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Hierarchical Representation of Time-varying Volume Data with�� �
Subdivision and Quadrilinear B-spline Wavelets

Lars Linsen � Valerio Pascucci � Mark A. Duchaineau � Bernd Hamann �
Kenneth I. Joy �

�
Center for Image Processing and Integrated Computing (CIPIC) � Center for Applied Scientific Computing (CASC)

Department of Computer Science Data Science Group

University of California, Davis � Lawrence Livermore National Laboratory

Abstract

Multiresolution methods for representing data at multi-
ple levels of detail are widely used for large-scale two- and
three-dimensional data sets. We present a four-dimensional
multiresolution approach for time-varying volume data.
This approach supports a hierarchy with spatial and tem-
poral scalability.

The hierarchical data organization is based on �	 
 sub-
division. The �	 
 -subdivision scheme only doubles the
overall number of grid points in each subdivision step. This
fact leads to fine granularity and high adaptivity, which is
especially desirable in the spatial dimensions.

For high-quality data approximation on each level of de-
tail, we use quadrilinear B-spline wavelets. We present a
linear B-spline wavelet lifting scheme based on �	 
 subdi-
vision to obtain narrow masks for the update rules. Nar-
row masks provide a basis for out-of-core data exploration
techniques and view-dependent visualization of sequences
of time steps.

1 Introduction

Due to the improvements in the performance of com-
puting power and storage capacity achieved over the last
decade, today’s data-intensive scientific applications are ca-
pable of quickly generating and storing huge amounts of
data. Downsampling can be used to reduce the data to a
manageable amount. The reduced data can be examined
by scientists to spot regions of interest, for which more de-
tailed examinations can be performed. Today, visualization
applications have to deal with large-scale data in the spatial
as well as temporal dimensions and their representation at

�
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multiple levels of detail.

Multiresolution methods for representing data at multi-
ple levels of detail are widely used for large-scale two- and
three-dimensional data sets. Furthermore, for time-varying
data sets techniques have been developed that make use of
temporal coherence of, for example, numerically simulated
data. We present a four-dimensional multiresolution ap-
proach, where time is treated as fourth dimension. We deal
with large scales in spatial and temporal dimensions in a
single hierarchical framework.

For large-scale volume representation, one should use
regular rather than irregular data formats, since grid con-
nectivity should be implicit and data should be easily and
quickly accessible. To overcome regular data structures’
disadvantage of coarse granularity, we have developed a�	 


-subdivision scheme [14]. Every �	 
 -subdivision step
only doubles the number of vertices, which is a factor of
�	 
 in each of the � dimensions. We briefly review the �	 
 -
subdivision scheme for ��� 
 in Section 3 and generalize it
to the four-dimensional case.

Another sacrifice when using regular data structures is
that downsampling is done based purely on grid structure
and without considering data values. Therefore, some sci-
entifically interesting details in a data set can get lost and
be overseen for further examinations. To avoid this, we use
a linear B-spline wavelet scheme: The data value at a ver-
tex � is updated when changing the level of detail, i. e., the
value varies with varying level of detail. On a coarse level,
the value represents the value at � itself as well as an aver-
age value of a certain region around � . This approach leads
to better approximations on coarser levels.

Quadrilinear B-spline wavelets have the property that the
computation of the wavelet coefficient at a vertex � is not
only based on the neighbors of � but also on vertices that are
farther away in the spatial and temporal dimensions. Thus,
when using out-of-core techniques to operate on or visu-



alize large-scale data, substantial amounts of data must be
loaded from external memory, with low I/O-performance.
Lifting schemes with narrow filters can be used to overcome
this problem. In Section 4, we describe the one-dimensional
lifting scheme from [4] and generalize it to four dimensions
based on a hypercube refinement approach. In Section 5,
we adjust the quadrilinear B-spline wavelet lifting scheme
to �	 
 subdivision. We provide results in Section 6.

2 Related work

For time-varying volume representation, sophisticated
approaches make use of the data’s temporal coherence and
focus on the detection of spatial/structural changes and up-
date in time [1, 27, 29, 31]. These approaches consider
scaling in time but not in space. An approach dealing with
large-scale data in time and space was described by Shen et
al. [28]. Their approach combines an octree with a binary
tree to a Time-Space Partition (TSP) tree, where the octree
is used for the spatial and the binary tree for the temporal
hierarchy. We treat time as a real fourth dimension.

Octrees are a common data structure used for multires-
olution volume representation [15, 19, 23, 26, 37]. Com-
pared to irregular data structures, as discussed in [5, 8, 9],
regular structures like octrees have the advantage that grid
connectivity is implicit and data is easily and quickly ac-
cessed. However, the refinement steps have to conform to
the topological constraints, which can make regular struc-
tures less adaptive. To overcome this disadvantage, we de-
veloped the

�	 

-subdivision scheme, a regular data organi-

zation supporting finer granularity [14]. For example, an
octree refinement step doubles the number of vertices in ev-
ery dimension, which leads to a growth factor of eight; a�	 


-subdivision step only doubles the overall number of ver-
tices. Therefore,

�	 

subdivision, in general, requires less

vertices than octrees to satisfy specified approximation or
image quality error bounds. Since finer granularity leads to
higher adaptivity, this fact still holds when using adaptive
refinement techniques.

Considering time-varying volume visualization, isosur-
face extraction [10, 27, 31] and volume rendering [1, 29] of
single time steps are common, and distributed computing
can be used to speed it up [16, 20]. A comparison of differ-
ent visualization techniques is provided in [33]. However,
for large-scale data, the visualization techniques can only
operate in real time after downsampling the data. There-
fore, large-scale time-varying volume visualization requires
us to utilize multiresolution representations with scalability
in time and space. Such a representation is discussed in this
paper.

The splitting step of the �	 
 -subdivision scheme goes
back to Cohen and Daubechies [6] for � � 
 and Maubach
[17] for arbitrary � . It can be described by using triangular

or quadrilateral meshes ( � � 
 ), or their generalizations
for higher dimensions. For tetrahedral meshes the splitting
step of the

�	 

-subdivision scheme is equivalent to longest-

edge bisection [7, 22, 38]. In the following, we consider the
quadrilateral case and its generalization, e. g., cuboids for
� � � and hypercuboids for � ��� . Figure 1 depicts two
different illustrations of a hypercube. Figure 1(a) shows the
symmetry in all four dimensions. We use the illustration in
Figure 1(b) that “stretches” the hypercube in the temporal
dimension.
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Figure 1. Illustrations of a hypercube.

Velho and Zorin [35] introduced
	 


-subdivision sur-
faces ( � � 


) by adding an averaging step to the
	 


-
subdivision splitting step. They showed that the produced
surfaces are F

�
-continuous at regular and FHG -continuous at

extraordinary vertices. (For an introduction to subdivision
methods, we refer to [36].)

When downsampling time-varying volume data in a reg-
ular fashion, as it is done by �	 
 -subdivision and the method
of Shen et al. [28], data is not grouped due to changes in
time or space. Thus, on coarse levels, some important de-
tails may be missing. We overcome this problem by us-
ing wavelets. Wavelet schemes provide a means to generate
best approximations in a multiresolution hierarchy. Stoll-
nitz et al. [30] described how to generate wavelets for sub-
division schemes. However, �	 
 -subdivision wavelets can
lead to over- and undershoots, which are disturbing during
visualization, e. g., when extracting isosurfaces from dif-
ferent levels of approximation. They can cause changes
of isosurface topology when changing the level of resolu-
tion. We would like to preserve isosurface topology as much
as possible when changing between approximation levels.
Therefore, we generate linear B-spline wavelets for the �	 
 -
subdivision scheme. Linear B-spline wavelets are known to
produce high-quality approximations and they have inter-
polating scaling functions, which guarantees interpolating
refinement filters, see [12], i. e., no over- and undershoots
can appear. (For an introduction to B-spline techniques, we
refer to [24].)

The computation of wavelet coefficients at a certain ver-
tex for wavelets with good approximation quality, e. g., for
linear B-spline wavelets, is not limited to only adjacent ver-
tices. Localization, however, is strongly desirable when we
want to apply a wavelet scheme to adaptive refinement and



to out-of-core visualization techniques. Lifting schemes as
introduced by Sweldens [32] decompose wavelet computa-
tions into several steps, but they assert narrow filters, see
Figure 6. Bertram et al. [3, 4] defined a lifting scheme
for one- and two-dimensional B-spline wavelets using a
quadtree organization of the vertices.

Wavelets for general dilation matrices go back to
Riemenschneider and Shen [25] who used a box-spline
approach for their construction. Kovac̆ević and Vetterli
[13] and, more recently, Uytterhoeven [34], Kovac̆ević
and Sweldens [12], and Linsen et al. [14] developed lift-
ing schemes that can be applied to �	 
 -subdivision data
structures. Uytterhoeven’s method [34] addresses the two-
dimensional case, Kovac̆ević and Sweldens’ approach [12]
as well as Linsen et al.’s technique [14] deal with the two-
and three-dimensional cases. The filters used in [12] that
produce good approximations are not narrow enough for our
purposes. On the other hand, the update rule for the narrow
filters in [12] is the identity, which does lead to high-quality
approximations.

Another main difference between the non-separable fil-
ters used in [34] and [12] and the approach in [14] is the
update rule. Following the approach from [14], we update
the vertices in, for example, a

�	 

-subdivision scheme by

applying first the three-, then the two-, and finally the one-
dimensional update rules. This approach automatically in-
cludes the boundary cases, which are not sufficiently ad-
dressed in [34] and [12]. Moreover, in this paper we show
how our lifting scheme can be generalized to four dimen-
sions.

3 The �
� �

-subdivision scheme

We first describe the case � � 
 . For a
	 


-subdivision
step of a quadrilateral � , we compute its centroid � and
connect � to all four vertices of � . The “old” edges of
the mesh are removed (except for the edges determining
the mesh/domain boundary). Figure 2 illustrates four

	 

-

subdivision steps.

c
Q

Figure 2. Illustration of
	 


subdivision.

The mask used for the computation of the centroid � is
given in Figure 3(a). Figure 3(b) shows the mask of the av-
eraging step according to [35]. A

	 

-subdivision step is

executed by first applying the mask shown in Figure 3(a),
which inserts the new vertices, and then (after the topologi-
cal mesh modifications) applying the mask shown in Figure
3(b), which adjusts the old vertices.
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Figure 3. Masks of
	 


-subdivision step: (a)
inserting centroid; (b) adjusting old vertices.

This subdivision scheme for quadrilaterals is analogous
to the

	 �
-subdivision scheme of Kobbelt [11] for triangles.

Therefore, we call it
	 


subdivision.
We now generalize the subdivision scheme to �	 
 subdi-

vision for arbitrary dimension � . The splitting step is exe-
cuted by inserting the centroid and adjusting vertex connec-
tivity. The averaging step applies to every old vertex � the
update rule

� �����
	�������������
where � is the centroid of the adjacent new vertices.

The literature currently provides no analysis of averag-
ing steps for dimensions larger than two. Thus, at present,
we cannot provide a solution for the “optimal choice” of �
used in the update rule. (Some investigations were made in
[21].) However, when using the �	 
 -subdivision scheme for
large-scale time-varying volume data, we deal with rectilin-
ear grids with all hypercuboids having the same size. Thus,
the update rule does not affect the position of the vertices
regardless of the specific � value, but it only affects the de-
pendent function values at the vertices. In [14], we showed
that the

	 

-subdivision wavelets are not appropriate for our

purposes. Thus, we replace them by B-spline wavelets and
do not need to choose a value for � .

In Figure 4, four �	 
 -subdivision steps are shown. In
each step, the centroids of the polyhedral shapes are in-
serted, and the connectivity is adjusted. In Figure 4, we
only show the spatial connectivities within the time steps
and do not show the connectivity information between time
steps.

The four subdivision steps can be described in the fol-
lowing way: Figure 4(a) shows the initial hypercuboid,
which consists of two cuboids at two time steps, say � G and
�� . The two cuboids are connected according to Figure 1(b).
The first subdivision step inserts the centroid of the hyper-
cuboid, shown in Figure 4(b), which can be interpreted as
the centroid of a cuboid at time step ��� ������� � �� . The second
subdivision step inserts the centroids of the eight cuboids
within the original hypercuboid, shown in Figure 4(c). The
third step inserts the centers of the faces of these eight
cuboids or of the original hypercuboid, respectively, shown
in Figure 4(d). Finally, the fourth step inserts the midpoints
of the edges of the eight cuboids or of the original hyper-
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Figure 4. Steps of �	 
 subdivision.

cuboid, respectively, shown in Figure 4(e). The geometric
structure shown in Figure 4(e) consists of 16 hypercuboids.
Thus, it is topologically equivalent to the one shown in Fig-
ure 4(a). Four �	 
 -subdivision steps produce the same result
as one “hexadectree” refinement step, where a hexadectree
is the generalization of an octree to four dimension, i. e.,
nodes of hexadectrees represent hypercuboids. Fine gran-
ularity can therefore be supported for multiresolution data
visualization purposes by using a �	 
 -subdivision approach.

4 The Linear B-spline wavelet lifting scheme

We briefly review the one-dimensional lifting scheme
discussed in [3] and generalize it to the four-dimensional
case. We adjust the four-dimensional lifting scheme to be
suitable for �	 
 subdivision.

The one-dimensional B-spline wavelet lifting scheme
uses two operations that are defined by the following two
masks, called s-lift and w-lift:

s-lift �A@ � B � : C @ B @ D � (1)

w-lift �A@ � B � : C @ B @EDGF (2)

The s-lift mask is applied to the old vertices H and their new
neighbors I , whereas the w-lift mask is applied to the new
vertices I and their neighbors H , see Figure 5(a). For a de-
tailed derivation of the lifting scheme that we use, as well as
for its analysis (smoothness, stability, approximation order,
and zero moments), we refer to [2].
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Figure 5. Refinement step for one- and four-
dimensional meshes.

Using the s-lift and w-lift masks, a linear B-spline
wavelet encoding step is defined by sequentially executing
the two operations

w-lift �� G� � � � and
s-lift � G� � � � F

A linear B-spline wavelet decoding step is defined by se-
quentially executing the two operations

s-lift �� G� � � � and
w-lift � G� � � � F

Figure 6 illustrates the one-dimensional linear B-spline
wavelet lifting scheme.

w−lift

−0.5

wavelet
coeff.

level n−s−lift s−lift

w−lift

−0.250.25

11

1 1

decoding

0.5nlevel level n

1

encoding

Figure 6. One-dimensional linear B-spline
wavelet lifting scheme.

When applying four-dimensional B-spline wavelets to
a hexadectree-organized set of vertices, four kinds of new
vertices are obtained when executing a refinement step: the
new vertices inserted at the midpoints of old edges I , the
new vertices inserted at the centers of old faces � , the new
vertices inserted at the centroids of old cuboids � , and the
new vertices inserted at the centroids of old hypercuboids� , see Figure 5(b). Therefore, we must apply four different
masks. For three- and four-dimensional masks, we show
the structures of the masks and separately define the values
for the different kinds of vertices. We derive the needed � -
dimensional masks by convolution of the one-dimensional
masks in the various coordinate directions. The s-lift �A@ � B �
masks are defined by this depiction:
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5 A lifting scheme for i� �

subdivision

Recalling the steps of a �	 
 -subdivision scheme, which
are depicted in Figure 4, after the execution of the different
steps different configurations arise. Therefore, we have to
distinguish between the different steps. The following de-
scription starts with the situation shown in Figure 4(b) (hy-
pervolume case), proceeds with the situation shown in Fig-
ure 4(c) (volume case), continues with the situation shown
in Figure 4(d) (face case), and finally treats the situation
shown in Figure 4(e) (edge case), which is topologically
equivalent to the situation shown in Figure 4(a).

The hypervolume case
In the hypervolume case, we perform linear B-spline
wavelet encoding according to the situation shown in Figure
4(b). Due to the lifting scheme discussed in Section 4, we
must start with a w-lift operation. Therefore, we apply four
masks similar to the four w-lift masks in Section 4, subject
to the constraint that no values are available at the verticesI , � , and � .

Regarding the structures of the four-dimensional w-lift
masks described in Section 4, we assume (i) that the value
at a vertex I is defined by linear interpolation of the val-
ues at the two vertices H (with which the vertex I shares an
edge); (ii) that the value at a vertex � is defined by bilinear

interpolation of the values at the four vertices H (with which
the vertex � shares a face); and (iii) that the value at a ver-
tex � is defined by trilinear interpolation of the values at the
eight vertices H (with which the vertex � shares a cuboid).
Since we are using linear B-spline wavelets, linear interpo-
lation is appropriate. Consequently, one obtains the mask
w-lift jlknmloqprj �A@ � B � :

4

b4

a + aba b+3 2 2a b + 3_
2
3 _1

22

Since the vertices I , � , and � are not available, no masks
analogous to the one-, two-, and three-dimensional w-lift
masks, as described in Section 4, have to be applied. How-
ever, theoretically these operations were executed, which
must be considered in the next step. Since (i) the values
at the vertices I are assumed to be linear interpolations of
the values at the vertices H , (ii) the values at the vertices �
are assumed to be bilinear interpolations of the values at the
vertices H , and (iii) the values at the vertices � are assumed
to be trilinear interpolations of the values at the vertices H ,
the values at the vertices I , � , and � vanish. Therefore,
the mask defining the next s-lift operation, which is an ana-
logue of the four-dimensional s-lift mask defined in Section
4, reduces to the mask s-lift j�knmlosprj � @ � B � :

b4

a4

Again, the analogous versions of the one-, two-, and three-
dimensional s-lift masks from Section 4 are only applied
theoretically.

For the decoding step, we start with the s-lift operation,
i. e., we adjust the four-dimensional s-lift mask from Sec-
tion 4. Having (theoretically) applied the one-, two-, and
three-dimensional s-lift masks from Section 4 with vanish-
ing values at the vertices I , � , and � , (i) the values at
the vertices � are linear interpolations of the values at the
neighbor vertices � , multiplied by the factor


 @ , (ii) the val-
ues at the vertices � are bilinear interpolations of the values
at the neighbor vertices � , multiplied by the factor � @ � , and
(iii) the values at the vertices I are trilinear interpolations of
the values at the neighbor vertices � , multiplied by the fac-
tor t @ � . By renaming the factor @ to @ , we obtain the mask
s-lift prj�mloqprj �A@ � B � :

a +4 aa b+3 2a a b +2 2 3a ab3
b4

4
_

6
_ _

4

Again, the analogous versions of the one-, two-, and three-
dimensional s-lift masks from Section 4 are only applied
theoretically. Since these one-, two-, and three-dimensional
decoding s-lift operations are the inverse of the one-, two-,



and three-dimensional encoding s-lift operations, the ver-
tices I , � , and � have their former values assigned again,
i. e., the values vanish at these vertices. Hence, the mask
for the final w-lift operation, which is the mask analogous
to the four-dimensional w-lift mask defined in Section 4,
reduces to the mask w-lift jlknmloqprj �A@ � B � :

4

b4

a

All the masks are as narrow as they can be.

The volume case
When applying linear B-spline wavelet encoding to the sit-
uation depicted in Figure 4(c), we must make sure that we
do not violate the assumptions made for the hypervolume
case. We assume that the values at the vertices � are trilin-
ear interpolations of the values at the neighbor vertices H .
Thus, when the values at the vertices � are available, their
values should be computed only from the values at the ver-
tices H . Therefore, we are left with the three-dimensional
case, which is examined in [14]. The construction is anal-
ogous to the four-dimensional (hypervolume) case. Encod-
ing is performed by applying the masks w-lift jlknmloqprj �A@ � B � ,
depicted as

b3

_3
2

_
4
3a +3 2 2a b+ ab

,

and s-lift jlknmloqprj �A@ � B � , depicted as

b3

a3

,

and decoding is performed by applying the masks
s-lift prj�mloqprj �A@ � B � , depicted as

b3

a +  3 2 2 23 3
__

aa b+ a ab

,

and w-lift prj�mlosprj � @ � B � , depicted as

b3

a3

.

The face case
When applying linear B-spline wavelet encoding to the sit-
uation depicted in Figure 4(d), we must not violate the as-
sumption that the values at the vertices � are bilinear inter-
polations of the values at the neighbor vertices H . When the
values at the vertices � are available, their values should be
computed only from the values at the vertices H . Thus, we
are left with the two-dimensional case, which is also exam-
ined in [14]. Encoding is performed by applying the masks
w-lift j�knmlosprj � @ � B � , depicted as

�� � � � ��� � � � ���� �� � � ��� � � � ��� 	

�

and s-lift j�knmlosprj � @ � B � , depicted as�� ��� ��������� ��� 	

�

and the decoding is performed by applying the masks
s-lift prj�mloqprj �A@ � B � , depicted as�� ��� ��� ����� ��� ��� ������ �� � ��� ����� � � ��� �����

	

�

and w-lift prj�mloqprj �A@ � B � , depicted as�� � � � ����� � � � 	
 
The edge case
When applying linear B-spline wavelet encoding to the sit-
uation shown in Figure 4(e), which is topologically equiv-
alent to the situation shown in Figure 4(a), we must not vi-
olate the assumption that the values at the vertices I are
linear interpolations of the values at the neighbor vertices H .
When the values at the vertices I are available, their values
should be computed only from the values at the vertices H .
Thus, we are left with the one-dimensional case, illustrated
in Section 4. We can apply masks (1) and (2) to deal with
the edge case.

It is a significant advantage of our scheme that the vol-
ume, face, and edge cases cover automatically boundary
volumes, boundary faces, and boundary edges of the do-
main. Thus, no additional boundary case examination is
necessary.

6 Results

We have applied our techniques to numerically simulated
hydrodynamics data. The data set used to generate Figure 7
is the result of a three-dimensional time-varying simulation
of the Richtmyer-Meshkov instability and turbulent mixing
in a shock tube experiment [18]. The simulation result is
stored in 274 time steps, and each time step has an asso-
ciated


��
� t � rectilinear grid. For each vertex, an entropy

value between 0 and 255 is stored. The figure shows one
slice of the rectilinear grid for two different time steps. Fig-
ures 7(a)–(c) show time step 96 and Figures 7(d)–(f) time
step 184. Figures 7(a) and 7(d) show the original slices
at highest resolution (


��
� t � ), whereas Figures 7(b), 7(c),

7(e), and 7(f) show the slices after downsampling the four-
dimensional data using �	 
 subdivision with a downsam-
pling ratio of



G � . (The downsampling ratio is defined as

the original number of vertices divided by the number of



vertices at the used coarser resolution.) For the creation of
Figures 7(b) and 7(e), we have applied the �	 
 -subdivision
hierarchy without linear B-spline wavelet encoding, and for
the creation of Figures 7(c) and 7(f), we have applied the
�	 
 -subdivision hierarchy with linear B-spline wavelet en-
coding. For the wavelet encoding, we have only considered
this single slice. Since spatial and temporal dimensions are
treated equally, we have effectively performed a trilinear B-
spline wavelet encoding.

Considering the temporal dimension, the wavelet encod-
ing leads to an averaging over several time steps. There-
fore, one time step represents changes of several time steps
of the original data set. In Figure 7(c), we see that the “bub-
ble” rising in the middle of the slice is already more clearly
visible than in Figure 7(b).

Considering the spatial dimensions, the wavelet encod-
ing leads to an averaging over several adjacent vertices
within each grid of one particular time step. Therefore,
detailed features do not get lost during downsampling. In
Figure 7(f), we can still see where the bubbles next to the
center bubble have their “offspring.” The fine connections
indicating the offspring are visible in Figure 7(d) but get lost
during downsampling when not using wavelets, see Figure
7(e).

To quantify the improvement in approximation quality,
we have computed approximation errors for coarser levels
of approximation by comparing them to the original, high-
est resolution level. Given the original four-variate function�

, represented discretely by sample values at locations ��� ,����� � � �
	�� � � � �
�� � � � �
��� � � � � � � , we have used the root-mean-
square (RMS) error

���
��� � � �
� 	 �  � � � ��� ��� � ��� � � ������� � � � � �

where �����
� � denotes the approximated function value ob-
tained by quadrilinear interpolation applied to a hyper-
cuboid in the coarser level of resolution. In other words,
the value of ���!� � � is obtained by performing quadrilinear
interpolation of the 16 function values associated with the
corners of the hypercuboid containing the point � � .

Figure 8 shows the RMS errors of the time-varying three-
dimensional simulation of the Richtmyer-Meshkov instabil-
ity for various levels of resolution. (We scaled the RMS
errors to the interval

� � � �"� .) For all resolutions, we have
obtained smaller RMS errors when using linear B-spline
wavelets. Furthermore, the benefits of using linear B-spline
wavelets increase as resolutions decrease.

For data organization, the storage of values can be (re-)
organized as shown in Figure 9 for the two-dimensional
case. The depicted scheme scales to arbitrary dimensions.
Reorganization leads to spatial locality of data belonging
to the same level of detail, and spatial locality leads to fast

data access. This fact can be used for progressive visual-
ization, e. g., for generating images progressively by load-
ing data from slower external memory, which is inevitable
when dealing with large-scale data sets. Progressive visual-
ization starts by using the upper left block in the right pic-
ture, then adding the upper right block, and, finally, adding
the lower block. Reordering ensures that data can be read
in a continuous stream without reading data multiple times.

downsampling
ratio

with
wavelets

wavelets
without

2 2 2 20 4 8 120%

1%

2%

3%

4%

5%

RMS
E

Figure 8. RMS errors for entropy in a
four-dimensional simulation of Richtmyer-
Meshkov instability for different levels of
resolution, without and with linear B-spline
wavelets.

reorder reorder

progressive
visualization

progressive
visualization

Figure 9. Reordering data for progressive vi-
sualization.

The time-varying volume data used for the examples
shown in Figures 10 and 11 represents the evolution of an
argon bubble disturbed by a shock wave. (The data set
is courtesy of The Center for Computational Sciences and
Engineering, Lawrence Berkeley National Laboratory, see
http://seesar.lbl.gov/ccse.) The simulated data consists of
450 time steps, each one having an associated # � �%$ 
'& # $

'& # rectilinear grid. For each vertex, a density value be-
tween 0 and 255 is stored. We have constructed a �	 
 -
subdivision hierarchy combined with quadrilinear B-spline
wavelets. We have used slicing for generation of Figure 10
and volume rendering for the creation of Figure 11.

In Figure 10, we show a �	 
 -subdivision hierarchy, gen-
erated in combination with quadrilinear B-spline wavelets,
at three levels of downsampling. Figure 10 shows a slice
through the volume for time step 196. Since this data set
is not very large in spatial dimensions, downsampling by
a factor of two in every spatial dimension can be suffi-
cient, whereas further downsampling in the temporal di-
mension may be desired. The fact that our four-dimensional
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(a) (d)

(b) (e)

(c) (f)

Figure 7. Entropy of a time-varying simulation of Richtmyer-Meshkov instability, visualized by a slice
for two time steps of the original data, shown in (a) and (d), after �	 
 -subdivision downsampling
without linear B-spline encoding, shown in (b) and (e), and after �	 
 -subdivision downsampling with
linear B-spline encoding, shown in (c) and (f).

wavelet scheme is decomposed into a four-, three-, two-,
and one-dimensional step allows us to integrate linear B-
spline wavelet schemes of any dimension into one frame-
work. For example, having downsampled the data set in
four dimensions with the �	 
 -subdivision scheme combined
with quadrilinear B-spline wavelets, we can continue to
downsample only in the temporal dimension by using one-
dimensional downsampling combined with linear B-spline
wavelets.

Considering Figure 11(b), we have performed a �	 
 -
subdivision downsampling combined with quadrilinear B-
spline wavelets down to a level of detail with downsampling
ratio


 �
, followed by one-dimensional downsampling steps

with linear B-spline wavelets down to a level of detail with
(total) downsampling ratio


��
. One can compare this result

to the one obtained when downsampling without wavelets,
see Figure 11(a). Both pictures are the results of applying
volume rendering to time step 192. Figure 11(a) only shows
data from time step 192, whereas Figure 11(b) contains in-
formation of a short sequence of time steps close to time
step 192, including all possibly significant changes.

7 Conclusions

We have introduced �	 
 subdivision combined with
quadrilinear B-spline wavelets for time-varying volume
data representation. The approach provides a multiresolu-
tion hierarchy for four-dimensional data sets, where time is
the fourth dimension. Temporal and spatial dimensions are
treated equally in one framework.

The multiresolution data organization based on the �	 
 -
subdivision scheme provides fine granularity by only dou-
bling the overall number of data points in each subdivision
step. In contrast, a generalization of an octree refinement to
four dimensions increases the overall number of data points
by a factor of � # in each refinement step.

By integrating a wavelet scheme into the subdivision ap-
proach, we obtain, in general, much better approximations
on each level of detail. We have developed a lifting scheme
for quadrilinear B-spline wavelets. The lifting scheme uses
narrow masks. This fact makes it possible to utilize the
wavelet scheme for view-dependent, adaptive multiresolu-
tion visualization and facilitates out-of-core data explora-



(a) (b)

Figure 11. Density of a time-varying simulation of an interaction of a shock with an argon bubble, vi-
sualized by volume rendering time step 192. Combined �	 
 -subdivision hierarchy in four dimensions
and one dimension with downsampling ratio


 �
without (a) and with (b) linear B-spline wavelets.

(a)

(b)

(c)

Figure 10. Density of a time-varying simula-
tion of an interaction of a shock with an ar-
gon bubble, visualized by slicing the volume
data for time step 196. Shown are levels of
the �	 
 -subdivision hierarchy with quadrilin-
ear B-spline wavelet encoding for downsam-
pling ratios


 �

(a),

 �

(b), and

 �

(c).

tion techniques.
The wavelet encoding reorganizes data such that spatial

locality of data belonging to the same level of detail is pro-
vided, which speeds up data access. No additional memory
is required. The �	 
 -subdivision scheme also does not re-
quire us to store additional connectivity information.

Since the masks of our lifting scheme are of constant size

and the number of steps for our lifting scheme is constant,
our algorithms run in linear time with respect to the num-
ber of original data. Since the masks are narrow and linear
B-spline wavelet operations are decomposed into only two
steps, run time constants are small. We have applied our
approach to large-scale time-varying data sets by using out-
of-core techniques and combined our approach with vari-
ous visualization methods. Considering the shown exam-
ples and the computed approximation errors, we conclude
that our approach provides a valuable tool for hierarchical
representation of time-varying volume data.
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