmle package is set up to compare two potential experiments, where participation in the external
dataset is indicated by S = 0.

With counterfactual outcomes [28] an individual would have had if prescribed treatmentA = a
denoted as Y a, the full set of endogenous variables is XF = (S,W,A, Y 0, Y 1). Each variable has
its own exogenous error such that U = (US, UW , UA, UY ). The distribution of the endogenous and
exogenous variables is then denoted byPU,X . The observed data aren i.i.d. drawsO = (S,W,A, Y )
from the true observed data distribution P0.

Our overall goal is to estimate the average treatment effect (ATE) of A on Y . If similar popula-
tions are represented in the RCT and external data, we may be happy with estimating the ATE for
either of our two experiments with S = 1 or with S ∈ {0, 1} — whichever could be estimated with
a more optimal bias-variance tradeoff. The ATE of a generic experiment with S ∈ {1, s} is given
by

ΨF
s (PU,X) = EW |S∈{1,s}[E(Y

1 − Y 0|W,S ∈ {1, s})].

As for other data-adaptive target parameters, we wish to avoid using the same data to both define
and estimate our parameter of interest [62, 15], so the ES-CVTMLE separates experiment-selection
from effect estimation using cross-validation. To accomplish this task, as shown in Figure 2.1, the
ES-CVTMLE divides the data into V folds. In each fold, 1/V of the data is used as the estimation
set and assigned variable V̄i = v, and (V − 1)/V of the data is used as the experiment-selection set
and assigned V̄i ̸= v. We may then define the empirical distribution of estimation set observations
for a given fold as Pn,v and the empirical distribution of experiment-selection set observations for
a given fold as Pn,vc .

Our overall target parameter is the average of the ATEs for the selected experiment — denoted
s⋆n – in each experiment selection set, vc:

ψ0 =
1

V

V∑
v=1

ΨF
s⋆n(v

c)(PU,X).

Under causal identification assumptions of positivity (see [30, 31]) and mean exchangeability and
generalizability (see [32, 33]), this target parameter is equal to the statistical estimand

ψn,0 =
1

V

V∑
v=1

Ψs⋆n(v
c)(P0)

where by the g-computation formula [29]

Ψs(P0) = EW |S∈{1,s}[E0[Y |A = 1,W, S ∈ {1, s}]− E0[Y |A = 0,W, S ∈ {1, s}]].

The ES-CVTMLE estimates ψn,0 using the following procedure.

2.2.1 Experiment-selection sets
As depicted in Figure 2.1, for each experiment-selection set, for each experiment, the EScvtmle

package estimates the causal bias from inclusion of external data and the variance of the ATE es-
timator for that experiment and selects the experiment with the smallest estimated mean squared
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Figure 2.1: Diagram depicting experiment-selector CV-TMLE procedure

error (squared bias plus variance). We review these steps in greater detail below.

2.1.1 Training of outcome and treatment mechanism regressions

In order to estimate the bias and variance of the ATE estimator for each experiment, we must
first estimate gn(A|S ∈ {1, s},W ) = Pn(A = a|S ∈ {1, s},W ) and Qn(S ∈ {1, s}, A,W ) =
En[Y |S ∈ {1, s}, A,W ]. These outcome and treatment mechanism regressions will be used in
three ways: 1) in the TMLE procedure for estimating the bias from including external data, 2)
as plug-in estimates for the relevant components of the efficient influence curve for the ATE pa-
rameter, used in variance estimation, and 3) to obtain initial estimates of gn(A|S ∈ {1, s},W )
and Qn(S ∈ {1, s}, A,W ) for estimation set observations in the CV-TMLE ATE estimation step.
Each of these steps will be discussed in further detail in the following sections. As described in
Chapter 1, to estimate the bias from including external data in the analysis, we also must estimate:
E[Y |S ∈ {1, s}, S, A,W ], E[NCO|S ∈ {1, s}, A,W ] if an NCO is available, and P (S = 1|S ∈
{1, s}, A = 0,W ). All regressions are estimated using the SuperLearner machine learning predic-
tion algorithm of van der Laan et al.[61]. The SuperLearner uses cross-validation to select the best
algorithm for a given prediction problem from a library of parametric or non-parametric candidate
algorithms. Further details regarding specification of a SuperLearner may be found below.

2.1.2 Bias estimation

After training estimators of the outcome and treatment mechanism regressions, we may proceed
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with bias estimation. The ES-CVTMLE defines the bias or causal gap from integrating external and
RCT data for a given experiment as Ψ#

s (P0) = Ψs(P0)− Ψ̃s(P0) [60] where

Ψ̃s(P0) = EW |S∈{1,s}[E0[Y |A = 1, S = 1,W ]− E0[Y |A = 0, S = 1,W ]].

As described in Chapter 1, when only control participants are available in the external data, this
bias term simplifies to

Ψ#
s (P0) = EW |S∈{1,s}[E0[Y |A = 0, S = 1,W ]]− EW |S∈{1,s}[E0[Y |A = 0, S ∈ {1, s},W ]].

Extending the method to consider contexts where active treatment is also available in the external
data requires only a small change in bias estimation as

Ψ#
s (P0) = Ψs(P0)− Ψ̃s(P0)

= (EW |S∈{1,s}[E0[Y |A = 1, S, S ∈ {1, s},W ]]− EW |S∈{1,s}[E0[Y |A = 0, S, S ∈ {1, s},W ]])

−(EW |S∈{1,s}[E0[Y |A = 1, S = 1,W ]]− EW |S∈{1,s}[E0[Y |A = 0, S = 1,W ]]).

Note that when active treatment is available in the external data (meaning that S = 0 does not
deterministically imply A = 0), we may now adjust for S as a baseline variable in all regres-
sions, leading to estimation of gn(A|S ∈ {1, s}, S,W ) = Pn(A = a|S ∈ {1, s}, S,W ) and
Qn(S ∈ {1, s}, S, A,W ) = En[Y |S ∈ {1, s}, S, A,W ] and adjustment for S in the final ATE
estimate as well as the bias terms. For simplicity of exposition, however, we will use the notation
for the case where active treatment is not available in the external data below. The first argument
of the ES.cvtmle function handles these changes to the estimation procedure by setting txinrwd =
TRUE if active treatment is available in the external or “real world” data and txinrwd = FALSE
if only extra controls are considered. Regardless, we estimate Ψ#

s (P0) using a TMLE estimator,
Ψ̂#,TMLE

s (Pn). Please see Chapter 1 for further details of the bias estimation process.

2.1.3 Second bias estimate: The ATE on a negative control outcome

Because the bias from including external data must be estimated, finite sample variability may
lead either to overestimation of bias and exclusion of unbiased external data or underestimation of
bias and inappropriate incorporation of biased external data. To improve our ability to distinguish
whether the ATE estimator for a given experiment is biased, the ES-CVTMLE method utilizes a
second, objective measure of bias in the experiment selection procedure: the estimated ATE of
treatment on a negative control outcome. An ideal NCO requires careful consideration as this
outcome should be affected by as many as possible of the unmeasured factors that bias the effect
estimate for the treatment on the primary outcome, while not being affected by the treatment itself
[24, 17]. Ideally, the magnitude of the effect of the unmeasured factors on the treatment-NCO
association should be as similar as possible to the magnitude of the effect of the unmeasured factors
on the treatment-primary outcome association so that the estimated ATE of treatment on the NCO is
equal to the causal bias for the primary effect estimate. If not, more complex methods of evaluating
bias using an NCO are required (e.g., [26, 25]).

Again using the g-computation formula [29], the statistical estimand for the ATE on an NCO
from an experiment with S ∈ {1, s} is given by

Φs(P0) = EW |S∈{1,s}[E0[NCO|W,A = 1, S ∈ {1, s}]− E0[NCO|W,A = 0, S ∈ {1, s}]]
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and is also estimated in the EScvtmle package using TMLE. While it is not necessary to have an
NCO to use the EScvtmle package, we demonstrate in Chapter 1 that when the estimated ATE on the
NCO (Φ̂TMLE

s (Pn)) is added to the bias estimate Ψ̂#,TMLE
s (Pn) in the criterion used for experiment

selection, this improves the probability that unbiased external data are included while maintaining
close to nominal coverage across a range of potential magnitudes of external data bias, even when
the NCO is only affected by some of the factors causing bias for the treatment-primary outcome
ATE estimate. Note that the NCO should be chosen such that bias affects the treatment-NCO rela-
tionship in the same direction as the treatment-primary outcome relationship.

2.1.4 Variance estimation

Now that we have estimated the bias, the next step is variance estimation. The efficient influence
curve (EIC) for Ψs(P0) is given by

D∗
Ψs
(O) =

(
I(S ∈ {1, s})
P (S ∈ {1, s})

)((
I(A = 1)

g0(A = 1|S ∈ {1, s},W )
− I(A = 0)

g0(A = 0|S ∈ {1, s},W )
)

(Y −Q0(S ∈ {1, s}, A,W ))

+Q0(S ∈ {1, s}, 1,W )−Q0(S ∈ {1, s}, 0,W )−Ψs(P0)).

g0(A|S ∈ {1, s},W ) andQ0(S ∈ {1, s}, A,W ) are estimated using the SuperLearner, as described
above. The variance of the TMLE ATE estimator for each experiment is estimated by the variance

of the EIC divided by the sample size:
σ̂2
D∗
Ψs

n
.

2.1.5 Experiment selection

In order to optimize the estimated bias-variance tradeoff of including external data, the potential
experiment-selection criteria for the ES-CVTMLE are the bias squared plus variance or “b2v”
selector,

s⋆n = argmin
s

σ̂2
D∗

Ψs

n
+ (Ψ̂#,TMLE

s (Pn))
2

if no NCO is considered, or the “nco bias” selector,

s⋆⋆n = argmin
s

σ̂2
D∗

Ψs

n
+ (Ψ̂#,TMLE

s (Pn) + Φ̂TMLE
s (Pn))

2

if an NCO is available. Using one of these criteria, the ES-CVTMLE selects one experiment (either
RCT only or RCT combined with external data) in each fold.

2.1.6 Caution regarding large potential improvements in variance

Using the “b2v” criterion, the experiment-selector chooses the experiment with the lowest es-
timated mean squared error, yet that may not be the only objective. If an experiment is selected for
which the bias is larger than the standard error of the estimator, this may lead to less than nominal
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coverage. This could happen if bias is underestimated due to finite sample variability or in the fol-
lowing context, which is more likely when active treatment is available in the external data, leading
to larger potential efficiency gains.

For the s⋆n (b2v) selector, bias is deterministically 0 for the RCT-only experiment. Even if the
true bias and variance were used for selection, an experiment with S ∈ {1, s} with larger bias than
standard error could be selected if

σ2
D∗

Ψs

n
+ (Ψ#

s (P0))
2 <

σ2
D∗

Ψs=1

n

and
σ2
D∗

Ψs

n
< (Ψ#

s (P0))
2

which would be possible if
σ2
D∗

Ψs

n
<

1

2

σ2
D∗

Ψs=1

n
.

If maintenance of nominal coverage is more important than minimization of mean squared error,
then a user may limit the number of external participants considered such that the variance of the
ATE estimator for the combined RCT-external data experiment would not be expected to have half
the variance or less compared to the variance of the ATE estimator for the RCT-only experiment.
As a result, selection of an experiment that would lead to an estimator with larger bias than standard
error would only occur due to finite sample variability in bias estimation.

2.2.2 Estimation
The final goal of the ES-CVTMLE is to use estimation set data to estimate the ATE for the

experiment selected in each experiment-selection set and to take the average of these ATE esti-
mates across folds. The TMLE procedure for estimating the ATE requires using the outcome and
treatment mechanism regressions trained in each experiment selection set for each experiment to
predict values of gn(A|S ∈ {1, s},W ) andQn(S ∈ {1, s}, A,W ) for the corresponding estimation
set observations for all folds. The initial Qn(S ∈ {1, s}, A,W ) estimates are then “targeted” to
solve the EIC for the ATE and to optimize the statistical bias-variance tradeoff for target parameter
estimation [41].

Because the EScvtmle is meant to be used in contexts where the RCT of interest is small, we
employ a pooled TMLE targeting step by pooling initial estimation set estimates of gn(A|S ∈
{1, s},W ) and Qn(S ∈ {1, s}, A,W ) for each experiment across all folds. Then, for each exper-
iment, we obtain an experiment-specific TMLE targeting coefficient, ϵs, by performing a logistic
regression of the outcome (scaled to lie between 0 and 1 for continuous outcomes) on the clever
covariate H∗

s,n(S ∈ {1, s}, A,W ) = 2A−1
gn(A|S∈{1,s},W )

with offset logit(Qn(S ∈ {1, s}, A,W )).
In each estimation set, we then select the data for the experiment chosen in the corresponding

experiment-selection set (using either s⋆n(vc) or s⋆⋆n (vc)), and use the experiment-specific coefficient
to update initial fold-specific estimates Qn,vc(S ∈ {1, s⋆n(vc)}, a,W ) for a ∈ {0, 1} as

Q∗
n,v(S ∈ {1, s⋆n(vc)}, a,W )

= logit−1(logit(Qn,vc(S ∈ {1, s⋆n(vc)}, a,W )) + ϵs⋆n(vc) ∗H
∗
s⋆n(v

c),n(S ∈ {1, s⋆n(vc)}, a,W ))
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where
H∗

s⋆n(v
c),n(S ∈ {1, s⋆n(vc)}, 1,W ) =

1

gn,vc(A = 1|S ∈ {1, s⋆n(vc)},W )

H∗
s⋆n(v

c),n(S ∈ {1, s⋆n(vc)}, 0,W ) =
−1

gn,vc(A = 0|S ∈ {1, s⋆n(vc)},W )
.

The final ES-CVTMLE estimate is then an average of the fold-specific TMLE ATE estimates
for the experiment selected in each fold:

Ψ̂TMLE
s∗n(v

c) (Q
∗
n,v) =

1
n

∑n
i=1

I(Si∈{1,s⋆n(vc)},V̄i=v)

Pn(S∈{1,s⋆n(vc)},V̄=v)
[Q∗

n,v(Si ∈ {1, s⋆n(vc)}, 1,Wi)−Q∗
n,v(Si ∈ {1, s⋆n(vc)}, 0,Wi)]

yielding a final parameter estimate of ψn = 1
V

∑V
v=1 Ψ̂

TMLE
s⋆n(v

c) (Q
∗
n,v).

2.2.3 Confidence interval construction
Finally, we must construct 95% confidence intervals for the ES-CVTMLE estimate. If bias is

large enough that external data is deterministically rejected, the ES-CVTMLE, like a standard CV-
TMLE estimator for the ATE for a single experiment, converges to a normal distribution [14, 62, 15,
60]. For this reason, if only RCT data is selected in all folds, the ES-CVTMLE uses an influence-
curve based variance estimate withD∗

Ψs=1,n,v
estimated among estimation set RCT observations for

each fold, ns=1 equal to the sample size of RCT participants, and confidence intervals constructed
as

ψn ± 1.96 ∗ ( 1
V

V∑
v=1

σ̂2
D∗

Ψs=1,n,v

ns=1

)1/2.

When causal bias is of a magnitude small enough that external data is not deterministically
rejected, the ES-CVTMLE converges to a mixture of normal distributions [60]. In the case where
external data is included in at least one fold, confidence intervals are constructed via Monte Carlo
sampling from the estimated limit distribution of the standardized estimator, as described in Chapter
1. Briefly, if we define the standardized TMLE estimators of the bias terms using experiment-
selection set data and of the ATE using estimation set data for each experiment with S ∈ {1, s} and
each fold as

Z#
n (s, v

c) =
√
n(Ψ̂#,TMLE

s (Pn,vc)−Ψ#
s (P0))

Z#+Φ
n (s, vc) =

√
n((Ψ̂#,TMLE

s (Pn,vc) + Φ̂TMLE
s (Pn,vc))− (Ψ#

s (P0) + Φs(P0)))

Zn(s, v) =
√
n(Ψ̂TMLE

s (Pn,v)−Ψs(P0))

then across all experiments and across all folds, we may define vectors of these standardized esti-
mators. For example, for the ATE estimator, we have

Zn = (Zn(s, v) : s = 0, 1, v = 1, ..., V ) ∼ Z = (Z(s, v) : s = 0, 1, v = 1, ..., V ).

Then, as shown in Chapter 1, the stacked vector Z̃ = (Z#, Z) ∼ N(
−→
0 , Σ̃) or Z̃ = (Z#+Φ, Z) ∼

N(
−→
0 , Σ̃), and Σ̃ is defined by the variance-covariance matrix of the efficient influence curves for

each parameter in the stacked vector Z̃. Again using plug-in estimates for the relevant components
of the EICs, we may estimate Σ̃ and obtain multiple samples from a mean zero multivariate normal
distribution with this estimated covariance matrix. Finally, we obtain a single sample from the
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estimated limit distribution of the standardized ES-CVTMLE starting with a single sample Z by 1)
plugging Z# or Z#+Φ and the bias and variance estimates described in Sections 2.2.1.2-4 into one
of the standardized selectors

s̄⋆n(v
c) = argmin

s
σ̂2
D∗

Ψs,vc
+ (Z#(s, vc) +

√
nΨ̂#,TMLE

s (Pn,vc))
2

s̄⋆⋆n (vc) = argmin
s

σ̂2
D∗

Ψs,vc
+ (Z#+Φ(s, vc) +

√
n(Ψ̂#,TMLE

s (Pn,vc) + Φ̂TMLE
s (Pn,vc)))

2

to select an experiment for each fold and 2) calculating 1
V

∑V
v=1(Z(s̄

⋆
n(v

c), v)) or
1
V

∑V
v=1(Z(s̄

⋆⋆
n (vc), v)) to obtain a single sample from the limit distribution. Repeating this process

many times, with the pth percentile of these samples denoted qp, the final ES-CVTMLE confidence
interval estimates are given by

ψn + (
q0.025√
n
,
q0.975√
n

).

Note that by including an estimate of the bias in this sampling process, the confidence interval
width increases in response to larger estimated bias.

2.3 Implementation: The EScvtmle package
Next, we describe how the ES-CVTMLE methodology is implemented in the EScvtmle R pack-

age. To begin, first download the package from CRAN:

#install.packages("EScvtmle")

library(EScvtmle)

We will go over the specific functionality of the package in the sections below.

2.4 The ES.cvtmle function
The ES.cvtmle function is a wrapper for all internal functions necessary to a) use TMLE to

estimate the bias from including external data in an ATE estimate, b) select the optimal experiment
as RCT-only or RCT-combined with external data, c) use cross-validated targeted maximum like-
lihood estimation to estimate the statistical estimand that is the average of the ATE estimands for
the experiment selected in each fold, ψn,0, and d) construct 95% confidence intervals as described
above. The subsequent sections describe the arguments to the ES.cvtmle function.

2.4.1 Arguments specifying variables in the causal model
The first set of arguments to the ES.cvtmle function describe relevant variables in a causal

model, including

• data The dataset

• study Character name of variable indicating study participation (e.g. “S”). This variable
should take a value of 1 for the RCT and should take a value of 0 for the external data. Note
that the code is currently set up only to handle two studies but may be expanded to handle
multiple studies in the future.
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• covariates Vector of character names of baseline covariates to be adjusted for (e.g. c(“W1”,
“W2”))

• treatment var Character name of treatment variable (e.g. “A”)

• treatment Value of treatment variable that corresponds to the active treatment (e.g. “Drug-
Name” or 1). All other values of the treatment variable are assumed to be control.

• outcome Character name of outcome variable (e.g. “Y”). If the outcome is a binary variable
subject to censoring, censored observations should either be coded as NA or should be coded
as 0, and a missingness indicator should be included (see parameter Delta below).

• NCO Character name of negative control outcome variable (e.g. “nco”) or NULL if no NCO
is available. If the NCO is a binary variable subject to censoring, censored observations
should either be coded as NA or should be coded as 0, and a missingness indicator should be
included (see parameter Delta NCO below).

• Delta Character name of a variable that is 0 if an observation was censored (missing outcome)
and 1 otherwise. Missing outcomes may also be coded as NA, in which case a Delta variable
will be added internally. If no missing outcomes, set Delta=NULL.

• Delta NCO Character name of a variable that is 0 if the value of NCO is missing and 1
otherwise. Missing NCOs may also be coded as NA, in which case a Delta NCO variable
will be added internally. If no missing NCO or no NCO, set Delta NCO=NULL.

The current version of the EScvtmle package only handles baseline covariates and single time-
point outcomes. We plan to extend the ES-CVTMLE methodology to handle time-to-event out-
comes and other longitudinal data structures in future versions.

Based on these arguments, the internal preprocess function modifies the data by: 1) removing
observations missing treatment information, 2) creating missingness indicators for the primary and
negative control outcomes if these variables are subject to missingness and the arguments Delta and
Delta NCO are not specified, and 3) pruning the external data to avoid a violation of the positivity
assumption.

This final step is necessary because, to satisfy the positivity assumption, we must have that
P (A = a|W = w, S ∈ {1, s}) > 0 for all a ∈ A and all w for which P (W = w, S ∈ {1, s}) >
0. Alternatively, if active treatment is available in the external data, we must have that P (A =
a|W = w, S = s) > 0 for all a ∈ A and all w, s for which P (W = w, S = s) > 0 and
S ∈ {1, s}. When only extra controls are considered, if there are external data observations whose
combination of baseline covariates are not represented in the RCT, then P (A = 1|W = w, S ∈
{1, s}) = 0 for those participants. In this setting, we can avoid a positivity violation by trimming the
external data such that there are no observations with baseline covariate values outside the range of
values represented in the RCT. This trimming is conducted internally by the preprocess function,
but users should be aware that target populations for all considered experiments then change to
target populations whose covariates are consistent with the RCT sample.
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2.4.2 Handling of missing outcomes
Consistent with the other TMLE packages [45, 63], missing outcomes are handled in the ES-

cvtmle package by modifying the target parameter to consider an intervention to prevent missingness
as well as to assign treatment A = a. Practically, this leads to the following considerations. First,
both the outcome regressions and the coefficient for the TMLE targeting step are estimated among
observations whose outcomes were observed. Second, to account for informative missingness, the
clever covariates used to estimate the coefficient for TMLE targeting of the initial outcome regres-
sion estimates for both bias terms and the final ATE estimate are modified by adding an indicator
that the outcome was observed, ∆, to the numerator and the estimated probability of not being
censored conditional on treatment and covariates to the denominator.

For example, ignoring for notational convenience the cross-validation fold structure and differ-
ent possible experiments, the clever covariate for the ATE becomes: H(A,W ) = ∆(2∗A−1)

P (∆=1|A,W )g(A|W )

[45]. For all observations, initial estimates of the outcome regression are targeted as described in
Section 2.2.2 with modified covariates:

H(1,W ) =
1

P (∆ = 1|A = 1,W )g(A = 1|W )

H(0,W ) =
−1

P (∆ = 1|A = 0,W )g(A = 0|W )
.

The final TMLE estimate of the ATE is an average of the difference in targeted estimates
Q⋆(1,W ) and Q⋆(0,W ) for all observations (regardless of missingness) as

Ψ̂TMLE = 1
n

∑n
i=1(Q

⋆(1,W )−Q⋆(0,W )).

2.4.3 Handling of cluster-randomized studies or repeated measures
Also consistent with the tmle package [45], the EScvtmle package allows the number of indepen-

dent units to be different than the number of observations, as may be the case for cluster-randomized
studies or studies with repeated measures. To accomplish this, the user may specify the id argument
as the name of the variable describing independent units in the dataset. Variance estimation is mod-
ified by defining components of the relevant efficient influence curve vectors as the average of the
EIC for observations with the same value of the id variable and defining the number of independent
units as the number of unique ids. Participants with the same value of the id variable are also kept
within the same validation set for both SuperLearner estimation and for the overall ES-CVTMLE
cross-validation structure.

2.4.4 Estimation of regressions
All regressions, including the outcome regressions for the primary and negative control out-

comes, the treatment and trial participation mechanism regressions, and the missingness mecha-
nism regression are estimated using the SuperLearner ensemble machine learning prediction algo-
rithm [61] implemented by the SuperLearner R package [66]. Specification of these SuperLearners
is controlled by the following options, where RWD indicates “real world data” or any data external
to the primary RCT of interest:

• Q.SL.library Candidate algorithms for SuperLearner estimation of outcome regressions
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• d.SL.library.RCT Candidate algorithms for SuperLearner estimation of missingness mech-
anism for RCT-only

• d.SL.library.RWD Candidate algorithms for SuperLearner estimation of missingness mech-
anism for RCT+RWD

• g.SL.library Candidate algorithms for SuperLearner estimation of treatment mechanism for
combined RCT/RWD analysis

• Q.discreteSL Should a discrete SuperLearner be used for estimation of outcome regressions?
(TRUE/FALSE)

• d.discreteSL Should a discrete SuperLearner be used for estimation of missingness mecha-
nism? (TRUE/FALSE)

• g.discreteSL Should a discrete SuperLearner be used for estimation of treatment mechanism?
(TRUE/FALSE)

• family Either “binomial” for binary outcomes or “gaussian” for continuous outcomes

• family nco Family for negative control outcome

• cvControl A list of parameters to control the cross-validation process for the SuperLearners.
See ?SuperLearner for more details.

• adjustnco Should we adjust for the NCO as a proxy of bias in the estimation of the ATE of
A on Y? (TRUE/FALSE). Default is FALSE.

Because rates of missingness may be very different for the RCT and the real world/external
dataset, and flexible machine learning algorithms that may be appropriate for predicting more com-
mon outcomes may overfit for rare outcomes, we allow specification of different SuperLearner
libraries for estimating the missingness mechanism in the RCT and the combined RCT-external
datasets.

The .discreteSL options ask whether a discrete SuperLearner, which is the single best perform-
ing algorithm out of the library of candidate algorithms based on a pre-specified loss function, or
an ensemble SuperLearner, which is the optimal weighted convex combination of all candidate al-
gorithms, should be used to estimate the relevant regressions [61]. Fitting a discrete SuperLearner
may be advantageous in contexts with sparse information, such as rare outcomes. Please see docu-
mentation for the SuperLearner R package [66] regarding other arguments that may be passed to the
SuperLearner algorithm using the cvControl parameter. For an overview of how to specify a Su-
perLearner, including considerations such as the number of cross-validation folds and appropriate
candidate algorithms for a given outcome type, sample size, and set of predictors, we recommend
Phillips et al.[67].

Finally, the argument adjustnco asks whether to adjust for the negative control outcome when
estimating the ATE of treatment on the outcome. Because the same unmeasured factors that affect
the treatment-outcome relationship should also affect the NCO [24], the NCO may serve as a proxy
of bias, and adjusting for the NCO may decrease the impact of the unmeasured common causes
of treatment or study participation and the outcome on the effect estimate. However, adjusting for
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the NCO could also worsen predictions for the outcome in some contexts, and so we recommend
including a variable screening algorithm in the SuperLearner library when setting adjustnco =
TRUE.

2.4.5 Parameters of the ES-CVTMLE
The remaining arguments to the ES.cvtmle function pertain to the experiment-selection, cross-

validated TMLE, or confidence interval construction steps of the ES-CVTMLE method:

• pRCT The probability of randomization to treatment in the RCT

• V Number of cross-validation folds (default 10)

• fluctuation ‘logistic’ (default for binary and continuous outcomes), or ‘linear’ describing
fluctuation for targeted maximum likelihood estimation (TMLE) updating.

• comparisons A list of the values of the study variable to include in the compared experiments.
Set comparisons = list(c(1),c(1,0)) to compare RCT only to RCT + external data.

• target.gwt As in the tmle R package [45], if target.gwt is TRUE, the treatment mechanism is
moved from the denominator of the clever covariate to the weight when fitting the coefficient
for TMLE updating. Default TRUE.

• bounds Optional bounds for truncation of the denominator of the clever covariate. The de-
fault is c(5/

√
n/log(n), 1).

• MCsamp Number of Monte Carlo samples from the estimated limit distribution to use to
estimate quantile-based confidence intervals. Default 1000.

If the true, known probability of randomization to active treatment in the RCT is used for the
treatment mechanism and there is no outcome missingness, then, due to the property of double-
robustness, the TMLE for the ATE for the RCT is asymptotically unbiased even if the outcome
regression is misspecified [41]. For this reason, we use the known randomization probability spec-
ified by argument pRCT for P (A = 1|W,S = 1) when estimating the ATE for the RCT-only
experiment.

The number of cross-validation folds for the overall ES-CVTMLE is specified by the argument
V. Generally speaking, a larger number of cross-validation-folds is recommended in contexts of data
sparsity, such as rare binary outcomes [67]. Once again, Phillips et al.[67] has a helpful overview
guiding the choice of the number of cross-validation folds. Within the ES.cvtmle function, the
origami R package [68] is used to maintain a consistent proportion of RCT observations and also
of binary outcomes across experiment-selection and estimation sets.

The fluctuation argument defines whether a logistic or linear fluctuation should be used for es-
timating the coefficient for the TMLE targeting step. For a logistic fluctuation, a logistic regression
of the outcome on the clever covariate, using the initial estimate of logit(Q(S ∈ {1, s}, A,W ))
as an offset, is conducted. A logistic fluctuation is the default for both binary and continuous out-
comes, where the continuous outcome is first scaled to lie between zero and one, because Gruber
and van der Laan[69] showed that this method causes the TMLE fluctuation to respect the bounds
of the observed data in the context of data sparsity. Q∗

n,v estimates are returned to the original scale
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for parameter estimation. Nonetheless, a linear fluctuation may also be performed for a continuous
outcome by conducting a linear regression of the outcome on the clever covariate, using the initial
estimate of Q(S ∈ {1, s}, A,W ) as an offset, by specifying fluctuation = ‘linear’.

The comparisons argument controls which experiments are compared. In the current version of
the EScvtmle package, comparisons must be specified as list(c(1),c(1,0)) to compare the RCT-only
experiment with S = 1 to the pooled RCT-external data experiment with S ∈ {0, 1}. In the future,
we plan to extend the EScvtmle package to allow for comparison of more than two experiments.

As in the tmle R package [45], the target.gwt parameter moves the denominator of the clever
covariate to the weights in the regression used to estimate the coefficient for the TMLE updating
step. For example, for a TMLE to estimate the ATE, we could perform logistic regression of Y
on H∗

s,n(S ∈ {1, s}, A,W ) = I(A = 1) − I(A = 0) with offset logit(Qn(S ∈ {1, s}, A,W ))

and weights ( I(A=1)
gn(A=1|S∈{1,s},W )

+ I(A=0)
gn(A=0|S∈{1,s},W )

) among observations with S ∈ {1, s}. We then
update initial estimates of the conditional mean outcome as, for example, Q∗

n(S ∈ {1, s}, 0,W ) =
logit−1(logit(Qn(S ∈ {1, s}, 0,W )) − ϵs). Robins et al.[42], Rotnitzky et al.[43], and Tran et
al.[44] suggest “targeting the weights” to improve stability when some observations have a low
probability of having received one of the treatment options based on their covariates.

The bounds argument allows the user to specify bounds for truncation of the denominator of the
clever covariate. Bounding further away from zero decreases variance at the expense of increasing
bias [70]. Consistent with the tmle R package, we use default bounds of c(5/

√
n/log(n), 1). For

an in depth discussion of proper bounding of the propensity score, we refer the reader to Gruber et
al.[70].

The final user-specified argument, MCsamp, determines the number of samples taken from
the estimated limit distribution used for constructing confidence intervals, as described in Section
2.2.3. In Chapter 1, the default of 1000 resulted in accurate inference when unbiased external data
were provided. Increasing MCsamp above 1000 may further increase the stability of confidence
interval construction at the expense of increased computational burden.

2.5 ES.cvtmle function output
After the ES.cvtmle function has been specified and run, we obtain as output an object that is

a list with the following components, where each component is provided for the bias squared plus
variance (“b2v”) selector and also for the selector that includes an estimate of the ATE on an NCO
in the bias term (“ncobias”) if an NCO is available:

• ATE Average treatment effect (ATE) point estimate for the ES-CVTMLE estimator.

• foldATEs ATE point estimates for each cross-validation fold.

• g A list of the same length as comparisons where each element of the list is a vector of the
denominator of the covariate in front of the residual in the efficient influence curve for all
observations in the experiment described by that element of comparisons. Values of g close
to 0 or 1 may be used to diagnose practical near-positivity violations.

• CI Estimated 95% confidence intervals for the ATE estimates of the ES-CVTMLE estimator.

• limitdistributionsample Monte Carlo samples for the ATE estimates of the ES-CVTMLE
estimator that are used to construct confidence intervals.
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• Var Estimated variance of the ES-CVTMLE ATE estimate.

• selected byfold Vector noting which experiment from the list of comparisons was selected
in each cross-validation fold.

• proportionselected Proportion of all cross-validation folds in which external data were in-
cluded in the analysis.

The goal of the ES.cvtmle function output is to provide information relevant for making the
inner workings of the estimator more transparent. We recommend using the print.Escvtmle and
plot.Escvtmle functions to summarize this information in a user-friendly format.

2.5.1 Print and plot functions
The print.Escvtmle function prints a summary of the ES-CVTMLE estimate, taking as its argu-

ment an object produced by the ES.cvtmle function. print.Escvtmle prints both the percent of folds
in which external data were included and the point estimate and 95% confidence interval for the
ES-CVTMLE ATE estimate. If an NCO is provided, the results using both the s⋆n (“b2v”) and s⋆⋆n
(“ncobias”) selector are provided.

The plot.Escvtmle function provides further insight into the results by printing two graphs: one
of the fold-specific average treatment effect estimates for all cross-validation folds (color coded
based on which experiment was selected in each fold), and the other of a histogram of the Monte
Carlo samples that are used to construct confidence intervals. If an NCO is available, the plots are for
the selector that includes the estimated average treatment effect on the NCO in the bias estimate. If
not, the plots are for the selector that uses the estimated bias squared plus variance selector, without
information from an NCO. The first plot may be useful for visualizing the similarity of the point
estimates for the ATE across folds for the different selected experiments.

2.6 Real data example: WASH benefits data analysis
It is important to understand not only how to use the EScvtmle package but also how to con-

sider whether one should use the ES-CVTMLE method or decide a priori to analyze randomized
or observational data alone. To help users understand this decision-making process, we conduct
an analysis of the WASH Benefits Bangladesh cluster randomized controlled trial (CRCT) dataset,
available from https:://osf.io.wvyn4/. Originally reported by Luby et al.[65], this trial evalu-
ated the effect of several community-level interventions on child growth in Bangladesh. The san-
itation intervention included construction of improved latrines as well as supplies and training to
help families dispose of feces in a hygienic manner. Luby et al.[65] did not find evidence of an
effect of this randomized sanitation intervention on child length-for-age Z-score (LAZ, a marker of
childhood nutritional status).

To demonstrate the potential for unmeasured confounding in observational studies of WASH
interventions, Arnold et al.[71] analyzed the control arm of the Bangladesh trial as an observational
cohort. The authors examined the association between having an improved latrine at baseline and
child LAZ, adjusting for baseline covariates, including age, sex, mother’s age, mother’s education,
mother’s height, level of food insecurity, number of people living in the compound, time required
to reach the available water source, and ownership of various household assets. After adjustment
for these variables, access to an improved latrine at baseline was associated with an increase in
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mean LAZ of 0.22 (95% CI 0.03-0.40) [71]. The analyses by Luby et al.[65] and Arnold et al.[71]
thus provide an interesting example of a case where a large RCT and an observational analysis were
conducted in the same population with different conclusions, likely due at least in part to bias from
unmeasured confounding. Taking a subset of the full WASH Benefits Bangladesh CRCT to mimic
an underpowered trial, we demonstrate the use of the EScvtmle package to include unbiased external
data and exclude biased external data from our analysis.

In pursuance of this goal, we consider three experiments. The first includes only a small sample
of the full RCT (study 1). The second considers adding additional RCT participants (study 2) to
the study 1 sample as unbiased extra data. The third considers adding an observational cohort
of control arm participants not included in study 1, where the intervention is defined as having a
latrine with an improved water seal at baseline, consistent with the likely biased analysis of Arnold
et al.[71]. To demonstrate how to think through whether a hybrid randomized-external data design
should be considered, we describe this real data analysis using Petersen and van der Laan[27]’s
causal roadmap.

2.6.1 Structural causal model
First, we describe what we know about the way the data for each experiment were generated.

Figure 2.2 shows directed acyclic graphs for these three potential experiments. Because Experiment
1 includes only RCT data from a single “study”, in this simple scenario, treatment is only affected
by the randomization procedure. For Experiment 2, participants in studies 1 and 2 were randomly
sampled from the overall RCT, so while there is now a study variable with values of 1 or 2, this
variable is not affected by baseline characteristics and does not affect treatment or outcomes.

Figure 2.2: Directed acyclic graph for experiments 1-3

Our structural causal model for Experiment 3 is a bit more complicated. First, for study 3,
Arnold et al.[71] define the intervention of interest as having (or not having) an improved latrine.
In study 1, however, randomization to construction of an improved latrine, A = 1, was combined
with the provision of other equipment and training. We will discuss whether it is wise to consider
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combining studies 1 and 3 given this fact in Section 2.6.4 (“Identifiability”) below. Wisdom aside,
it is clear that which study a participant is in does affect the treatment they receive — because treat-
ment is randomized in study 1 and determined by economic and other factors in study 3 — and may
also affect their outcomes in other ways because the intervention in study 1 includes components
beyond improved latrine construction. In this specific context, there are no unmeasured factors
that affect study inclusion because study 1 is a random sample of the overall CRCT, and study 3
is a random sample of the remaining control arm participants. In study 3, however, there may be
unmeasured common causes of the intervention, measured covariates, and outcome.

The last variable of interest is a negative control outcome. To select an appropriate NCO we
must consider the likely unmeasured common causes of having an improved latrine at baseline and
child LAZ in study 3, depicted by the U in Figure 2.2c. Although Arnold et al.[71] adjusted for
some aspects of household wealth, we suspect that incomplete adjustment for socioeconomic status
may have been a primary cause of the residual bias in this observational analysis. If designing a
hybrid RCT-RWD study prospectively, an ideal NCO for this study would be an outcome measured
at the same time as the primary outcome, on a similar scale, that is affected by socioeconomic status
(SES) to a similar degree as the primary outcome. Nonetheless, in Chapter 1, we demonstrated that
because the experiment-selector CV-TMLE relies on two different types of bias estimate, the NCO
does not need to be perfect (in the sense of being affected by exactly the same factors that cause bias
for the treatment-outcome relationship) in order to promote efficiency gains through the inclusion
of unbiased external data while maintaining nominal or close to nominal coverage when only biased
external data are available. We thus select one potential negative control variable from the available
dataset as the number of household members less than or equal to 18 years old, because prior studies
have shown this variable to be associated with SES in Bangladesh [72], but this number is unlikely
to be affected by having an improved latrine. We scaled this variable to match the scale of the true
outcome (length-for-age Z-score).

2.6.2 Causal question and target parameter
From these experiments, we would like to answer the following question; What would the differ-

ence in mean child LAZ at two years post-baseline be if all households in the Gazipur, Kishoreganj,
Mymensingh, and Tangail districts of Bangladesh had an improved latrine (with or without provi-
sion of sanitation training and supplies) compared to if none of the households did? Using the same
notation as in Section 2.2, our causal target parameter is the average of the ATE for the experiments
selected in each cross-validation fold as:

ψ0 =
1
V

∑V
v=1Ψ

F
s⋆n(v

c)(PU,X)

2.6.3 Observed data
Now that we have described the experiments that generated the data and the question we would

like to answer, let us load and examine the simplified subset of the WASH Benefits Bangladesh
dataset included with the EScvtmle package.

data("wash", package = "EScvtmle")

colnames(wash)

For studies 1 and 2, the “intervention” variable is defined as being in the “Sanitation” arm of
the CRCT (A = 1) versus the “Control” arm (A = 0), while for study 3 it is defined as having
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an improved latrine at baseline (A = 1) or not (A = 0). The outcome of interest, “laz”, is child
length-for-age Z-score at two years post-baseline. “Nlt18scale” is the scaled number of household
members less than or equal to 18 years old, which is used in this example as the negative control
variable. The baseline covariates included in this sample dataset are age in days (“aged”), sex,
mother’s education level (“momedu”), and category of household food insecurity (“hfiacat”). This
example dataset has no missing covariates or outcomes.
table(wash$study)

The different “studies” included in this example dataset were created as follows. First, study
1 was generated by taking a random sample of 150 “Sanitation” arm participants and 150 “Con-
trol” arm participants with complete information from the overall RCT. Study 2 was then created to
mimic an unbiased external dataset by taking a second random sample of 150 “Sanitation” arm par-
ticipants and 150 “Control” arm participants with complete information from the remaining RCT
participants. Finally, to create a biased external dataset, we sampled from the “Control” arm par-
ticipants who were not included in study 1, 150 participants who had improved latrines at baseline
and 150 participants who did not have improved latrines at baseline. While the independent unit in
this trial is actually the randomization block [65], for this example, we treat the individual as the
independent unit in order to have a larger sample size for splitting the trial into different studies.

2.6.4 Identifiability and statistical estimand
The next question is whether we can estimate our causal target parameter from this observed

data. Our main concern is whether the identification assumption of mean exchangeability is true.
We know that “mean exchangeability in the trial” [33], indicating that for every a ∈ A,E[Y a|W,S =
1, A = a] = E[Y a|W,S = 1], is true because of randomization in study 1. Because we have active
treatment in the external data, we also need that E[Y a|W,S = s, A = a] = E[Y a|W,S = s] is
true for an external dataset with S = s. We know that this assumption is true for study 2 because
treatment was also randomized, though we should note that we are really estimating the effect of
the full sanitation intervention, not just the improved latrines, on the outcome in both Experiment
1 and Experiment 2. In study 3, however, we are concerned about residual unmeasured aspects of
SES affecting both improved latrine ownership and child LAZ, though Arnold et al.[71] did attempt
to adjust for some aspects of SES in their analysis. For these reasons, we have high confidence in
our ability to estimate a causal effect from the data in Experiment 2 but are not certain whether we
are able to estimate a causal effect from the data in Experiment 3.

We would be remiss to not briefly discuss the related assumption of ”mean exchangeability in
effect measure” [33] indicating that E[Y 1 − Y 0|W,S = 1] = E[Y 1 − Y 0|W,S ∈ {1, s}]. Because
we have active treatment in the external data, if this assumption is not true, then we may still be
able to identify the causal target parameter

ψ0 =
1
V

∑V
v=1Ψ

F
s⋆n(v

c)(PU,X)

from the observed data, but this parameter is then a weighted average of the causal ATE of A on Y in
study 1 and the causal ATE of A on Y in combined studies 1 and 2 or 1 and 3, where the weighting
depends on the number of folds in which each experiment is selected. Given that studies 1 and 2 are
just random samples from the same RCT, it is clear that “mean exchangeability in effect measure” is
true for Experiments 1 and 2. For Experiments 1 and 3, “mean exchangeability in effect measure”
is unlikely to be true. Being in study 1 is likely to modify the effect of being assigned A = 1 on
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outcomes because participants assigned to improved latrine construction also received training and
other supplies, and A = 0 includes some participants who had an improved latrine at baseline. If
we were to data-adaptively select Experiment 1 in some folds and Experiment 3 in others, then our
causal target parameter would be a weighted average of the ATE of the randomized intervention
and the intervention of baseline improved latrine ownership on the outcome, which does not have a
straightforward causal interpretation. We thus only recommend attempting to integrate randomized
and external data where the intervention is the same insofar as that it does not differ in ways that
would be expected to modify the outcome.

This discussion of identification assumptions proves an important point. First, if we are very
confident that the causal target parameter is identifiable (i.e. Experiment 2), then we may proceed
with an analysis of the data from that experiment using standard methods and allowing greater
efficiency gains than if the ES-CVTMLE were used to check for bias. Second, if we know that
the causal target parameter is not identifiable (e.g., we know that we have not measured important
common causes of treatment and the outcome in the external data), then we know that we cannot
estimate a causal effect using data from that experiment, whether we use the ES-CVTMLE or not.
If, however, we have a situation where we think the interventions in the RCT and observational
contexts are very likely to be equivalent, and we believe it to be likely that we have succeeded in
adjusting for relevant confounding factors like SES, we may wish to use the ES-CVTMLE to decide
whether to analyze the RCT only or the RCT combined with external data. To demonstrate how
the ES-CVTMLE can protect against bias if our identification assumptions are not true, we will
proceed with estimating

ψn,0 =
1

V

V∑
v=1

Ψs⋆n(v
c)(P0)

considering Experiment 1 or Experiment 3 below.

2.6.5 Estimation and interpretation
Finally, we use the EScvtmle package to estimate our target parameter. For computational speed,

we estimate all regressions with linear or logistic regression. First, we consider either Experiment 1
(study 1 alone) or Experiment 2 (studies 1 and 2), and re-code the study variable for the “external”
data from study 2 as “study=0”.
dat <- wash[which(wash$study %in% c(1,2)),]

dat$study[which(dat$study==2)] <- 0

Then, we run the ES.cvtmle function, setting the seed for reproducibility, and print a summary
of the results.
set.seed(2022)

results_exp12 <- ES.cvtmle(txinrwd=TRUE,

data=dat, study="study",

covariates=c("aged", "sex", "momedu", "hfiacat"),

treatment_var="intervention", treatment=1,

outcome="laz", NCO="Nlt18scale",

Delta=NULL, Delta_NCO=NULL,

pRCT=0.5, V=10,

43



Q.SL.library=c("SL.glm"), g.SL.library=c("SL.glm"),

Q.discreteSL=TRUE, g.discreteSL=TRUE,

family="gaussian", family_nco="gaussian",

fluctuation = "logistic",

comparisons = list(c(1),c(1,0)),

adjustnco = FALSE, target.gwt = TRUE)

print.EScvtmle(results_exp12)

When considering Experiment 1 or Experiment 2, the ES-CVTMLE selected Experiment 2
(studies 1 and 2) in all folds. The estimated ATE of the WASH Benefits Bangladesh trial sanitation
intervention on child length-for-age Z-score at two years post-baseline was 0.021 with a 95% con-
fidence interval of (-0.198 to 0.259) for the b2v selector and a 95% confidence interval of (-0.176
to 0.231) for the ncobias selector. As expected, including the estimated ATE of the intervention on
the NCO in the bias term improved the efficiency of the estimator. These results are consistent with
the results of the overall CRCT in that they do not provide evidence of an effect of the sanitation
intervention on child growth at two years.

If we had analyzed only the small study 1 sample using CV-TMLE from the tmle package [45],
we would have had the following results:
dat <- wash[which(wash$study==1),]

set.seed(2022)

library(tmle)

results_study1 <- tmle(Y=dat$laz, A=dat$intervention,
W=subset(dat, select=c(aged, sex, momedu, hfiacat)),

Q.SL.library=c("SL.glm"), g.SL.library=c("SL.glm"),

Q.discreteSL=TRUE, g.discreteSL=TRUE,

family="gaussian", fluctuation="logistic",

cvQinit=TRUE, V=10,

prescreenW.g=FALSE, target.gwt=TRUE

)

results_study1$estimates$ATE

By integrating unbiased external data, the ES-CVTMLE results are more efficient, with confi-
dence interval widths that are, relative to the study 1 CV-TMLE confidence interval widths, 0.91
for the b2v selector and 0.81 for the ncobias selector.

Next, we consider either Experiment 1 (study 1 alone) or Experiment 3 (studies 1 and 3).
dat <- wash[which(wash$study %in% c(1,3)),]

dat$study[which(dat$study==3)] <- 0

set.seed(2022)

results_exp13 <- ES.cvtmle(txinrwd=TRUE,
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data=dat, study="study",

covariates=c("aged", "sex", "momedu", "hfiacat"),

treatment_var="intervention", treatment=1,

outcome="laz", NCO="Nlt18scale",

Delta=NULL, Delta_NCO=NULL,

pRCT=0.5, V=10,

Q.SL.library=c("SL.glm"), g.SL.library=c("SL.glm"),

Q.discreteSL=TRUE, g.discreteSL=TRUE,

family="gaussian", family_nco="gaussian",

fluctuation = "logistic", comparisons = list(c(1),c

↪→ (1,0)),

adjustnco = FALSE, target.gwt = TRUE)

print.EScvtmle(results_exp13)

When considering Experiment 1 or Experiment 3, the ES-CVTMLE with the b2v selector in-
cluded study 3 in 30% of folds with an ATE estimate of 0.04 (95% CI −0.196 to 0.273), while
the ES-CVTMLE with the ncobias selector only included study 3 in 20% of folds with an ATE
estimate of 0.027 (95% CI −0.183 to 0.26). The negative control variable thus helped to exclude
biased external data. Results in both cases were consistent with the RCT in not demonstrating an
effect of having an improved latrine on child LAZ.

If, instead of running study 1 and using the ES-CVTMLE, we had simply collected observational
data as in study 3 and used a standard CV-TMLE with no check for bias, we would have estimated
the effect of improved latrines on child LAZ at two years using the following code:

dat <- wash[which(wash$study==3),]

set.seed(2022)

library(tmle)

results_study3 <- tmle(Y=dat$laz, A=dat$intervention,
W=subset(dat, select=c(aged, sex, momedu, hfiacat)),

Q.SL.library=c("SL.glm"), g.SL.library=c("SL.glm"),

Q.discreteSL=TRUE, g.discreteSL=TRUE,

family="gaussian", fluctuation="logistic",

cvQinit=TRUE, V=10,

prescreenW.g=FALSE, target.gwt=TRUE

)

results_study3$estimates$ATE

These results from our sample study 3 dataset are, unsurprisingly, similar to Arnold et al.[71]’s
analysis of the full WASH Benefits Bangladesh control arm, erroneously suggesting that improved
latrines significantly improve child growth in this context (ATE 0.32, 95% CI 0.10-0.55). Yet the
ES-CVTMLE detects bias from integrating study 3 data with study 1 data and excludes study 3 in
most folds, preventing this biased conclusion.
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Through this analysis of the WASH Benefits Bangladesh CRCT [65], we demonstrate the ability
of the EScvtmle package to distinguish external data that would bias a causal effect estimate from
unbiased external data and to improve estimator efficiency when unbiased extra data are available.
Because the efficiency gains and type 1 error control of any estimator that integrates RCT with
external data will depend on characteristics of the data — such as sample size, outcome type, and
availability of external data with both active treatment and control participants — we recommend
that any statistical analysis plan using this estimator include outcome blind-simulations to evaluate
estimator properties in the proposed context.

2.7 Future extensions
There are several limitations to the EScvtmle package that will be developed in future versions.

First, the package only currently compares two potential experiments: 1) an RCT only or 2) an RCT
combined with one external dataset. In the future, we plan to allow consideration of multiple poten-
tial external datasets which might consist of, for example, multiple different numbers of propensity-
score matched external controls. Second, missing covariates are currently not handled by the pack-
age, requiring the user to impute or drop observations with baseline variable missingness. Third,
the package currently only estimates the average treatment effect (or causal risk difference) at a sin-
gle timepoint. Future work will expand the ES-CVTMLE methodology to different contexts such as
time-to-event endpoints with multiple time-point interventions. The most up-to-date version of the
package may be found at https://github.com/Lauren-EylerDang/EScvtmle. Please check
back for updates.

2.8 Discussion
With the FDA’s Framework for Real World Evidence [59] and Complex Innovative Trial Design

Program [56] highlighting potential new uses of RWD to support the regulatory approval process,
the number of hybrid RCT-external data studies is likely to increase over time. The EScvtmle R
package implements the experiment-selector CV-TMLE methodology described in Chapter 1 for
data-adaptively selecting and analyzing the optimal experiment defined as RCT only or RCT com-
bined with external data. By explaining the functionality of the package and demonstrating the
use of the package to distinguish biased from unbiased external data in a re-analysis of the WASH
Benefits Bangladesh CRCT, we hope to make the ES-CVTMLE method accessible to statisticians
designing and analyzing hybrid randomized-external data studies.
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3 A Causal Roadmap for Generating High-
Quality Real-World Evidence

3.1 Introduction
The 21st century has witnessed a dramatic increase in the quality, diversity, and availability

of real-world healthcare data (RWD) in forms such as electronic health records and registry or
claims databases[73]. In 2016, as part of a strategy to improve the efficiency of medical product
development, the United States Congress passed the 21st Century Cures Act[74] that mandated the
development of United States Food and Drug Administration (FDA) guidance on potential regu-
latory uses of real-world evidence (RWE) – defined as “clinical evidence about the usage and po-
tential benefits or risks of a medical product derived from analysis of RWD”[59]. Internationally,
stakeholders including other regulatory agencies, industry, payers, academia, and patient groups
have also increasingly endorsed the use of RWE to support regulatory decisions[75, 76]. Emerging
sources of RWE under evaluation include pragmatic clinical trials, externally controlled trials or
hybrid randomized-external data studies, and long-term follow-up studies[77, 78, 56].

There are multiple motivations for generating RWE. First, RWE has long been used in post-
market safety surveillance to uncover the presence of rare adverse events not adequately evaluated
by phase III randomized controlled trials (RCTs) for reasons including strict eligibility criteria, strict
treatment protocols, limited patient numbers, and limited time on treatment and in follow-up[79].
Second, recent drug development efforts have more commonly targeted rare diseases or conditions
without effective treatments[80]. RWD can be useful in such contexts when it is not practical to
randomize enough participants to power a standard RCT or when there is an ethical imperative
to minimize the number of patients assigned to the trial control arm[81, 4]. RWE was also highly
valuable during the COVID-19 pandemic; observational studies reported timely evidence of vaccine
booster effectiveness[82, 83], compared the effectiveness of different vaccines[84], and evaluated
vaccine effectiveness during pregnancy[85].

Despite the many ways in which RWE may support policy or regulatory decision-making, the
prospect of erroneous conclusions resulting from potentially biased effect estimates has led to ap-
propriate caution when interpreting the results of RWE studies. One concern is data availability;
data sources might not include all relevant information for causal estimation even in randomized
studies that generate RWE. Another concern is lack of randomized treatment allocation in obser-
vational RWE. These issues create challenges for estimating a causal relationship outside of the
“traditional” clinical trial space.

In an attempt to guide investigators towards better practices for RWE studies, there has been
a blossoming of input from regulatory agencies, academia, and industry in the form of guidelines
and frameworks addressing different stages of the process of evidence generation[59, 76, 86, 87,
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88, 89, 90, 91, 92]. Yet incoming submissions to regulatory agencies lack standardization and
consistent inclusion of all information that is relevant for evaluating the quality of evidence that
may be produced by a given RWE study[89]. How, then, can we help investigators do a better
job of estimating causal effects – and evaluating the plausibility of assumptions needed to estimate
causal effects – based at least partially on RWD?

To help answer this question, the Forum on the Integration of Observational and Randomized
Data (FIORD) meeting was held in Washington, D.C. November 17-18, 2022 to discuss perspec-
tives from regulatory and federal medical research agencies, industry, academia, trialists, methodol-
ogists, and software developers. FIORD participants discussed their experiences with RWE guid-
ance and best practices and identified necessary steps and priorities for broadening usage by in-
vestigators. Specifically, participants determined the need for a unifying structure to assist with
specification of a complete analytic design for an RWE study, including both the statistical analysis
plan and additional design elements relevant for optimizing and evaluating the quality of evidence
produced.

The Causal Roadmap[41, 27, 93, 94, 95, 96, 97] (hereafter, the Roadmap) addresses this need be-
cause it is a general, adaptable framework for causal and statistical inference that is applicable to all
studies that generate RWE, including studies with randomized treatment allocation and prospective
and retrospective observational designs. It is consistent with existing guidance and makes the steps
necessary for pre-specifying the analytic design of RWE studies explicit. The Roadmap includes
steps of defining a study question and the target of estimation, defining the processes that generate
data to answer that question, articulating the assumptions required to give results a causal interpre-
tation, selecting appropriate statistical analyses, and pre-specifying sensitivity analyses. Following
the Roadmap may lead to either 1) a fully specified analytic study design (including pre-specified
analysis plan) that is sufficient to generate high-quality RWE; or, 2) an evidence-based decision that
an RWE study to generate the required level of evidence is not currently feasible, with insights into
what data would be needed to generate suitable RWE in the future.

The goal of this chapter is to disseminate a Roadmap-based unifying framework for specifying
analytic study designs for RWE generation to an audience of clinical and translational researchers.
We provide an overview of the Roadmap, including a list of steps to consider when proposing studies
that incorporate RWD.

3.2 Overview of the Causal Roadmap for clinical and transla-
tional scientists

We walk through the steps of the Roadmap, depicted in Figure 3.1, explaining their execution in
general terms for simple scenarios, why they are important, and why multidisciplinary collaboration
is valuable to accomplish each step. The structured approach outlined in Roadmap Steps 1-6 leads
to specification of a complete analytic study design, which we define as including not only the type
of study (e.g., randomized trial, observational cohort) but also elements of study design from the
causal inference literature and the statistical analysis plan. The Roadmap does not cover all the
steps necessary to write a protocol for running a prospective study, but instead specifies an explicit
process for defining the study design itself, including information that is relevant for evaluating the
quality of RWE that may be generated by that design. We suggest that following the Roadmap can
help investigators generate high-quality RWE to answer questions that are important to patients,
payers, regulators, and other stakeholders.
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A century’s worth of literature has contributed to the concepts described in the Roadmap. Sev-
eral books explain nuances of these concepts[41, 98, 99, 100, 101, 102, 103]. This Chapter is not a
comprehensive introduction, but rather aims to highlight steps that need to be considered to conduct
high-quality causal inference and evidence generation.
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Figure 3.1: The Causal Roadmap

∗ The contrast of interest may be additive (e.g., risk difference) or multiplicative (e.g., relative risk)
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3.2.1 Step 1: Causal question, causal model, and causal estimand
As depicted in Figure 3.1, Step 1 involves defining a causal question, causal model, and the

causal estimand that would answer that question. Formally, the causal model that describes rela-
tionships between key study variables would be defined before the causal estimand[27]. However,
to facilitate explanation of these concepts, we start by using frameworks for specifying components
of a causal estimand to also specify key elements of the causal model (Step 1a) before completing
our causal model in Step 1b.
Step 1a: Define the causal question and causal estimand

Many causal questions start with the objective of estimating the effect of an exposure (e.g., a
medication or intervention) on an outcome. Building on decades of research in the careful conduct
of randomized and observational studies[103, 104, 105, 29, 106], both the International Council for
Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) E9(R1)[107]
and Target Trial Emulation[86, 99, 108, 109] frameworks prompt investigators to define components
of a causal question and estimand. The causal estimand is a mathematical quantity that answers the
causal question (Table 3.1).

Table 3.1: Components of a Causal Question and Estimand per ICH E9(R1) [107] and Target Trial
Emulation [86]

ICH E9(R1)
attribute

Target Trial
Emulation
Protocol

Component

Explanation

Related
Notation
in this

Chapter

Population Eligibility crite-
ria

Inclusion and exclusion criteria,
including dates of eligibility, for
potential study participants

Measured
baseline
characteristics†:
W

Treatment Treatment strate-
gies

The ideal hypothetical interven-
tion(s) of interest in each arm of
the target trial, including what
treatment or exposure or inter-
vention individuals would expe-
rience at study baseline and any
post-baseline interventions, such as
preventing censoring or requiring
adherence for a specified duration.

Baseline in-
tervention: A,
Censoring††: C

Follow-up period The events that define the starting
(e.g., randomization, prescription)
and stopping (e.g., outcome, death)
points for the observation period
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Variable or
end point

Outcome Outcome of interest, including the
timepoint(s) at which the outcome
will be evaluated

Outcome: Y

Population
summary

Causal contrasts
of interest

Causal Estimand†††: e.g., average
treatment effect, relative risk, av-
erage treatment effect within pre-
specified subgroups

See below

† Baseline participant characteristics can include additional variables not used to define eligibility criteria. Baseline
variables do not completely characterize the population, but for simplicity, we only consider measured baseline char-
acteristics in the notation below.
†† In the current chapter, we focus as an example on interventions on baseline treatment and postbaseline censoring.
However, the approach represented extends naturally to treatment strategies that incorporate additional postbaseline
interventions, (see e.g., [110, 95])
††† A mathematical quantity that is a function of potential outcomes (see below).

An example of a question guided by these attributes might be: How would the risk of disease
progression by 2 years have differed if all individuals who met eligibility criteria had experienced
treatment strategy A=1 (e.g., drug under investigation) versus treatment strategy A=0 (e.g., active
comparator) and no one dropped out of the study (C=0)? The best (albeit impossible!) way to
answer this question would be to evaluate both the potential outcomes[28, 111] individuals would
have had if they had experienced treatment strategy A=1 and not been censored (Y a=1,c=0) and the
potential outcomes individuals would have had if they had experienced treatment strategy A=0 and
not been censored (Y a=0,c=0).

A formal structural causal model would help us describe the causal pathways that generate
these potential outcomes[112]. For now, we simply consider that, if we were able to observe both
potential outcomes for all members of our target population, then the answer to our question would
be given by the causal risk difference (or “Average Treatment Effect”),

Ψ⋆ = P (Y a=1,c=0 = 1)− P (Y a=0,c=0 = 1).

This mathematical quantity that is a function of potential outcomes is called a causal estimand.
Table 3.1 lists other examples of causal estimands.

Importance: Even though we can only observe at most one potential outcome for each individ-
ual [113], and even though it is not possible to guarantee complete follow-up in a real trial, precise
definition of the causal question and estimand based on the treatment strategies defined in Table 3.1
is crucial for specifying a study design and analysis plan to provide the best possible effect estimate.
Ultimately, we need to evaluate a mathematical expression that translates the available data into a
number (e.g., a 5% decrease in risk of disease progression). To assess whether that number pro-
vides an answer to our causal question, we must first define mathematically what we aim to estimate.
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Build a Multidisciplinary Collaboration: If you are not certain how to translate your research
question into a causal estimand, collaborate with an expert in causal inference.

Step 1b: Specify a causal model describing how data have been or will be generated
Next, we consider what we know (and don’t know) about the real-life processes that will generate

– or that have already generated – data to answer this question. First, we consider the type of
study (e.g., pragmatic RCT, retrospective cohort study). Then, we consider what factors affect the
variables that are part of our treatment strategies – found in Table 3.1 and referred to as intervention
variables below – and the outcome in our proposed study.

This background knowledge comprises the causal model[112]. We specified some key variables
in our causal model in Step 1a (in Table 3.1 and our potential outcomes). Now, we add additional
detail to our causal model by describing potential causal relationships between these and other
important variables. Multiple tools and frameworks can help elicit this information, but conceptual
models and causal graphs, such as directed acyclic graphs or single world intervention graphs, are
some of the most common[29, 114, 115, 116, 117].

Figure 3.2 gives a simple example of causal graph construction, starting with writing down
all intervention and outcome variables. When some outcomes are missing, we don’t observe the
outcome, Y, for all participants. Instead, we observe Y ⋆, which is equal to the actual outcome if it
was observed and is missing otherwise (Figure 3.2a). Arrows denote possible effects of one variable
on another.

Then, we attempt to write down factors that might influence these variables. Figure 3.2b shows
two examples (age and a biomarker), though real causal graphs generally include many more vari-
ables. In a classic randomized trial, only the randomization procedure affects baseline treatment
assignment, whereas in an observational study (depicted in Figure 3.2), participant characteristics
affect the baseline treatment. Next, we consider factors that are unmeasured or difficult to measure
that might influence treatment, outcomes, or censoring. Figure 3.2c shows access to healthcare as
an example.

Figure 3.2: Basic Process for Generating a Causal Graph

Caption: Y ⋆ is equal to the actual outcome value if it was observed and is missing otherwise.

Causal graphs can become much more complicated, especially when working with longitudinal
data[29], using proxies for unmeasured variables[118], or combining different data sources[6] (as
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demonstrated in the case study of Semaglutide and Cardiovascular Outcomes). A carefully con-
structed causal graph should also demonstrate issues such as competing risks, intercurrent events,
or measurement error[99, 119].

Importance: Considering which factors may affect intervention variables and outcomes helps
to determine whether we can answer our question based on existing data or data that we will collect.
The final graph should be our best honest judgement based on available evidence and incorporating
remaining uncertainty[99].

Build a Multidisciplinary Collaboration: If questions remain about some aspect of this model,
such as how physicians decide to prescribe a medication in different practice settings, obtain input
from clinicians or other relevant collaborators before moving on.

Stop! Return to Step 1a. Do you need to modify your causal question and estimand based
on Step 1b?

After writing down our causal model, we sometimes need to change our question[120]. For
example, we may have realized that an intercurrent event (such as death) prevents us from observing
the outcome for some individuals. As suggested by ICH E9(R1), we could modify the question to
consider the effect on a composite outcome of the original Y or death[107]. ICH E9(R1)[107]
discusses other intercurrent events and potential modifications to the estimand.

3.2.2 Step 2: Describe the observed data
The causal model from Step 1b lets us specify what we know about the real-world processes

that generate our observed data. This model can inform what data we collect in a prospective study
or help to determine whether existing data sources include relevant information. Next, we describe
the actual data we will observe.

Specific questions to address regarding the observed data include the following: How are the
relevant exposures, outcomes, and covariates, including those defining eligibility criteria, measured
in the observed data? Are they measured differently (including different monitoring protocols) in
different data sources or at different timepoints? Are we able to measure all variables that are im-
portant common causes of the intervention variables and the outcome? Is the definition of time
zero in the data consistent with the causal question[108]?

Importance: After considering these questions, we may need to modify Step 1. For example,
if we realize that the data we are able to observe only include patients seen at tertiary care facilities,
we may need to change the question (Step 1a) to ask about the difference in the risk of disease
progression by two years if all individuals meeting our eligibility criteria and receiving care at a
tertiary facility received one intervention or the other. Knowledge about factors that affect how
variables are measured and whether they are missing should be incorporated in the causal model
(Step 1b). Completing this step also helps investigators assess whether the data are fit-for-use[59]
and whether we are able to estimate a causal effect from the observed data (discussed in Step 3).

Build a Multidisciplinary Collaboration: If you are unsure about the way variables are mea-
sured in relation to underlying medical concepts or in relation to a particular care setting, collaborate
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with a clinician or clinical informaticist. If you are unsure of how to match baseline time zero in
your observed data with the follow-up period in your causal question, collaborate with a statistician.

3.2.3 Step 3: Assess Identifiability: Can the proposed study provide an an-
swer to our causal question?

In Step 3, we ask whether the data we do observe (Step 2), together with our knowledge about
how these data are generated (Step 1b), are sufficient to let us answer our causal question (Step
1a). As described in Step 1a, we cannot directly estimate our causal estimand (which is a function
of counterfactual outcomes). Instead, we will evaluate a function of the observed data (called a
statistical estimand, described in Step 4). The difference between the true values of the statistical
and causal estimands is sometimes referred to as the causal gap[94]. If there is a causal gap, even
a perfect estimate of the statistical estimand would not provide an answer to our causal question.

While we can never be certain of the size of the causal gap for studies incorporating RWD and
even for many questions using data from traditional RCTs, we must use our background knowledge
to provide an honest appraisal. Causal identification assumptions help us to explicitly state what
must be true in order to conclude that the causal gap is zero and that we are thus able to estimate
a causal effect using the proposed data. Table 3.2 lists two common identification assumptions to
consider for most cases with informal explanations of their meaning. Exchangeability, in particu-
lar, can also be framed in terms of causal graphs[112]. In some cases, further assumptions may be
necessary. Hernán and Robins (2020)[99], among others, provide in-depth discussions of identifi-
cation assumptions. The case studies associated with this paper demonstrate the evaluation of these
assumptions.

Table 3.2: Common Identification Assumptions

Assumption Basic Explanation of Meaning

Exchangeability† This assumption is generally true if there are no unmeasured common
causes of variables that are part of the treatment strategies (Table 3.1:
e.g., baseline or postbaseline treatment(s), censoring) and the outcome
(informally, if there is no unmeasured confounding).

Positivity This assumption is true if, for every possible combination of measured
confounding variables, individuals with those characteristics have a
positive probability of following any of the treatment strategies of in-
terest.

† Full exchangeability is generally not required if weaker conditions (e.g., mean exchangeability, sequential conditional
exchangeability, or others) hold[99].

Importance: Considering and documenting the plausibility of the causal identification assump-
tions helps to determine whether steps can be taken to decrease the potential magnitude of the
causal gap. If we conclude that these assumptions are unlikely to be satisfied, then we should con-
sider modifications to Steps 1-2. We may need to limit the target population to those who have
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a chance of receiving the intervention or evaluate the effect of a more realistic treatment rule to
improve the plausibility of the positivity assumption[31, 121]. We may need to measure more of
the common causes depicted in our causal graph or modify the question to improve the plausibility
of the exchangeability assumption[122]. If multiple study designs are feasible, Step 3 can help us
to consider which study design is based on more reasonable assumptions[123].

If we know that a key variable affecting treatment and outcomes or censoring and outcomes
is not measured, then we generally cannot identify a causal effect from the observed data without
measuring that variable or making additional assumptions[86, 99, 104]. For this and other reasons,
many studies analyzing RWD appropriately report statistical associations and not causal effects,
though sensitivity analyses (Step 6) may still help to evaluate whether a causal effect exists[124,
125]. Nonetheless, if a retrospective study was initially proposed but the causal identification as-
sumptions are highly implausible and cannot be improved using existing data, then investigators
should consider prospective data collection to better evaluate the effect of interest.

In general, it would be unreasonable to expect that all causal identification assumptions would
be exactly true in RWE studies, or even in many traditional RCTs due to issues such as informative
missingness[99]. Yet careful documentation of Steps 1-3 in the pre-specified analysis plan and in
the study report helps not only the investigator but also regulators, clinicians, and other stakeholders
to evaluate the quality of evidence generated by the study about the causal effect of interest. Step
3 helps us to specify a study with the smallest causal gap possible. Sensitivity analyses, discussed
in Step 6, help to quantify a reasonable range for the causal gap, further aiding in the interpretation
of RWE study results.

Build a Multidisciplinary Collaboration: An expert in causal inference can help to formally
evaluate all causal identification assumptions. The exchangeability assumption can become quite
complicated if there are multiple intervention variables[29, 126]. In such cases, graphical criteria
may be used to determine visually from a causal graph whether sufficient variables have been mea-
sured to satisfy the exchangeability assumption[29, 112, 127]. Software programs can also facilitate
this process[128, 129].

3.2.4 Step 4: Define the statistical estimand
If, after assessing identifiability, we decide to proceed with our study, we aim to define a statis-

tical estimand that is as close as possible to the causal estimand of interest. Recall our causal risk
difference for a single time-point intervention and outcome:

Ψ⋆ = P (Y a=1,c=0 = 1)− P (Y a=0,c=0 = 1).

In a simple case where potential confounders – denoted W – are only measured at baseline,
then the statistical estimand that is equivalent to the causal effect if all identification assumptions
are true is given by

Ψ = EW (P [Y ⋆|C = 0, A = 1,W ]− P [Y ⋆|C = 0, A = 0,W ]).

In words, we have re-written our causal question (which is defined based on potential outcomes
that we cannot simultaneously observe) in terms of a quantity that we can estimate with our data:
the average (for our target population) of the difference in risk of our observed outcome associated
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with the different treatment strategies, adjusted for measured confounders.

Importance: The traditional practice of defining the statistical estimand as a coefficient in a
regression model has several downsides, even if the model is correct (a questionable assumption
discussed below)[41]. This approach starts with a tool (e.g., a regression model) and then asks
what problem it can solve, rather than starting with a problem and choosing the best tool[130]. For
example, the hazard ratio may be estimated based on a coefficient in a Cox regression but does not
correspond to a clearly defined causal effect[131, 132, 133]. Instead, the Roadmap guides us to
choose a statistical estimand that is as close as possible to the causal estimand. We thus specify a
well-defined quantity that can be estimated from the observed data and that is directly linked to the
causal question.

Build a Multidisciplinary Collaboration: Defining a statistical estimand that would be equiv-
alent to the causal effect of interest under identification assumptions is more challenging when there
are post-baseline variables that are affected by the exposure and that, in turn, affect both the outcome
and subsequent intervention variables[29]. This situation is common in studies where the exposure
is measured at multiple time-points. In such a situation, statistician collaborators can help to define
the statistical estimand using approaches such as the longitudinal g-computation formula[29].

3.2.5 Step 5: Choose a statistical model and estimator that respects available
knowledge and uncertainty based on statistical properties

The next step is to define a statistical model (formally, the set of possible data distributions)
and to choose a statistical estimator. The statistical model should be compatible with the causal
model (Step 1b). For example, knowledge that treatment will be randomized (design knowledge
that we described in our causal model) implies balance in baseline characteristics across the two
arms (with slight differences due to chance in a specific study sample). We could also incorporate
knowledge that a continuous outcome falls within a known range or that a dose-response curve
is monotonic (e.g., based on prior biological data) into our statistical model. A good statistical
model summarizes such statistical knowledge about the form of the relationships between observed
variables that is supported by available evidence without adding any unsubstantiated assumptions
(such as linearity, or absence of interactions); models of this type are often referred to as semi- or
non-parametric or simply realistic statistical models[41].

Given a statistical model, the choice of estimator should be based on pre-specified statistical
performance benchmarks that evaluate how well it is likely to perform in estimating the statisti-
cal estimand[41]. Examples include type 1 error control, 95% confidence interval (CI) coverage,
statistical bias, and precision. Statistical bias refers to how far the average estimate across many
samples would be from the true value of the statistical estimand. An estimator must be flexible
enough to perform well even when we do not know the form of the association between variables
in our dataset, and it must be fully pre-specified[41].

Most available estimators rely on estimating an outcome regression (i.e., the expected value of
the outcome given the treatment and values of confounders), a propensity score (i.e., the proba-
bility of receiving a treatment or intervention given the measured confounders), or both. Without
knowing the form of these functions, we do not know a priori whether they are more likely to be ac-
curately modeled with a parametric regression or a flexible machine learning algorithm allowing for
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non-linearities and interactions between variables[41, 130, 61]. The traditional practice of default-
ing to a parametric regression as the statistical estimator imposes additional untestable statistical
assumptions, even though they are not necessary. Fortunately, estimators exist that allow for full pre-
specification of all machine learning and parametric approaches used, data-adaptive selection (e.g.,
cross-validation) of the algorithm(s) that perform best for a given dataset, and theoretically-sound
95% confidence interval construction (leading to proper coverage under reasonable conditions)[41].

Importance: Effect estimates that are based on incorrectly specified models – such as a main
terms linear regression when there is truly non-linearity or interactions between variables – are
biased, and that bias does not get smaller as sample size increases[41]. This bias may result in
inaccurate conclusions. We aim to choose an estimator that not only has minimal bias but also is
efficient – thereby producing 95% confidence intervals that are accurate but as narrow as possible
– to make maximal use of the data[41].

If, after consideration of the statistical assumptions and properties of the estimators, multiple
estimators are considered, then the bias, variance, and 95% CI coverage of all estimators should be
compared using outcome-blind simulations that mimic the true proposed experiment as closely as
possible[134]. We use outcome-blind to mean that the simulations are conducted without informa-
tion on the observed treatment-outcome association; such simulations may utilize other information
from the collected data (if available), such as data on baseline covariates, treatment, and censoring,
to approximate the real experiment[134]. Simulations conducted before data collection may use a
range of plausible values for these study characteristics[135]. As recommended by ICH E9(R1),
simulations should also be conducted for cases involving plausible violations of the statistical as-
sumptions of the estimators[107]. Examples of such violations include non-linearity for linear
models or inaccurate prior distributions for Bayesian parameters.

Build a Multidisciplinary Collaboration: Statistician collaborators can help to pre-specify
an estimator with the statistical properties described above. Resources are increasingly available to
assist with pre-specification of statistical analysis plans (SAPs) based on state-of-the-art estimation
approaches. For example, Gruber et al. (2022)[136] provide a detailed description of how to pre-
specify a SAP using targeted minimum loss-based estimation (TMLE)[40] and super learning[61],
a combined approach that integrates machine learning to minimize the chance that statistical mod-
eling assumptions are violated[41].

3.2.6 Step 6: Specify a procedure for sensitivity analysis
Sensitivity analyses in Step 6 attempt to quantify how the estimated results (Step 5) would

change if the untestable causal identification assumptions from Step 3 were violated[99, 124, 137,
138, 139]. In contrast, the simulations in Step 5 consider bias due to violations of testable sta-
tistical assumptions, which ICH E9(R1) considers as a different form of sensitivity analysis[107].
One mechanism of conducting a causal sensitivity analysis in Step 6 is to consider the potential
magnitude and direction of the causal gap; this process requires subject matter expertise and re-
view of prior evidence[124, 138, 139, 140]. Sensitivity analysis also allows for construction of
confidence intervals that account for plausible values of the causal gap[94, 124, 138, 139, 140].
Alternatively, investigators may assess for causal bias using negative control variables, discussed
in detail by Lipsitch et al. (2010)[24] and Shi et al. (2020)[25].

The specifics of these methods – and alternate approaches – are beyond the scope of this chap-
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ter, but note that the method of sensitivity analysis should be pre-specified prior to estimating the
effect of interest[141]. This process avoids the bias that might occur if experts know the value of the
estimate before defining the procedure they will use to decide whether a given shift in that estimate
due to bias is reasonable[138].

Importance: The process of using prior evidence to reason about likely values of the causal
gap helps investigators to assess the plausibility that the bias due to a violation of identification
assumptions could be large enough that the observed effect is negated[94, 124, 125, 142]. While
the exact magnitude of the causal effect may still not be identified due to known issues such as
the potential for residual confounding, if an estimated effect is large enough, we may still obtain
credible evidence that an effect exists[125, 143]; this was the case in Cornfield et al. (1959)’s
frequently-cited assessment of the effect of smoking on lung cancer[144]. Conversely, if the antic-
ipated effect size is small and the plausible range of the causal gap is large, the proposed study may
not be able to provide actionable information. Considering these tradeoffs can help investigators to
decide whether to pursue a given RWE study or to consider alternate designs that are more likely
to provide high-quality evidence of whether a causal effect exists[125, 145].

Build a Multidisciplinary Collaboration: If multiple correlated sources of bias are likely,
more complex methods of evaluating a plausible range for the causal gap – and collaboration with
investigators familiar with these methods – may be required[138].

3.2.7 Step 7: Compare alternative complete analytic study designs
Roadmap Steps 1-6 help us to specify a complete analytic study design, including the causal

question and estimand, type of study and additional knowledge about how the data are generated,
specifics of the data sources that will be collected and/or analyzed, assumptions that the study relies
on to evaluate a causal effect, statistical estimand, statistical estimator, and procedure for sensitivity
analysis. The type of study described by this analytic design could fall anywhere on the spectrum
from a traditional RCT to a fully observational analysis. In cases when it is not possible to conduct
a traditional RCT due to logistical or ethical reasons – or when RCT results would not be available
in time to provide actionable information – the value of RWE studies is clear despite the possibility
of a causal gap[99]. If an RCT is feasible, baseline randomization of an intervention (as part of
either a traditional or pragmatic RCT[146]) still generally affords a higher degree of certainty that
the estimated effect is causal compared to analysis of non-randomized data. Yet sometimes, it is
feasible to consider multiple different observational and/or randomized designs – each with different
potential benefits and downsides.

Consider a situation in which there is some evidence for a favorable risk-benefit profile of a
previously studied intervention based on prior data, but those data are by themselves insufficient for
regulatory approval for a secondary indication or for clear modification of treatment guidelines. In
this context, it is possible that conducting a well-designed RWE study or hybrid RCT-RWD study
as opposed to a traditional RCT alone will shorten the time to a definitive conclusion, decrease the
time patients are exposed to an inferior product, or provide other quantifiable benefits to patients
while still providing acceptable control of type I and II errors[147, 3, 148]. Yet other times, a pro-
posed RWE design may be inferior to alternative options, or one design may not be clearly superior
to another. When multiple study designs are considered, outcome-blind simulations consistent with
our description of Steps 1-6 can help to compare not only type 1 error and power, but also metrics
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quantifying how the proposed designs will modify the medical product development process[147].
The case study of Semaglutide and Cardiovascular Outcomes in Chapter 4 demonstrates how to
compare study designs that are based on Roadmap Steps 1-6.

Importance: A simulated comparison is not always necessary; one study design may be clearly
superior to another. Yet often there are tradeoffs between studies with different specifications of
Roadmap Steps 1-6. For example, in some contexts, we may consider augmenting an RCT with ex-
ternal data. When comparing the RCT design to the augmented RCT design, there may be a tradeoff
between a) the probability of correctly stopping the study early when appropriate external controls
are available and b) the worst-case type 1 error that would be expected if inappropriate external con-
trols are considered[148]. Another example would be the tradeoff between the potential magnitudes
of the causal gap when different assumptions are violated to varying degrees for studies relying on
alternate sets of causal identification assumptions[123]. Simulated quantification of these tradeoffs
using pre-specified benchmarks can help investigators to make design choices transparent[149].

Build a Multidisciplinary Collaboration: Factors to consider when comparing different ana-
lytic designs include the expected magnitude of benefit based on prior data and the quality of that
data[81], the plausible bounds on the causal gap for a given RWE study, the treatments that are
currently available[81], and preferences regarding tradeoffs between design characteristics such as
type I versus type II error control[149]. Because these tradeoffs will be context-dependent[81, 149],
collaboration with patient groups and discussion with regulatory agencies is often valuable when
choosing a study design from multiple potential options.

3.3 A list of Roadmap steps for specifying a complete analytic
study design

Table 3.3 provides a list of considerations to assist investigators in completing and documenting
all steps of the Roadmap. Complete reporting of RWE study results should include all pre-specified
Roadmap steps, though information supporting decisions in the final design and analysis plan, such
as causal graphs or simulations, may be included as supplementary material. Note that all steps
should be pre-specified before conducting the study.

Table 3.3: Steps for Specifying a Complete Analytic Study Design Using the Roadmap

1a Specify the causal question and estimand.

• ICH E9(R1) attributes: Population, treatment, variable or end point, popula-
tion summary [107]

• TTE Protocol Components: Eligibility criteria, treatment strategies, follow-
up period, outcome, causal contrasts of interest [99]
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1b Specify the causal model (background knowledge about the proposed study).

• Specify the type of study (e.g., traditional RCT, retrospective cohort)

• Document whether censoring, competing risks, or other intercurrent events
occurred and factors that may have affected them. Adjust the question as
needed.

2 Define the observed data that has been or will be collected.

• Document how inclusion/exclusion criteria, treatment variables, outcome(s),
and other relevant variables are measured, how time zero is defined, and im-
portant differences between data sources.

3 Assess identifiability of the causal estimand from the observed data.

• Explicitly state the assumptions required for identification, and evaluate their
plausibility.

• Consider modifications to Steps 1-2 to minimize the causal gap.

– If a retrospective study had been planned but identification assumptions
are highly implausible, consider primary data collection or linkage of
data from different sources as necessary to ensure relevant information
capture for the causal question and estimand.

4 Define the statistical estimand.

5 Specify the statistical model, estimator, and method of confidence interval construc-
tion.

• List the assumptions the proposed estimator and method of confidence interval
construction rely upon.

• Describe the expected statistical bias and variance of the estimator under plau-
sible conditions.

• If multiple estimators are considered, compare them with outcome-blind sim-
ulations based on:

– statistical bias, variance, 95% CI coverage of the statistical estimand,
type 1 error, and power

– with plausible violations of model assumptions.
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6 Specify the sensitivity analyses.

• Document the method for defining plausible bounds for the causal gap and/or
methods for estimation of the causal gap (e.g., based on negative controls).

• Provide confidence intervals for the causal effect of interest under the hypoth-
esized size of the causal gap, across the full range of plausible causal gaps.

7 Compare feasible complete analytic designs (Steps 1-6) using outcome-blind simu-
lations based on

• causal metrics (95% CI coverage, type 1 error, and power for a causal effect),

• and metrics to quantify differences in the medical product development pro-
cess of each design.

• Include a comparison to an RCT, if feasible.

3.4 Discussion
The Roadmap can help investigators to pre-specify a complete analytic design for studies that

utilize RWD, choose between study designs, and propose high-quality RWE studies to the FDA and
other agencies. We describe the steps of the Roadmap in order to disseminate this methodology to
clinical and translational scientists. The case study of Semaglutide and Cardiovascular Outcomes
in Chapter 4 demonstrates an application of the Roadmap, explaining specific steps in greater detail.

Past descriptions of the Roadmap have largely been targeted to quantitative scientists[41, 27,
93, 94, 95, 96, 97]. In this Chapter, we focus on intuitive explanations rather than formal mathe-
matical rigor to make these causal inference concepts more accessible to a wide audience. We also
emphasize the importance of building a multidisciplinary collaboration, including both clinicians
and statisticians, during the study planning phase.

We also introduce an extension of previous versions of the Roadmap to emphasize how outcome-
blind simulations may be used not only to compare different statistical estimators but also to evaluate
different study designs. This extension aligns with the FDA’s Complex Innovative Trial Designs
Program guidance for designs that require simulation to estimate type I and II error rates[150],
but goes one step further by emphasizing a quantitative comparison to a randomized trial or other
feasible RWE designs. The aim of this additional step is to facilitate evaluation of the strengths and
weaknesses of each potential approach.

The Roadmap aligns with other recommendations provided in regulatory guidance, as well;
these include the FDA’s Framework and Draft Guidance documents for RWE that emphasize the
quality and appropriateness of the data[59, 151, 152, 153] and the ICH E9(R1) guidance on esti-
mands and sensitivity analysis[107]. The Roadmap is also consistent with other proposed frame-
works for RWE generation. Within the field of causal inference, the Roadmap brings together con-
cepts including potential outcomes[28, 111], the careful design of non-experimental studies[102,
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103, 105, 106], causal graphs[29, 114, 115, 116, 117] and structural causal models[112], causal
identification[29, 112, 154], translation of causal to statistical estimands using the g-formula[29],
and methods for estimation and sensitivity analysis[41, 101, 124, 61, 137, 139].

The Roadmap is compatible with many other frameworks, including many that discuss aspects
of specific Roadmap steps. Examples include the Target Trial Emulation framework[86, 109],
the Patient-Centered Outcomes Research Institute (PCORI) Methodology Standards[88], white pa-
pers from the Duke-Margolis Center[87, 155], the REporting of studies Conducted using Obser-
vational Routinely-Collected health Data (RECORD) Statement[156], the Structured Preapproval
and Postapproval Comparative study design framework[157], and the STaRT-RWE template[89].
The purpose of the Roadmap is not to replace these – and many other – useful sources of guidance,
but rather to provide a unified framework that covers the steps necessary to follow a wide range of
guidance in a centralized location. Furthermore, while many recommendations for RWE studies
list what to think about (e.g., types of biases or considerations for making RWD and trial controls
comparable), the Roadmap aims instead to make explicit a process for how to make and report de-
sign and analysis decisions that is flexible enough to be applied to any use case along the spectrum
from a traditional RCT to a fully observational analysis.

With increasing emphasis by regulatory agencies around the world regarding the importance
of RWE[76], the number of studies using RWD that contribute to regulatory decisions is likely to
grow over time. Yet a recent review of RWE studies reported that “nearly all [reviewed] studies
(95%) had at least one avoidable methodological issue known to incur bias”[158]. By following
the Roadmap steps to fully pre-specify an analytic study design, investigators may set themselves
up not only to convey relevant information to regulators but also to produce high-quality estimates
of causal effects using RWD when possible, with an honest evaluation of whether the proposed
study is adequate for making causal inferences.
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4 Case Study of Semaglutide and Cardiovas-
cular Outcomes

4.1 Introduction
Semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA) developed as an antihyper-

glycemic agent, has been shown to improve multiple health outcomes for patients with type 2 dia-
betes mellitus (T2DM). In the SUSTAIN series of randomized controlled trials (RCTs), injectable
semaglutide decreased glycated hemoglobin (HbA1c), body weight, and systolic blood pressure
compared to placebo[159], sitagliptin[160], exenatide ER[161], and insulin glargine[162]. In the
SUSTAIN 6 trial, injectable semaglutide decreased rates of major adverse cardiovascular events
(MACE: defined as death from cardiovascular causes or nonfatal stroke or myocardial infarction
(MI)) compared to placebo in patients with high cardiovascular (CV) risk, with an estimated haz-
ard ratio (HR) of 0.74 (95% confidence interval (CI), 0.58 to 0.95)[163]. As a result, the United
States Food and Drug Administration (FDA) approved injectable semaglutide for adults with T2DM
to improve glycemic control and reduce cardiovascular risk in patients with cardiovascular disease.

Oral semaglutide was subsequently developed and shown, in the PIONEER series of RCTs,
to decrease HbA1c compared to placebo[164], empagliflozin[165], and sitagliptin[166], and body
weight compared to placebo[164], sitagliptin[166], and liraglutide[167]. To satisfy a pre-approval
regulatory requirement for demonstrating cardiovascular safety, the PIONEER 6 RCT was designed
to evaluate non-inferiority of oral semaglutide versus placebo[168]. For the primary outcome of
MACE, the estimated HR was 0.79 (95% CI, 0.57 - 1.11), a result that was statistically significant
for non-inferiority[168]. The evidence obtained through the PIONEER and SUSTAIN trials was
not deemed sufficient for FDA approval of oral semaglutide for the secondary indication of car-
diovascular risk reduction, prompting initiation of the ongoing SOUL RCT that has enrolled over
9,500 participants[169].

A superiority RCT is a standard choice for evaluating the effect of interest, yet RCTs may also
have downsides. For example, clinicians treating placebo arm patients are directed not to prescribe
medications of the same class as the active treatment under investigation[169, 170, 171]. Yet in
2019, a joint statement by the American Diabetes Association and the European Association for the
Study of Diabetes emphasized that “for patients with type 2 diabetes and established atherosclerotic
CV disease . . . where MACE is the gravest threat, the level of evidence for MACE benefit is greatest
for GLP-1 receptor agonists”[172]. Although none of the trial participants were taking a GLP-
1RA at baseline[169], would it not be better for the participants in the placebo arm of SOUL if
they were allowed to start a GLP-1RA? This question led us to ask whether alternate trial designs
incorporating real-world data (RWD) could decrease the amount of participant-time during which
commencement of a GLP1-RA is precluded.
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One such design, the hybrid RCT-external data study, has been increasingly utilized for estimat-
ing effects of medications for rare diseases[56] and/or pediatric[57] drug approvals when running
an adequately powered RCT may not be feasible. Including external data may improve power but
may also increase bias. An important subset of hybrid designs, including that considered here[60],
estimate the bias that would be introduced by including non-randomized data in the analysis in or-
der to decide whether to estimate the effect of interest based solely on the RCT, based on the pooled
RCT and RWD, or based on some weighted combination of the two[60, 173, 3, 11, 12, 13].

In this case study, we evaluate the utility of integrating an external control arm for a common
disease, T2DM, with RCT data to estimate benefits for a secondary indication. In this context, an
RCT is possible but has potential disadvantages for patient care, while a hybrid RCT-RWD analysis
could decrease the amount of time patients are precluded from receiving a GLP1-RA yet raises
questions about whether the resulting effect estimate is causal or merely associative. To evaluate
these potential tradeoffs, we demonstrate use of the Causal Roadmap[41, 27, 94] – a structured pro-
cess that helps investigators to pre-specify analytic study designs incorporating RWD – to compare
different designs that could be used to estimate the effect of oral semaglutide on cardiovascular
outcomes. An overview of the Causal Roadmap may be found in Chapter 3. Specifically, we com-
pare a traditional program of RCTs to a hybrid randomized-RWD study integrating data from the
PIONEER 6 non-inferiority trial with external controls from Optum’s de-identified Clinformat-
ics® Data Mart Database (CDM) (2007-2022) through simulations that closely mimic these true
experiments. We then present results of the real hybrid analysis of PIONEER 6 and CDM for the
estimated difference in the risk of a combined outcome of first MI, stroke, or all-cause death with
oral semaglutide versus standard-of-care (without a GLP1-RA).

4.2 Methods

Table 4.1: Causal Roadmap Steps for Specification of Study Designs 1-3

Roadmap Step Designs 1-2 (RCT Only) Design 3 (RCT + RWD)

1a. Causal
Question/

Causal Estimand

What would the difference in risk of MACE† (defined as death from any
cause, nonfatal MI, or nonfatal stroke) within one year be if all patients
in a population consistent with the PIONEER 6 inclusion/exclusion cri-
teria and timeframe [168], and with similar healthcare engagement, were
prescribed oral semaglutide plus standard-of-care compared to if all pa-
tients were prescribed standard-of-care alone, and if censoring had been
prevented for all patients?

See Appendix B.1 for the mathematical representation of the causal es-
timand for each study design.
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1b. Causal
Model

Knowledge about potential shared causes of treatment, censoring,
MACE, and participation in the RCT vs RWD, as well as possible causal
relations between these variables depicted in Figure 4.2.

2. Observed Data Potential data sources: Pioneer 6
RCT, SOUL RCT

Potential data sources: Pioneer 6
RCT, Optum CDM control arm,
SOUL RCT

3. Assess
Identification

Identification highly likely (non-
administrative censoring in PIO-
NEER 6 only 0.3%)

Plausible, though uncertain, that
causal gap†† would be small (see
Step 6).

4. Specify
Statistical
Estimand

Statistical Estimand: Risk differ-
ence between treatment and control
arms of the trial.

Statistical Estimand: Adjusted risk
difference between treatment and
control arms, standardized to the
covariate distribution in the target
population.

5. Statistical
Model and
Estimator

Statistical Model: Semi-parametric
statistical model (incorporating
knowledge that treatment was ran-
domized).

Estimator: Unadjusted difference
in risk between arms.

Statistical Model: Semi-parametric
statistical model (incorporating
knowledge that treatment in the
RCT was randomized).

Estimator: Experiment-Selector
CV-TMLE

6. Sensitivity
Analysis

None given that causal identifica-
tion assumptions are highly likely
to be true.

See Step 6 below.

7. Compare
Analytic
Designs

See simulation results reported in Step 7 below.

† The revised definition of MACE using all-cause death instead of death from cardiovascular causes was chosen as the
primary outcome because cause of death is not available in the RWD.
†† The causal gap is the difference between the true value of the causal estimand that answers the causal question and
the true value of the statistical estimand that we will estimate. [94]

Table 4.1 describes design and analysis plans for three potential study designs for evaluating this
question, using the list of Causal Roadmap steps found in Chapter 3; additional detail is provided
in the text and appendices. As visually depicted in Figure 4.1, Design 1 is based on what truly
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occurred – a non-inferiority trial was run to demonstrate cardiovascular safety of oral semaglutide
(PIONEER 6), after which, due to results that were promising but non-significant for superiority,
a superiority trial was initiated. Design 2 considers the hypothetical scenario in which only the
superiority RCT is run, as might have occurred if superiority had been expected from the start.
Design 3 is a hybrid RCT-RWD study in which first a non-inferiority trial potentially augmented
with extra RWD controls is run, and the follow-up superiority RCT is only initiated if the hybrid
design does not reject the null hypothesis.

Figure 4.1: Diagram of Study Designs 1-3

4.2.1 Step 1a: Define the causal question and estimand
The question for all study designs was: what would the difference in risk of MACE (defined as

death from any cause, nonfatal MI, or nonfatal stroke) within one year be if all patients in a pop-
ulation consistent with the PIONEER 6 inclusion/exclusion criteria and timeframe[168], and with
similar healthcare engagement, were prescribed oral semaglutide plus standard-of-care compared
to if all patients were prescribed standard-of-care alone, and if censoring had been prevented for
all patients? The outcome for this case study includes all-cause death (rather than cardiovascular
death as in PIONEER 6) because the real-world data do not include cause of death. See Appendix
B.1 for the causal estimand.

4.2.2 Step 1b: Specify a causal model
Next, we specify a causal model for each design describing what variables might affect treat-

ment, censoring, or outcomes using the causal graphs[114] shown in Figure 4.2. For the RCTs,
only the randomization procedure affects treatment assignment. As depicted in Figure 4.2a, health
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status, socioeconomic status, and related issues of healthcare access and engagement, collectively
referred to as U, might affect both censoring and MACE. Measured pre-baseline covariates, includ-
ing age, sex, race, HbA1c, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol,
estimated glomerular filtration rate (a marker of kidney function), prior MI, prior stroke or transient
ischemic attack (TIA), prior heart failure, morbid obesity, and use of glucose-lowering medications,
insulin, and CV medications, may account for some aspects of these underlying factors.

Figure 4.2: Causal Graphs for Designs 1-3

SOC: standard-of-care. SES: socioeconomic status. MACE: major adverse cardiovascular events. RWD: real-world
data.

In the hybrid Design 3, participation in the RCT versus the real-world system affects treatment
because RCT participation is required to receive oral semaglutide if the RWD is concurrent with the
pre-approval RCT. Being in the RCT could also modify the effect of treatment or directly affect mea-
sured outcomes for reasons including closer monitoring, encouragement of adherence, variation in
standard-of-care or placebo effect, or more accurate outcome measurement[1, 174, 175]. The RCT
inclusion and exclusion criteria, the timeframe of RCT recruitment, health status, socioeconomic
status (SES), and healthcare engagement or access may also affect trial participation.

4.2.3 Step 2: Describe the observed data
Next, we consider the data that are actually observed. Designs 1-2 use data from one or both of

the following sources: the PIONEER 6 RCT[168] and the ongoing SOUL RCT[169]. Both trials
randomized participants to receive semaglutide or placebo in addition to standard-of-care. The
inclusion and exclusion criteria for both trials targeted patients with T2DM and high cardiovascular
risk but without unstable disease or recent use of a GLP-1RA, while PIONEER 6 also excluded
recent users of pramlintide and dipeptidyl peptidase-4 inhibitors (DPP4i)[169, 171]. Participants
were regularly evaluated in person or by phone. Outcomes were adjudicated. Time zero was the
time of randomization. The timeframe for the outcome of one year after baseline was selected
because no administrative censoring occurred before that time in PIONEER 6.

Finally, the RWD considered in Design 3 comes from Optum’s Clinformatics® Data Mart
(CDM), which is derived from a database of administrative health claims for members of large
commercial and Medicare Advantage health plans. Clinformatics® Data Mart is statistically de-
identified under the Expert Determination method consistent with HIPAA and managed according
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to Optum® customer data use agreements[176, 177]. CDM administrative claims submitted for
payment by providers and pharmacies are verified, adjudicated and de-identified prior to inclu-
sion. This data, including patient-level enrollment information, is derived from claims submitted
for all medical and pharmacy health care services with information related to health care costs and
resource utilization. The population is geographically diverse, spanning all 50 of the United States.

Consistent with recommendations from the RCT DUPLICATE study, we used naive initiation
of a DPP4i (defined as a new prescription following at least 90 days without a previous prescription
based on AHFS codes) to enhance comparability of health care access and engagement among RWD
compared to RCT controls[178]. Time zero was defined as the first time a participant met the eligi-
bility criteria for PIONEER 6, during a calendar time window contemporaneous with PIONEER 6
recruitment, and was prescribed a DPP4i. Because oral semaglutide was approved following PIO-
NEER 6, we only consider extra RWD control arm participants (although the method we describe
can be extended to handle both external control and treatment arms).

Following the RCT Duplicate study[178], we translated and applied as many of the inclusion/ex-
clusion criteria of PIONEER 6 as possible. This involved translating medical histories into ICD-
9/ICD-10 diagnosis and procedure codes. To identify GLP1-RA and pramlintide usage, we defined
continuous treatment eras as consecutive prescriptions based on AHFS codes with not more than
90-day gaps between them.

For the primary outcome, we identified nonfatal MI/stroke using ICD-9/ICD-10 diagnosis codes
for inpatient visits in the first diagnosis position. All-cause death was identified from external
sources as provided by Optum. We used fractures as a negative control outcome (discussed be-
low), which we identified using ICD-9/ICD-10 diagnosis codes again for inpatient visits in the first
diagnosis position.

Baseline characteristics discussed in Step 1b were determined as follows. Medical history vari-
ables were defined as described above. Medication use was identified via claims through AHFS
codes, where treatment at baseline corresponded to at least one prescription in the 180 days pre-
ceding time zero. Laboratory measurements were identified through LOINC codes, where baseline
values were identified as the most recent measurement prior to time zero. If the latest measurement
was more than 180 days prior to time zero, then that measurement was deemed missing.

4.2.4 Steps 3-4: Assess identifiability and specify a statistical estimand
We now aim to translate the causal effect of interest (Step 1a) into a statistical estimand – a

function of the observed data that we will estimate – based on our knowledge about the processes
that generated our data (Step 1b). When using RCT data alone (Designs 1 and 2), we assume
no unmeasured common causes of treatment or censoring and MACE, and adequate data support
(positivity)[30, 31]. These assumptions are highly likely to hold by design; while it is possible that
there are unmeasured common causes of censoring and MACE, because censoring was negligible
(0.3% in PIONEER 6), this would be unlikely to impact the results. A design (not considered
here) in which we committed to augmenting the RCT data with external control data would require
additional assumptions: no unmeasured common causes of selection into the RCT versus the RWD
cohort or censoring, and MACE (no U in Figure 4.2b), no effect of RWD vs. RCT participation on
MACE other than through effects on treatment assignment (no direct arrow from RCT vs RWD to
MACE or outcome measurement in Figure 4.2b), and adequate data support (positivity[30, 31]).

If these assumptions are not close to being satisfied, Design 3 is likely to reject the RWD con-
trols. The following actions were taken to improve the plausibility of these assumptions and there-
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fore the likelihood that RWD controls would be integrated in the hybrid design: 1) selecting RWD
controls with a similar disease stage and healthcare access and engagement compared to the RCT
controls based on those who were prescribed an active comparator medication (DPP4i) and had
relevant baseline labs and medical history recorded, 2) restricting RWD controls to the time period
of PIONEER 6 recruitment to make standard-of-care more similar, and 3) selecting RWD controls
whose baseline characteristics are shared by at least some RCT participants. Note that action 1
restricts the target population for the hybrid analysis to patients with relatively strong access to and
engagement with the healthcare system, similar to the types of patients who are able to enroll in an
RCT. Note also that use of DPP4i as an active comparator – especially considering that DPP4i use
was an exclusion criterion in PIONEER 6 – also requires the assumption, supported by data, that
DPP4 inhibitors do not influence cardiovascular outcomes[178]. Action 3 is necessary to avoid a
violation of the positivity assumption, but doing so restricts the target population further, preventing
generalization beyond the types of patients that were represented in the RCTs.

As always, when observational data are considered, it remains unlikely that the causal identifica-
tion assumptions are exactly true. Yet with the above considerations, it is now plausible that the bias
from integrating RWD will be small. Importantly, however, rather than relying on these assump-
tions holding, our proposed Design 3 uses an estimator (described in Step 5) in which pre-specified
statistical criteria are used to estimate the “causal gap”, or difference between the wished-for causal
effect and the statistical estimand[94] that may be estimated by pooling RCT and RWD[60]. The
estimator only selects the RWD for inclusion when the combined impact of any deviations from
these assumptions is unlikely to impact accurate inference[60]. This approach greatly mitigates,
but does not eliminate, the threat of misleading inference, which is further evaluated in Steps 6
and 7. Appendix B.1 has mathematical expressions for the statistical estimands that are equivalent
to the wished-for causal effects (causal estimands) under the identification assumptions, which are
discussed in detail in Appendix B.2.

4.2.5 Step 5: Choose a statistical model and estimator
For all designs, we use a statistical model that avoids any assumptions not firmly grounded in

design knowledge (e.g., treatment randomization). In Designs 1 and 2, because censoring was neg-
ligible, we estimated the unadjusted risk difference between arms among persons with follow-up
through one year. For Design 3, we used the experiment-selector cross-validated targeted maximum
likelihood estimator (ES-CVTMLE)[60]. Cross-validated Targeted Maximum Likelihood Estima-
tion (cv-TMLE) is a robust, efficient approach that incorporates machine learning using internal
sample splitting (cross-validation)[41, 61, 40, 15]. This allows it to flexibly adjust for covariates
without introducing new assumptions, improving precision and potentially reducing bias, while
preserving inference[41, 61, 40, 15]. The ES-CVTMLE extends this method to evaluate and inte-
grate external RWD controls[60]. Specifically, it uses pre-specified statistical criteria to evaluate
the RWD and integrate them with the RCT data only when their inclusion is unlikely to worsen
confidence interval coverage.

The ES-CVTMLE estimates the bias created by augmenting the RCT with RWD in two ways:
1) by comparing the control arms (specifically the conditional mean outcomes) between the two set-
tings and 2) through the use of a negative control outcome (NCO)[60]. From the available options,
we chose fractures as an NCO because it is generally serious enough to require medical attention for
those with access, is associated with SES[179], and is recorded in a manner similar to the primary
outcome. Studies prospectively designed to include an NCO could consider alternate choices.
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In this case study, we chose the ES-CVTMLE as the estimator for the hybrid design because it
relies on few statistical assumptions, incorporates an estimate of bias based on an NCO, and adjusts
confidence interval widths based on the estimated magnitude of bias. While the focus of this case
study is on using simulations to compare study designs, similar simulations could also be used to
compare different potential estimators. Appendices B.3-6 provide further details about estimation.

4.2.6 Step 6: Specify a procedure for sensitivity analysis
For the RCT-only analyses (Designs 1 and 2), because identification assumptions are likely to

hold and we avoid any unsupported statistical assumptions, there are few threats to inference, and
sensitivity analyses may be unnecessary. In Design 3, for the hybrid RCT-RWD analysis, the ES-
CVTMLE is designed to conservatively protect inference without additional assumptions. How-
ever, as with all estimators that aim to estimate bias from including external data in order to decide
whether or how to include RWD in a hybrid analysis[173, 3, 11, 12, 13, 10], it still runs a small
but real risk of failing to reject inappropriate external controls. To evaluate the extent to which this
threatens inference, a tipping point analysis can be carried out to evaluate how much of a causal
gap for the combined RCT-RWD study is needed to make the confidence interval from Step 5 non-
significant[180, 140, 124, 125]. Additional simulation-based approaches, incorporating estimates
of the plausible causal gap, can also be used to augment sensitivity analyses.

4.2.7 Step 7: Compare analytic designs using simulations
We compare Designs 1-3 using simulations that closely mimic our true study designs (Appendix

B.4). For Designs 1 and 3, we simulate data from a small RCT aiming to mimic PIONEER 6
(RCT1). For Design 1, we use an unadjusted estimate of the difference in risk between arms of
RCT1. For Design 3, we consider not only the simulated RCT1 but also a simulated “real-world”
dataset aiming to mimic CDM, and we use the ES-CVTMLE to estimate the risk difference. In both
Designs 1 and 3, if the null hypothesis is rejected at this first stage, then we use this initial estimate
as our final effect estimate. If the null hypothesis is not rejected, then we simulate data from a larger
trial aiming to mimic a superiority trial (RCT2) and estimate the risk difference using an unadjusted
estimate. In Design 2, we simply simulate RCT2 and use the unadjusted effect estimate.

Because we consider non-randomized data in Design 3, it is possible that the confidence interval
coverage will be lower than in Designs 1-2 if the causal identification assumptions from Step 3 are
violated. Yet it may be acceptable if, in some contexts (i.e., bias of a certain magnitude), coverage
is below 95% if there is sufficient benefit to patients of Design 3 over Designs 1-2. While there
are many potential ways to quantify benefit to patients, for this case study, we estimate the number
of patient-years during which participants are precluded from starting a GLP1-RA (by being in an
RCT control arm), averaged over 1000 iterations of this simulation. We also report power to reject
the null hypothesis using α = 0.05.

We evaluate Design 3 when the magnitude of bias introduced by including the simulated RWD
in the analysis is zero and when it is one of ten potential magnitudes in either the positive or nega-
tive direction, ranging up to ±2.1%. Appendix B.4 describes the rationale for this maximum bias.
In this primary simulation, the effect of unmeasured factors causing bias is the same on the rela-
tionship between semaglutide and MACE as it is on the relationship between semaglutide and the
NCO. Appendix B.5 shows the results of the same simulation both when the NCO is not considered
(leading to more conservative inference) and when the NCO is considered but the unmeasured fac-
tors causing bias for the relationship between semaglutide and MACE have no effect on the NCO,
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mimicking a worst-case scenario for violations of both the causal identification assumptions and
the assumptions needed to measure bias using an NCO.

4.3 Results
4.3.1 Simulation results

Figure 4.3 shows the results of 1000 iterations of the simulation comparing Designs 1-3. Design
1 and Design 2 had similar characteristics. Simulated Design 1 had 95% CI coverage of 0.949,
power of 0.842, and an average of 4,765 patient-years during which a GLP1-RA was precluded.
Simulated Design 2 had coverage of 0.955, power of 0.764, and an average of 4,750 patient-years
during which a GLP1-RA was precluded.

Figure 4.3: Simulation Results by Study Design with Different Amounts of RWD Bias

Caption: Purple represents 10 simulated magnitudes of bias away from the null. Pink represents 10 simulated magni-
tudes of bias towards the null.

The tradeoffs between Design 3 and Designs 1 and 2 depended on the direction of bias intro-
duced by the RWD. With unbiased simulated RWD, Design 3 had coverage of 0.942, had power
of 0.866, and resulted in an average of 394 fewer participant-years during which patients were pre-
cluded from starting a GLP1-RA compared to Design 1. In other words, on average, 8.3% fewer
people would have spent one year during which their doctor avoided prescribing a GLP1-RA if
Design 3 were chosen and unbiased RWD were available compared to if Design 1 were chosen.
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Positive bias (towards the null) represents scenarios in which the introduction of RWD lowers
the estimated risk of MACE among control arm participants. This could happen if MACE was not
well-recorded in the RWD. Simulated positive bias led to coverage ranging from 0.945 to 0.948,
power ranging from 0.842 to 0.847, and an average of 0 to 114 extra participant-years during which
prescription of a GLP1-RA was discouraged compared to Design 1, with the largest increases for
intermediate magnitudes of bias. The increase in person-years without GLP1-RA access occurred
because RWD with bias towards the null were included in a small number of simulation iterations,
triggering a second RCT. A study comparing outcomes recorded in CDM to outcomes recorded
following an RCT protocol could be conducted to assess the likelihood that the proposed hybrid
design would truly result in this spectrum of positive RWD bias.

Negative bias (away from the null) represents scenarios in which the introduction of RWD raises
the estimated risk of MACE among control arm participants. This could happen if participants
in the real world had worse health outcomes than trial participants due to differences described in
Section 2 and these differences were not adequately detected through comparison of RWD and RCT
control arms or via negative control. Simulated negative bias led to coverage ranging from 0.927
to 0.948, power ranging from 0.847 to 0.873, and an average of 0 to 542 fewer participant-years
during which prescription of a GLP1-RA was discouraged compared to Design 1. For comparison,
if one had used a naive estimator that simply assumed that external control data were appropriate to
integrate (i.e., the stringent assumptions discussed in Step 3 held), and simply pooled the RCT and
most biased real-world data, coverage would have been 0.126. The ES-CVTMLE thus provided
significant (though imperfect) protection against integration of biased RWD in this simulation.

The possibility of bias away from the null is plausible, though quantifying how much bias might
be expected within the range represented by this simulation (0-2.1%) is challenging. Nonetheless,
by objectively quantifying these differences between proposed designs, investigators can explic-
itly discuss these tradeoffs with stakeholders such as patient groups and regulatory agencies when
deciding which trial design to choose.

4.3.2 Real data analysis: The estimated effect of oral semaglutide on MACE
from PIONEER 6, considering augmentation with additional CDM
RWD controls

The actual results of Designs 1 and 2 await completion of the SOUL trial. Below, we carry
out Design 3 using data from PIONEER 6 and the CDM external control arm described in Step 2
above. We also report the results of an unadjusted estimator for the difference in the risk of MACE
among PIONEER 6 active and control arm participants.

After applying the inclusion and exclusion criteria described in Step 2 and depicted in Figure
4.4, the CDM cohort consisted of 2483 participants. Table 4.2 lists baseline demographics, medical
history, medication use, outcome missingness, and MACE and NCO event rates for the PIONEER
6 semaglutide and placebo arms, as well as for the CDM external control arm. The outcome was
missing for 0.3% of PIONEER 6 participants and 16% of CDM participants. The negative control
outcome was missing for 0.3% of PIONEER6 participants and 17% of CDM participants. Com-
pared to the PIONEER 6 control arm, the CDM controls were slightly older (more participants in
the 70-80 year-old range), had a higher percentage of females, had a lower proportion of previous
MI or stroke but a higher proportion of previous heart failure, and had a different distribution of
baseline medication use.
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Figure 4.4: Selection of CDM External Control Group

Caption: T2DM: Type 2 Diabetes Mellitus. DPP4i: Dipeptidyl Peptidase 4 inhibitor.
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Table 4.2: Baseline Characteristics, Outcome Missingness, and Event Rates for PIONEER 6 and
CDM

CDM
RWD con-
trol arm
(n=2483)

PIONEER
6 placebo
arm
(n=1564)

PIONEER
6 semaglu-
tide arm
(n=1574)

MACE rate - % 4.5 4.2 2.9

NCO Rate - % 0.73 0.77 0.45

Age - years, mean (SD) 69.2 (6.3) 66.4 (7.1) 65.9 (7.1)

Female sex - % 42.7 31.2 31.9

Race

White - % 44 72 72

Black - % 11 7 6

Other - % 45 21 22

HbA1c - %, mean (SD) 8.0 (1.4) 8.2 (1.6) 8.2 (1.6)

LDL cholesterol - mg/dl, mean (SD) 84.1 (28.3) 84.8 (32.4) 83.9 (34.0)

HDL cholesterol - mg/dl, mean (SD) 44.1 (9.6) 41.6 (10.7) 41.9 (11.0)

eGFR - ml/min/1.73 m2, mean (SD) 74.3 (19.4) 74.2 (20.9) 74.2 (21.1)

Previous MI - % 13.9 36.9 35.3

Previous stroke/TIA - % 11.8 16.6 15.2

Previous heart failure - % 20.4 12.4 11.9

Morbid obesity - % 16.4 12.3 12.2

Glucose-lowering medication (metformin, SU,
TZD, SGLT2i)

73.0 83.9 83.9

Insulin 14.9 61.2 61.2

Cardiovascular medication (antihypertensives,
lipid-lowering, anti-thrombosis, diuretics)

91.5 98.9 98.9

Outcome missingness - % 15.8 0.3 0.3
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NCO missingness -% 17.2 0.3 0.3

LDL: low-density lipoprotein, HDL: high-density lipoprotein, eGFR: estimated glomerular filtration rate, MI: myocar-
dial infarction, TIA: transient ischemic attack, SU: sulfonylurea, TZD: thiazolidinedione, SGLT2i: sodium/glucose
cotransporter-2 inhibitor

As shown in Figure 4.5, the estimated difference in the risk of MACE by 1 year based on the
unadjusted estimator conducted using PIONEER 6 data alone was −1.30%-points (95% CI -2.60
to 0.00%-points). This result is closer to statistical significance than the primary result reported for
the PIONEER 6 trial (hazard ratio 0.79; 95% CI 0.57 to 1.11[168]) because the primary analysis
a) evaluated the hazard ratio including all timepoints instead of the risk difference by one year and
b) evaluated a composite outcome that included death from cardiovascular causes instead of death
from all causes. Nonetheless, the confidence interval for the result of this modified analysis still
includes zero.
Figure 4.5: Estimated Difference in 1-Year Risk of MACE for PIONEER 6 and Hybrid Design

Caption: CI: Confidence Interval. ES-CVTMLE: Experiment-Selector Cross-Validated Targeted Maximum Likeli-
hood Estimator.

Hybrid Design 3 resulted in an estimated risk difference of −1.53%-points (95% CI -2.75
to −0.30%-points), providing evidence in support of the superiority of oral semaglutide versus
standard-of-care for the prevention of MACE. The two primary differences between the risk differ-
ence estimates from PIONEER 6 alone compared to the hybrid analysis are narrower confidence
intervals and a small negative shift in the point estimate. Narrower confidence intervals are ex-
pected as the CDM RWD were included in the analysis in 84% of internal sample splits, leading to
increased efficiency.
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The small shift in the point estimate could occur for three main reasons. First, the magnitude
of the shift is well within what might be expected by chance alone. Second, the shift may be due
to subtle changes in the target population that arise from including external controls (even those
with equivalent eligibility criteria (Table 4.2)). Finally, as discussed above and illustrated using
simulations, the potential for some residual bias remains.

Simulations, such as those presented in Step 7, can help stakeholders to weigh the tradeoffs
between the benefits and downsides to patients of the different study designs against the risk of
misleading inference. Had this design been proposed prior to running SOUL, explicit evaluation of
these tradeoffs could have facilitated discussions of whether the evidence produced by the proposed
hybrid design would be sufficient to inform decisions regarding label extensions for oral semaglutide
for the secondary indication of cardiovascular risk reduction.

4.4 Discussion
In this case study of the effect of oral semaglutide on major adverse cardiovascular events, we

demonstrate an application of the Causal Roadmap to a hybrid RCT-RWD trial that considers inte-
gration of data from multiple sources. We also implement the extension proposed in Chapter 3 to use
the Causal Roadmap to compare different potential study designs using simulations. Both the FDA
guidance on complex innovative trial designs[150] and the FDA guidance on adaptive designs[135]
suggest the utility of simulations for comparing alternative design choices. The simulated results
demonstrate that selection of one potential design over another may depend on the direction of the
bias introduced by RWD and suggest the importance of conducting studies to evaluate the potential
for bias with integration of different RCT and RWD sources.

Our estimate of the difference in the risk of MACE by one year with oral semaglutide versus
standard-of-care attained statistical significance, providing evidence in support of the superiority of
oral semaglutide as compared to standard-of-care alone. Regulatory decisions regarding whether
to extend the label of oral semaglutide to include the secondary indication of cardiovascular risk
reduction will await the results of the SOUL trial. Nonetheless, hybrid RCT-RWD studies could
potentially be used in the future to provide additional relevant information to regulatory agencies
for secondary indications for a wide variety of disease processes – in this case, a common adult
disease rather than a pediatric or rare disease as have been highlighted in previous applications of
hybrid trial methodologies[56, 57].

While this study aimed to quantify tradeoffs between three proposed designs, other approaches
could be considered. Hybrid RCT-RWD designs may adapt the probability of randomization to
active treatment based on the efficiency gains that are achieved by integrating RWD and also on
the probability of superiority compared to placebo[3, 147, 181], potentially leading to even less
patient-time on an inferior product. Power could also have been higher if oral semaglutide had
been available in the CDM dataset for the specified time period – resulting in integration of both
extra treatment and control arm participants – or if more RWD controls were available.

A key limitation of this study is that it was planned after PIONEER 6, and thus the simula-
tions and analysis plan were not pre-specified without knowledge of trial results. In RWD stud-
ies aiming to support policy and/or regulatory decision-making, all design and analysis decisions
should be pre-specified before effects are estimated from any of the data sources that are consid-
ered. The Causal Roadmap supports a rigorous design process and reporting structure to ensure
pre-specification of components needed to support the validity of causal inferences drawn from
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such designs. The current case study provides a detailed worked example of this process.
This study reports one of many potential metrics aimed at quantifying the benefits and draw-

backs of different study designs from the perspective of patients. While recommendations have
been proposed regarding the elicitation of patient perspectives to inform medical product develop-
ment [182, 149], further guidance on the most relevant metrics of patient benefit as well as best
practices for collaboratively weighing tradeoffs between different metrics of design performance is
warranted. Decisions regarding these tradeoffs are context-specific[150], but following the Causal
Roadmap may help investigators to collate and quantify the information that is most relevant for
discussions with stakeholders. For this case study of semaglutide and cardiovascular outcomes,
application of the Causal Roadmap prompts us to ask whether more patients could have benefited
from receiving a GLP1-RA sooner if a hybrid RCT-RWD approach had been taken.
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Appendix A : Appendices for Chapter 1

A.1 Appendix A.1: Table of symbols

Table A.1: Table of Symbols

Symbol Meaning

S Variable indicating experiment (RCT or RCT+RWD)

A Intervention

W Covariates

Y Outcome

X Endogenous variables

U Exogenous variables

On Observed data On = (O1, ..., On)

PU,O True distribution of full data (endogenous and exogenous variables)

P0 True distribution of observed data

Pn Empirical distribution of observed data

Pn,v Empirical distribution of estimation set for cross-validation fold v

Pn,vc Empirical distribution of experiment-selection set (fold v)

P0,n True data distribution dependent on n

P ∗
n,v Indicates training of initial estimators for outcome regression and treatment mech-

anism on experiment-selection set for fold v with TMLE targeting on separate or
pooled estimation set(s)

P ∗
n,vc Indicates training and TMLE targeting of estimator for outcome regression on

experiment-selection set for fold v
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Q{0,s} E[Y |S ∈ {0, s}, A,W ]

Qs E[Y |S ∈ {0, s}, S, A,W ]

QNCO E[NCO|S ∈ {0, s}, A,W ]

Q∗
n,v Indicates updated Q after training of initial estimators for outcome regression Qn,vc

and treatment mechanism on experiment-selection set for fold v with TMLE target-
ing on separate or pooled estimation set(s)

Q∗
n,vc Indicates updated Q after training and TMLE targeting of outcome regression on

experiment-selection set for fold v

gs P (S = 0|S ∈ {0, s}, A = 0,W ) (“Selection Mechanism”)

ga P (A = a|S ∈ {0, s},W ) (“Treatment Mechanism”)

ΨF
s (PU,O) EW |S∈{0,s}[E(Y

1 − Y 0|W,S ∈ {0, s})] (“ATE”)

Ψs(P0) EW |S∈{0,s}[E0[Y |A = 1, S ∈ {0, s},W ]− E0[Y |A = 0, S ∈ {0, s},W ]]

Ψ̃F
s (PU,O) EW |S∈{0,s}[E(Y

a=1,s=0 − Y a=0,s=0|W,S ∈ {0, s})] (“ATE-RCT”)

Ψ̃s(P0) EW |S∈{0,s}[E0[Y |A = 1, S = 0,W ]− E0[Y |A = 0, S = 0,W ]]

Φs(P0) EW |S∈{0,s}[E0[NCO|A = 1, S ∈ {0, s},W ]− E0[NCO|A = 0, S ∈ {0, s},W ]]

s⋆n argmin
s

σ̂2
D∗
Ψs

n
+ (Ψ̂#

s (Pn))
2 (Bias2 + variance selector “b2v”)

s⋆⋆n argmin
s

σ̂2
D∗
Ψs

n
+ (Ψ̂#

s (Pn) + Φ̂s(Pn))
2 (Selector including ATE on NCO “+nco”)

s⋆⋆⋆n argmin
s

σ̂2
D∗
Ψs

n
+ (Φ̂s(Pn))

2 (Bias only estimated as ATE on NCO “nco only”)

NCO: Negative control outcome. ATE: Average treatment effect. ATE-RCT: Average treatment
effect if participants were in RCT.
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A.2 Appendix A.2: Estimation of bias
In order to estimate the bias, Ψ#

s (P0), we will use targeted maximum likelihood estimation [40].
The efficient influence curve (EIC) for

Ψ0
s(P0) = EW |S∈{0,s}[E0[Y |A = 0, S ∈ {0, s},W ]] is

D∗
Ψ0

s
(O) = I(S∈{0,s})

P0(S∈{0,s})(
I(A=0)

ga0 (A=0|S∈{0,s},W )
(Y −Q

{0,s}
0 (S ∈ {0, s}, A,W )) +Q

{0,s}
s,0 (S ∈

{0, s}, 0,W )−Ψ0
s(P0))

where ga0(A = 0|S ∈ {0, s},W ) is the probability that A = 0 given S ∈ {0, s}, W, andQ{0,s}
0 (S ∈

{0, s}, A,W ) = E0[Y |S ∈ {0, s}, A,W ].
TMLE involves fitting initial estimates of the treatment mechanism, gan, and outcome regression,

Q
{0,s}
n , with the SuperLearner ensemble machine learning algorithm [61]. The initial estimate is

then targeted using a parametric working model [41]:

logit(Q{0,s},∗
n (S ∈ {0, s}, A,W )) =logit(Q{0,s}

n (S ∈ {0, s}, A,W )) + ϵnH
∗
s,n(S ∈ {0, s}, A,W )

whereH∗
s,n(S ∈ {0, s}, A,W ) = I(A=0,S∈{0,s})

gan(A=0|S∈{0,s},W )Pn(S∈{0,s}) is the covariate in front of the residual
in the EIC, and ϵn may be fitted using logistic regression of Y on H∗

s,n with offset logit(Q{0,s}
n (S ∈

{0, s}, A,W )) among observations with S ∈ {0, s}. While a linear regression may be performed
for a continuous outcome, it is common practice to scale the outcome as (Y −min(Y ))/(max(Y )−
min(Y ))), perform the TMLE with a logistic fluctuation, and re-scale the parameter estimate to the
original scale in order to respect the bounds of the observed data distribution [69].

The conditional expectation of the counterfactual outcome under control is updated as:

logit(Q{0,s},∗
n (S ∈ {0, s}, 0,W )) =logit(Q{0,s}

n (S ∈ {0, s}, 0,W )) + ϵnH
∗
s,n(S ∈ {0, s}, 0,W )

where H∗
s,n(S ∈ {0, s}, 0,W ) = 1

gan(A=0|S∈{0,s},W )Pn(S∈{0,s}) using the same ϵn. The final estimate
of the mean outcome under control in the combined dataset is then

Ψ̂0
s(Pn) =

1
n

∑n
i=1

I(Si∈{0,s})
P (S∈{0,s})Q

{0,s},∗
n (Si ∈ {0, s}, 0,Wi)

An alternate option that may be more stable in the context of near-violations of the positivity as-
sumption is to move the denominator of the clever covariate to the denominator of the weights for the
regression training the TMLE coefficient [42, 43, 44]. For this option of “targeting the weights”, we
perform a logistic regression of binary or scaled-continuousY onH∗

s,n(S ∈ {0, s}, A,W ) = I(A =

0, S ∈ {0, s}) with offset logit(Q{0,s}
n (S ∈ {0, s}, A,W )) and weights I(A=0,S∈{0,s})

gan(A=0|S∈{0,s},W )Pn(S∈{0,s})
among observations with S ∈ {0, s}. Initial estimates are then updated as

Q{0,s},∗
n (S ∈ {0, s}, 0,W ) = logit−1(logit(Q{0,s}

n (S ∈ {0, s}, 0,W )) + ϵn).

We can also use TMLE to estimate Ψ̃0
s(P0) = EW |S∈{0,s}[E0[Y |A = 0, S = 0,W ]], with EIC

D∗
Ψ̃0

s
(O) = I(S∈{0,s})

P0(S∈{0,s})(
I(S=0,A=0)

gs0(S=0|A=0,S∈{0,s},W )ga0 (A=0|S∈{0,s},W )
(Y −Qs

0(S ∈
{0, s}, A, S,W )) +Qs

0(S ∈ {0, s}, 0, 0,W )− Ψ̃0
s(P0))
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where Qs
0(S ∈ {0, s}, A, S,W ) = E0[Y |S ∈ {0, s}, A, S,W ]. We use the same procedure as

above with clever covariate
H∗

s,n(S ∈ {0, s}, A, S,W ) = I(S=0,A=0)
gsn(S=0|A=0,S∈{0,s},W=w)gan(A=0|S∈{0,s},W=w)Pn(S∈{0,s}) to obtain a tar-

geted estimate Qs,∗
n (S ∈ {0, s}, 0, 0,W ). Our updated estimate

ˆ̃Ψ0
s(Pn) =

1
n

∑n
i=1

I(Si∈{0,s})
Pn(S∈{0,s})Q

s,∗
n (Si ∈ {0, s}, 0, 0,Wi). Then, our TMLE estimate of the bias

Ψ̂#
s (Pn) =

ˆ̃Ψ0
s(Pn)− Ψ̂0

s(Pn)
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A.3 Appendix A.3: Proof of Theorem 1
Proof of Theorem 1:

√
n(ψn − ψn,0) =

√
n

V

∑V
v=1(Ψ̂s⋆n(v

c)(P
∗
n,v)−Ψs⋆n(v

c)(P0)) =√
n

V

∑V
v=1((Pn,v − P0)D

∗
s⋆n(v

c)(P
∗
n,v) +Rs⋆n(v

c)(P
∗
n,v, P0))

=
√
n

V

∑V
v=1((Pn,v−P0)D

∗
s⋆n(v

c)(P0)+(Pn,v−P0)(D
∗
s⋆n(v

c)(P
∗
n,v)−D∗

s⋆n(v
c)(P0))+Rs⋆n(v

c)(P
∗
n,v, P0))

=
√
n

V

∑V
v=1((Pn,v − P0)D

∗
s⋆n(v

c)(P0)) + oP (1)

by assumption of Conditions 1 and 2. Define

Z†
n(s, v) =

√
n(Pn,v − P0)D

∗
s(P0)

By the Central Limit Theorem, across all s and v, the vector Z†
n = (Z†

n(s, v) : s, v) ∼ N(
→
0 ,ΣΨ).

In order to understand the behavior of
√
n(ψn−ψn,0), we must also understand the behavior of

s⋆n(v
c), which depends on the behavior of either Z#

n (s, v
c) or Z#+Φ

n (s, vc).
For the standardized bias terms estimated on experiment-selection sets,

Z#
n (s, v

c) =
√
n(Ψ̂#

s (P
∗
n,vc)−Ψ#

s (P0))
=

√
n((Pn,vc − P0)D

∗
Ψ#

s ,vc
(P ∗

n,vc) +R#,s(P
∗
n,vc , P0))

=
√
n((Pn,vc − P0)D

∗
Ψ#

s ,vc
(P0) + (Pn,vc − P0){D∗

Ψ#
s ,vc

(P ∗
n,vc)−D∗

Ψ#
s ,vc

(P0)}+R#,s(P
∗
n,vc , P0))

=
√
n(Pn,vc − P0)D

∗
Ψ#

s ,vc
(P0) + oP (1)

by assumption of Conditions 1, 2, and 3. If Φ̂s is include in the bias estimation, whereD∗
(#+Φ)s,vc

=
D∗

Ψ#
s ,vc

+D∗
Φs,vc

,

Z#+Φ
n (s, vc) =

√
n((Ψ̂#

s + Φ̂s)(P
∗
n,vc)− (Ψ#

s + Φs)(P0))
=

√
n((Pn,vc − P0)D

∗
(#+Φ)s,vc

(P ∗
n,vc) +R(#+Φ),s(P

∗
n,vc , P0))

=
√
n((Pn,vc − P0)D

∗
(#+Φ)s,vc

(P0) + (Pn,vc − P0){D∗
(#+Φ)s,v

(P ∗
n,vc)−D∗

(#+Φ)s,vc
(P0)}+

R(#+Φ),s(P
∗
n,vc , P0))

=
√
n(Pn,vc − P0)D

∗
(#+Φ)s,vc

(P0) + oP (1)

by assumption of Conditions 1, 2, and 3.
By the Central Limit Theorem, Z#

n (s, v
c) and Z#+Φ

n (s, vc) also converge to normal distribu-
tions. Across all s and v,

Z#
n = (Z#

n (s, v
c) : s, v) ∼ N(

→
0 ,Σ#)

Z#+Φ
n = (Z#+Φ

n (s, vc) : s, v) ∼ N(
→
0 ,Σ#+Φ)

Z̃ = (Z#, Z†) ∼ N(
→
0 , Σ̃)

or Z̃ = (Z#+Φ, Z†) ∼ N(
→
0 , Σ̃)

where Σ̃ is defined in Chapter 1, Section 1.5.1. The limit distribution of the experiment-selector
CV-TMLE is then defined by sampling from Z̃, calculating
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s̄⋆(vc) = argmin
s

σ2
D∗

Ψs,vc
+ (Z#(s, vc) +

√
nΨ#

s (P0))
2

or
s̄⋆⋆(vc) = argmin

s
σ2
D∗

Ψs,vc
+ (Z#+Φ(s, vc) +

√
n(Ψ#

s (P0) + Φs(P0)))
2

and finally calculating
√
n(ψn − ψn,0) =

√
n

V

∑V
v=1(Pn,v − P0)D

∗
Ψs̄⋆(vc)

(P0) + oP (1) =
1
V

∑V
v=1(Z

†(s̄⋆(vc), v)) + oP (1)

or
√
n(ψn − ψn,0) =

√
n

V

∑V
v=1(Pn,v − P0)D

∗
Ψs̄⋆⋆(vc)

(P0) + oP (1) =
1
V

∑V
v=1(Z

†(s̄⋆⋆(vc), v)) + oP (1)

√
n(ψn − ψn,0) thus converges to a mixture of normal distributions.
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A.4 Appendix A.4: Data generating process for simulation
As described in Chapter 1, Section 1.6.1, four datasets were simulated as follows: 1) an “RCT”

dataset of 150 observations with S = 0, A = 1 randomized with probability 0.67, and bias terms
B1 andB2 equal to zero, 2) a “real-world” dataset of 500 observations with S = 1, A = 0, and bias
termsB1 andB2 equal to zero, 3) “RWD” of 500 observations withS = 2,A = 0, andB1+B2 ≈ B,
and 4) “RWD” of 500 observations with S = 3, A = 0, and B1 +B2 ≈ 5 ∗B. For this simulation,

biased RWD could be included if it is approximately

√
σ̂2
D∗
Ψs=0,n,vc

n
−

σ̂2
D∗
Ψs∈{0,2},n,vc

n
= B = 0.21.

We generate B1 and B2 as described below:

Dataset B1 B2

S = 0 0 0

S = 1 0 0

S = 2 N(3
4
B, 0.022) N(1

4
B, 0.022)

S = 3 N(3
4
∗ 5 ∗B, 0.022) N(1

4
∗ 5 ∗B, 0.022)

We also simulate two covariates, W1 and W2, as N(0, 1). The outcome Y and NCO are then
simulated as

Y = −3 + 2 ∗W1 +W2− 0.6 ∗ A+B1 +B2 + UY

NCO = −2 +W1 + 2 ∗W2 +B1 + Unco

withUY ∼ N(0, 1.52) andUnco ∼ N(0, 1.52). The true causal ATE of A on Y in this simulation
is −0.6. The NCO is affected by B1 but not B2, and so the U-comparability and additive equi-
confounding assumptions do not completely hold in this case.

For the TMLE-based methods used in the simulation, we use linear regression for the outcome
regression and a candidate library for the treatment mechanism consisting of lasso regression [54]
or the mean. We use 10-fold cross-validation and target the weights as described above. When only
S = 0 data is considered, we use the true randomization probability for g(A|W ).

99



Appendix B : Appendices for Chapter 4

B.1 Appendix B.1: Mathematical notation for causal and sta-
tistical estimands

As described in Table 4.1, the causal question of interest is: what would the difference in risk
of MACE (defined as death from any cause, nonfatal MI, or nonfatal stroke) within one year be
if all patients in a population consistent with the PIONEER 6 inclusion/exclusion criteria and
timeframe[168], and with similar healthcare engagement, were prescribed oral semaglutide plus
standard-of-care compared to if all patients were prescribed standard-of-care alone, and if censor-
ing had been prevented for all patients?

The two intervention variables that are modified in our treatment strategies are A – an indicator
of prescribing patients oral semaglutide in addition to standard-of-care (A=1) or standard-of-care
(A=0) – and C – an indicator of whether the participants were censored before one year. We denote
our outcome of MACE by 1-year as Y. Because some participants are censored, the observed out-
come, Y ⋆, is the true value of MACE for those who were not censored and whose outcomes were
measured correctly and missing for those who were censored.

We then define the following potential outcomes[28, 111]; Y a=1,c=0 is the one-year MACE
status an individual would have had if they had been prescribed oral semaglutide in addition to
standard-of-care and not been censored, and Y a=0,c=0 is the one-year MACE status an individual
would have had if they had been prescribed standard-of-care and not been censored. The simplest
mathematical representation of a causal estimand that answers our question is given by the causal
risk difference:

E(Y a=1,c=0 − Y a=0,c=0).

Note that this causal risk difference is defined with respect to a specific target population. De-
spite efforts to ensure comparability between the RCT population and external control RWD, our
approach acknowledges that the RCT and RWD populations may nonetheless have different distri-
butions of baseline characteristics. Because the proposed estimator (ES-CVTMLE) only augments
the control arm when the RWD meet pre-specified criteria (evaluated across multiple internal sam-
ple splits), the exact target population to which the causal risk difference applies will depend on the
extent to which these criteria are met and the RCT standard-of-care arm is augmented with RWD.

More formally, let S be a variable describing study participation, where S=0 indicates that an
individual participated in an RCT and S=1 indicates that an individual participated in the real-world
healthcare system. Designs 1 and 2 only utilize RCT data, and so in these designs, we can only
evaluate the causal risk difference within the RCT context and for a target population represented
by the RCT participants. We can rewrite the causal parameter to represent the causal risk difference
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(not adjusted for baseline characteristics) in a way that makes explicit that it refers to the RCT
context:

ψ⋆
RCT,unadj = E(Y a=1,c=0 − Y a=0,c=0|S = 0).

With baseline covariates, W, the adjusted causal risk difference for the RCT context and target
population is:

ψ⋆
RCT,adj = EW |S=0[E(Y

a=1,c=0 − Y a=0,c=0|W,S = 0)].

We note that the true causal risk difference in the non-inferiority and superiority trials could be
different if they had different inclusion and exclusion criteria or if there were changes over time in
the background standard-of-care. For simplicity, however, we will consider that the non-inferiority
and superiority RCTs target the same causal parameter, ψ⋆

RCT,unadj .
In hybrid Design 3, we consider integrating extra RWD controls with our non-inferiority trial

and only run the superiority RCT if the null hypothesis of the superiority RCT is not rejected in the
hybrid analysis. The ES-CVTMLE adjusts for baseline covariates whether the RWD is included or
rejected, so if the hybrid design rejects the RWD, analyzing the non-inferiority RCT only, then the
causal target parameter is ψ⋆

RCT,adj .
In contrast, if the hybrid design does select to augment the non-inferiority trial with extra RWD

controls, this may modify the target population if the RWD controls have a different (though over-
lapping) distribution of baseline covariates compared to the RCT population. Inclusion of RWD
controls may also modify the target parameter if the true effect of oral semaglutide versus standard-
of-care is different in the RCT and RWD contexts. The causal risk difference in the combined RCT
plus RWD experiment that integrates S=0 and S=1 is given by:

ψ⋆
RCT,RWD = EW |S∈{0,1}[E(Y

a=1,c=0 − Y a=0,c=0|W,S ∈ {0, 1})].

In the hybrid design, we use the data from the real-world source and the non-inferiority trial
to decide whether to estimate the causal risk difference for the RCT context and target popula-
tion (ψ⋆

RCT,adj) or the causal risk difference for the hybrid RCT-RWD context and target population
(ψ⋆

RCT,RWD), where either parameter represents an answer to our question for that particular popu-
lation and context.

We will ultimately use the experiment-selector CV-TMLE [60] to analyze the results of the
hybrid trial. This method uses cross-validation to separate the part of the data that is used to choose
whether to attempt to estimate ψ⋆

RCT,adj or ψ⋆
RCT,RWD and the part of the data that is used for

estimation of the corresponding risk difference. The decision of whether to augment the RCT with
external control data may differ in different cross-validation folds. The causal estimand would then
be interpreted as the causal risk difference for a target population that is a weighted average of
the RCT population and external control RWD population. More formally, let the target parameter
chosen for a given fold, v, beψ⋆

v . The overall causal target parameter for the hybrid design is then the
average of the causal target parameters selected in each fold. For example, with ten cross-validation
folds, the causal target parameter would be

ψ⋆
hybrid =

1
10

∑10
v=1 ψ

⋆
v .
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Please see Dang et al. (2022) [60] for further details of this methodology.
Using the g-formula [29], we may define the statistical estimands (functions of the observed

data) that are as close as possible to the causal effects of interest for each study design, where

ψRCT,unadj = E(Y ⋆|C = 0, A = 1, S = 0)− E(Y ⋆|C = 0, A = 0, S = 0)

ψRCT,adj = EW |S=0[E(Y
⋆|C = 0, A = 1,W, S = 0)− E(Y ⋆|C = 0, A = 0,W, S = 0)]

ψRCT,RWD = EW |S∈{0,1}[E(Y
⋆|C = 0, A = 1,W, S ∈ {0, 1})−

E(Y ⋆|C = 0, A = 0,W, S ∈ {0, 1})]

ψv is whichever of ψRCT,adj or ψRCT,RWD was selected in cross-validation fold v, and

ψhybrid =
1
10

∑10
v=1 ψv.

B.2 Appendix B.2: Assessment of plausibility of causal identi-
fication assumptions

First, we consider whether the causal effect is identified in Designs 1 and 2 based on the directed
acyclic graph (DAG) in Figure 4.2a, using the backdoor criterion[112]. Because treatment was
randomized, there are no unmeasured common causes of treatment and the outcome. Furthermore,
because censoring is minimal in the RCTs (it was truly 0.3% by one year in PIONEER 6)[168], the
magnitude of bias that could result from potential unmeasured common causes of censoring and
MACE is likely to be negligible. For these reasons, we expect to identify the causal effect of interest
using Designs 1 and 2.

As discussed in the main text, Design 3 does not assume that the causal effect of interest is
identified in the pooled RCT and RWD. However, taking steps to improve the plausibility of causal
identification assumptions for the combined data also increases the likelihood that RWD will be
integrated in the hybrid design. Again using the backdoor criterion[112] and our DAG in Figure
4.2b, we consider possible reasons for a causal gap in an analysis of the pooled RCT and RWD. First,
there would be a causal gap if being in the RCT versus the real world affected outcomes outside of
the effect due to prescribing either oral semaglutide or standard-of-care; this is certainly possible
for the reasons described in Step 2 above.

If we were able to conduct a pragmatic clinical trial for the randomized component of our hybrid
design in which the trial aimed to mimic real-world care as closely as possible outside of baseline
treatment randomization, then it would be more likely that trial participation only affected outcomes
through treatment assignment[174, 34]. In this case, however, we are not able to consider a prag-
matic RCT because the current FDA draft guidance on “Evaluating the Safety of New Drugs for
Improving Glycemic Control”[183] requires a sufficient number of phase 3 clinical trial patient-
years on the medication of interest during which time CV outcomes are evaluated by adjudication
to evaluate cardiovascular safety. Instead, we may attempt to select RWD controls who at least have
similar healthcare access and engagement compared to RCT participants (discussed below).

There would also be a causal gap for the pooled RCT and RWD analysis if there were unmea-
sured common causes of trial participation and MACE or of censoring and MACE, and we expect a
larger amount of censoring in the real world compared to the RCT. We apply the same inclusion and
exclusion criteria and timeframe for the RWD and RCT controls, yet the question remains whether
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the measured baseline characteristics that are indicative of demographics, baseline health status,
and treatment are sufficient to adjust for common causes of our intervention variables and outcome.

To try to minimize the amount of bias that would be introduced by integrating RCT and RWD
controls, we consider a further restriction of the CDM cohort to select patients who are likely to
be at a similar disease stage with similar healthcare access and engagement compared to the RCT
participants. Selecting RWD patients prescribed DPP4is is one method of making disease stage
and engagement comparable[178]. We also exclude CDM patients with missingness in the baseline
covariates, expecting that patients for whom this laboratory and medical history data is not recorded
might not be followed as closely by their providers as patients in the RCT.

Additionally, there would be a causal gap if assignment to standard-of-care in the trial and the
RWD were not equivalent in terms of their effects on MACE. The most obvious reason this might
not be true is that participants in the RCT were prescribed an inactive placebo pill and were not
prescribed a DPP4i based on exclusion criteria, while the RWD participants were prescribed a
DPP4i as an active comparator. The question then is whether the effect of being assigned placebo
is different from the effect of being prescribed a DPP4i on the outcome of MACE. In the RCT
Duplicate study, DPP4is were chosen as a “proxy for placebo” relative to the outcome of MACE in
studies of GLP-1RAs “because they are antidiabetic treatments that have similar indications to the
treatments under study, but they are not known to have any effect on the cardiovascular outcomes
of interest based on recent evidence”[178]. If this reasoning is correct, assignment to placebo
should have the same effect as assignment to a DPP4i for the primary outcome. Another question
is whether the background standard-of-care that patients receive is equivalent in the RCT and the
RWD. While it is possible that there are differences between the standard-of-care provided by trial
versus non-trial clinicians, we attempted to ensure that “standard-of-care” would be as similar as
possible by restricting the CDM cohort to the same time period as PIONEER 6.

Finally, to identify a causal effect in the combined RCT and RWD, we need sufficient data sup-
port. In other words, participants in any stratum of measured confounders must have a positive
probability of being assigned to either intervention strategy: oral semaglutide and not being cen-
sored or standard-of-care and not being censored. This assumption is also known as the positivity
assumption[30, 31]. Because we only add extra RWD controls, including any RWD participant
whose particular combination of measured potential confounding variables was not shared by RCT
participants would violate the positivity assumption. We solve this problem by limiting the CDM
cohort to participants whose baseline covariates were within the range of baseline covariates rep-
resented in the trial population.

B.3 Appendix B.3: Estimation of the causal gap
The first estimate of the causal gap used by the ES-CVTMLE compares conditional mean out-

comes between RCT and combined RCT-RWD controls. The statistical estimand for this causal
gap parameter is given by

Ψ# = EW |S∈{0,1}[E[Y
⋆|C = 0, A = 0, S = 0,W ]− E[Y ⋆|C = 0, A = 0, S ∈ {0, 1},W ]].

The ES-CVTMLE estimates Ψ# using targeted maximum likelihood estimation [41, 40], but
the precision of the estimate depends on the sample size of the RCT. In a given sample dataset, the
estimate of Ψ# will not be exactly equal to the true causal gap because of finite sample variabil-
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ity. Nonetheless, Ψ# represents our best estimate of the causal bias that would be introduced by
including RWD controls in the analysis. See Dang et al. (2022) [60] for more details.

We also estimate the causal gap as the estimated average treatment effect on a negative control
outcome (NCO). NCOs are not affected by the treatment but ideally should be affected by as many
of the factors that lead to violations of identification assumptions as possible [24]. Any estimated
association between treatment and the NCO is thus due either to a causal gap or due to finite sample
variability.

B.4 Appendix B.4: Simulation set-up
The data for the simulation were generated as follows. First, we generate data to mimic a non-

inferiority RCT (RCT1) of sample size n1=3183, twenty-one different “real-world” datasets (RWD)
of sample size n2=2483, and a superiority RCT (RCT2) of sample size n3=9500. In the two “RCT”
datasets, treatment is randomized with probability 0.5. In the “RWD”, all participants receive A=0.
Two baseline covariates, W1 and W2 are drawn from Normal(µ = 0, σ = 1) distributions for
participants from all studies.

We generate 21 potential levels of bias in the “RWD” as follows. B is a variable that introduces
bias when non-zero. The value of B is zero for the two “RCT” datasets and the unbiased “RWD”
dataset. For the remaining 20 “RWD” datasets, the value of B ranges from positive 1/10*0.65 to
10/10*0.65 in increments of 1/10*0.65 and from (-1)/10*1.7 to (-10)/10*1.7 in increments of (-
1)/10*1.7. These values were chosen because, due to the properties of the logit−1 function, this
range of values of B leads to true bias as large as±2.1%. This maximum magnitude of bias in either
direction was chosen so that the true bias minus two times the standard error of the bias estimator
would be larger than the standard error of the risk difference TMLE estimator for the RCT alone.
Because the ES-CVTMLE will select the combination of RCT and RWD if the estimated squared
bias plus the variance of the TMLE risk difference estimator for the combined data is smaller than
the estimated squared bias plus the variance of the TMLE risk difference estimator for the RCT
alone, these magnitudes of bias include the full spectrum of magnitudes for which we would expect
that RWD might be included in the analysis in some simulation iterations.

The primary outcome, Y, is generated as follows:

Y ∼ Bernoulli(p = logit−1(−3.33 + 0.2 ∗W1− 0.4 ∗W2 + Uy +B))

where Uy ∼ Normal(µ = 0, σ = 0.5). This equation was designed so that the overall proba-
bility of MACE would be similar to the true probability of MACE in the PIONEER 6 placebo arm
(4.2%). Adding extra random error, Uy, means that the baseline covariates are not very predictive of
the outcome, which is common with relatively rare binary outcomes measured years after baseline.

In order that the magnitude of the effect of B on the relationship between the treatment and the
negative control outcome (NCO) be similar to the magnitude of the effect of B on the relationship
between the treatment and the true outcome, but to make sure that the primary and negative control
outcomes are not too tightly correlated, we let

NCO ∼ Bernoulli(p = logit−1(−3.33 + 0.2 ∗W1− 0.4 ∗W2 + Unco +B))

where Unco ∼ Normal(µ = 0, σ = 0.5) but is independent of Uy. The simulation in Appendix
B.5 describes an alternate, “worst-case” simulation in which B has no effect on the NCO.
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We also generate some missing outcomes, where the indicator that the outcome is censored
(C = 1) and the indicator that the NCO is censored (Cnco = 1) are generated as follows:

C ∼ Bernoulli(p = (1− logit−1(2.2 +W1−W2 + 4.5 ∗ I(S = 0))))

Cnco ∼ Bernoulli(p = (1− logit−1(2.2 +W1−W2 + 4.5 ∗ I(S = 0))))

where S=0 indicates one of the simulated RCT datasets. These equations for outcome missing-
ness were designed to approximate the true rates of outcome missingness in the RCT context (0.3%
for PIONEER 6) and the RWD context (16% for CDM).

Note that in this simulation, treatment, A, does not affect the outcome, Y. If treatment were to
affect the outcome, then the true causal risk difference (CRD) would be different for different values
of B, even if there were no interaction term between B and A, due to the properties of the logit−1

function. Instead, because A does not affect Y, the true value of the CRD for all combinations of
RCT and RWD is zero. This sets up an even competition between the study designs when differ-
ent RWD are included in the hybrid analysis; we would expect the power to reject the same null
hypothesis to depend on bias and variance but not on different true causal effects when different
combinations of data are analyzed. We report 95% CI coverage for the true causal risk difference
of zero for all designs across the 1000 iterations of this simulation.

We also aim to evaluate the amount of person-time that participants are precluded from re-
ceiving a GLP1-RA because they are in the control arm of one of the potential RCTs. As shown
in Supplementary Table B.1, for Designs 1 and 3, we start by determining whether the results of
RCT1 or of the hybrid RCT1-RWD analysis reject the null hypothesis. Because the simulated ef-
fect is zero, and we expect a truly negative effect of semaglutide versus standard-of-care on MACE
based on the results of the SUSTAIN 6 trial[163], we shift the definition of the null hypothesis to
be that the risk difference is a specified value larger than zero.

For the sake of this demonstration, we consider a significant result as an estimate of the risk
difference with an upper 95% CI limit less than positive 1.1%. This value was chosen because a
trial of 9500 participants (similar to our simulated RCT2) would be expected to have power of 0.8
to detect a risk difference of −1.1% (using α = 0.05). If we view the simulated data as having
simulated CRD values that are shifted 1.1% more positive than the value of the CRD that our supe-
riority trial would be powered to detect, then shifting standard criteria for superiority by the same
amount would cause us to conclude that a result was significant if the estimated upper bound on the
95% confidence interval were less than positive 1.1%. Power is then calculated as the proportion
of iterations in which this modified null hypothesis is rejected (i.e., the proportion of iterations in
which the 95% CI did not include 1.1%).

Note that this method of evaluating significance should actually be slightly conservative given
that in the simulated data, the probability of the outcome is approximately the PIONEER6 placebo
arm rate (4.2%) in both arms, whereas if a negative risk difference had been simulated, the treatment
arm outcome probability would have been less than 4.2%. For example, with the same sample size
N, if the treatment arm probability of the outcome were 3%, the variance of the difference in sample
proportions (V1) would be smaller than the variance if the treatment arm probability of the outcome
were also 4.2% (V2):

V 1 ≈ 0.03(1− 0.03)

N
+

0.042(1− 0.042)

N
=

0.069

N
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<
0.080

N
=

0.042(1− 0.042)

N
+

0.042(1− 0.042)

N
≈ V 2

Finally, the person-time participants are prevented from receiving any GLP1-RA for each de-
sign in a single iteration of the simulation is calculated as described in Supplementary Table B.1
below. We report the average amount of person-time during which participants were prevented from
receiving a GLP1-RA across all iterations for each design. While the event-driven SOUL trial will
actually run for closer to four years, we only include person-time required to evaluate the outcome
for this proposed study: MACE by one year after baseline.

Supplementary Table B.1: Calculation of Person-Time prevented from Receiving a GLP1-
RA for each Design

1

1. If RCT1 result is significant: 1 year x 1591.5 placebo arm participants =
1591.5 person-years

2. If RCT1 result not significant: 1 year x 1591.5 placebo arm participants from
RCT1 + 1 year x 4750 placebo arm participants from RCT2 = 6341.5 person-
years

2 1. 1 year x 4750 placebo arm participants from RCT2 = 4750 person-years

3

1. If hybrid RCT1-RWD result is significant†: 1 year x 1591.5 placebo arm par-
ticipants from RCT 1 = 1591.5 person-years

2. If hybrid RCT1-RWD result not significant: 1 year x 1591.5 placebo arm par-
ticipants from RCT1 + 1 year x 4750 placebo arm participants from RCT2 =
6341.5 person-years

†RWD participants were not prevented from receiving a GLP1-RA by being in an RCT control arm
and so are not included in the amount of person-time during which patients are prevented from
receiving a GLP1-RA.

A simple Super Learner[61] library of candidate algorithms was used for the ES-CVTMLE to
improve computational efficiency of this simulation. The outcome regression was estimated us-
ing logistic regression. The Super Learner for the censoring mechanism (P (C = 0|A,W )) and
treatment mechanism (P (A = 1|W )) for the combined RCT and RWD considered either a logistic
regression or the sample mean. Because missingness was negligible in the RCT, the missingness
mechanism in the RCT used within the ES-CVTMLE estimator only considered the sample pro-
portion of non-missing outcomes. R Statistical Software version 4.2.2 was used for all simulations
[184].
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B.5 Appendix B.5: Data generation and results for simulation
in which bias has no effect on NCO

We also include a simulation in which the bias term, B, has no effect on the NCO. This simula-
tion is included as a worst-case scenario for how hybrid Design 3 could perform under a complete
violation of the assumption that the factors causing bias in the relationship between the treatment
and the true outcome also cause bias in the relationship between the treatment and the NCO. The
process for generating the data for this simulation is the same as in Appendix B.4, except that

NCO ∼ Bernoulli(p = logit−1(−3.33 + 0.2 ∗W1− 0.4 ∗W2 + Unco))

Supplementary Figure B.1 shows the results of 1000 iterations of this simulation both when the
ES-CVTMLE uses the estimated average treatment effect on the NCO as an estimate of the causal
gap and when the ES-CVTMLE only estimates bias based on the method described in Appendix
B.3, without considering the NCO.

Supplementary Figure B.1: Simulation Results by Study Design with Different Amounts of
RWD Bias when Bias has No Effect on NCO

Because the bias term, B, has no effect on the NCO in this simulation, hybrid Design 3 is more
likely to incorporate biased RWD in either direction when the NCO is used to estimate bias. With
bias in the positive direction (towards the null), the hybrid RCT-RWD design is less likely to reject
the null hypothesis, leading to the follow-up RCT being run in more iterations. As a result, patient-
time during which participants were precluded from receiving a GLP1-RA was larger on average
for Design 3 with positive bias than for Designs 1 and 2.

With bias in the negative direction, Design 3 led to as large as an average of 1012 fewer person-
years during which participants could not start a GLP1-RA compared to Design 1 but had 95%
CI coverage ranging from 0.867 to 0.949. These results demonstrate the importance of choosing a
good negative control outcome if this particular study design and estimator are selected.

If an appropriate negative control outcome is not available, the ES-CVTMLE may also only
use one estimate of bias, as described in Appendix B.3. In this context, the ES-CVTMLE is more
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conservative (less likely to include RWD), with coverage not less than 0.938 for any magnitude of
bias, but a maximum average decrease in patient-years during which a GLP1-RA may not be pre-
scribed of 223. The possibilities described in Supplementary Figure B.1 should also be considered
in the process of study design and estimator selection. Also note that the performance of Design 1
compared to Design 2 is slightly different in this simulation compared to the simulation in the main
text. Such variability is expected when the same simulation is run different times although may be
decreased by running more iterations.

B.6 Appendix B.6: Further details regarding specification of
the ES-CVTMLE and unadjusted estimators

The ES-CVTMLE estimator for the real data analysis used twenty cross-validation folds. The
Super Learner libraries for the relevant regressions consisted of logistic regression or the sample
mean for the outcome, logistic regression [53], a general additive model [185], or multivariate
adaptive regression splines [55] for the propensity score, logistic regression [53], a general additive
model [185], multivariate adaptive regression splines [55] or the sample mean for the RWD out-
come missingness indicator, and the sample mean only for the RCT outcome missingness indicator.
Because estimates vary somewhat when different random seeds are used to define cross-validation
folds and train machine learning algorithms, the ES-CVTMLE estimator was run ten times with
different random seeds, and the point estimate and upper and lower confidence interval bounds
were averaged across these ten iterations.

Because censoring was negligible (0.3%) in the simulated and real data RCTs, a complete case
analysis was conducted for the components of each study design that only involved RCT data.
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