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ABSTRACT Acute myeloid leukemia (AML) patients refractory to induction therapy or relapsed 
within 1 year have poor outcomes. Autocrine production of hepatocyte growth factor 

by myeloid blasts drives leukemogenesis in preclinical models. A phase Ib trial evaluated ficlatuzumab, 
a first-in-class anti-HGF antibody, in combination with cytarabine in this high-risk population. Dose-limiting  
toxicities were not observed, and 20 mg/kg was established as the recommended phase II dose. The 
most frequent treatment-related adverse event was febrile neutropenia. Among 17 evaluable patients, 
the overall response rate was 53%, all complete remissions. Phospho-proteomic mass cytometry 
showed potent on-target suppression of p-MET after ficlatuzumab treatment and that attenuation of 
p-S6 was associated with clinical response. Multiplexed single-cell RNA sequencing using prospectively 
acquired patient specimens identified IFN response genes as adverse predictive factors. The ficlatu-
zumab and cytarabine combination is well tolerated, with favorable efficacy. High-dimensional analyses 
at single-cell resolution represent promising approaches for identifying biomarkers of response and 
mechanisms of resistance in prospective clinical studies.

SIGNIFICANCE: This study demonstrates a favorable safety profile and promising clinical activity of 
ficlatuzumab and cytarabine in high-risk AML, thus supporting further investigation of this combina-
tion in a randomized trial. It also shows the utility of a novel application using multiplexed single-cell 
analyses to detect on-target activity and identify biomarkers of response.
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INTRODUCTION
Acute myeloid leukemia (AML) is a rapidly fatal disease 

characterized by uncontrolled proliferation of malignant 
cells in the blood and the bone marrow (1). Standard 
induction therapy for patients with good performance 
status consists of anthracycline and cytarabine combi-
nation, termed “7 + 3.” While some achieve a complete 
remission (CR) with this regimen, approximately 20% to 
40% of patients fail to respond or relapse soon thereaf-
ter. The therapy with the greatest curative potential for 
patients with relapsed or refractory disease is an alloge-
neic hematopoietic cell transplant (HCT). Cytarabine- 
containing regimens remain the cornerstone of salvage 
chemotherapy prior to HCT, although no single regimen is 
considered standard (2, 3). Even with an intensive regimen, 
only 30% of patients achieve a CR with a median survival of 

7.5 months (4). Therefore, an urgent need exists for novel 
therapies to improve patient outcomes in this setting.

Studies have demonstrated the importance of the MET/
HGF pathway in mediating treatment resistance and tumo-
rigenesis across many tumors, including AML (5–7). MET 
encodes a receptor tyrosine kinase (RTK), and its only natural 
ligand is HGF (8). HGF binding leads to receptor dimeriza-
tion, intracellular tyrosine (Y1234 and 1235) phosphoryla-
tion, and activation of the RAS/MAPK and the PI3K/AKT 
pathways, which mediate cellular proliferation, invasion, 
and survival. Using a loss-of-function short hairpin RNA  
screen, Kentsis and colleagues demonstrated that autocrine 
secretion of HGF was important for AML leukemogenesis 
(7). Genetic depletion of HGF using antibodies or MET 
inhibitors suppressed the growth of AML cells with aberrant 
HGF expression. In addition, elevated HGF expression was 
observed in a broad panel of myeloid-monocytic cell lines 
(23/28; ref. 9). Finally, retrospective series have shown that 
high serum HGF correlates with more aggressive disease and 
shortened survival (10–13).

We hypothesized that HGF depletion using the first-
in-class mAb ficlatuzumab in combination with high-dose 
cytarabine (HiDAC) would improve clinical outcomes in 
patients with relapsed/refractory AML through abrogation 
of the MET signaling pathway. To this end, an investigator- 
initiated phase Ib trial (NCT02109627) was conducted. 
Multiplex high-dimensional profiling using single-cell RNA 
sequencing (scRNA-seq) of over 114,000 prospectively col-
lected peripheral blood mononuclear (PBMC) single cells 
from 12 patients, across five time points, paired with mass 
cytometry (CyTOF), assessed changes during treatment to 
identify potential biomarkers and mechanisms correlated 
with response and resistance (14–16). On-target action of 
ficlatuzumab downregulated p-MET. Phosphoprotein sup-
pression downstream of MET was correlated with response 
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to the drug. Additional predictive transcription signatures 
were identified throughout the treatment course. Overall, 
this study highlights the prospective dynamic changes in 
AML in response to the novel agent ficlatuzumab at a high 
cellular and molecular resolution.

RESULTS
Ficlatuzumab and High-Dose Cytarabine Is Well 
Tolerated in Primary Induction–Refractory AML

Between January 2014 and October 2018, a total of 18 
patients were consented and 17 enrolled in the trial. One 
patient was ineligible due to active fungal pneumonia. Full 
clinical characteristics are summarized in Table 1 and fur-
ther delineated for each patient in Supplementary Table 
S1. The median age was 58 years (range 22–74), with four 
patients over the age of 65. Thirteen patients had de novo 
AML, three had secondary AML, and one had MDS, RAEB-2. 
A total of 41.2% of the patients (7/17) exhibited a complex 
karyotype, defined as three or more independent abnor-
malities, and 23.5% (4/17) harbored 5q deletion. Mutations 
in FLT3-ITD, TKD, NPM1, GATA2, MECOM, TP53, and 
ASXL1 were each observed in one patient (5.9%); RUNX1 in 
two patients (11.8%); and IDH2 in three patients (17.6%). By 
virtue of their cytogenetics or gene mutations, 88.2% (15/17) 
of patients received the 7 + 3 induction regimen initially 
and 70.6% (12/17) exhibited poor-risk disease at diagnosis 
as defined by the European LeukemiaNet (ELN) guidelines 
(17). All patients were primary induction refractory, with a 
baseline median white blood cell count of 7.04 × 109/L (range 
0.1–55.7) and 19% bone marrow blasts (range 4.5–95).

Three patients were enrolled in each dose-escalation cohort 
(Fig. 1A), and PBMCs, sera, and bone marrow biopsies were 
collected at prespecified time points (Fig. 1B). Sixty-five per-
cent (11/17) of the patients completed all planned doses of 
ficlatuzumab induction. No delay in the drug administra-
tion was observed. Eleven doses (16%) of ficlatuzumab were 
missed in six patients who discontinued treatment due to 
progression of disease (three patients), sepsis (one patient), 
upper gastrointestinal bleeding (GIB; one patient) and start-
ing consolidation at physician’s discretion (one patient; Table 
2; Supplementary Table S1). Three patients, all responders, 
received extra ficlatuzumab doses (seven total) during con-
solidation at the physician’s discretion (Supplementary Table 
S1). No protocol-defined dose-limiting toxicities (DLT) were 
identified, and the 20 mg/kg dose of ficlatuzumab was cho-
sen for the dose-expansion cohort. Supplementary Table S2 
shows all treatment-emergent adverse events (AE). The most 
common toxicity and ≥ grade 3 AE was febrile neutropenia 
(9/17; 53%; Table 2). Other common toxicities included sepsis 
(3/17; 17%), esophagitis and ulceration, GIB, and hypoten-
sion (2/17; 12% each). None of these were attributed spe-
cifically to ficlatuzumab except possibly for GIB. Serious AEs 
(SAE) occurred in two patients (12%; Supplementary Table 
S3). There was one death from complication of sepsis (grade 
5), unrelated to the study drug. Another experienced grade 4 
GIB after the first dose of ficlatuzumab at 20 mg/kg, which 
recurred after a second dose. Thus, further treatment with 
ficlatuzumab was discontinued. Because this isolated episode 
occurred during the dose-expansion phase, it is considered an 

Table 1. Patient demographic and baseline characteristics

Characteristic (n = 17) N (%)
Age, y
 ≥65 4 (23.5%)
 <65 13 (76.5%)
 Median (range) 58 (22–74)
Sex
 Male 10 (58.8%)
 Female 7 (41.2%)
ECOG Performance Status
 ≤1 17 (100%)

Diagnosis
 De novo AML 13 (76.5%)
 Secondarya 3 (17.6%)
 MDS, RAEB-2 1 (5.9%)
Relapsed versus primary refractory
 Primary refractory 17 (100%)
Risk category (ELN 2017)
 Favorable 1 (5.9%)
 Intermediate 4 (23.5%)
 Poor 12 (70.6%)
Cytogenetics
 Complex karyotype 7 (41.2%)
 5q deletion 4 (23.5%)
 Monosomal karyotype 1 (5.9%)
 Normal karyotype 5 (29.4%)
Mutations
 FLT3-ITD 1 (5.9%)
 FLT3-TKD 1 (5.9%)
 IDH1 or 2 3 (17.6%)
 NPM1 1 (5.9%)
 GATA2 1 (5.9%)
 MECOM 1 (5.9%)
 TP53 1 (5.9%)
 RUNX1 2 (11.8%)
 ASXL1 1 (5.9%)
Baseline white cell blood count (× 109/L)
 ≥30 2 (11.8%)
 ≥10 to <30 1 (5.9%)
 <10 14 (82.3%)
 Median (range) 7.04 (0.1–55.7)
Baseline bone marrow blast count (%)
 ≥50 6 (35.3%)
 ≥20 to <50 2 (11.8%)
 <20 9 (52.9%)
 Median (range) 19 (4.5–95)
Prior therapies
 7 + 3b 15 (88.2%)
 Othersc 2 (11.8%)

NOTE: Date of censoring: June 30, 2020.
Abbreviations: ECOG, Eastern Cooperative Oncology Group; ELN, 
European LeukemiaNet; MDS, RAEB-2, myelodysplastic syndrome, 
refractory anemia with excess blasts type 2.
aIncludes AML with myelodysplasia-related changes (n = 1), therapy-
related myeloid neoplasm (n = 1), and evolved from chronic myelo-
monocytic leukemia (n = 1).
bIncludes two patients who subsequently received 5 + 2.
cOne patient received ADE (cytarabine, daunorubicin, and etoposide) 
and the other azacitidine plus venetoclax and daunorubicin.
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Figure 1.  Trial schema and endpoints. A, Dose-escalation scheme utilizing the traditional 3 + 3 design. Ficlatuzumab was started at the 10 mg/kg dose 
and escalated by increments of 5 mg/kg while keeping the dose of cytarabine fixed at 2,000 mg/m2. B, Timeline for drug administration and biospecimen 
acquisition. Bone marrow biopsies were collected at baseline, on day 14, at count recovery, and at disease relapse. Blood collection occurred at baseline, 
on days 1 to 3, prior to and 24 hours after each subsequent doses of ficlatuzumab at count recovery, and at relapse. C, Kaplan–Meier curves for 
progression-free survival. D, Kaplan–Meier curves for overall survival. E, Kaplan–Meier curves for overall survival censored at time of allogeneic stem cell 
transplant. P values indicate comparison between responders and nonresponders. All patients (green), responders (blue), and nonresponders (red).
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idiosyncratic reaction rather than a DLT. The 30- and 60-day 
mortality was 6% (1/17).

Overall response rate (ORR) based on bone marrow biopsy 
was 53% (9/17), all CRs (Supplementary Table S1). Sixteen 
patients had minimal residual disease (MRD) status assessed, 
and four of the nine responders were MRD negative (E5, 6, 9, 
and 14). Ten patients, eight responders and two nonrespond-
ers, proceeded to allogeneic HCT. Among these, six patients  
currently remain in remission. Full transplant characteris-
tics are summarized in Supplementary Tables S4 and S5. 
Median time from start and the last dose of ficlatuzumab to 
transplant are 107 and 64 days, respectively (range 64–224 
and 23–172). Fludarabine and busulfan was the most com-
mon conditioning regimen used, and 40% (4/10) of the 
patients also received rATG. One person received clofarabine 
and melphalan, one fludarabine/cyclophosphamide/low-
dose total body irradiation using a haploidentical protocol, 
and another cyclophosphamide/etoposide/total marrow and 
lymphoid irradiation for active disease. Sixty percent (6/10) 
had matched unrelated donors, and 40% (4/10) had sibling 
donors. Fifty percent (5/10) of the donors were exact haplo-
type matches. One was a haploidentical sibling donor. Three  
patients received post-HCT azacitadine due to poor-risk 
disease. Another patient had early-relapse post-HCT that 
showed molecular evolution of new BCR–Abl and RUNX 
mutations, underwent reinduction with HiDAC, dasatinib, 
and sorafenib, and remained in remission with negative BCR–
Abl PCR on maintenance ponatinib. At the time of censoring 

on June 30, 2020, the median progression-free survival (PFS) 
and overall survival (OS) for all patients were 6.6 and 18.1 
months, respectively, and 31.2 months and not yet reached 
for responders (Fig. 1C and D). When censored for allogeneic 
HCT, the OS was 9.5 months for all patients and not yet 
reached for responders (Fig. 1E).

Ficlatuzumab’s On-Target Effect Potently 
Suppresses the MET Axis

To assess the target engagement of ficlatuzumab in the 
serum, hHGF ELISA was performed using banked sera from 
the dose-escalation cohort (E1–9) at baseline and at prede-
fined time points. When compared with normal controls, 
there was no discernible difference in baseline HGF levels and 
no difference between responders (n = 4) versus nonrespond-
ers (n = 5; Supplementary Fig. S1A and S1B). Samples were 
run in triplicate, and the results averaged (Supplementary  
Fig. S1C and S1D). Addition of ficlatuzumab did not affect 
detection of HGF over the range of HGF concentrations 
detected in human sera (Supplementary Fig. S1E and S1F).

Mass cytometry (CyTOF) was employed to more precisely 
quantitate the on-target action of ficlatuzumab. Antibod-
ies were conjugated with isotopically pure heavy metals to 
identify surface markers and intracellular phosphoproteins 
on the single-cell level with minimal overlap in metal signals. 
The custom panel of 33 antibodies, including 11 phospho-
proteins (Supplementary Table S6), characterized the major 
cellular subsets and the key intracellular signaling pathways 
downstream of MET (STAT, MAPK, and PI3K/AKT). The 
T-cell subgroups were identified using CD3+, CD4+, CD7+, 
or CD8+. Similarly, the B-cell population expressed CD19; 
natural killer (NK) cells were CD7+ and CD3−; and plasmacy-
toid dendritic cells (pDC) had CD123+ and HLA-DR+. CD34+ 
and CD33+ defined the early and late myeloid populations, 
respectively, because monocytes expressed CD33+ and HLA-
DR+, and were CD19. Early granulocytes were CD33+, CD16+, 
and HLA-DR− (Supplementary Fig. S2A).

In total, PBMCs from eight patients (E1, 3–5, 7, 9, 12, and 13)  
and an untreated healthy control were analyzed using CyTOF. 
Where the cell numbers were limited (E2, 6, 11, and 8), the 
samples were prioritized for scRNA-seq instead of CyTOF. 
Samples included baseline prior to treatment initiation (time 
zero), 24 hours (day 1), and 48 hours (day 2) after the first dose 
of ficlatuzumab but prior to the administration of cytarabine 
and 24 hours after the first dose of cytarabine (day 3; Fig. 1B). 
The day 1 and day 2 samples reflected the only time points 
during the study where the ficlatuzumab-specific conse-
quences may be studied without the confounding effects from 
systemic cytarabine. Because ficlatuzumab is an HGF-directed 
antibody, its binding to HGF would inhibit phosphorylation 
and subsequent activation of the MET RTK. CyTOF analyses 
using two independent methods, uniform manifold approxi-
mation and projection (UMAP; ref. 18) and spanning-tree 
progression analysis of density-normalized events (SPADE;  
ref. 19), demonstrated statistically significant on-target atten-
uation of p-MET in ficlatuzumab-treated patients compared 
with control in both the CD34+ (P = 0.01 UMAP and 0.04 
SPADE) and CD33+ (P = 0.02 UMAP and 0.014 SPADE) myeloid 
compartments (Fig. 2A–C). The change in T-MET was not sta-
tistically significant (Fig. 2D and E). Pervanadate stimulation,  

Table 2. Grade ≥3 adverse events, mortality, and doses  
of drug administered

Event (n = 17) N (%)
Febrile neutropenia 9 (53%)

Sepsis 3 (17%)

Esophagitis/ulcers 2 (12%)

GIB 2 (12%)

Hypotension 2 (12%)

LFT elevation 1 (6%)

Hypokalemia 1 (6%)

Respiratory distress 1 (6%)

Multi-organ failure 1 (6%)

30-Day mortality 1 (6%)

60-Day mortality 1 (6%)

Total doses of ficlatuzumab administereda 64

Delayed dosesb 0 (0%)

Missed dosesc 11 (16%)

NOTE: Date of censoring: June 30, 2020.
Abbreviation: LFT, liver function test.
aTotal doses of ficlatuzumab included four doses during induction per 
patient and any dose given as consolidation at the treating physician’s 
discretion.
bDelayed doses only included induction (n = 68), since initiation of 
consolidation may be variable.
cMissed doses only accounted for dose during induction, since not all 
patients received ficlatuzumab consolidation.



HGF Blockade Is Safe with Preliminary Efficacy in Refractory AML RESEARCH ARTICLE

 SEPTEMBER  2021 BLOOD CANCER DISCOVERY | 439 

Figure 2.  Ficlatuzumab treatment exerts on-target effect through attenuation of p-MET. A, UMAP representation of mass cytometry data accord-
ing to cellular identity after filtering for debris. B, p-MET expression in the CD34+ early myeloid compartment between all patients, independent of 
pervandate stimulation, versus untreated control as assessed by UMAP and SPADE. C, p-MET expression in the CD33+ myeloid compartment between 
all patients, independent of pervandate stimulation, versus untreated control as assessed by UMAP and SPADE. D, T-MET expression in the CD34+ early 
myeloid compartment between all patients versus untreated control. E, T-MET expression in the CD33+ myeloid compartment between all patients versus 
untreated control as assessed by UMAP and SPADE. F, Differential p-S6 expression between nonresponders (NR) and responders (CR) using both UMAP 
and SPADE. P values calculated using the Mann–Whitney test.
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which blocks endogenous tyrosine phosphatases, augmented 
the p-MET signals in some treated samples but did not 
appear to alter the trajectory of their expression over time to 
any appreciable extent (20). The initial level of p-MET and 
p-S6 and their changes over time, in the presence and absence 
of pervanadate, are shown in Supplementary Fig. S2B–S2E. 
These observations were consistent with our original hypoth-
esis, suggesting that the myeloid-derived cells demonstrated 
greater sensitivity toward inhibition of the HGF–MET axis.

Degree of Effector Pathway Attenuation 
Correlates with Response to Ficlatuzumab

To explore potential predictive phospho-proteomic bio-
markers, we classified patients by their clinical responses. 
Patients E1, 3, and 7 progressed on study, while the others 
achieved CR. All three patients in cohort 1 exhibited disease 
progression. Patient 5 in cohort 2 received 15 mg/kg of 
ficlatuzumab, while the others received 20 mg/kg. Effector 
pathways examined in the CyTOF panel included MAPK, 
PI3K/ATK, JAK/STAT, NF-κB, p-CREB, and p-PLCγ2. Each 
sample was divided in half, and one was stimulated with 
pervanadate, while the other was not. The ratio in protein 
expression level at 24 and 48 hours post-ficlatuzumab was 
normalized relative to the protein expression at time zero. 
Because protein expression trended similarly at 24 and 48 
hours (Supplementary Fig. S2B–S2E) and the unstimulated 
versus stimulated samples showed concordant changes over 
time, clinical response was the only variable used for stratifi-
cation during statistical analysis. Surprisingly, p-MET expres-
sion was not predictive of response in either the CD34+ (P = 
0.42 UMAP and 0.2 SPADE) or CD33+ cells (P = 0.24 UMAP 
and 0.59 SPADE; Supplementary Figs. S3A and S3B and S4A 
and S4B). Only p-S6 was significant in the CD33+ population 
after Bonferroni adjustment (P = 0.004 by UMAP and 0.001 
by SPADE, respectively; <0.005; Fig. 2F). None of the other 
downstream effector pathways reached statistical significance 
using both analyses after Bonferroni correction (Supplemen-
tary Figs. S2A and S2B and S3A and S3B). p-S6 has been 
implicated to be a direct target of TORC1, which functions 
downstream of both the PI3K/AKT and the MAPK pathways, 
the latter likely through a TORC-1 independent, p90 riboso-
mal S6 kinase (RSK)–dependent mechanism (21). Emergence 
of p-S6 suppression as a biomarker for predicting ficlatu-
zumab response underscores p-S6 as a point of convergence 
for key signaling axes downstream of MET, that is, PI3K and 
MAPK, and supports a linear relationship that attenuation 
of p-MET leads to repression of target proteins necessary for 
cellular growth and survival (22). These results suggest that 
the leukemic blasts may exhibit enhanced dependency on 
HGF–MET inhibition relative to other cell lineages.

Application of a Multiplexing scRNA-seq Platform 
to Identify Major Immune Subsets in PBMCs

To assess transcriptional biomarkers predictive of response, 
scRNA-seq was employed as a complementary high-dimensional 
analysis in addition to CyTOF. We used freemuxlet, a novel 
extension of the demuxlet algorithm that allows for multi-
plexing of distinct samples from unrelated individuals by 
using single-nucleotide polymorphisms (SNP; refs. 23–25). 
Freemuxlet identifies expressed SNPs in raw scRNA-seq data 

and uses a Bayesian clustering algorithm to form N read 
groups on the basis of this genetic variance, where N is equal 
to the number of genetically unique samples in the pool.

Fifty-seven samples collected from 11 distinct AML 
patients (E1–7, E9, E11–13), at up to five time points each, 
were distributed among five distinct pools using a modified 
Latin Square design (Supplementary Fig. S5A). Each pool 
contained samples from genetically unrelated individuals at 
different time points to allow for demultiplexing using SNP 
variants and to minimize batch effects. Samples from the 
healthy control were added to each pool to ensure uniformity 
of cell capture and sequencing. Patient samples were geno-
typed using the Infinium OmniExpressExome-8 v1.6 Bead-
Chip (Illumina), identifying thousands of unique variants 
per patients. Duplicate capture reactions using the 10x Chro-
mium 3′ capture technology were performed for each sample 
pool targeting 25,000 to 30,000 cells recovered. The number 
of cells captured in each reaction replicate demonstrated high 
concordance (Supplementary Fig. S5B). A total of 175,667 
cells were captured over 10 reactions; 373 (0.2%) could not be 
assigned a genotype by freemuxlet and were deemed ambigu-
ous, and 60,787 (34.6%) cells were identified as doublets using 
genetic variant data, a number expected with our initial load-
ing conditions. Additional filtering was performed to remove 
low-quality cells based on percentage of reads mapped to 
mitochondrial genes and number of recovered genes. Demul-
tiplexing was completed by matching single-nucleotide vari-
ants (SNV) in freemuxlet genetic clusters to known patient 
SNVs. Each freemuxlet-predicted cluster was matched to a 
unique patient cluster (Supplementary Fig. S5C).

Global gene expression was visualized in the scRNA-seq 
dataset using the UMAP method of dimensionality reduction 
in Monocle 3 (refs. 18, 26; Supplementary Fig. S6A and S6B). 
To reduce interpatient heterogeneity and to facilitate cluster-
ing, the mutual nearest neighbor alignment approach pack-
age Batchelor was utilized to account for batch preparation 
among individual samples (27). Unbiased cell clusters were 
defined using the partitioning method (Fig. 3A and B) with 
projection onto the unaligned dataset in Supplementary Fig. 
S6B (20). Initial cluster assignments were made by inspection 
of the top lineage-specific markers (n = 50) from each cluster 
(Fig. 3C; Supplementary Table S7). Broadly speaking, the 
myeloid lineage is divided into three clusters: a large popula-
tion of cells strongly expressing markers of myeloid matura-
tion including CD33+, CD14+, S100A9, and lysozyme (LYZ), 
termed “late”; a hematopoietic stem cell (HSC)–like popula-
tion characterized by CD34+, GATA2, and the leukemia stem 
cell marker CD99, called “early”; and a smaller population 
with distinct transcriptomic signature and high expression 
encoding the AML marker HLA-DRB1, collectively termed 
“HLA-DR+” (28). T, B, plasma, and erythrocytic cell clusters 
were identified using canonical markers (Fig. 3C and D). A 
small cluster of dividing cells with strong expression of Ki-67 
and tubulin was also observed. To confirm these supervised 
cluster assignments, automated cell-type analysis was per-
formed by mapping to a highly annotated PBMC reference 
with Seurat v4 (Supplementary Fig. S6C; ref. 29). Supervised 
labeling of the malignant cell types matched well to the nor-
mal cell-type identifiers provided by Seurat: The late cluster 
corresponded to Seurat’s CD14 and CD16 monocytic clusters, 
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Figure 3.  Cell-type identification and HGF expression using freemuxlet. A, Batch-corrected UMAP representation of all cells according to patient 
identity after filtering for doublets and low-quality cells. B, Batch-corrected UMAP partitioned using top expressed markers according to Jensen–Shannon 
divergence. PC, plasma cells. C, Heatmap of top expressed genes by cluster. D, Dot plot denoting major immune subsets versus lineage-specific markers. 
Size of the circles indicates proportion of cells expressing the particular marker. Color denotes mean expression in log scale. E, Dot plot quantifying 
temporal HGF expression across cell type and stratified by response and time. Circle size indicates proportion of cells expressing HGF. Color denotes 
mean HGF expression in log scale.
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while the early cluster corresponded to Seurat’s hematopoietic 
stem/progenitor cell cluster, and the HLA-DR+ group corre-
sponded to Seurat’s cDC1, cDC2, and AXL+ DC clusters.

To harmonize scRNA-seq and CyTOF expression data, 
equivalent cell populations in available samples were defined 
on the basis of CD33 and CD34 in CyTOF and observation 
of reads mapping to corresponding CD33 or CD34 in scRNA-
seq data. For B and T cells, populations were defined on the 
basis of CD19 and CD20 for B cells and CD3 and CD7 for T 
cells in CyTOF, and assignment to the respective B- and T-cell 
partition in the scRNA-seq data. All CyTOF markers without 
1:1 correspondence to scRNA-seq markers, such as phos-
phoproteins or specific protein isoforms such as CD45RA, 
were excluded. We compared the fractional contribution of 
each major cell type in samples where both CyTOF and  
scRNA-seq data were available. Log transformation was 
applied to improve linearity. Linear regression demonstrated 
a coefficient of determination (R2) of 0.79 and P < 2.2 × 10−16 
(Supplementary Fig. S6D). Furthermore, a correlation matrix 
was generated from the mean expression values for all remain-
ing CyTOF/scRNA-seq marker pairs within each defined cell 
cluster (Supplementary Fig. S6E). The high degree of correla-
tion between CyTOF and scRNA-seq markers and the cellular 
proportions identified using these two methods support our 
cell-type identification strategy and overall data quality.

Elevated HGF Expression Predicts a Lack of 
Response to Ficlatuzumab

We hypothesized that induction of HGF could be a mecha-
nism of resistance to ficlatuzumab. Therefore, HGF expres-
sion would correlate with lack of clinical response to the 
study drug. To investigate the temporal dynamics of HGF 
expression, its expression in the malignant cell populations 
of all study patients, excluding the normal control, is shown 
in Fig. 3E and Supplementary Fig. S7A, with T cells included 
as a negative internal control. Smaller populations (B and 
dividing cells) have been omitted, since the population aver-
ages can be skewed by small samples. Regression analysis was 
performed using a generalized linear model with the nega-
tive binomial distribution to predict the expression of HGF. 
HGF expression was stratified by treatment day and clinical 
response. Response and partition assignment were included 
as predictors. Independent of partitioning, nonresponse to 
ficlatuzumab was a statistically significant predictor of higher 
HGF expression on days 0, 1, and 42 to 44 relative to respond-
ers (day 0, P = 0.0008; day 1, P = 0.016; day 2, P = 0.17; day 3, 
P = 0.26; days 42–44, P = 8.3 × 10−7; Fig. 3E). HGF expression 
was restricted mainly to the early HSC-like, HLA-DR+, and 
late leukemia cell clusters, with low expression in nonmy-
eloid cells and in the normal control (Fig. 3E; Supplementary 
Fig. S7A). Together, these data support that HGF acts as a 
prosurvival factor stimulating the growth of myeloid blasts 
and that persistence of high HGF expression appears to be a 
mechanism of de novo resistance to ficlatuzumab.

Recently, Edwards and colleagues reported that subpopu-
lations of stromal support cells within the hematopoietic 
niche express CSF1R and that CSF1 stimulation results in 
HGF secretion, which activates cMET on the AML blasts, 
promoting their growth (30). We investigated the cellular 
expression pattern of CSF1R and demonstrated that it was 

restricted primarily to the HLA-DR+ and the late leukemia 
clusters, with relatively low levels on B and T cells as well and 
the early cluster where HGF was highest (Supplementary Fig. 
S7B). Furthermore, HGF and CSF1R exhibited discordant 
expression patterns with respect to treatment day and clinical 
response. Whereas HGF expression was strongly induced in 
the nonresponders throughout the treatment course, espe-
cially at days 42 to 44, CSF1R expression was higher in 
nonresponders only on day 0 and day 1 and was lower in non-
responders compared with responders on days 2, 3, and 42 to 
44, independent of partition assignment (P = 0.02, 0.001, and 
0.03, respectively; Supplementary Fig. S7A–S7C).

We hypothesized that ficlatuzumab inhibition of the 
HGF–c-Met pathway will lead to concomitant downregula-
tion of HGF transcriptional targets. To test this, we interro-
gated the expression pattern of HGF target genes, identified 
through public databases (GSE12197), within our scRNA-
seq data (31). Consistent with published reports, HGF 
blockade resulted in repression of its effectors and lower 
expression in the responders compared with nonrespond-
ers (Supplementary Fig. S7D). Of note, the MET expression 
could not be assessed due to its low level of expression in 
all lineages.

Gene Module Analysis Identifies Biomarkers of 
Response to Ficlatuzumab

Gene module analysis was used to identify coregulated 
genes that define functionally relevant cellular states and 
to extrapolate a transcriptomic signature of response to 
ficlatuzumab across this heterogeneous cellular population 
(32). Twenty gene modules were identified, with each mod-
ule containing 35 to 4,817 genes (Supplementary Table S8). 
The aggregate expression for each module was calculated in 
cells from the early, late, and HLA-DR+ clusters and used to 
perform unsupervised, hierarchical clustering according to 
treatment day and response to therapy (Fig. 4A). Cells from 
the nonresponders partitioned separately from the respond-
ers and the controls. At count recovery (days 42–44), the 
responders clustered most closely with the normal controls 
(Fig. 4A). Four gene modules (3, 18, 1, and 7) accounted for 
this classification. While modules 3 and 18 were upregu-
lated in nonresponders compared to responders throughout 
the treatment course, module 1 was strongly increased in 
responders. Module 7 exhibited the highest expression in 
nonresponders at days 0 and 42 to 44 and is the most closely 
associated with nonresponse to study therapy.

Gene Ontology (GO) term enrichment analysis using 
GOrilla and REVIGO was employed to identify biological 
pathways enriched in each of these modules and to col-
lapse lists of GO terms based on semantic similarity, respec-
tively (33, 34). Both modules 3 and 18, overexpressed in 
nonresponders, were highly enriched in genes for protein 
translation (Fig. 4B–E). Module 3 also contained additional 
genes related to cell–cell adhesion and signaling. Notably, 
nonresponders exhibited higher expression of p-S6 protein 
by CyTOF, which has been shown to correlate with and 
modulate protein translation (35, 36). Module 1, increased in 
responders, contained genes related to myeloid and leukocyte 
activation (Fig. 4F and G). Module 7, also overexpressed in 
nonresponders, was strongly enriched for type I IFN and viral 
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response pathways, with a P value threshold of less than 10−11 
(Fig. 4H and I). The type I IFN pathway has been associated 
with induction of proinflammatory cytokines such as IL6 to 
promote myelopoiesis and treatment resistance (37–39).

DISCUSSION
We conducted a phase Ib clinical trial of the novel HGF 

antibody ficlatuzumab targeting the MET axis combined 
with HiDAC in patients with induction-refractory AML. 
The dose-escalation portion of the study suggested that 
this combination was safe, and no DLTs were observed. 
The dose of 20 mg/kg of ficlatuzumab was chosen for the 
dose-expansion phase. The CR rate of 53% and median OS 
of 18.1 months observed in this study are promising for this 
high-risk population and quite favorable when compared 
with the CR rate of 30% and median OS of 7.5 months in the 
vosaroxin and HiDAC arm observed in the phase III VALOR 
trial using similar eligibility criteria (4). All patients who 
achieved a CR proceeded to allogeneic HCT except for one. 
None of these patients experienced any unexpected toxicities 
following allogeneic HCT.

An extensive series of correlative studies were conducted to 
further dissect the mechanism of ficlatuzumab action. Serum 
HGF levels did not reveal any significant differences following 
HGF blockade, likely due in part to the fact that the HGF 
capture antibody could not differentiate between free versus 
the ficlatuzumab-bound HGF. Thus, ELISA may overestimate 
the amount of circulating, functional HGF available.

To our knowledge, this represents the largest cohort of 
prospectively acquired, longitudinally analyzed single-cell 
dataset of patients with AML to date. Complementary high-
dimensional profiling platforms were used—CyTOF and 
scRNA-seq—to investigate the proteomic and transcriptional 
alterations of PBMCs throughout the treatment course. 
Compared with serum levels, CyTOF offered superior resolu-
tion of on-target inhibition of the HGF receptor MET. HGF 
binding results in MET phosphorylation at multiple tyrosine 
residues, including Tyr1234/1235 assayed in CyTOF that are 
critical for kinase activation (22). This inhibition appeared to 
be dose dependent and specific within the myeloid lineage, 
because opposite effects were observed in T cells. Effector 
suppression downstream of MET, notably converging on 
p-S6, was strongly predictive of response to ficlatuzumab. 
These results suggest that the AML blasts may harbor a 
unique dependency on pharmacologic inhibition of MAPK 
and PIK3/AKT/TORC1 pathways because p-S6 integrates the 
output from both axes (21).

CyTOF and scRNA-seq provide distinct advantages. 
Whereas both use unsupervised clustering to identify dis-
tinct cellular populations, scRNA-seq has the benefit of 
being entirely unbiased, whereas CyTOF utilizes preselected 
markers based on a priori knowledge. Multiplexing at the 
single-cell level allows for high throughput and significant 
conservation of time and cost, thus enabling identification 
of biomarkers and resistance pathways at deeper molecu-
lar resolution compared with prior studies. The analysis 
tool freemuxlet clusters cells based on similarity of a list of 
predefined SNP loci, derived from the 1000 Genomes refer-
ence panel, without knowledge of the precise patient SNPs 

a priori. Each genetically defined freemuxlet cluster is then 
aligned to the patient genotype with the best match. Com-
pared with demuxlet, freemuxlet improved the identification 
of the ambiguous cells by over 99%, reducing this group to 
less than 0.1% of the total cells captured, while the doublet 
rate remained similar, 34%. On the basis of this comparison, 
demuxlet may have limitations with regard to tumor cells 
due to the relative insensitivity of SNP profiling using chips. 
Because only a small fraction of these genomic SNP loca-
tions overlap with RNA-seq reads, the errors in genotypes 
from chips would severely impact the single-cell assignment 
to samples. On the other hand, freemuxlet uses a fixed set 
of genomic SNP locations that are known to vary among 
healthy individuals from the 1000 Genomes Project, and 
therefore focuses on the most reliable genomic locations for 
identifying the effective genotype of single cells. The 34% 
doublet rate derived from freemuxlet was consistent with 
published reports, based on our initial loading conditions 
of 40,000 to 50,000 cells per well, targeting a capture rate of 
∼60% (25,000–30,000; refs. 23, 40). The doublet rate was in 
fact lower than some studies, which reported an additional 
15% to 20% error in cell count and multiple cell encapsula-
tion 16% higher than predicted, possibly due to subsampling 
error or cell–cell interactions (40).

To harmonize the protein expression information from 
CyTOF with the scRNA-seq data, correlation matrix was 
generated from the mean expression values for the CyTOF/
scRNA-seq marker pairs as well as the cell cluster proportions 
derived from each platform. Mean expression values showed 
an overall high degree of correlation between CyTOF and 
scRNA-seq markers with the exception of IL7R, which is a 
heterodimer, and CD38 and CD4, which are well-known to 
have poor RNA:protein correlation due to their tight tran-
scriptional regulation and large dynamic range for protein 
expression (41, 42). The correlation between gene and protein 
expression in this study has exceeded prior reports, which 
estimated a Pearson correlation coefficient between 0.4 and 
0.6 (43, 44). Similarly, cellular subset fractions demonstrated 
high concordance between scRNA-seq and CyTOF, further 
substantiating the overall data quality and our cell identifica-
tion algorithm.

The discrepancies in transcript and protein expression 
underscore the need for new advances that allow for paral-
lel measurement of transcript and protein phenotype at 
single-cell resolution using oligonucleotide-labeled antibod-
ies such as cellular indexing of transcriptomes and epitopes 
by sequencing (CITE-seq) or RNA expression and protein 
sequencing (REAP-seq; refs. 45, 46). Inability for these methods 
to detect intracellular proteins and lack of well-characterized  
oligonucleotide-labeled antibodies for a wide array of pro-
teins still limit their wide adoption as an immunophenotyp-
ing tool compared with mass cytometry. Through integration 
of our RNA and protein data, we identified that nonrespond-
ers exhibit higher expression of the p-S6 protein as well as 
higher transcript level of genes involved in protein translation 
compared with the responders. The concordant expression 
pattern of p-S6 and its target genes supports on-target sup-
pression of the c-Met axis by ficlatuzumab on attenuating 
the c-Met axis and nominates p-S6 as a bona fide biomarker 
of clinical response.
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Not surprisingly, the majority of the clusters did not exhibit 
salient transcriptional differences between responders and 
nonresponders except for the early, late, and HLA-DR+ popu-
lations. Several key observations emerged from this com-
parison. First, elevated HGF levels upon count recovery were 
correlated with lack of clinical response. Thus, persistent HGF 
expression may account for de novo resistance to HGF inhibi-
tors. The mechanism underlying transcriptional activation 
of HGF, whether it is attributed to differential chromatin 
accessibility, autocrine stimulation, or paracrine stimulation 
of HGF, will be investigated in future studies. It is also inter-
esting to note that the nonresponders exhibiting the highest 
HGF expression and most refractory to therapy exhibited a 
stem cell phenotype, a population that is traditionally more 
treatment resistant. Second, gene module analysis of respond-
ers demonstrated that gene expression in the early, late, and 
HLA-DR+ converged toward normal by count recovery but 
remained divergent in nonresponders. Finally, unsupervised 
clustering revealed differential regulation of the interferon 
inflammatory and translational initiation gene signatures 
between responders and nonresponders. Enrichment of the 
translational initiation signature in nonresponders strongly 
supports p-S6 as a biomarker of response, because p-S6 is a 
well-documented regulator of protein translation.

Complementary to our model, other studies substanti-
ated the central role of HGF in driving AML tumorigenesis 
through paracrine activation of CSF1R in the stromal sup-
port cells (30). However, expression of HGF and CSF1R 
shared minimal overlap in our scRNA-seq dataset, which is 
not surprising because of the low numbers of macrophage-
derived support cells circulating within the PBMCs. Future 
work will utilize banked bone marrow samples, combined 
with spatial profiling, to interrogate the interaction between 
HGF and CSF1R within the hematopoietic niche and test 
whether dual HGF and CSF1R blockade will lead to enhanced 
clinical responses.

Under physiologic condition, type I IFNs induce an 
antiproliferative state that defends against intracellular 
pathogens (47). IFNα also induces the secretion of proinflam-
matory cytokines, such as IL6, which activates myelopoiesis 
in response to infection and inflammation (39, 48). Blast 
cells are able to subvert this pathway to sustain malignant 
proliferation (37, 38). These data are consistent with findings 
in gene module 7, which is markedly elevated in nonrespond-
ers at baseline and at count recovery and enriched in IL6 and 
IFN response gene.

The proteomic and transcriptomic signatures from this 
study reveal hypothesis-generating insights into new bio-
markers of response and future combination treatments 
for AML. The novel genetic multiplexing strategy based 
on naturally occurring SNP variations used in this study 
achieved high throughput in a cost-effective manner. Given 
the promising efficacy of this HGF–MET-directed combina-
tion, a multi-institutional, randomized phase II study is 
being contemplated, with high-dimensional correlative end-
points to validate the clinical activity observed as well as 
the biomarkers that emerged from this study. Longitudinal, 
single-cell profiling at higher sequencing depth of larger and 
more diverse cohorts while integrating the anatomic context 
of the tumor and its microenvironment using platforms such 

as the multiparameter ion beam imager (MIBI) or digital 
spatial profiling (DSP) will (i) improve the molecular defini-
tion to subphenotype AML, (ii) enhance the resolution for 
annotating disease associations, and (iii) determine how the 
HGF–MET pathway modulates tumor stroma and leukemic 
blast interactions (49, 50). These analyses will provide a win-
dow into the natural history of AML that is challenging to 
achieve using bulk patient samples and serve as a proof-of-
concept template for future translational studies to under-
stand the mechanistic underpinnings of therapeutic response 
and resistance.

METHODS
Patients

Eligible patients were at least 18 years of age with histologically 
confirmed refractory AML or relapsed within 12 months of first CR/
CR with incomplete hematologic recovery (CRi). Patients with refrac-
tory AML had either a hypercellular marrow with greater than 20% 
cellularity and 10% blasts at least 14 days after day 1 of induction 
or persistent disease documented by bone marrow biopsy at least 28 
days after day 1 of induction. Participants could not have received 
more than two cycles of AML-directed therapy; one of them had to 
be an anthracycline and cytarabine combination. All patients had a 
documented ejection fraction greater than 40% and adequate organ 
function. Hypomethylating agents and cytoreduction therapy with 
plasmapheresis or hydroxyurea prior to study entry were acceptable. 
Patients were excluded for acute promyelocytic leukemia, previous 
cytarabine-containing regimen in excess of 2,000 mg/m2/day, grade 
4 toxicity to cytarabine, prior anti-MET– or anti-VEGF–directed 
therapy, pregnancy, uncontrolled infection, HIV, hepatitis B, hepati-
tis C, or an active second malignancy. A complete list of inclusion and 
exclusion criteria is provided in the protocol (Supplementary Data).

Study Design and Objectives
In this investigator-initiated phase Ib study using the standard  

3 + 3 design, patients received four doses of intravenous ficlatuzumab 
every 14 days (days 0, 14, 28, and 42) in combination with cytarabine. 
Ficlatuzumab dose started at 10 mg/kg in cohort 1, escalated to 15 
mg/kg in cohort 2, and 20 mg/kg in cohort 3. This dosing was based 
on previous phase II studies conducted by AVEO. Fixed-dose cytara-
bine was administered daily at 2,000 mg/m2 starting 48 hours after 
the first dose of ficlatuzumab for 5 days (days 2–7) for all dose levels. 
The study was approved by the Institutional Review Board of the 
University of California, San Francisco (UCSF; San Francisco, CA), 
and was conducted in accordance to the Declaration of Helsinki and 
Good Clinical Practices. Safety was monitored every 6 months by the 
UCSF Data Safety and Monitoring Committee. Written informed 
consent was obtained from all participants.

The primary objective of the study was to define the safety and the 
MTD of the ficlatuzumab and cytarabine combination. The second-
ary objectives included determining the rate of overall and complete 
remission and PFS. Exploratory objectives included assessing OS and 
biomarker changes throughout the treatment course.

Assessments
Patient who received per-protocol treatment were evaluated for 

pathologic response based on pretreatment and posttreatment bone 
marrow biopsies. The bone marrow specimens were evaluated by 
a hematopathologist using the Revised Recommendations of the 
International Working Group (51). Next-generation sequencing was 
performed using the ARUP Myeloid Malignancies Mutation panel 
and MRD testing using the commercial University of Washington 
multiparameter flow cytometry assay.
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DLT was defined as (i) any drug-related grade 3 or higher nonhe-
matologic toxicity despite optimal supportive care with the exception 
of rash, alopecia, fatigue, liver, ocular, central nervous system, or 
gastrointestinal toxicity expected from HiDAC or any disseminated 
intravascular coagulation, tumor lysis, fever, febrile neutropenia, 
infection, or sepsis expected with AML therapy; (ii) any toxicity result-
ing in ficlatuzumab dose reduction during therapy or an interruption 
of treatment for >2 weeks beyond the next scheduled ficlatuzumab 
dose; and (iii) delayed count recovery in the absence of residual 
disease as defined by failure to recover to absolute neutrophil count 
≥1,000/mcL and/or transfusion-unsupported platelets ≥50,000/mcL 
by day 49 from the start of induction during the dose-escalation 
phase. PFS was evaluated from the time of study entry to evidence 
of disease recurrence, attrition from the study, change in treatment, 
or death with censoring at loss to follow-up. OS was measured from 
time of enrollment to death from any cause with censoring at loss to 
follow-up. AEs and laboratory values were graded according to the 
NCI Common Terminology Criteria for Adverse Events, v4.0 (52).

Mass Cytometry (Phospho-CyTOF) and Data Analyses
CyTOF was performed by the Human Immune Monitoring Center 

at Stanford University. Antibodies are listed in Supplementary Table 
S5. For antibody conjugation, 100 μg of carrier-free antibody was 
coupled to metal-labeled X8 polymer according to the manufac-
turer’s instruction (Maxpar X8 Labeling Kit, Fluidigm). In brief, the 
lanthanide isotopic cations were chelated to Maxpar X8 polymers 
in L-buffer while the antibody was partially reduced in R-buffer and 
4 mmol/L Tris (2-carboxyethyl)phosphine hydrochloride, pH 7.0 
(Millipore Sigma). The lanthanide-loaded polymer was conjugated 
with the antibody in C-buffer, washed, and quantitated using the 
NanoDrop at 280 nm against a W-buffer blank (53). Gd157 was pro-
cured from Trace Sciences International and conjugated using the 
Maxpar X8 Kit. For staining, frozen PBMCs were thawed, transferred 
to RPMI with 10% FCS and benzonase (1:10,000 at 25 U/mL final 
concentration), washed, and filtered through a 70-μm cell strainer 
to ensure single-cell suspension. Normal PBMCs were included as 
controls. Each sample was aliquoted in duplicate of 106 cells in 
200 μL of RPMI and placed in a 37°C incubator for 1 hour. Half 
of the samples were stimulated with pervanadate for 15 minutes at 
37°C (Calbiochem, 125 μmol/L final concentration in 1 mL of 0.53 
mmol/L H2O2); 130 μL of 16% paraformaldehyde (EMS #15710-S) 
was added to each sample and incubated for an additional 10 min-
utes at room temperature. The cells were washed twice with 1 mL 
CyFACS buffer (Rockland, 1 × PBS + 0.1% BSA, 2 mmol/L EDTA, and 
0.05% sodium azide in MilliQ water). Subsequently, the samples were 
barcoded in batches of 10 using a unique combination of palladium 
antibodies according to manufacturer’s protocol (Cell-ID20-Plex-Pd 
Bar Coding Kit, Fluidigm). A pretitrated mix of metal-conjugated 
surface antibodies was added to the combined samples in 180 μL and 
incubated for 30 minutes at room temperature. After washing, 1 mL 
of cold methanol was used to permeabilize the cells, and the samples 
were stored at −80°C overnight. For intracellular staining, the cells 
were thawed, stained first with the biotinylated p-MET antibody, and 
then washed in CyFACS buffer. The cocktail of the remaining metal-
conjugated phospho-antibodies, including an anti-biotin secondary 
antibody, was added in 180 μL and incubated for 30 minutes at room 
temperature. After washing, cells were resuspended in 1 mL iridium-
containing DNA intercalator (1:5,000 dilution in 1.6% PFA contain-
ing PBS) and incubated at 4°C. Cells were washed twice with MilliQ 
water, diluted to 750 × 105 cells/mL with 10% EQ Calibration Beads 
(Fluidigm), and acquired on CyTOF (Fluidigm).

Sample barcodes were resolved using a single-cell debarcoder tool 
(54). Individual samples were gated using Cytobank based on the 
iridium intercalator for intact cells, and then on singlets to exclude 
normalization beads, cellular debris, dead cells, and doublets for 

the identification of CD34+, CD3+, and CD33+ cells for downstream 
analyses. The raw expression matrix of non-bead events was extracted 
using CellEngine and arcsinh-transformed (cofactor: 5), and the 
UMAP was generated using 21 cell-surface markers in R using 
uwot package. The cluster of cells that did not have signal for any 
marker were debris and excluded from further analyses, and the 
UMAP was regenerated. For cell-type assignment, the cells were 
first grouped into 200 clusters using clara clustering and mapped 
to the gated landmark populations based on the highest Pearson 
correlation of averaged expression profiles. The gated landmark 
populations were defined using CellEngine: After removing the nor-
malization beads, the remaining events were gated into B (CD19+), 
HLA-DR+ (HLA-DR+CD123+), early blast (CD34+), NK (CD7+CD3−), 
T (CD8: CD3+CD8+CD4−; CD4: CD3+CD8−CD4+; double-positive: 
CD3+CD8+CD4+; double-negative: CD3+CD8−CD4−, CD24_myeloid 
(CD11c+CD24+), and late blast (CD33+CD11c+) cells. The median 
values for each sample per cell type were calculated using raw 
ion counts. CyTOF data were additionally analyzed as previously 
described using the SPADE tool (19).

scRNA-seq
PBMCs were collected from 11 patients on trial and 1 normal 

control at five distinct time points, except where indicated as miss-
ing (Supplementary Fig. S5A), for a total of 52 samples. These were 
evenly divided across five distinct scRNA-seq reactions using a Latin 
Square design so that each reaction contained equal numbers of 
pooled cells from distinct patients and days of collection to mini-
mize batch effects. A normal control was included with each reac-
tion to ensure uniformity across runs. In brief, frozen PBMCs were 
thawed at 37°C, resuspended in EasySep buffer (STEMCELL), and 
treated with DNAseI for 15 minutes at room temperature before 
filtering through a 40-μm filter. Cells were concentrated to 1,000 
cells/μL, pooled according to the matrix in Fig. 3A, and loaded in 
duplicate onto the 10x Chromium instrument (10x Genomics), with 
a target capture per well of 25,000 to 30,000 as per published pro-
tocol (23). The libraries were prepared using Chromium Single Cell 
3′ Reagent Kits v1 according to the manufacturer’s protocol (10x 
Genomics) and sequenced using a custom program with asymmetri-
cal pair-end read length as described previously on the Illumina 
HiSeq4000 (40). To determine the SNPs of the individual patients, 
extracted genomic DNA from PBMCs was genotyped using the 
Infinium OmniExpressExome-8 v1.6 BeadChip (Illumina).

scRNA-seq Data Analyses
CellRanger v1.2 was used to process the FASTQ files, align the 

sequencing reads to the hg19 transcriptome, and generate a fil-
tered unique molecular identifier (UMI) expression profile for each 
cell. Pooled sample libraries were processed using freemuxlet, the 
genotype-free version of demuxlet, to predict clusters of cells from 
the same patient based on SNP concordance (23). Briefly, CellRanger-
aligned reads were processed to generate a BAM file of reads overlap-
ping a high-quality list of SNPs obtained from the 1000 Genomes 
Consortium (1KG; ref. 55). Freemuxlet was run on this filtered 
BAM file using the 1KG VCF file as a reference, the input number 
of samples per pool as a guideline for clustering groups of cells by 
SNP concordance, and all other default parameters. Barcodes were 
classified as either singlets, doublets, or ambiguous. Ambiguous 
and doublet events were excluded from further analysis. Freemuxlet-
predicted clusters of cells were mapped to patients using BCFtools 
gtcheck (parameters: -G 99) based on the similarity between the 
consensus SNP profile of freemuxlet clusters and the ground truth 
genotypes per patient identified via the Infinium OmniExpress-
Exome-8 v1.6 BeadChip (Illumina; ref. 56). UMAP plots were gener-
ated with Monocle 3 (18, 26). Inspection of the top specific markers 
from cell partitions and automated cell assignments generated by 
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Seurat v4 were used to identify cell partitions. Gene modules were 
identified using the method of Cao and colleagues, and aggregated 
expression values in the early, late, and HLA-DR+ clusters were 
calculated according to sample class (normal control, responders, 
and progressive disease; ref. 32). GO term enrichment was deter-
mined using GOrilla (http://cbl-gorilla.cs.technion.ac.il) in target/ 
background mode with all module genes serving as the background (33, 
57). Redundant GO terms were filtered using REViGO and summarized 
using semantic space plots (34). Sequencing data have been depos-
ited at Gene Expression Omnibus (accession number: GSE162117). 
Mass cytometry data are available at https://premium.cytobank.org/
cytobank/experiments/149419. Freemuxlet, Batchelor, and program-
ming code may be accessed at https://github.com/yelabucsf/popscle; 
https://bioconductor.org/packages/release/bioc/html/batchelor.
html; and https://github.com/blaserlab/ficlatuzumab_aml.

Statistical Considerations
Survival was estimated using the Kaplan–Meier method, and sur-

vival comparisons were made by the Mantel–Cox log-rank test. 
The nonparametric Mann–Whitney test was used to compare the 
distributions of ratio in median of the expression at 24 and 48 
hours post-ficlatuzumab normalized to baseline treatment between 
untreated versus treated patients and responders versus nonrespond-
ers. Because of the exploratory nature of this phase Ib investigation 
and the fact that each patient had multiple timed collections, these 
measurements were treated as distinct entities and pooled solely 
based on clinical response, irrespective of time or pervanadate stimu-
lation. The Bonferroni correction was applied for multiple compari-
sons with an overall probability of significance defined as less than 
0.05 using Prism 8.
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