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ABSTRACT	OF	THE	THESIS	

	

Thermal	Transport	Investigation	of	Nanograined	Silicon	Using	Monte	Carlo	Ray	Tracing	
and	Molecular	Dynamics	Simulations	

by	

Jiahui	Cao	

Master	of	Science	in	Mechanical	and	Aerospace	Engineering	

University	of	California,	Irvine,	2023	

Professor	Jaeho	Lee,	Chair	

	

Nanocrystalline	silicon	can	have	unique	thermal	transport	and	mechanical	properties	

governed	by	the	constituent	grain	microstructure.	In	this	thesis	work,	we	use	phonon	ray-

tracing	 and	 molecular	 dynamics	 simulations	 to	 demonstrate	 the	 largely	 tunable	

thermomechanical	behaviors	with	varying	grain	sizes	(𝑎%)	and	aspect	ratios	(𝜉).	We	show	

that	by	selectively	increasing	the	grain	size	along	the	heat	transfer	direction	while	keeping	

the	grain	area	constant,	the	in-plane	thermal	conductivity	(𝑘&)	increases	more	significantly	

than	the	cross-plane	thermal	conductivity	(𝑘'),	originating	from	anisotropic	phonon-grain	

boundary	scattering.	The	𝑘&	increases	with	increasing	aspect	ratio	𝜉	until	a	critical	value,	at	

which	𝑘&	reaches	a	maximum.	Further	increase	in	𝜉	leads	to	a	decrease	in	𝑘& ,	steaming	from	

substantial	 scattering	 of	 low-frequency	 phonon	 with	 anisotropic	 grain	 boundaries.	 In	

addition,	we	find	the	elastic	modulus	shows	strong	size-dependence,	and	the	softening	effect	

leads	to	significant	reductions	in	the	phonon	group	velocity	and	the	thermal	conductivity.	By	

accounting	for	both	thermal	and	mechanical	size	effects,	we	identify	two	distinct	regimes	of	

thermal	transport,	 in	which	anisotropic	phonon-grain	boundary	scattering	becomes	more	

appreciable	at	low	temperatures	and	phonon	softening	becomes	more	appreciable	at	high	
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temperatures.	Through	spectral	analysis,	we	attribute	the	significant	thermal	conductivity	

anisotropy	 in	 the	 nanocrystalline	 silicon	 to	 grain	 boundary	 scattering	 of	 low-frequency	

phonons	and	the	softening-driven	thermal	conductivity	reductions	to	Umklapp	scattering	of	

high-frequency	 phonons.	 These	 findings	 suggest	 new	 pathways	 to	 manipulate	

thermomechanical	 properties	 of	 nanocrystalline	 silicon	 via	 microstructure	 engineering,	

having	profound	implication	for	future	anisotropic	nanomaterials.	
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CHAPTER	1: INTRODUCTION	
 

1.1	Thermal	Size	Effect	and	Mechanical	Size	Effect	in	Silicon	Nanostructures	

Nanostructuring	 has	 been	 proven	 to	 be	 a	 reliable	 approach	 to	 reducing	 silicon’s	

intrinsic	 high	 thermal	 conductivity,	 originating	 from	 substantial	 phonon-boundary	

scattering	with	feature	sizes	scaling	below	the	phonon	mean	free	path	and	even	comparable	

to	 the	 phonon	 wavelength	 [1],	 [2].	 Experimental	 work	 on	 polysilicon	 [3],	 [4]	 and	 Si	

nanoporous	structures	 [5]–[8]	has	 shown	 lattice	 thermal	 conductivity	 reductions	beyond	

classical	 models	 (e.g.,	 due	 to	 phonon	 ballistic	 thermal	 transport	 [7]	 or	 thermally	 dead	

volume[8]).	Unlike	nanowires	[2],	[9],	nanomeshes	[10],	[11],	and	nanoribbons	[8],	[12],	of	

which	 the	 phonon-boundary	 scattering	 strongly	 depends	 on	 some	 simple	 geometric	

parameters	such	as	the	diameters	of	nanowires,	the	pitch	and	neck	sizes	of	nanomeshes,	and	

the	backbone	and	fin	dimensions	of	nanoribbons,	the	understanding	of	phonon-boundary	

scattering	with	grain	boundaries	and	its	frequency	dependent	nature	is	still	incomplete	and	

requires	 further	 investigations.	 On	 the	 other	 hand,	 reducing	 the	material	 size	 to	 a	 nano	

regime	can	significantly	influence	mechanical	behaviors.	Known	as	“smaller	is	stronger,”	the	

strength	 of	 polycrystalline	 metals	 tends	 to	 increase	 as	 the	 grain	 size	 decreases	 [13].	

However,	when	the	grain	size	reaches	a	critical	value	(~	20	nm)	[14]–[16],	softening	will	

take	over.	This	is	governed	by	the	transition	of	deformation	mechanism	from	dislocation-

mediated	plasticity	to	grain-boundary-mediated	deformation	[17].	Studies	have	also	shown	

a	dependence	 of	microhardness	 and	 elastic	modulus	 on	 the	 grain	 size	 of	 nanocrystalline	

silicon	 [18]–[20].	Moreover,	by	studying	 the	deformation	mechanism	of	 single-crystalline	

and	 polycrystalline	 silicon,	 it	 has	 been	 found	 that	 the	 grain	 boundaries	 existing	 in	
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polycrystalline	silicon	can	serve	as	preferential	sites	for	high-pressure	phase	transformation	

and	 provide	 a	 deformation	 mechanism	 dissimilar	 to	 single-crystalline	 silicon	 [21].	 As	 a	

result,	it	is	reasonable	to	speculate	that	grain	boundaries	could	play	a	more	crucial	role	while	

reducing	grain	 size	 to	nano	regime	and	contributing	 to	both	 the	mechanical	and	 thermal	

properties	of	nanograined	silicon.	

1.2	Lattice	Softening	Effect	and	Thermal	Transport	in	Nanomaterials	

In	nanostructures,	reduced	thermal	conductivity	 is	usually	attributed	to	a	reduced	

mean	free	path	arising	from	boundary	scattering,	Λ$.	In	contrast,	phonon/lattice	softening	

causes	an	additional	reduction	in	the	thermal	conductivity	of	nanostructures	that	arises	from	

a	reduction	in	the	phonon	group	velocity	[22].	From	a	microscopic	point	of	view,	phonon	

scattering	and	 lattice	 softening	effects	arise	 from	 the	 interactions	of	propagating	phonon	

wave	packets	with	the	material’s	internal-strain	fields,	which	are	induced	by	lattice	defects	

such	 as	 dislocations	 and	nanoprecipitates.	 These	 internal-strain	 fields	 can	 locally	 change	

phonon	frequencies	within	the	material	and	can,	in	principle,	lead	to	lattice	softening	[23].	

In	other	words,	lattice	softening	refers	to	a	decrease	in	the	phonon	speed	or	the	magnitude	

of	the	group	velocity	vector,	and	phonon	scattering	refers	to	a	change	in	the	direction	of	the	

phonon	velocity	vector	while	the	phonon	speed	remains	unchanged	[23].	

	

Figure	1.1	|	Illustration		of		phonon		scattering		and		lattice		softening		effects		due		to		internal-
strain		fields.	Image	adapted	from	[23]. 
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In	practice,	the	change	in	speed	of	sound	can	be	used	as	an	estimate	for	the	change	in	

average	phonon	group	velocity,	〈𝑣(〉) ∝ 𝑣*).		In	the	continuum	limit,	the	speed	of	sound,	𝑣* =

	5𝐸/𝜌,	is	proportional	to	√𝐸,	where	𝐸	is	Young’s	modulus,	implying	that	a	softening	of	the	

material	should	induce	a	reduction	in	the	phonon	group	velocity.	Therefore,	if	the	speed	of	

sound	(i.e.	lattice	stiffness)	can	be	engineered	in	a	material,	it	is	expected	to	be	an	effective	

parameter	for	controlling	the	thermal	conductivity.	In	the	case	of	nanograined	silicon,	the	

mechanical	strength	and	hence	the	 thermal	conductivity	can	be	effectively	engineered	by	

selectively	controlling	the	average	grain	size	of	the	nanopowder/nanoparticles	that	will	be	

subsequently	consolidated	by	spark	plasma	sintering	(SPS)	[24].	Moreover,	tuning	the	lattice	

stiffness	 is	expected	to	have	a	more	significant	 impact	on	 lattice	thermal	conductivity,	𝑘+ ,	

than	micro/nanostructural	scattering	in	some	cases.	For	instance,	at	the	high	temperatures	

limit	(𝑇 ≫ 𝜃,)	where	phonon–phonon	scattering	dominates	(𝜏 ≈ 	 𝜏--),	the	lattice	thermal	

conductivity	can	be	approximated	as:	

𝑘+ =
(6𝜋.)./)𝑀D
𝑉./)4𝜋.𝜇. ∙

I𝑣()J
𝑇 = 𝐴

𝑣*)

𝑇 ∝ 𝑣*)	

	

(1)	

where	𝑀	and	𝑉	are	the	average	atomic	mass	and	volume,	respectively,	and	µ	is	the	Grüneisen	

parameter	 [23].	Hence,	 the	 lattice	 thermal	 conductivity	 at	 the	 high	 temperatures	 limit	 is	

expected	to	reduce	by	a	factor	of	8	if	the	speed	of	sound	(i.e.	lattice	stiffness)	of	the	material	

is	reduced	by	half.	In	the	case	of	nanocrystalline	silicon,	as	the	effective	grain	size	decreases	

to	4	nm,	the	elastic	modulus	decreases	by	28.3%	compared	to	the	bulk	value	of	130	GPa	[25],	

leading	to	a	39.3%	reduction	in	𝑘+	as	predicted	by	equation	(1).	
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1.3	Literature	Review	on	Phonon-Grain	Boundary	Scattering	

Several	analytical	and	simulation	models	exist	to	account	for	phonon	scattering	with	

grain	boundaries.	The	first	studies	just	used	the	average	grain	size	as	a	mean	free	path	or	a	

gray	model	[26]–[28].	However,	experimental	data	indicates	that	the	phonon	scattering	with	

grain	 boundaries	 is	 frequency-dependent	 [3],	 [29].	 Atomistic	 simulations	 [30]	 and	

experimental	 transmission	 coefficient	measurements	 [31]	 also	 suggest	 that	 the	phonons’	

transmission	probability	sharply	decreases	with	phonon	frequency.	Another	crucial	factor	

in	these	studies	 is	 the	treatment	of	 the	phonons	that	cross	the	 interface.	Most	theoretical	

studies	on	polysilicon	have	used	Monte	Carlo	Ray	Tracing	(MCRT)	simulations	that	assumed	

diffuse	reflection	or	transmission	at	the	grain	boundaries	[4],	[32],	but	Hua	and	Minnich	[33]	

define	a	specularity	parameter	for	both	reflected	and	transmitted	phonons,	and	Chakraborty	

et	al.	[34]	consider	a	completely	specular	transmission.	Since	only	Hua	and	Minnich	validate	

their	 modeling	 with	 one	 experimental	 data	 set,	 more	 investigation	 is	 needed	 on	 the	

comparison	 between	 the	 different	 phonon	 treatments	 at	 the	 grain	 boundary	 interface.	

Moreover,	 MCRT	 simulations	 are	 very	 computationally	 expensive	 and	 usually	 contain	

geometric	 scales	 smaller	 than	 the	 average	 mean	 free	 path	 [35].	 Thus,	 there	 is	 no	 work	

studying	the	effect	of	the	orientation	of	the	grain	boundaries	nor	the	effect	of	anisotropic	

grain	boundaries.	However,	new	materials	with	interesting	grain	structures	have	recently	

emerged,	 such	 as	 nanograined	 diamond	 films	 with	 triangular	 hierarchical	 grains	 and	

nanowire-based	pallets	with	greatly	elongated	grains	[36],	[37].	This	motivates	us	to	develop	

new	analytical	and	simulation	models	to	study	both	the	thermal	and	mechanical	properties	

of	such	structures.		
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In	this	thesis	work,	we	establish	a	modeling	framework	that	utilizes	heat-flux	driven	

Monte	Carlo	ray	tracing	(MCRT)	to	examine	phonon	scattering	with	grain	boundaries.	We	

validate	 the	 model	 by	 comparing	 the	 frequency-dependent	 treatments	 at	 the	 grain	

boundaries	 to	 experimental	 data	 [3].	 Then	 we	 study	 the	 effect	 of	 grain	 anisotropy	 on	

phonon-boundary	scattering	mean	free	paths	(Λ#$)	and	evaluate	their	contribution	to	the	

thermal	 conductivity	 and	 thermal	 anisotropy	 of	 nanograined	 silicon	 over	 a	 wide	

temperature	range.	On	the	other	hand,	we	use	the	Large-scale	Atomic/Molecular	Massively	

Parallel	Simulator	(LAMMPS)	to	investigate	the	mechanical	behavior	of	nanograined	silicon	

with	designed	grain	heterogeneity	that	resembles	a	real	grain	structure.	We	study	both	the	

mechanical	size	effect	and	the	effect	of	grain	anisotropy	on	the	elastic	modulus	and	shear	

modulus.	 Correspondingly,	we	 identify	 the	 critical	 grain	 size	 for	 lattice	 softening	 to	 take	

effect	(i.e.	the	critical	grain	size	of	which	the	mechanical	properties	of	nanograined	silicon	

deviate	 from	 the	 bulk	 properties	 of	 silicon)	 and	 deduce	 the	 different	 thermal	 transport	

regimes	for	nanocrystalline	silicon.	Using	the	simulated	elastic	moduli	and	shear	moduli	and	

their	 relationship	 to	 the	 speed	 of	 sound,	we	 further	modify	 the	Born-von-Karman	 (BvK)	

dispersion	relation	for	bulk	silicon	to	account	for	the	lattice	softening	effect	on	the	thermal	

conductivity	of	nanograined	silicon.	This	thesis	work	represents	a	significant	advancement	

in	the	understanding	of	phonon	transport	and	serves	as	a	valuable	guide	for	optimizing	grain	

structure	engineering.	
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CHAPTER	2: MODELING,	SIMULATION,	AND	METHODOLOGY	
	

2.1	Thermal	Conductivity	Modeling	

The	 Boltzmann	 transport	 equation	 (BTE)	 particle	model	 for	 thermal	 conductivity	

under	the	common	isotropic	dispersion	approximation	is	

𝑘 =
𝐺𝐿
𝐴 =

1
3O𝑐0𝑣(Λ122 𝑑𝜔	

	

(2)	

where	𝐺	is	 the	 thermal	conductance,	𝐿	is	 the	 length,	𝐴	is	 the	cross-sectional	area,	𝐶0	is	 the	

volumetric	 heat	 capacity,	𝑣( 	is	 the	 phonon	 group	 velocity,	 and 	𝜔 	is	 the	 phonon	 angular	

frequency.	We	use	the	triply-degenerate	isotropic	Born-von-Karman	sine-type	dispersion		to	

calculate	the	group	velocity	[38].	We	also	use	the	Matthiessen’s	rule	under	relaxation	time	

approximation	to	obtain	the	effective	mean	free	path,	Λ12234 = Λ"34 + Λ534 + Λ634,	that	combines	

the	contributions	of	boundary,	 impurity	and	defects,	 and	Umklapp	scatterings.	The	mean	

free	paths	for	impurity	and	Umklapp	scatterings	have	been	well-studied	for	silicon	[39],	[40].	

For	impurity	scattering,	we	use	a	Rayleigh-like	expression	[40],	Λ534 = 𝐶5𝜔7/𝑣(,	where	𝐶5 =

2.54 × 10378	s) .	 For	 Umklapp	 scattering,	 we	 follow	 a	 common	 form,	 Λ634 =

𝑃𝜔.𝑇exp ]− 9!
:
_ /𝑣( ,	 where	 𝑃 = 1.53 × 1034; <

=
	and	 𝐶6 = 144	K .	 Although	 there	 exist	

several	analytical	and	simulation	models	for	the	phonon-grain	boundary	scattering		mean	

free	path	(Λ#$)	of	nanocrystalline	silicon	with	uniform	grain	structure	[3],	[26],	[33],	Λ#$	is	

generally	unknown	for	anisotropic	grain	structures	with	an	aspect	ratio	(𝜉)	other	than	one.	

To	rigorously	determine	the	frequency-dependent	Λ#$,	we	combine	Monte-Carlo	ray	tracing	

(MCRT)	simulations	with	an	atomistic	relation	for	grain	boundary	transmission.	One	of	the	

unique	advantages	of	MCRT	is	that	it	can	account	for	multi-dimensional	phonon-boundary	
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scattering,	allowing	us	to	capture	the	impact	of	vertical	and	horizontal	grain	sizes	on	Λ#$	and	

investigate	the	thermal	anisotropy	induced	by	the	anisotropic	grain	boundaries	network.	

	

2.2	Monte-Carlo	Ray	Tracing	(MCRT)	Framework	

	

Figure	2.1	 |	 Schematics	 of	 the	 Simulated	Nanograined	 Si	Geometry.	 (a)	 Ray	 Tracing	
simulation	domain	showing	a	typical	phonon	trajectory	and	various	phonons	interactions	
with	grain	boundaries	and	system	domain	boundaries.	The	unit	cell	has	a	specular	boundary	
condition	on	the	top	and	bottom	walls	and	a	periodic	boundary	condition	on	the	 left	and	
right	surfaces	to	periodically	repeat	itself	until	a	simulation	length,	𝐿,	is	reached.	The	length	
of	the	simulation	domain	is	chosen	by	increasing	L	until	the	change	in	the	calculated	phonon-
boundary	mean	 free	 path	 is	 negligible,	 as	 it	 saturates	 to	 the	 diffuse	 limit.	 (b)	Molecular	
dynamic	simulation	domain	showing	stresses	applied	 for	shear	 (red)	and	 tension	(black)	
deformation	to	derive	elastic	moduli.	Note:	we	introduce	a	small	degree	of	heterogeneity	on	
grain	boundaries	in	the	molecular	dynamic	simulation	domain	to	ensure	that	the	simulated	
grain	structure	is	mechanically	stable	at	the	corner.	This	slight	modification	will	have	little	
effect	on	the	elastic	and	shear	moduli	compared	to	a	homogenous	structure	that	was	used	in	
the	ray	tracing	simulation	because	the	moduli	of	nanograined	silicon	are	strongly	influenced	
by	the	average	grain	size	and	grain	anisotropy	(see	Chapter	3	for	the	result).	

	

In	our	MCRT	framework,	as	illustrated	in	Figure	2.1(a),	a	large	number	of	incident	

phonons	are	injected	on	the	left	wall	of	a	semi-periodic	and	semi-specular	unit	cell	with	a	

trajectory	probability	that	follows	a	normal	distribution	with	the	heat	flux	direction	being	
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the	mean.	The	trajectory	of	each	phonon	is	tracked	throughout	the	entire	simulation	domain	

–	where	the	collisions	with	grain	boundaries	can	be	diffusive	or	specular	–	until	the	phonon	

reaches	the	end	of	the	simulation	domain	(at	𝑥	 = 	𝐿)	or	returns	to	the	injection	wall	(at	𝑥	 =

	0).	We	define	the	average	transmission	coefficient	〈𝒯〉	as	the	ratio	of	 the	number	of	 fully	

transmitted	phonons	to	the	total	number	of	injected	phonons.	Within	the	simulation	domain,	

we	generate	a	random	number	(between	0	and	1)	once	a	collision	with	a	grain	boundary	

occurs;	the	phonon	is	reflected	if	 this	number	is	 larger	than	grain	boundary	transmission	

probability	(𝜏!")	and	it	is	transmitted	if	the	number	is	smaller	than	𝜏!" .		

	
Figure	 2.2	 |	 Schematics	 of	 (a)	 diffuse	 and	 (b)	 non-scattering	 grain	 boundary	
transmission	algorithms,	and	(c)	their	resulting	phonon	mean	free	path	as	a	function	
of	 the	 phonon	 frequency.	 Diffuse	 transmission	 results	 in	 a	 trend	 that	 differs	 from	 the	
analytical	 expression	 proposed	 by	 Wang	 et	 al.	 [3]	 since	 a	 finite	𝛬!" 	is	 reached	 for	 low	
frequency	phonons.		

 

The	 treatment	 of	 phonons	 across	 the	 interface/grain	 boundary	 is	 critical	 for	

analytical	 formulation	 of	 frequency-dependent	𝛬!" 	for	 low	 frequency	 phonons.	 In	 fact,	

phonons	 that	 collide	 with	 a	 grain	 boundary	 and	 get	 transmitted	 would	 still	 have	 their	

direction	 affected	 by	 diffusive	 scattering	 (diffuse	 transmission	 algorithm),	 resulting	 in	

phonons	not	reaching	the	end	of	the	simulation	length	even	with	a	transmission	probability	

at	the	boundaries	of	one	as	shown	on	Figure	2.2(a).	This	phenomenon	results	in	a	finite	𝛬!" 	



 

9 
 

for	 low	 frequency	 phonons	 at	 a	 given	 grain	 structure,	 which	 differs	 from	 the	 analytical	

formulations	 available	 in	 the	 literature	 that	 estimate	 an	 infinite	𝛬!" 	for	 low	 frequency	

phonons.	This	gives	rise	to	a	frequency	independent	scattering	rate	as	showed	by	Klemens	

that	is	typically	very	small	because	the	change	in	phonon	velocity	when	crossing	an	interface	

is	less	than	10%	[41].	However,	the	two	boundaries	of	the	intergrain	region	should	be	far	

apart	compared	to	the	phonon	wavelength	for	scattering	to	be	incoherent,	suggesting	the	

existence	of	a	critical	frequency	below	which	scattering	is	increasingly	coherent	such	as	

𝜔>? ≅ 𝑣/𝑡	 (3)	

where	𝑣 	is	 the	 phonon	 velocity	 and	𝑡 	is	 the	 thickness	 of	 the	 intergrain	 region.	 The	 two	

boundaries	would	scatter	phonons	coherently	when	𝜔 < 𝜔>? ,	which	especially	likely	at	low	

temperatures	 since	𝑡 	is	 typically	~5	Å[42]	and	 the	 phonon	 frequencies	 are	much	 smaller	

than	𝜔>? .	Thus,	for	the	purposes	of	our	study,	we	impose	the	non-scattering	algorithm	such	

that	phonons	transmitted	through	the	grain	boundary	can	be	scattered	to	be	able	to	achieve	

an	infinite	Λ!" 	at	low	frequencies	as	seen	in	Figure	2.2(c).	This	behavior	is	also	consistent	

with	the	findings	by	Chen	et	al.	in	silicon-germanium	alloys	[43].	

	

2.3	Frequency-Dependent	Mean	Free	Path	for	Phonon-Grain	Boundary	Scattering	

From	the	Landauer	formalism	[44],	[45],		the	thermal	conductance	𝐺	defined	in	terms	

of	a	phonon	transmission	function	𝒯(Ω,𝜔)	is	

𝐺 =
𝐴
4 O𝐶0

〈𝒯〉𝑣(𝑑𝜔	

	

(4)	

where	 Ω	 is	 the	 solid	 angle,	 and	 the	 average	 transmission	 coefficient,	 〈𝒯〉 =

4
@A ∫ ∫ 𝜏(𝜃, 𝜙, 𝐴)cos	(𝜃)sin	(𝜃)𝑑𝜃𝑑𝜙𝑑𝐴@/.

%
.@
% ,	 can	be	obtained	using	 ray	 tracing	 simulations	
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with	 Monte-Carlo	 integration,	 where	𝜃 	and	𝜙 	denote	 the	 polar	 angle	 and	 the	 azimuthal	

angle,	 respectively.	 Comparing	 the	 Landauer	 formulism	 (eq.	 4)	 and	 the	 BTE	 model	 for	

thermal	conductivity	(eq.	2),	we	obtain	an	equation	that	relates	the	phonon	mean	free	path,	

𝛬,	with	the	simulation	length,		𝐿,	and	the	average	transmission	coefficient:	

𝛬
𝐿 =

3
4
〈𝒯〉	

	

(5)	

A	characteristic	behavior	of	diffusive	transport	is	a	mean	free	path	𝛬	that	saturates	for	long	

simulation	length,	𝐿.	The	mean	free	path	𝛬	calculated	from	the	transmission	coefficient	〈𝜏〉	

describes	the	combined	effects	of	diffusive	boundary	scattering	and	a	length-independent	

ballistic	resistance	(which	can	be	represented	through	a	transmission	coefficient	𝜏BCDD)	that	

depends	on	 the	 configuration	of	 the	device-contact	 connection	 [11].	Due	 to	 the	nature	of	

grain	boundary	scattering,	the	simulation	does	not	converge	even	at	large	simulation	lengths	

for	large	transmission	probabilities	(see	Figure	2.3(a)).	To	find	the	intrinsic	𝛬!" ,	defined	as	

lim
+→F

(𝛬),	from	finite-L	simulations,	we	follow	the	technique	of	previous	works	[11],	[46]	and	

sum	 the	 ballistic	 and	 diffusive	 scattering	 in	 parallel	 in	 a	 Matthiessen’s	 rule-type	

approximation,	resulting	in	

𝐿
Λ =

1
𝜏BCDD

+
𝐿
Λ!"

	 (6)	

As	shown	on	Figure	2.3(a)(b),	we	first	calculate	𝛬	for	a	square	grain	structure	(𝜉 = 1	and	

𝑎% = 100	𝑛𝑚 )	 	 as	 a	 function	 of	 𝐿	 and	 then	 use	 a	 linear	 regression	 fitting	 to	 eq.	 (6)	 to	

determine	 the	saturated	Λ!" 	for	various	grain	boundary	 transmission	probabilities,	τ#$ ∈

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95].	
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Figure	 2.3	 |	 (a)	𝛬 	as	 a	 function	 of	 the	 simulation	 length	𝐿 	for	 different	 grain	 boundary	
transmission	probability	𝜏!" .	(b)	Data	from	a)	transformed	to	obtain	the	linear	relationship	
between	𝐿/𝛬	and	L	and	calculate	the	inverse	of	the	slope	to	obtain	𝛬!" .	

 

	
Figure	2.4	|	𝛬!" 	as	a	function	of		𝜏!" 	for	the	different	scattering	algorithms.	
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In	 our	 study	 of	 phonon-grain	 boundary	 scattering,	 a	 set	 of	 5	 simulations	 are	

performed	 for	 each	 τ#$ 	to	 determine	 the	 resulting	Λ!" 	and	 obtain	 a	 nonlinear	 fitting	

function,	in	terms	of	τ#$,	for	any	given	grain	structure	using	equation	(7).	In	each	simulation,	

we	launch	at	least	5 × 108	total	phonons	to	ensure	that	the	fluctuation	of	〈𝒯〉	is	within	5%.	

Λ!"(𝜏!") =
A4𝜏!"

A"

1 − 𝜏!"
	 (7)	

where	𝐴4and	𝐴. 	are	 two	 fitting	parameters	depending	on	 the	grain	 size	and	aspect	 ratio,	

respectively.	 This	 model	 function	 is	 defined	 such	 that	 the	Λ!" → ∞ 	as	𝜏!" → 1,	which	 is	

consistent	with	atomistic	interpretation	between	grain	boundary	transmission	probability	

and	phonon	mean	free	path	(see	Figure	2.4).	

	

2.4	Model	Validation	

Our	 group	 has	 been	 successfully	 used	 ray	 tracing	 simulations	 to	 compute	 the	

boundary	 scattering	 mean	 free	 path	 of	 nanoporous	 materials	 with	 various	 shapes	 and	

distributions	[47]	as	well	as	nanocomposite	materials,	with	these	shapes	being	inclusion	of	

metallic	materials	[48].	In	this	study,	we	use	Monte	Carlo	ray	tracing	simulations	to	capture	

the	phonon	mean	free	path	due	to	grain	boundary	scattering	(𝚲𝑮𝑩)	as	a	 function	of	grain	

boundary	 transmission	 probability,	 𝝉𝑮𝑩(𝝎)	 and	 then	 combine	 a	 frequency-dependent	

atomistic	 expression	 for	 grain	 transmission	 probability	 [3],	 [33]	 (equation	 8)	 to	 yield	 a	

frequency-dependent	mean	free	path	for	phonon-grain	boundary	scattering,	Λ!"(𝜔).	

𝜏!"(𝜔) =
1

𝛾I: ]
𝜔
𝜔%
_ + 1	

	 (8)	
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where	𝛾I: =
)
7
∙ 4
JK
	is	a	generalized	fitting	parameter	that	depends	on	the	empirical	constant		

𝛼 	and	 the	 numerical	 constant	𝛽 .	 The	 former	 accounts	 for	 the	 effect	 of	 grain	 boundary	

transmission	or	the	grain	boundary	quality	and	material	[3].	In	the	case	of	silicon	materials,		

a	native	SiO2	layer	of	thickness	around	1	nm	is	usually	formed	on	the	outermost	surface	of	

each	agglomerate	if	the	Si	powders	are	exposed	to	the	atmosphere	[49],	resulting	in	oxidized	

grain	boundaries.	An	oxidized	grain	boundary	yields	a	smaller	𝛼	or	a	 larger	𝛾,	 translating	

into	a	lower	thermal	conductivity.	The	latter	depends	on	the	choice	of	dispersion	relations	

used	in	the	model	and	is	approximately	equals	to	0.707	[3].	This	frequency-dependent	model	

is	 qualitatively	 consistent	 with	 atomistic	 Greenʼs	 function	 calculations	 [50],	 [51].	 The	

transmissivity	approaches	one	as	frequency	goes	to	zero,	which	is	physically	consistent	with	

the	expectation	that	long	wavelength	phonons	are	unaffected	by	atomistic	disorder	at	a	grain	

boundary	[33].	Combining	equation	(7)	and	(8),	the	resultant	Λ!"(𝜔)	is	then	combined	with	

other	mean	free	paths	of	phonon	scatterings,	using	Matthiessen’s	rule	under	relaxation	time	

approximation,	and	integrated	over	a	cutoff	frequency	(𝜔%)	to	obtain	the	in-plane	thermal	

conductivity.	To	validate	that	our	modeling	can	accurately	predict	the	thermal	conductivity	

of	nanograined	materials,	we	match	the	Λ!"(𝜔)	obtained	 from	our	ray	 tracing	simulation	

with	 the	 frequency-dependent	 model	 proposed	 by	 Wang	 et	 al.	 in	 the	 form	 of	 Λ#$ =

𝛼𝐷C0((𝛽𝜔%/𝜔) ,	 where	𝐷C0( 	is	 the	 average	 grain	 size/diameter	 [3],	 see	 Figure	 2.5.	 The	

fitting	yields	a	𝛾I: 	of	1.13,	 and	 the	 calculated	 thermal	 conductivity	 is	 consistent	with	 the	

experimental	data	shown	on	Chapter	3.		
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Figure	2.5	 |	 Comparison	between	 the	boundary	mean	 free	path	as	 a	 function	of	phonon	
frequency	given	by	the	analytical	 formulation	(validated	with	experimental	data)	and	our	
simulations.	

	

2.5	Lattice	Softening	Model	

To	obtain	a	softened	phonon	group	velocity,	we	modified	the	BvK	dispersion	relation	

by	incorporating	a	softening	factor,	𝐹*,	into	the	isotropic	approximation	[22]	so	that	the	new	

dispersion	relation	becomes:	

𝜔 =
2
𝜋 𝐹*𝑣BLDM𝑞% sin �

𝜋𝑞
2𝑞%

	�	 (9)	

where	𝐹*	is	the	ratio	of	the	softened	speed	of	sound	to	the	bulk	speed	of	sound,	𝑣BLDM ,	and	𝑞	

is	the	wavevector.	The	softened	group	velocity	becomes:	

	

𝑣(,*OPQRST(𝜔) =
𝜕𝜔
𝜕𝑞 = 𝐹*𝑣BLDM cos �

𝜋𝑞
2𝑞%

	� = 𝐹* ∙ 𝑣(,LS*OPQRST(𝜔)	

	

(10)	
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For	 this	 work,	 we	 determine	 the	 average	 softened	 speed	 of	 sound,	𝑣*,*OPQRSRT ,	 using	 the	

following	expression	[23],	[52]:	

3
𝑣*,*OPQRSRT) =

1
𝑣DOS() +

2
𝑣Q?CS*) 	

	

(11)	

where	𝑣DOS( =	5𝐸/𝜌 ,	 and	𝑣Q?CS* =	5𝐺/𝜌 	are	 the	 longitudinal	 and	 transverse	 speed	 of	

sound,	respectively;	they	can	be	calculated	using	the	elastic	and	shear	moduli	obtained	from	

MD	simulation	for	nanograined	Si.	Table	1	shows	the	elastic,	shear	moduli,	softened	speed	

of	sounds,	and	softening	factors	for	nanograined	Si	with	grain	areas	ranging	from	16	nm2	to	

1024	nm2	(i.e.	the	effective	grain	sizes	ranging	from	4nm	to	32nm).	

	

2.5	Molecular	Dynamics	Simulations	

The	atomistic	 simulations	are	performed,	using	LAMMPS,	 to	 study	 the	mechanical	

behavior	of	nanograined	Si	with	designed	grain	heterogeneity	and	anisotropy.	In	a	12×12×4	

nm3	box,	the	sample	with	a	squared	grain	shape	is	first	generated	using	Voronoi	tessellation	

with	randomly	assigned	grain	orientations	that	ensure	the	mechanical	stability	at	the	corner	

of	the	grain,	and	the	effective	grain	area	(on	the	x-y	plane)	is	16	nm2	 for	all	grains.	While	

fixing	the	effective	grain	size	and	box	size,	we	change	the	aspect	ratio	of	the	horizontal	(x-

axis)	and	the	vertical	(y-axis)	directions	to	obtain	the	samples	with	different	grain	anisotropy	

(see	Figure	6	and	7).	To	study	the	mechanical	size	effect	on	the	elastic	moduli,	we	then	keep	

the	grain	heterogeneity	of	 the	generated	samples	unchanged	and	scale	 the	samples	up	to	

1024	nm2	effective	grain	size,	while	the	total	atom	number	changes	from	2.88×104	atoms	to	

1.47×107	atoms.	A	Stillinger-Weber	potential	[53]	is	applied	to	describe	the	interactions	of	

Si	atoms.	All	samples	are	first	equilibrated	at	300	K	for	50	ps	using	Nosé-Hoover	thermo-stat	
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[54],	 [55],	 then	 uniaxial	 tension	 and	 shear	 deformation	 are	 performed	 at	 a	 constant	

engineering	strain	rate	of	5	×	108	s-1.	The	periodic	boundary	condition	is	applied	to	all	three	

directions	(x,	y,	and	z).	For	14.7	million	atoms,	we	run	50000	steps	under	0.002	ps/timestep	

for	 tensile	 deformation,	 and	 the	 structure	 is	 deformed	 under	 5×10	 8	 s-1,	 generating	 5%	

strain.	As	for	shear	deformation,	we	run	30000	steps,	which	generates	3%	strain.	

	
	
	 	



 

17 
 

CHAPTER	3: RESULTS	&	DISCUSSION	

3.1	Grain	Size-	and	Shape-dependent	Elastic	Modulus	

Large-scale	atomistic	simulations	are	performed	to	study	the	mechanical	behavior	of	

nanograined	Si.	For	the	molecular	dynamics	simulations,	three	structures	with	varying	grain	

anisotropy	(elongated	along	the	x-direction	with	an	aspect	ratio	of	2,	squared,	and	elongated	

along	y-direction	with	an	aspect	ratio	of	1/2)	are	considered,	and	each	grain	in	the	structures	

has	the	same	effective	grain	sizes.	With	the	initial	structures,	we	solely	scale	the	structures	

to	obtain	samples	with	different	effective	grain	sizes	and	deform	the	samples	under	uniaxial	

tension	and	shear.	Figure	3.1	shows	the	corresponding	tension	strain-stress	behaviors	for	

the	three	structures	with	different	effective	grain	sizes	and	their	calculated	elastic	modulus.	

As	shown	in	Figure	3.1(d),	the	elastic	modulus	increases	with	increasing	effective	grain	size.	

Interestingly,	nanograined	Si	with	an	aspect	ratio	of	2	exhibits	the	highest	elastic	modulus	in	

all	 grain	 size	 scales,	 and	 nanograined	 Si	 with	 an	 aspect	 ratio	 of	 1/2	 yields	 the	 lowest,	

suggesting	a	dependence	of	 the	elastic	modulus	on	aspect	 ratio	 for	grains	with	 the	 same	

effective	grain	size	and	the	deformation	anisotropy	of	nanograined	Si.	Figure	3.2	illustrates	

the	shear	strain	stress	behavior	and	calculated	shear	modulus	for	the	same	three	structures.	

As	shown	in	Figure	3.2(d),	the	shear	modulus	also	increases	with	increasing	effective	grain	

size,	but	there	is	no	apparent	dependence	of	shear	modulus	on	the	aspect	ratio.	
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Figure	 3.1	 |	 Tension	 responses	 of	 nanograined	 Silicon.	 Strain-stress	 behavior	 of	
nanograined	silicon	with	(a)	𝜉 = 2	(elongated	along	the	x-direction	or	in-plane	direction),	
(b)	 𝜉 = 1 	(square),	 and	 (c)	 𝜉 = 1/2	 	(elongated	 along	 the	 y-direction	 or	 cross-plane	
direction).	 (d)	 elastic	modulus	 plotted	 as	 a	 function	 of	 grain	 size	 for	 the	 corresponding	
nanograined	 structure.	 The	 dashed	 lines	 denote	 the	 reported	 elastic	 modulus	 for	 bulk	
nanograined	Si	in	〈1,0,0〉	direction.	The	insets	demonstrate	the	grain	morphologies,	and	the	
black	arrows	indicate	the	tension	direction.	

	

	
Figure	 3.2	 |	 Shear	 responses	 of	 nanograined	 Silicon.	 Strain-stress	 behavior	 of	
nanograined	silicon	with	(a)	𝜉 = 2	(elongated	along	the	x-direction	or	in-plane	direction),	
(b)	 𝜉 = 1 	(square),	 and	 (c)	 𝜉 = 1/2	 	(elongated	 along	 the	 y-direction	 or	 cross-plane	
direction).	 (d)	 shear	 modulus	 plotted	 as	 a	 function	 of	 grain	 size	 for	 the	 corresponding	
nanograined	 structure.	 The	 dashed	 lines	 denote	 the	 reported	 shear	 modulus	 for	 bulk	
nanograined	Si	in	〈1,0,0〉	direction.	The	insets	demonstrate	the	grain	morphologies,	and	the	
red	arrows	indicate	the	shear	direction.	
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Table	 1:	 Elastic,	 shear	 moduli,	 softened	 speed	 of	 sounds,	 and	 softening	 factors	 for	
nanograined	Si	with	aspect	ratios	of	ξ = 1(square),	2	(elongated	along	the	x-direction),	and	
½	(elongated	along	the	y-direction).	The	grain	sizes	range	from	4	nm	to	32	nm. 

Grain	Area	
(Effective	
Grain	Size)	

16	nm2	

(4	nm)	
64	nm2	

(8	nm)	
144	nm2	

(12	nm)	
256	nm2	

(16	nm)	
576	nm2	

(24	nm)	

1024	
nm2	

(32	nm)	
Square	(𝝃 = 𝟏)	

E	(GPa)	 93.24	 104.87	 108.86	 111.09	 112.69	 113.83	
G	(GPa)	 30.83	 36.44	 38.96	 40.66	 42.06	 43.17	

𝑣*,*OPQRSRT 	[m/s]	 4042	 4384	 4527	 4619	 4694	 4751	
𝐹*	 0.664	 0.721	 0.744	 0.759	 0.772	 0.781	
	 	 	 	 	 	 	

Elongated	along	the	𝒙	–	direction	(𝝃 = 𝟐)	
E	(GPa)	 95.27	 106.96	 111.81	 112.89	 115.05	 115.91	
G	(GPa)	 30.42	 36.74	 38.92	 40.85	 42.19	 43.19	

𝑣*,*OPQRSRT 	[m/s]	 4021	 4404	 4531	 4633	 4705	 4757	
𝐹*	 0.661	 0.724	 0.745	 0.762	 0.773	 0.782	
	 	 	 	 	 	 	

Elongated	along	the	𝒚	–	direction	(𝝃 = 𝟏/𝟐)	
E	(GPa)	 91.63	 103.22	 107.19	 109.66	 111.56	 112.74	
G	(GPa)	 31.20	 36.63	 38.81	 40.46	 42.24	 43.10	

𝑣*,*OPQRSRT 	[m/s]	 4060	 4391	 4516	 4606	 4700	 4745	
𝐹*	 0.667	 0.722	 0.742	 0.757	 0.773	 0.780	

	
	

While	 decreasing	 the	 effective	 grain	 size	 to	 the	 nano	 regime,	 the	 grain	 boundary	

density	 will	 increase	 rapidly,	 which	 enhances	 the	 significant	 role	 of	 grain	 boundary	 in	

mechanical	 deformation.	 Unlike	 the	 grain	 interior,	 where	 atoms	 follow	 regular	 packing	

patterns,	 grain	 boundary	 atoms	 tend	 to	 have	 random	 arrangements.	 This	 reduces	 the	

interatomic	 bonding	 between	 grain	 boundary	 atoms	 and	makes	 them	 ultimately	weaker	

than	regularly	packed	atoms.	When	nanograined	Si	is	under	tension,	in	the	elastic	regime,	

the	atoms	are	purely	stretched	along	the	loading	direction.	With	the	introduction	of	grain	

anisotropy	defined	by	the	grain	aspect	ratio,	the	portion	of	grain	boundary	atoms	along	the	

loading	direction	changes.	This	 influences	 the	 stretchability	of	 the	grain	 structure	during	

tension,	and	thus	the	elastic	modulus.	In	other	words,	the	more	grain	boundary	atoms	are	
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along	the	loading	direction,	the	softer	the	nanograined	Si	will	be.	Nevertheless,	the	fact	that	

the	 elongation	direction	does	 not	 perfectly	 align	with	 the	 shear	 direction	diminishes	 the	

contribution	of	grain	anisotropy	to	the	shear	deformation.	

	
	

3.2	Effect	of	Grain	Anisotropy	on	Grain	Boundary	Scattering	Mean	Free	Path	

Extreme	 grain	 elongations	 or	 large	 grain	 aspect	 ratios	 could	 result	 from	 using	

nanowires	as	precursors	to	pallets	in	which	the	alignment	can	potentially	be	achieved	using	

techniques	 like	 flow	 [56]	 and	 magnetic	 alignments	 [57]	 or	 nanowire	 combing	 [58].	 To	

investigate	the	effect	of	grain	anisotropy	on	phonon-grain	boundary	scattering	mean	free	

path,	 thermal	 conductivity,	 and	 thermal	 anisotropy,	 we	 construct	 anisotropic	 grain	

structures	with	a	fixed	grain	area	of	(100𝑛𝑚).	or	constant	grain	boundary	density	and	vary	

their	grain	aspect	ratios	𝜉	from	1/256	to	256	in	powers	of	2	increments.	As	demonstrated	in	

Chapter	2,	we	first	use	MCRT	simulations	to	capture	the	phonon-grain	boundary	scattering	

mean	free	path	𝚲𝑮𝑩(𝜏!")	as	a	function	of	grain	boundary	transmission	probability,		and	then	

convert	 it	 into	 a	 frequency-dependent	 mean	 free	 path	𝚲𝑮𝑩(𝜔) 	by	 applying	 an	 atomistic	

relationship	 between	 transmission	 probability	 and	 phonon	 frequency	𝝉𝑮𝑩(𝝎) .	 Table	 2	

shows	the	grain	boundary	mean	free	path	fitting	parameters	from	ray	tracing	simulations	

and	 the	 interfacial	densities	 for	corresponding	grain	structures.	The	 interfacial	density	 is	

defined	as	the	perimeter	of	the	grain	divided	by	the	area	of	the	grain,	𝜙 = 2 × [�𝑎% × 5𝜉� +

(𝑎%/5𝜉)]/𝑎%.,	and	the	interfacial	density	along	the	heat	flux	direction	is	defined	as	one	over	

the	horizontal	grain	size,	𝜙& = 1/�𝑎% ×5𝜉�.	
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Table	2:	Grain	boundary	MFP	Fitting	Parameters	and	Interfacial	Density	

𝝃	 𝑨𝟏	[nm]	 𝑨𝟐	 𝝓	[µm-1]	 𝝓𝒙	[µm-1]	 Configurations*	
	 		256	 48.3	 0.388	 321.3	 0.63	

	
	

	
	

	

	 		128	 56.7	 0.386	 228.0	 0.88	
	 				64	 63.4	 0.382	 162.5	 1.25	
	 				32	 69.5	 0.357	 116.7	 1.77	
	 				16	 74.7	 0.442	 85.0	 2.50	
	 					8	 78.2	 0.552	 63.6	 3.54	
	 					4	 79.7	 0.781	 50.0	 5.00	
	 					2	 70.1	 0.850	 42.4	 7.07	
	 					1	 57.7	 0.885	 40.0	 10.0	
	 			1/2	 45.8	 0.932	 42.4	 14.1	
	 			1/4	 34.7	 0.978	 50.0	 20.0	
	 			1/8	 25.1	 0.962	 63.6	 28.3	
	 		1/16	 18.2	 0.988	 85.0	 40.0	
	 		1/32	 13.1	 0.981	 116.7	 56.6	
	 		1/64	 9.34	 0.992	 162.5	 80.0	
	 	1/128	 6.59	 0.995	 228.0	 113.1	
	 	1/256	 4.80	 1.03	 321.3	 160.0	
	
*The	insets	show	the	simulated	unit	cells	with	varying	grain	heterogeneity	characterized	by	
an	aspect	ratio,	𝜉.	(e.g.	𝜉 = 1	represents	a	square	grain	geometry;	𝜉 > 1	yields	a	rectangular	
grain	 geometry	 elongates	 along	 the	 x-direction,	 and	 vice	 versa	 for	 the	 y-direction).	
𝑎%	denotes	the	effective	grain	size,	and	the	aspect	ratio	is	defined	such	that	the	grain	area	𝑎%.	
remains	unchanged.	The	interfacial	density	is	defined	as	the	perimeter	of	the	grain	divided	
by	the	area	of	the	grain,	𝜙 = 2 × [�𝑎% × 5𝜉� + (𝑎%/5𝜉)]/𝑎%.,	and	the	interfacial	density	along	
the	heat	flux	direction	is	defined	as	one	over	the	horizontal	grain	size,	𝜙& = 1/�𝑎% ×5𝜉�.	
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Figure	3.3	|	Phonon	mean	free	paths	of	nanograined	silicon	with	a	constant	grain	area	
of	𝟏𝟎𝟎𝟎𝟎𝐧𝐦𝟐	.	(a)	Resulting	phonon-boundary	scattering	mean	free	path	Λ#$	as	a	function	
of	grain	boundary	 transmission	probability	and	(b)	phonon	 frequency.Λ#$	monotonically	
increases	with	increasing	transmission	probability	and	decreases	with	phonon	frequency.	
The	simulation	results	show	various	grain	aspect	ratios	ranging	from	1/256	to	256	with	an	
increment	of	two.	(c)	Inverse	of	effective	mean	free	paths	of	nanograined	silicon	as	a	function	
of	 temperature.	 The	 mean	 free	 paths	 for	 phonon-boundary	 scattering	 and	 impurity	
scattering	 are	 independent	 of	 temperature,	 whereas	 the	 mean	 free	 paths	 for	 Umklapp	
scattering	 increases	with	 increasing	 temperature.	This	plot	 illustrates	 the	weight	of	 each	
scattering	contribution	across	a	temperature	range	from	10	to	1250K.	
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Figure	3.3(a)	and	(b)	show	the	resulting	grain	boundary	scattering	mean	free	path	

as	 a	 function	 of	 grain	 boundary	 transmission	 probability	 and	 phonon	 frequency,	

respectively.	Λ#$ 	monotonically	 increases	 with	 increasing	 transmission	 probability	 and	

decreases	with	increasing	phonon	frequency.	This	behavior	is	quantitively	consistent	with	

the	fact	that	long	wavelength	phonons	(low	frequency)	are	unaffected	by	atomistic	disorder	

at	a	grain	boundary	[33].	We	notice	that	Λ!" 	generally	increases	with	increasing	aspect	ratio;	

however,	 the	curves	start	 to	 flatten	 for	𝜉	≥	16,	resulting	 in	an	 inverse	trend	at	high	grain	

boundary	transmission	probabilities	(e.g.	𝜏 > 0.3)	for	these	grain	boundary	structures.	This	

trend	can	be	explained	by	the	fitting	parameters	of	Eq.	(7),	which	manifest	the	flattening	of	

the	curves	for	high	aspect	ratios	with	a	decreasing	𝐴..	The	Λ!" 	is	largest	over	a	wide	range	

of	phonon	frequencies	when	the	aspect	ratio	is	about	16	(see	Figure	3.3(b)).	Figure	3.3(c)	

shows	 the	 accumulated	 inverse	 mean	 free	 paths	 as	 a	 function	 of	 temperature.	 The	

accumulated	 inverse	 mean	 free	 path	 is	 calculated	 by	 integrating	 1/ΛX(𝜔)	 over	 the	

frequencies	range	from	0	to	the	cut-off	frequency,	𝜔%,	where	𝑖	denotes	the	type	of	scattering	

mechanism.	 In	 this	 way,	 we	 can	 better	 visualize	 the	 contribution	 of	 each	 scattering	

mechanism	over	the	temperature	range	without	being	affected	by	its	frequency-dependency.	

As	shown	on	Figure	3.3(c),	the	contribution	from	impurity	scattering	and	grain	boundary	

scattering	remains	constant	while	that	from	Umklapp	scattering	increases	with	increasing	

temperature.	The	solid	lines	show	the	inverse	of	average	effective	mean	free	path	given	by	

the	 Matthiessen’s	 rule.	 Clearly,	 the	 effective	 mean	 free	 path	 of	 nanograined	 silicon	 is	

dominated	by	grain	boundary	scattering	at	the	low	temperature	limit	(𝑇 ≪ 𝜃,)	and	Umklapp	

scattering	at	the	high	temperature	limit	(𝑇 ≫ 𝜃,).	This	is	consistent	with	the	classical	model	
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that	the	mean	free	path	of	silicon	decreases	with	an	increase	in	temperature,	 leading	to	a	

reduction	in	thermal	conductivity	at	the	high	temperature	limit.	

	

3.3	Effect	of	Grain	Heterogeneity	on	Thermal	Anisotropy	

Figure	3.4	shows	the	temperature-dependent	thermal	conductivity	of	nanograined	

Si	for	the	same	grain	area	of	10000	nm2	but	with	different	grain	aspect	ratios.	The	thermal	

conductivity	first	increases	with	increasing	temperature,	reaches	a	maximum	value	at	some	

intermediate	temperature,	and	then	decreases	with	elevated	temperature	due	to	substantial	

Umklapp	 scattering	 at	 the	 high	 temperature	 limit	 ( 𝑇 ≫ 𝜃, ).	 For	 𝝃 	<	 1,	 the	 thermal	

conductivity	decreases	with	decreasing	aspect	ratios.	This	can	be	justified	by	the	increase	in	

interfacial	density	in	the	direction	of	heat	flux	𝛷&	(i.e.,	an	increase	in	the	number	of	vertical	

grain	boundary	lines)	–	see	Table	2.	These	vatical	grain	boundaries	serve	as	obstacles	that	

reflect	and	impede	the	movement	of	phonons,	resulting	in	a	shorter	phonon	mean	free	path.	

For	𝝃	>	1,	there	is	an	optimal	𝝃	that	maximizes	the	thermal	conductivity,	and	a	grain	structure	

with	an	aspect	ratio	of	16	yields	the	highest	thermal	conductivity	at	a	temperature	of	around	

150K.	For	𝝃	>	16,	the	thermal	conductivity	starts	to	decrease	with	increasing	aspect	ratio.	

This	 can	 be	 attributed	 to	 the	 substantial	 scattering	 of	 low-frequency	 phonon	 with	

anisotropic	 grain	 boundaries.	 In	 other	 words,	 the	 spacing	 between	 horizontal	 grain	

boundaries	collapse	for	 larger	aspect	ratio,	which	limits	the	transport	of	 long	wavelength	

(low	frequency)	phonons.	
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Figure	 3.4	 |	 (a)	 Temperature-dependent	 thermal	 conductivity	 of	 nanograined	 Si	 for	
different	grain	aspect	 ratios.	 (b)	Thermal	 conductivity	of	nanograined	Si	 as	a	 function	of	
grain	 aspect	 ratio.	 (c)	 Thermal	 anisotropy	 ratio	 of	 nanograined	 Si	 as	 a	 function	 of	
temperature,	 and	 (d)	 grain	 aspect	 ratios,	 respectively.	 The	 results	 share	 the	 same	 grain	
structures	 from	 the	 previous	 section	 and	 are	 computed	 by	 integrating	 the	 BTE	with	 the	
resulting	 effective	 mean	 free	 path	 and	 BvK	 dispersion	 relationship	 over	 the	 maximum	
phonon	frequency	for	Si.		

	
It’s	 worth	 restating	 that	 the	 thermal	 conductivity	 presented	 in	 the	 above	 figure	

corresponds	to	the	directional	thermal	conductivity	in	the	direction	of	heat	flux,	also	known	
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as	the	in-plane	thermal	conductivity	(𝑘&).	Since	we	have	two	sets	of	grain	structures	with	

aspect	ratios	𝜉 > 1	and	𝜉 < 1	at	the	same	increment	of	two,	a	grain	geometry	with	𝜉 = 1/2	

is	 a	 counterpart	 that	 rotates	90°	 from	a	grain	geometry	with	𝜉 = 2.	Namely,	 the	 in-plane	

thermal	conductivity	for	a	grain	geometry	with	𝜉 = 1/2	is		therefore	the	cross-plane	thermal	

conductivity,	𝑘' ,	 for	 a	 grain	 geometry	 with	 𝜉 = 2 .	 As	 a	 result,	 we	 define	 the	 thermal	

anisotropy	 ratio	 as	 𝑘&/𝑘' .	 As	 shown	 in	 Figure	 3.4(d),	 the	 thermal	 anisotropy	 ratio	

monotonically	 increases	 with	 grain	 aspect	 ratios	 up	 to	 256	 even	 at	 high	 temperatures;	

however,	 the	 increase	 in	 thermal	 anisotropy	 ratio	 from	an	 increasing	 aspect	 ratio	 is	 less	

prominent	at	higher	temperature	because	the	thermal	transport	 is	dominant	by	Umklapp	

scattering	at	the	high	temperature	limit.	

	

3.4	Phonon	Softening	Effect	in	Nanograined	Silicon	

	
Figure	3.5	|	(a)	Temperature-dependent	thermal	conductivity	of	nanograined	Si	for	a	grain	
aspect	ratio	of	1	(square	geometry)	with	different	grain	sizes	a%.	The	dash	lines	show	the	
thermal	conductivity	using	the	BvK	dispersion	for	bulk	silicon	(without	accounting	for	the	
change	 in	phonon	group	velocity	due	 to	 lattice	 softening).	 The	 solid	 lines	 show	 the	 size-
dependent	thermal	conductivity	accounting	for	the	lattice	softening	effect.	The	correction	is	
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made	using	a	modified	BvK	dispersion	relation	along	with	a	softening	factor	governed	by	
mechanical	properties	from	the	MD	simulation.	The	scatter	points	are	experiential	data	from	
Wang,	 et	 al.[3]	 (b)	 Contour	 plot	 showing	 the	 thermal	 conductivity	 reduction	 (%)	 as	 a	
function	of	both	the	temperature	and	effective	grain	sizes.	

	
Figure	3.5(a)	shows	the	thermal	conductivity	of	square	nanograined	Si	as	a	function	

of	temperature.	The	scatter	points	are	experiential	data	from	Wang,	et	al	[3].	The	dash	lines	

show	 the	 thermal	 conductivity	 of	 nanograined	 silicon	without	 accounting	 for	 the	 lattice	

softening	 effect,	 and	 the	 solid	 lines	 show	 the	 corrected	 thermal	 conductivity	 using	 the	

modified	BvK	dispersion	relation.	In	general,	the	lattice	softening	effect	is	more	prominent	

for	 nanograined	 Si	 with	 smaller	 grain	 size	 and	 at	 high	 temperature.	 As	 the	 grain	 size	

increases,	we	observe	that	the	solid	line	slowly	converges	to	the	dash	lines.	This	is	because	

the	mechanical	properties	of	nanograined	silicon	slowly	converge	to	the	bulk	limit	for	some	

large	 grain	 sizes	 that	 the	 softening	 effect	 becomes	 negligible.	 Using	 the	 extrapolated	

prediction	from	the	MD	mechanical	properties,	we	found	this	limit	to	be	somewhere	around	

125	to	140nm	(see	Figure	3.6).	Hence,	for	nanograined	silicon	with	a	grain	size	larger	than	

140nm,	 it’s	reasonable	to	assume	a	softening	factor	of	1	(i.e.,	using	the	conventional	bulk	

group	 velocity	 for	 the	 thermal	 conductivity	 calculation).	 It's	 worth	 mentioning	 that	 the	

effective	grain	size	from	the	previous	section	(100nm)	is	below	this	limit,	and	therefore	the	

thermal	 conductivity	 is	 affected	 by	 the	 lattice	 softening	 effect;	 however,	 we	 assume	 the	

softening	effect	be	negligible	to	better	observe	the	effect	of	grain	anisotropy	on	the	thermal	

properties.	



 

28 
 

	
Figure	3.6	|	Logarithmic	fit	of	the	moduli	of	square	nanograined	silicon	as	a	function	
of	grain	size.	As	the	grain	size	increases,	the	elastic	modulus	and	shear	modulus	converge	
to	the	bulk	values	for	some	grain	sizes	between	125	and	140	nm.	This	implies	that	the	lattice	
softening	effect	becomes	negligible	for	nanograined	silicon	with	a	grain	size	larger	than	140	
nm.	For	any	grain	size	smaller	than	140	nm	(lattice	softening	regimes),	we	need	to	apply	the	
softening	factor	for	the	thermal	conductivity	correction.	

	

With	 decreasing	 grain	 size	 and	 increasing	 temperature,	 the	 reduction	 in	 thermal	

conductivity	becomes	more	significant.	A	nanograined	silicon	with	an	average	grain	size	of	

4	nm	shows	about	50%	reduction	 in	 thermal	 conductivity	at	 a	 temperature	greater	 than	

200K.	While	the	 lattice	softening	effect	reduces	high	temperature	thermal	conductivity,	 it	

increases	 the	 low-temperature	 thermal	 conductivity.	 As	 shown	 on	 Figure	 3.5(b),	 this	

increase	 is	 less	 than	 5%	 for	 nanograined	 silicon	 at	 the	 low	 temperature	 limit	(𝑇 ≪ 𝜃,).	

Indeed,	 this	 “hardening”	 effect	 at	 the	 low	 temperature	 limit	 can	 be	 attributed	 to	 the	

competing	effect	between	the	increase	in	volumetric	specific	heat	capacity	and	the	decrease	

in	effective	phonon	mean	 free	path	due	 to	a	 lower	group	velocity.	 In	order	 to	 justify	 this	

phenomenon	 observed	 from	 the	modeling.	We	 need	 to	 look	 at	 the	 dependence	 of	 group	

velocity	 on	 the	 volumetric	 specific	 heat	 capacity	 and	 the	 effective	 mean	 free	 path,	
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respectively,	at	the	different	temperature	limits.	We	know	that		𝛬RPP = 𝑣(𝜏RPP ∝ 𝑣(4;	hence,	

reducing	the	group	velocity	while	keeping	the	bulk	volumetric	specific	heat	capacity	would	

result	in	a	thermal	conductivity	reduction	across	the	whole	temperature	range	(as	indicated	

by	 the	 green	 curve	 on	 Figure	 3.7).	 However,	 the	 volumetric	 specific	 heat	 capacity	 has	

different	behaviors	at	the	low-temperature	limit	(𝑇 ≪ 	𝜃,)	and	the	high	temperature	limit	

( 𝑇 ≫ 	𝜃, ).	 The	 volumetric	 specific	 heat	 capacity,	 𝐶0 =
4.@#

8
𝑛C𝑘" ]

Y$

Z%
$_ 	 ∝

4
Z%
$ ∝ 𝑣(3) ,	 is	

proportional	to	𝑣(3)	at	the	low-temperature	limit	and	is	independent	of	the	change	in	group	

velocity	at	the	high-temperature	limit	(i.e.	𝐶0 ∝ 𝑣(%).	Therefore,	reducing	the	group	velocity	

while	keeping	the	bulk	mean	free	path	would	result	in	a	significantly	increase	in	the	thermal	

conductivity	from	low	to	intermediate	temperatures	(as	indicated	by	the	red	curve	on	Figure	

3.7).	 As	 a	 result,	 the	 “hardening”	 effect	 occurs	when	 the	 contribution	 of	 softened	 group	

velocity	on	the	volumetric	specific	heat	capacity	is	higher	than	that	on	the	mean	free	path.	

	

Figure	3.7	|	Contributions	of	softened	group	velocity	on	the	volumetric	specific	heat	capacity	
and	mean	free	path,	respectively.	
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CHAPTER	4: SUMMARY	AND		CONCLUSIONS	

This	 thesis	work	 leads	 to	 two	major	 conclusions.	 First,	 we	 demonstrate	 that	 it	 is	

possible	 to	 achieve	 thermomechanical	 anisotropy	 in	 nanograined	 silicon	 by	 tailoring	 the	

aspect	ratio	of	the	nanograin	structure.	To	this	end,	we	establish	a	simulation	framework	

using	heat-flux	driven	Monte	Carlo	ray	tracing	simulations,	which	we	validate	by	comparing	

the	frequency-dependent	treatments	at	the	grain	boundaries	to	experimental	data.	Our	ray	

tracing	simulation	results	show	that	reducing	the	material	grain	size	(i.e.,	increasing	grain	

boundary	density)	effectively	decreases	the	thermal	conductivity	due	to	the	dense	network	

of	grain	boundary	interfaces	that	scatter	phonons.	Furthermore,	our	results	for	ideal	grain	

structures	 reveal	 that	 a	 flexible	 degree	 of	 thermal	 anisotropy	 can	 be	 achieved	 within	

different	aspect	ratios,	which	could	be	obtained	by	using	nanowires	as	precursors	for	bulk	

materials.	We	also	find	that	the	elastic	modulus	at	the	nanoscale	is	highly	dependent	on	the	

grain	size,	where	the	grain	boundaries	are	held	responsible.	

Second,	 the	 lattice	 softening	effect	 reduces	high-temperature	 thermal	 conductivity	

and	increases	the	low-temperature	thermal	conductivity	of	nanograined	silicon.	While	the	

mechanical	properties	of	nanograined	silicon	decrease	with	reducing	grain	size,	 the	high-

temperature	thermal	conductivity	decreases	significantly	due	to	lattice	softening.	To	account	

for	 the	 lattice	softening	effect	on	 the	 thermal	conductivity,	we	use	 the	elastic	moduli	and	

shear	moduli	obtained	from	MD	simulation	and	establish	their	relationship	with	the	speed	

of	sound	to	modify	the	exiting	BvK	dispersion	relation	for	bulk	silicon	and	hence	the	phonon	

group	 velocity.	 The	 modeling	 results	 suggest	 that	 the	 lattice	 softening	 effect	 is	 more	

prominent	for	smaller	grain	sizes	at	the	high-temperature	limit.	
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In	summary,	controlling	the	grain	size	and	aspect	ratio	of	a	nanostructure	is	crucial	

for	achieving	optimal	thermal	conductivity	reduction	and	thermal	anisotropy.	Our	presented	

guidelines	for	reducing	the	thermal	conductivity	using	grain	boundary	scattering	and	lattice	

softening	 and	 introducing	 thermal	 anisotropy	 in	 nanocrystalline	materials	 highlights	 the	

microstructure-engineering	 of	 tunable	 thermomechanical	 property	 and	 have	 meaningful	

impact	 on	 multifunctional	 materials	 for	 applications	 in	 thermoelectric	 cooling,	 power	

generation,	and	heat-guiding	structures.	
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