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Abstract

Retinal degeneration (RD) is a significant cause of incurable blindness 

worldwide. Photoreceptors and retinal pigmented epithelium (RPE) are 

irreversibly damaged in advanced RD. Functional replacement of photoreceptors

and/or RPE cells is a promising approach to restoring vision. This paper reviews 

the current status and explores future prospects of the transplantation therapy 

provided by pluripotent stem cell derived retinal organoids (ROs). 

This review summarizes the status of rodent RD disease models, and discusses 

ROs culture and analytical tools to evaluate RO quality and function. Finally, we 

review and discuss the studies in which RO-derived cells or sheets were 

transplanted.

In conclusion, methods to derive ROs from pluripotent stem cells have 

significantly improved and become more efficient in recent years. Meanwhile, 

more novel technologies are applied to characterize and validate RO quality. 

However, opportunity remains to optimize tissue differentiation protocols and 

achieve better RO reproducibility. In order to screen high quality ROs for 

downstream applications, approaches such as non-invasive and label-free 

imaging and electrophysiological functional testing are promising and worth 

further investigation. Lastly, transplanted RO-derived tissues have allowed 

improvements in visual function in several retinal degeneration models, showing

promises for clinical applications in the future. 

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23



 Retinal Organoids in Disease Treatment

Keywords: Retinal disease; Retinal organoids; Retinal degenerative 

model; Functional test; Transplantation.

1

24

25

26
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1. Introduction

Vision is critical for humans to perceive the world. The retina originates as an 

outgrowth of the forebrain during embryonic development. The visual pathways 

start at the retina where light is transduced into neuronal signals that are 

ultimately conveyed to the visual cortex for visual perception. The retina is a 

laminated organ that is broadly composed of retinal ganglion cells (RGCs), 

amacrine cells (ACs), bipolar cells (BCs), horizontal cells (HCs), Müller cells (MCs)

and photoreceptors (PRs). Upon absorption of photons by visual photopigments 

in the PRs, a series of biochemical reactions occurs whereby light signals are 

transduced into neuronal signals.  Whereas surgical treatments for diseases that

damage light transmission through the cornea and the lens have been well 

established, permanent vision losses caused by damage to the RGCs as a result 

of glaucoma, loss of PRs and RPE from age-related macular degeneration (AMD) 

and inherited retinal degenerations (IRDs) and damage to all layers of the retina 

from diabetic retinopathy are irreversible and no therapies to reverse cell death 

are available. 

Recent decades have witnessed the development of stem cell technology. Under

specific culturing conditions, stem cells can be differentiated into self-assembled

and layered retinal tissue spheroids that are called retinal organoids (ROs). ROs 

have been applied to different applications such as disease modeling 1-

5,developmental biology 6-9, drug screening 10, gene therapy testing 2, 11-14, and 

transplantation therapies 15-21. In this review, we focus on transplantation studies

in recent years. We briefly review common retinal degeneration diseases, 
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 Retinal Organoids in Disease Treatment

summarize common rodent models with IRD used for RO transplantation studies,

and explore current methodologies used for RO culture and analysis. Lastly, we 

focus on post-transplantation evaluations and their functional effectiveness. 

Gene therapy in a dish is outside the scope of this review and is not discussed. 

2. Retinal Degeneration Diseases and Rodent Disease Models

AMD is marked by the degeneration of the PRs and RPE in the human macula 

and is the leading cause of irreversible blindness in people over 65 years old in 

industrialized countries 22. In the early and intermediate stages, AMD is marked 

by the accumulation of drusen, a yellowish retinoid breakdown products in the 

macula beneath the retina. Advanced AMD consists of two main categories – 

“wet” and “dry” AMD. Wet AMD involves abnormal choroidal blood vessel 

growth and can be treated by anti-vascular endothelial growth factor (anti-

VEGF) 23. However, there is no proven treatment for dry AMD characterized by 

RPE and subsequent PR death. The only promising approach may be cellular 

replacement therapy with transplantation 24. 

Retinitis Pigmentosa (RP) is an IRD disease initially affecting peripheral vision 

progressing to loss of central vision in the end stage. Many gene mutations can 

yield the RP phenotype, and this heterogeneous genotypic etiology leads to 

significant difficulties in studying the disease and developing effective treatment

25.  In mutations affecting rod-specific proteins, rod PRs will gradually deteriorate

over decades, causing losses of night vision in adolescence, peripheral vision in 

young adulthood, and central vision in later life 26. The functional progression of 
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vision loss is consistent with the characteristic death of rod PRs prior to cone PR 

death.  

Neurons and PRs are highly differentiated cells and lack the ability to repair or 

regenerate after irreversible damage. Gene therapy has gained popularity in IRD

treatment in recent years as summarized in several reviews 27, 28. For example, a

recent study applied subretinal gene therapy that delivered human melanopsin 

gene (OPN4) and showed vision restoration in retinal degeneration 1 (rd1) 

mutation mouse model 29. Several additional studies demonstrated an 

improvement in PR survival in RP models when animals were administered oral 

N-acetylcysteine (NAC) 30-32. While oral and gene therapy approaches 

demonstrated promise to prevent or halt disease progression, they were not 

able to restore PRs or RPE that were already lost 33. Cell and tissue replacement 

therapy offers an additional avenue for hope to patients with advanced retinal 

degeneration. Transplantation of hPSC-derived ROs offers one pathway to 

replace segments of dead tissue.

Rodent models used in transplantation studies are summarized in Table 1. 

Mutations in rodent models primarily yielded retinal degeneration marked by PR 

loss. Preclinical studies have also focused on immune rejection of transplantable

RO materials. The native retina is known to be immune-privileged similar to the 

brain 17. A recent study showed that ROs elicited minimal immune response 

when transplanted 34, thereby allaying some concerns for future clinical 

application. However, to use allogeneic cells for transplantation research, 

immune rejection is still an important factor to consider in the long term 35, as 
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cell rejection can occur months after transplantation 36. Human ROs xenografted 

into animal models raises concern of heterologous tissue rejection. Zhu et al. 

reported that immunosuppression before transplantation allowed for better 

integration of graft cells and improved functionality 37. Thus, for RO 

transplantation studies, immunosuppression remains a primary consideration, in

which animal models for the studies may receive immunosuppression using 

pharmacological agents (e.g., Cyclosporine A, Mycophenolate, Tacrolimus), or 

genetically immunodeficient animals are used 16, 19, 38, 39.

3. ROs Culture and Analytical Methods

3.1. Stage Specific ROs Development

Culture protocols for pluripotent stem cell (PSC)-derived Mouse and Human-ROs 

were summarized and evaluated in previous reviews 40-42. Although timing is 

different, in most protocols, the basic procedure consists of two steps: 1) 

initiation of embryonic bodies (EBs) from stem cells by neuro induction media; 

and 2) long-term differentiation of ROs by adding retinal differentiation media. 

Stage specific morphologies are shared by PSC-derived ROs regardless of 

induction protocols. Capowski et al. identified three distinct morphological 

stages of RO development by investigating 16 hPSC lines 43 (Figure 1A-C). ROs 

in stage 1 are characterized by a neuroblast layer, rich in RGCs and rare ACs. 

Stage 2 ROs represent a transition period, when different cell types such as PRs,

HCs and ACs start to differentiate and RGCs start to degenerate. Lastly, stage 3 

ROs are marked by PR layer and outer segment structures with very few RGCs 
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left in the inner layer. The emergence of Müller glia (MG) that form the structural

framework of ROs is also one of the stage 3 markers 43. The stage-specific 

morphological features are accompanied by a shift in metabolic activity, which 

was confirmed by recent research. Xue et al. identified these three stages of 

ROs differentiation by analyzing the free to bound nicotinamide adenine 

dinucleotide (NADH) ratio of the ROs’ surface using fluorescence lifetime 

imaging microscopy (FLIM) 44. ROs in the early stage were more glycolytic 

because they mostly consisted of progenitor cells. During the differentiation 

stage, a metabolic shift from glycolysis to oxidative phosphorylation was 

observed (Figure 1). At the maturation stage, the ROs developed glycolytic PR 

layers 44. 

3.2. RO Differentiation Methods

Methodologies for optimizing ROs quality published in recent years can be 

categorized into three types: 1) adjustment of the supplemental reagents in 

culture media; 2) testing different EB formation approaches; and 3) investigation

of alternative 3D suspension culture approaches beyond conventional tissue 

plate culture. 

For the first category, Zerti et al. found that addition of specific reagents such as

retinoic acid and triiodothyronine (T3) at selected differentiation duration stages

could provide high quality ROs that contained specific PR subtypes 45. Protocols 

to accelerate development of rod PRs by supplementing with 9-cis retinal are 

reported 46-48. Pan et al. employed COCO (a multifunctional antagonist of the 

Wnt, TGF-β, and BMP pathways) to promote RO differentiation. They found 
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increased number of PR precursors in early stage ROs (main difference observed

were CRX+ cells showing on Day 45). While the difference was not significant in 

later stages, they found COCO treatment reduced NRL, RHO, and green opsin 

(OPN1MW) expression and increased blue opsin expression (OPN1SW), which 

indicated that an enhanced fate of cones and decreased fate of rods were 

apparent in late stages 49. 

The latter two categories will be expanded in the following paragraphs according

to the chronological order of RO differentiation. 

In most differentiation protocols, the first step in RO production is to initiate EBs,

which are 3D aggregates of pluripotent stem cells to develop into neurospheres.

Different EB formation methods were tested by Mellough et al. 50 where they 

studied three approaches: 1) mechanical cutting,  2) enzymatic dissociation of 

stem cell colonies into small pieces, and 3) dissociation into single cells followed 

by force reaggregation 51, 52. Their results showed that mechanically cutting EBs 

from 2D culture under static conditions (vs. shaker condition) produced most 

consistently laminated, mature and functional ROs 50. 

Once EBs are formed, they are further differentiated in 2D matrix culture using 

growth factor reduced Matrigel or other hydrogels.  When the eye field 

structures are formed, the ROs are excised and transferred to 3D suspension 

culture 53, 54. Afterwards, the 3D culture continues for months while ROs follow 

typical gestational development and eventually develop mature PR layers on 

their outermost surface. 
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To improve 2D differentiation, Dorgau et al. placed EBs onto an extracellular 

matrix that contained decellularized peptides from neural retina and RPE. They 

observed an improvement in RPE differentiation, ROs synaptogenesis, and light 

responsiveness 55. Compared to conventional extracellular matrix, 

decellularization provided necessary biochemical and biophysical components, 

as well as the biological scaffold for cell engraftment and differentiation 55. 

However, the 2D differentiation on extracellular matrix is not necessary for all 

protocols. Hunt et al. skipped the 2D differentiation and encapsulated EBs into 

different hydrogels including RDG-alginate, hyaluronic acid (HA) and HA/gelatin 

hydrogels. They found that up to day 45 in culture, the 0.5% RGD-alginate 

enhanced the derivation of RPE and increased the yield of EBs compared to 

suspension cultured control group 56. However, to confirm that hydrogel-assisted

3D differentiation is better than suspension culture, longer differentiation 

duration is needed. In another example, Kim et al. mixed hESCs aggregates in 

ice-cold Matrigel and dispersed in medium supplemented with N2 and B27 on 

day 0 for floating culture. They transferred the single-lumen cysts to 24-well 

plates for attachment culture on day 4-5, and enzymatically lift by Dispase on 

day 15 with 3D RO culture immediately initiated. Using this protocol, they 

successfully developed cone-rich ROs, which are of particular interests in 

transplantation studies 57. 

Some studies for RO production focused on improving the long-term 3D 

differentiation of ROs. Besides conventional 3D suspension culture in tissue 

culture plates, several research teams designed and fabricated autonomous 
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long-term culture devices to improve ROs long-term culture quality and to 

reduce variability. Ovando-Roche et al. applied a stirred-tank bioreactor to 

culture ROs and improved the laminar stratification and increased the yield of 

PR cells 58. Similarly, DiStefano et al. used a rotating wall vessel (RWV) for ROs 

3D culture and as a result accelerated differentiation and improved overall 

quality 59. Micro- and/or millifluidic bioreactors can minimize shear stress on 

developing RO while allowing targeted long-term imaging and reduce the total 

culture medium consumption 60-62. Xue et al. developed a shear stress-free 

micro-millifluidic bioreactor that produced ROs with comparable quality as those 

in static culture, while allowing real time functional imaging with the all-

transparent design 62. Studies comparing RWV and low-shear systems will 

address whether shear stresses damage the outer segment structures in mature

organoids.

3.3. ROs Validation and Characterization

The heterogeneity and variability of RO production necessitates validation of RO 

tissues prior to their use in downstream applications. Common methods for 

organoid validation include immunohistochemistry (IHC), flow cytometry (FCM), 

single cell transcriptomics 63 and single cell RNA sequencing (scRNA seq) 64-66. 

Transmission electron microscopy (TEM) enables visualization of micro/nano 

structures such as outer segments, inner segments with mitochondria, 

connecting cilia and disc structures. However, the detrimental nature of these 

commonly used methods is the mortal requirement to either fix the tissue or to 

dissociate the tissue into single cells. Destructive characterization halts organoid
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use in downstream applications including transplantation. Therefore, 

noninvasive and nondestructive characterization methods are gaining popularity

in organoid research. 

Several noninvasive characterization methods are reviewed in this article, 

including optical coherence tomography (OCT), confocal imaging of genetically-

engineered reporters, FLIM and hyperspectral imaging (Hspec).  

OCT was proposed for assessing 3D cultured ROs by Browne et al. in 2017 67. 

Further, OCT was implemented to visualize surface topography and internal 

anatomy by Capowski et al. 43. Scholler et al. developed a dynamic full-field OCT 

system to achieve label-free visualization of organelle motility with sub-

micrometer spatial resolution and millisecond temporal resolution 68. OCT 

performs well in cross sectional and surface imaging. However, OCT cannot be 

used to identify cell types within ROs. 

To visualize the lamination and cellular composition in ROs at cellular resolution,

confocal laser scanning microscopy shows better performance. Pluripotent stem 

cell reporter lines have been widely used for identifying cell lineages, subtypes 

and RO’s developmental stages in live culture. Using CRISPR/Cas-9 genome 

editing, Philips et al. created the first human rod reporter line, which tagged GFP

to the Neural Retinal Leucine zipper (NRL) gene of the WA09 hESC line 69. Using 

zinc finger nuclease technology, Collin et al. generated a Cone-Rod Homeobox 

(CRX)-reporter hESC line 70, which could be applied to isolate PR precursors 70 

and for use in transplantation 71. Vergara et al. developed a 3D automated 

reporter quantification (3D-ARQ) system to effectively monitor the ROs’ 
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developmental process, fluorescence intensity changes, reproducibility 

evaluation and realized high throughput screening 72. Compared to reporter lines

that required genetically-engineered fluorescence label, two-photon imaging 

that integrates FLIM and Hspec on ROs can realize label-free imaging by exciting

intrinsic fluorophores, offering the advantage of visualizing the metabolic 

signatures and molecular distribution within ROs 44, 67. Further investigation is 

required to identify metabolic signatures with specific cell types.

Another important aspect is to evaluate the functionalities of ROs in advanced 

stages for light sensitivity and synapses generation. Common methods for RO 

electrophysiological functional analysis include patch-clamp 53, 73, fluorescent 

calcium imaging 74-76, two-photon microscopy 77 and micro-electrode arrays 

(MEAs) 78, reviewed by Afanasyeva et al 79. In more recent studies, Li et al. 

systematically characterized the electrophysiology of ROs at different stages 

(D90, D150, and D200) using patch-clamp recording and found that 

photoreceptor cells in ROs after D200 showed similar characteristic currents as 

those in human retina 80. Cowan et al. compared ROs with human retina in 

transcriptomes, and they further characterized the functionality of ROs by 

measuring the light responsiveness and imaging synaptic layers and functional 

synapses 81. Furthermore, Bharathan et al. applied human ROs as a model 

system to study the synaptogenesis in human retina, identified stages of human

outer plexiform layer (OPL) development and successfully recapitulated key 

aspects of synaptogenesis between PRs and bipolar cells 9. 

4. Retinal Organoids for Transplantation
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RO transplantation is becoming a promising therapeutic approach for retinal 

degeneration diseases. The current transplantation strategies for treating 

degenerative diseases can be categorized into four types: selected types of 

cells, transplanting RO sheets, RPE and co-graft of RPE and RO pieces. In this 

section, we summarize recent research of each method and discussed their pros

and cons (Table 2; Figure 2). 

4.1. Transplant Selected Cells 

Single-cell transplantation offers advantages including 1) targeted treatment for 

loss of certain cell types; 2) controllable purity and quality of the isolated cells; 

and 3) a potentially larger contact area between host and graft cells because 

the cells can spread over a larger area in the subretinal space. 

So far, neural and retinal progenitors 82, 83, immature PR precursors 84-89 and fully 

mature 90 PRs have been used for transplantation. Among them, immature but 

no longer dividing rod and cone precursor cells that can continue differentiation 

in the host retina are considered as the most feasible donor cell types 91, 92. For 

cell selection and purification, fluorescence-activated cell sorting (FACS) was 

used. Lakowski et al. established a cell surface biomarker combination for PR 

precursor enrichment from hPSC-differentiated ROs and fetal retinae 

(CD73+/CD29-/SSEA1-) 91. This combination of markers was also capable of 

eliminating mitotically active cells to avoid possible tumor development 91. Collin

et al. developed a hESC line that produced transplantable cone dominant PR 

precursors 65, 71. Recently, Zerti et al. transplanted CRX-GFP labeled hESC-

derived PR precursors (dissociated from 90DD ROs) (DD: days of differentiation) 
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into end stage degeneration Pde6brd1 mouse models. Light sensitivity 

restoration and up to 1.5% of cell integration into the putative host ONL were 

observed 88. Ribeiro et al. transplanted purified cone precursors from human 

PSCs to immunodeficient rd1 mice and demonstrated vision improvements 93 

(Figure 3A). 

Retinal progenitor cells are also a common source for transplantation. Chao et 

al. injected one million retinal progenitor cells into a nonhuman primate, Saimiri 

sciureus, and observed extended axonal projections into the host retina and 

optic nerve without the need for immunosuppression for 3 months. No obvious 

PR integration was detected 94.

However, compared to sheet transplantation, single-cell transplants lack 

integrity and mechanical stability, which reduced the donor cell survival and 

further development within the host tissue. Cells injected as a bolus usually 

aggregated in the subretinal space but only a subpopulation would migrate into 

the host retina and there were issues with long-term survival 91, 95-97. Further, the 

orientation of photoreceptor cells was also hard to control. 

4.2. Transplant RO Sheets

Compared to single-cell transplantation, the advantages of transplanting ROs 

sheets are that 1) the RO sheet preserves the complete layered structure of 

retina, which is easier for integration into host retina; 2) the survival rate of 

transplanted tissue is higher due to the intact interneural connectivity; and 3) 

the tissue piece offers higher mechanical support and provides a better 

microenvironment for the retinal cells to differentiate and function.
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Mandai et al. transplanted mouse iPSC-derived RO pieces (DD11-17) into end-

stage rd1 mice model and observed light-responsive behaviors 83. Iraha et al. 

transplanted hESC/iPSC-derived RO sheets (DD64 to 66) into immunodeficient 

IRD mouse models with the graft tissue showing long-term survival and 

maturation (DD200 to 220). Host-graft synapse formation was observed and 

light responses were detected from retinal wholemounts 98. Tu et al. 

transplanted human iPSC-retinas (DD58 to DD78) into rhodopsin mutant SD-

Foxn1 Tg(S334ter)3LavRrrc nude rats and performed IHC and electrophysiology 

recording with a multi-electrode array (MEA) after sacrificing the animal (5 to 

10.5 months). Light responses were detected at the grafted area in 4 of 7 

transplanted rat retinas 99. In the same study they also transplanted ROs (DD62 

and DD53) into a cynomolgus monkey and a rhesus monkey. Visually-guided 

saccades (VGS) test revealed a mild recovery of light perception after 1.5 years 

of transplantation in rhesus monkey 99. In different studies, RO sheets (DD 30-65

and 70) were transplanted into immunodeficient rhodopsin mutant SD-Foxn1 

Tg(S334ter)3LavRrrc nude rats 16 (Figure 3B) and immunodeficient RCS rats 19. 

Improvement of visual responses was demonstrated by optokinetic tests and 

recording from the superior colliculus in both IRD models.  Interestingly, RO 

transplants improved visual responses in RCS rats in spite of the absence of 

functional RPE cells. PR development and synaptic connectivity were identified 

with IHC. 

However, the disadvantage of this method includes the requirement of a highly-

trained operational skillset and a larger retinal incision compared to 

transplantation of dissociated cells since the RO sheet needs to be placed flat 

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324



 Retinal Organoids in Disease Treatment

into the subretinal space in the correct orientation. Also, uniformity and retinal 

cell purity of the RO sheets are critical to avoid tumorigenesis or fibrosis 

resulting from contamination with undifferentiated or non-retinal cells. In 

addition, although the transplants form retinal layers, PRs frequently form 

spherical structures called rosettes, with PR outer segments in the center 

(mostly disconnected from RPE (Figure 3B) 16, 19, 34, 83, 99. This may be related to 

possible rosette formation in organoids before transplantation, and trauma to 

organoid pieces during transplantation. 

4.3. Transplant Co-Graft of RPE and RO Sheet

Besides RO sheets, PSCs-derived RPE is also a promising tissue source for 

transplantation and vision restoration. RPE plays critical roles in vision by 

performing vital functions such as  1) transporting nutrients, ions and water to 

the PRs, 2) supplementing 11-cis-retinal in the visual cycle by isomerization of 

all-trans-retinal, 3) protecting against photooxidation and light absorption, 4) 

removing shed PR outer segment membranes with phagocytosis, and 5) 

secreting essential extracellular molecules (e.g. laminin, collagen and hyaluronic

acid) to maintain retinal integrity, functionality and PR viability 100, 101. Several 

studies used hESC/iPSC derived RPE sheets (or “patches”) for retinal 

degenerative therapy in animal models 102-105 and clinical trials 106-109 (reviews 110, 

111). These studies reported maintenance or improvement of visual function and 

delated retinal degeneration. However, this approach has not been successful in

stopping disease progression.  
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Considering the limited performance of mere RPE or RO transplantation, some 

research groups proposed that combination of these two tissues might provide 

enhanced effects. Early studies found that in vitro co-culture of rat neural retina 

and RPE cells promoted PR integration and axonal growth by increasing the 

synthesis of rhodopsin 112. Further, reduced apoptosis, gliosis and increased 

glutamate synthesis were observed compared to retinal culture alone 113. 

However, since the culturing conditions are different for RPE and RO, the co-

cultures of these two tissues were usually short-term in the range of a few days

112, 113. As a result, it was challenging to co-culture RPE and RO to the stage ready

for transplantation. 

A more promising option was to culture RPE and RO separately until ready for 

transplantation, and then put them together with bio-adhesives as co-graft and 

transplant into the host 114. Previous research demonstrated the feasibility of 

transplanting grafted sheets of fetal retinal progenitor cells with its RPE into 

animal models 115, 116 and human 117 to address the challenges of the lack of 

physical cell-cell interactions and undesirable host environment for development

118. However, the use of fetal retina was ethically controversial, and access to 

the tissue has been very limited. Recently, Thomas et al. combined ROs and 

polarized RPE sheets using bio-adhesives (gelatin, growth factor-reduced 

Matrigel, and medium viscosity alginate). Long-term survival (up to 6.5 months) 

of the co-graft in immunodeficient RCS rats’ subretinal space and improvement 

in visual function were observed 114 (Figure 3C). This study has proven the 

feasibility of co-graft transplantation for severely degenerated retina 114. 
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Challenges remain due to the complexity of the donor tissue preparation and 

rosette formation in the RO transplants.

4.4. Transplant with Biomaterial Scaffolds

Researchers also turned to engineering approaches to realize outer retinal 

reconstruction. Specifically, biomaterial scaffolds constructed by synthetic 

polymers, silk, alginate, hyaluronic acid and extracellular matrix were used as 

reviewed by Hunt et al. 119. Recently, Lee et al. designed and fabricated an 

ultrathin (30 μm) biodegradable scaffold patterned with micrometer-level 

precision 120, which was called “poly(glycerol sebacate) (PGS) ice cube tray”. 

Compared to their previous “wineglass” design 121 that only achieved single-

layer PR seeding, the ice cube tray design supported multiple layers of hPSC-PRs

with more than 300k cells in a single 5-mm diameter scaffold similar to the area 

of a human macula. This design presented slower degradation in vitro (up to 30 

days) 120. However, more investigations are needed to scale up manufacturing, 

delivery strategies to animal models and in vivo functional tests. 

5. Post-Transplantation Analysis

Finally, to evaluate the effectiveness of transplantation, different post-

transplantation tests have been performed with animal models. The host used in

these studies had intact neural pathway from the optical nerve to the visual 

cortex, despite the loss of PRs (Figure 2C). Therefore, the transplantation 

performance was a direct result of the integration, differentiation and function of

the grafted tissue within the host retina. Thus, post-transplantation tests 

normally focused on examining the following performance: 1) light and contrast 
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sensitivities and visual acuity of subjects with behavioral tests; 2) connectivity of

the visual pathway between retina and visual cortex with retinal and brain 

electrophysiology recordings; and 3) integration, differentiation and 

synaptogenesis between graft and host tissue with OCT, histology and analysis 

of retinal and synaptic markers in correlation to functional results. Common 

post-transplantation tests are categorized and summarized in Table 3 and 

shown schematically in Figure 2. 

5.1. Behavioral Tests

Behavioral tests are advantageous because they are noninvasive and can be 

repeated at any time points after transplantation. In particular, optokinetic test 

(OKT) is one of the most popular behavioral tests. Rodents show slow horizontal 

head and body movements when a virtual-reality visual field (black and white 

stripes of varying density) is rotated around them. The stripe density eliciting a 

response determines the spatial threshold. For each eye, only a field rotation in 

the temporal-to-nasal direction evokes the tracking response, making it possible

to distinguish between a transplanted and a non-surgery eye in the same 

animal. Lesions of the visual cortex had no effect on OKT, suggesting that OKT 

was driven by subcortical and contralateral pathways 122. Several studies have 

shown improvements in optokinetic responses after RO sheet transplantation 16, 

19, 114. 

Multiple behavioral tests for visual functions had been used in different studies. 

For example, Mandai et al. adapted a shuttle-avoidance system (SAS) to test for 

light sensitivity and response in animals after transplantation. A warning light 
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was presented to the mouse before an electric shock was administered to train 

the mouse to move into another chamber through a small opening as soon as it 

saw the warning light 83 (Figure 2C). Similarly, a light avoidance system used 

bright light as a cue to test animal’s light response capability 21, 88. Another light 

avoidance test measured the animal’s preference to evade light without using 

electric shocks 93, 123.  Tu et al. applied visually-guided saccades (VGS) test on 

rhesus monkeys, in which the animal facing a color LCD monitor was trained to 

gaze at a central fixation spot followed by a random presentation of a target 

spot somewhere else in the monitor. The resulting saccades landing within a 50 

x 50 pixels square containing the visual target were judged as correct responses

99. 

5.2. Electrophysiological Tests

Global or full-field electroretinogram (ERG) represents mass electrical response 

of the retina to photic stimulation. The basic approach of global ERG is to 

stimulate the eye with a bright light source such as a flash produced by LEDs or 

a strobe lamp while monitoring electrical activities in the eye. The flashes of 

light should elicit a biphasic waveform (the a- and b-waves) recordable from the 

cornea. Full-field ERGs are in general not sensitive enough to detect visual 

improvements once retinal degeneration has progressed too far. E.g., Lin et al. 

could only detect ERG response improvements at 2 months post-transplantation 

of RO sheets to immunodeficient RCS rats 19 but rodent models with more 

severe retinal degeneration had never shown recordable ERGs 124. 
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To circumvent this shortcoming, MEA-based micro-electroretinography (mERG) 

technique was used to ascertain the effectiveness of transplantation 83, 98, 99, 123. 

Compared to full-field ERGs, which only detected changes in mass retinal field 

potentials, local and multilocal ERGs offer higher signal-to-noise ratio and thus 

are more suitable for tracking degenerative processes or functional recovery. 

Fujii et al. has tested an MEA-based mERG system on rd1 mice with progressive 

PR degeneration, and were able to record light-evoked mERGs with consistent 

RGC spike responses 125. Garita-Hernandez transplanted optogenetically 

transformed iPSC PR precursors, to Rho-/- mice. They were either derived from 

neonatal mice expressing Natronomonas pharaonis halorhodopsin (NpHR) 

coupled to a rod promoter; or derived from iPSC-ROs expressing hyperpolarizing 

chloride pump Jaws, a redshifted cruxhalorhodopsin couple to a cone promoter

123. Function of the transplanted PRs was demonstrated by behavioral tests 

(light-dark box), MEA recordings, and patch-clamp recording from GFP+ donor 

PRs (in the absence of functional outer segments) that were specific for the 

action spectrum of these bacterial opsins (580 nm) 123. 

Another very sensitive technique is electrophysiological recording from the 

superior colliculus (SC) 16, 19, 114 in the midbrain, which plays a central role in 

integrating multiple sensory inputs to motor behaviors such as eye and head 

movements 126. In this test, a microelectrode is directly placed on the surface of 

SC; under full-field retinal stimulation at specific light intensities, visual 

thresholds and visual responses (spike counts) of specific retinotopic areas of 

the SC were recorded. 
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5.3. In vivo Imaging Tools to Determine Transplant Survival and 

Differentiation

Spectral-domain OCT (SD-OCT) is widely used to examine the transplanted 

regions 16, 19. SD-OCT offers high axial resolution to show different layers of the 

retina and visualize the transplanted region thickness. However, SD-OCT cannot 

provide specific morphological information, and the resolution is not high 

enough to visualize single cells. 

Aboualizadeh et al. studied the dynamic nature of transplanted cells at cellular 

resolution utilizing near infrared fluorescence adaptive optics scanning light 

ophthalmoscopy (FAOSLO). They tracked the survival, migration and neurite 

outgrowth of individual fluorescent PR precursors in the living monkey eyes in 

the long-term 127 (Figure 2C). Similarly, Liu et al. applied confocal scanning 

laser ophthalmoscopy (cSLO) to evaluate in vivo biomarkers of transplanted PR 

cells qualitatively and quantitatively. They were able to observe migration of the

transplanted tissue as well 128. While these two techniques demonstrated high 

resolution and dynamic imaging, it relied on genetically engineered reporter cell

lines (CRX+/tdTomato and Rho+/GFP) to emit fluorescent light, which is not applicable 

for future clinical use in human subjects.

5.4. Analysis of Transplant Differentiation and Connectivity

RO sheets and retinal progenitor cells derived from ROs were usually 

transplanted while they were in an immature state to facilitate integration and 

further development in the host. IHC for specific retinal markers was commonly 

used to identify the differentiation within the transplant over time (e.g., 16, 83, 98). 
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A critical indicator of transplanted tissue viability was the formation of synapses 

between neurons or within the photoreceptor ribbon synapse. IHC was 

considered a robust and high throughput analytical tool to visualize 

synaptogenesis. This included combining donor label with staining for synaptic 

markers 16, 19, 98. Akiba et al. has proposed an automatic synapse quantification 

method that could not only quantify the number of synapses, but also estimate 

the probability of “synapse-ness” from IHC images. This method was named as 

“Qualitative and Quantitative Analysis using Bayes Theorem Optimized for 

Synapse Evaluation (QUANTOS)” 18. Because the transplanted RO sheet also 

contained bipolar cells, which might cause inappropriate bipolar to bipolar cell 

synapses between graft and host, Matsuyama et al. generated mouse RO retinal

sheets with reduced numbers of retinal bipolar cells and demonstrated improved

visual recovery and better integration after retinal transplantation 21. Similar 

results were achieved with genetically modified human ROs 129. He et al. 

transplanted retinal progenitor cells derived from mouse C-Kit-mXCherry and 

Rosa-lsl-CGaMP5 mESC-derived retinal organoids to the subretinal space of 21d-

old RCS rats 130. Retinal progenitor cells expressing CaMP5 were enriched by cell 

sorting for C-Kit. Transplanted cells were observed to have migrated into the 

degenerating retina. The development of functional synapses was shown by IHC 

for pre- and postsynaptic markers and with 2-photon calcium recording of donor 

cells 130.  

5.5. Cytoplasmic Material Transfer Between Transplant and Host
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Several studies in recent years have demonstrated that transplanted dissociated

PR precursors exchanged cytoplasmic material (proteins and RNA) with 

remaining host PRs and thus might result in rescue of host PR function 95-97, 131, 132 

(review 133, 134). This transfer can be bidirectional, from donor to host and vice 

versa 95, 131, 132. In addition, transfer of mitochondria between mesenchymal stem 

cells and different ocular cell lines has been demonstrated in vitro 135. This may 

explain the beneficial effect of transplants on host PRs.  It was thought that 

material exchange required PR-to-PR communication, which could not occur in 

severe retinal degeneration when the PR layer is completely gone 133, 136.  

Cytoplasmic transfer between PRs also occurs during normal retinal 

development 137. However, transfer can also be seen from PRs to the MCs and 

ACs in the inner nuclear layer when grafting cells to rats with normal outer 

nuclear layer 95. Thus, the identity of donor cells in the host retina needs to be 

clearly demonstrated by nuclear labels (e.g., male donor into female host 95, 97, 

123, 131, or a human nuclear marker for hPSC-derived transplants in rodent hosts 16,

19, 99). 

6. Conclusions

In conclusion, methods to derive RO from pluripotent stem cells have 

significantly improved and become more efficient in recent years. Meanwhile, 

more novel technologies are applied to characterize and validate RO quality. 

However, there is still room for differentiation protocol optimization to achieve 

better RO reproducibility. In order to screen high quality ROs for downstream 

applications, approaches such as non-invasive and label-free imaging, and 

electrophysiological functional testing are promising and worth more 
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investigation. Lastly, transplanted RO-derived tissues have allowed 

improvements in visual function in several retinal degeneration models, and this

is promising for clinical applications in the future. 
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Figure Captions:

Figure 1: Three developmental stages of retinal organoids as shown by 

phase contrast microscopy and FLIM imaging. The schematic diagram in 

the first row was taken from 43 (Figure 10 republished with permission of The 

Company of Biologists Ltd, from Capowski et al. Reproducibility and staging of 

3D human retinal organoids across multiple pluripotent stem cell lines. 

Development 2019;146:dev171686. DOI: 10.1242/dev.17168; permission 

conveyed through Copyright Clearance Center, Inc.). The FLIM NADH map in the 

third row was taken from 44 (Figure 1A) (Scale bars: second row – 200 μm; third 

row – 50 μm).

Figure 2: Overview of different transplant types from ROs and post-

transplantation testing. A) Three different transplants obtained from RO; B) 

Schematic diagram of transplantation procedure. C) Post transplantation 

analysis that target on different regions in the brain. FAOSLO image was taken 

from 127 (Figure 4C); SAS schematic diagram was modified from 83 (Figure 3A). 

OCT and FAOSLO targeted on retina, SAS targeted on visual cortex (VC) and OKT

targeted on superior colliculus (SC) (color-coded). 

Figure 3: Transplantation examples– single cell, sheet, co-graft. A) 

Single cell transplantation. Taken from 93 (graphical abstract; Figure 3A). B) 

Sheet transplantation. Taken from 16 (Supplemental Figure 1; Figure 7 d, e; 

republished with permission of Investigative Ophthalmology & Visual Sciences, 

from McLelland et al. Transplanted hESC-derived retina organoid sheets 
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differentiate, integrate, and improve visual function in retinal degenerate rats. 

Invest Ophthalmol Vis Sci 2018;59:2586-2603; DOI 10.1167/iovs.17-23646; 

permission conveyed through Copyright Clearance Center, Inc.). C) Co-graft 

transplantation. Taken from 114 (Figure 1 I; Figure 3 A,B; Figure 7 E,F).

Abbreviation list

Abbreviation Full name
3D-ARQ 3D automated reporter quantification

AC Amacrine cell

AMD Age-related macular degeneration

BC Bipolar cell

CRX Cone-rod homeobox

cSLO Confocal scanning laser ophthalmoscopy

DD Days of differentiation

EB Embryonic body

ERG Electroretinogram

FACS Fluorescence-activated cell sorting

FAOSLO

Fluorescence adaptive optics scanning light 

ophthalmoscopy

FCM Flow cytometry

FLIM Fluorescence lifetime imaging

GFP Green fluorescent protein

HA Hyaluronic acid

HC Horizontal cell

hESC Human embryonic stem cell

hPSC Human pluripotent stem cell

HSpec Hyperspectral imaging

IHC Immunohistochemistry

iPSC Induced pluripotent stem cell

IRD Inherited retinal degeneration

LGN Lateral geniculate nucleus

mCarr Mouse cone arrestin

MEA Microelectrode array

mERG Micro-electroretinography
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MG Müller glia

NAC N-acetylcysteine

NADH Nicotinamide adenine dinucleotide

NK Natural killer

OCT Optical coherence tomography

ONL Outer nuclear layer

PR Photoreceptor cell

Pde6‐β Phosphodiesterase 6 - β subunit

PGS Poly(glycerol sebacate)

RD Retinal degeneration

RGC Retinal ganglion cell

RP Retinitis Pigmentosa

RPE Retinal pigment epithelium

RO Retinal organoid

RWV Rotating wall vessel

SAS Shuttle-avoidance system

SC Superior colliculus

scRNA seq Single cell RNA sequencing

SD-OCT Spectral-domain optical coherence tomography

TEM Transmission electron microscopy

VC Visual cortex

VEGF Vascular endothelial growth factor

VGS Visually-guided saccades
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Tables:

Table 1: Summary of Rodent Disease Models

Rodent 
Diseases 
models

Gene 
modification 

Affected cell 
type

Degeneration time 
frame

Refs

rd1 mice  Null mutation 
in the Pde6‐β

 Rod 
Photoreceptor 
cells

 97% of rods lost by 
P17 and cone 
apoptosis around 
P30

 Loss of a functional 
ONL by 6-10 
postnatal weeks

71, 88, 

91, 123, 

128

rd1/Foxn1 
nude mice

 Null mutation 
in Pde6-β 

 Null mutation 
in Foxn1

 Photoreceptor 
cells

 Immune cells 
(no T-cells)

 Immunodeficient 

 Complete loss of 
rods

 Absence of Mouse 
Cone Arrestin+ cells
from the central 
retina at 3 months 
postnatal

93 

NOG-rd1-2J 
mice

 Pde6‐β allele 
from rd1 
mouse into 
NOG mice

 Photoreceptor 
cells

 Immune cells 
(loss of T-, B- 
and NK cells)

 Immunodeficient

 Loss of 
photoreceptors 
within 3-4 postnatal
weeks

98

L7-GFP/rd1 
mice

 Crossing rd1-
2J and L7-GFP 
mice

 Photoreceptor 
cells

 Rod bipolar 
cells express 
GFP

 Labeled bipolar 
cells

 End-stage RD 
marked by the loss 
of majority of rod 
cells by P30

21, 83

IL2rγ-/- mice  IL2rγ 
knockdown; 

 Crx mutant. 

 Photoreceptor 
cells (slow 
photoreceptor 
degeneration

 Immune cells 
(10-fold 
reduction of 
lymphocytes, 
absence of NK 
cells)

 Immunodeficient

 Mutation in the Crx 
gene leads to 
congenital 
blindness

37

Cpfl1/Rho−/− 

mice
 Rhodopsin 

knockdown;
 Cpfl1 

 Photoreceptor 
cells 
(dysfunctional 

 2-3 rows of 
photoreceptors at 

123
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mutation, 
cone function 
loss

rods and 
cones)

the age of 9 weeks

SD-Foxn1 
Tg(S334ter)
3LavRrrc 
nude rats

 Crossing SD-
Tg(S334ter)3L
av rat and 
NTac:NIH-Whn
rats. 

 Photoreceptor 
cells

 Immune cells 
(loss of T-cells)

 immunodeficient

 Loss of ONL 
thickness and 
photoreceptors as 
early as P30

 Loss of most 
photoreceptor by 
10 postnatal weeks 

16, 99, 

116

RCS nude 
(Hsd:RH-
Foxn1rnu) 
rats 

 Deletion in 
the Mer 
tyrosine 
kinase 
(MerTK) 
receptor.

 Null mutation 
in Foxn1

 RPE cells
 Immune cells 

(loss of T-cells)

 immunodeficient

 Failed RPE 
phagocytosis, 
causing outer 
segment debris 
accumulations and 
leading to 
photoreceptor 
death

19, 114
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Table 2: Advantages and Disadvantages of Three Tissue Sources for

Transplantation

Tissue type Advantages Disadvantages Refs

Single cells  Larger contact area 
between host and graft 
tissue likely improved 
chance of integration; 

 Targeted treatment for 
loss of certain cell types 
and avoiding 
inappropriate synapse 
formation; 

 Easy control of purity and
quality of cells to avoid 
tumorigenesis. 

 Lacks integrity and 
mechanical stability;

 Reduced survival rate 
prevented further 
development within the host 
tissue;

 Difficult to control the 
orientation of photoreceptor 
cells in the graft; 

 Cytoplasmic transfer to host 
cells if host ONL was present 
resulting in rescue of host 
photoreceptors but not 
replacement.

37, 71, 88, 

89, 91, 93, 

94, 123, 128,

138

RO sheet  Complete layered 
structure of retina easier 
for integration into host 
retina;

 Intact interneural 
connectivity improved 
survival rate; 

 Higher mechanical 
support and better 
microenvironment for the
retinal cells to 
differentiate and 
function.

 Highly trained surgical skills 
required.

 Uniformity and retinal cell 
purity within the ROs sheet 
critically needed to avoid 
tumorigenesis or fibrosis;

 Potentially excessive and 
inappropriate bipolar to 
bipolar cell synapses 
between graft and host. 

 Rosette formation.

16, 21, 83, 

98, 99

RPE-RO co-graft  Physical cell-cell 
interactions between RPE
and photoreceptor layer 
already formed at time of
transplantation. 

 Reduced apoptosis, 
gliosis and increased 
glutamate synthesis;

 Improved developmental 
environment in the host 
retina. 

 More complex tissue culture 
and preparation process 
before transplantation; 

 Extensive manual labor 
required to transplant the co-
graft tissue; 

 RO transplants still forming 
rosettes; optimal embedding 
matrix yet to be determined

 Rosette formation.

114

577

578

579

580



 Retinal Organoids in Disease Treatment

Table 3: Summary of Post-Transplantation Tests

Categories Methods Examined Features In 
viv
o

Refs

Behavior tests Shuttle avoidance
test (SAS)

 Light-dark 
discrimination

 Light threshold (shock)

Yes 21, 83, 88

Light avoidance 
test

 Light-dark 
discrimination

Yes 93

Optokinetic 
tracking (OKT)

 Visual acuity
 Contrast sensitivity

Yes 16, 19, 114 

Visually-guided 
saccades test 
(VGS)

 Eye movement: 
Latency, amplitude and 
peak velocity 

Yes 99

Electrophysiology Electroretinogram
(ERG)

 Electrical activity of 
retina in response to 
light stimulation 

Yes 19

MEA based mERG 
(micro-ERG)

 Local electrical potential
changes evoked by light

No 83, 98, 99, 123

SC recording  Spike counts after light 
stimulus (different light 
intensity) 

 Correlate visual 
responses in SC to 
certain retinal areas 

Yes 16, 19, 114

Graft 
differentiation, 
integration and 
synaptogenesis

SD-OCT  Location and overview 
of transplant

 Graft thickness

Yes 16, 19, 114

Fluorescence 
adaptive optics 
scanning light 
ophthalmoscopy 
(FAOSLO) 

 Survival, migration and 
neurite outgrowth of 
fluorescent labeled 
transplant cells 

Yes 128

IHC  Labels specific proteins 
in tissue to reveal 
certain cell types, 
synapses and the 
overall structure of 
transplant and host 

No Almost 
all 
transpla
ntation 
research
projects 
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applied 
this 
techniqu
e
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