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Abstract 

This paper presents the derivation of a one-dimensional evolution equation describing the 

slow motion (small Reynolds numbers, R« 1) of a very thin liquid film down an inclined 

impermeable plane. In this equation, gravitational, capillary, and molecular forces are taken into 

account. The addition of the molecular force term leads to a highly nonlinear equation governing 

the spatial and temporal evolution of film thickness. In a weakly nonlinear limit, this evolution 

equation is rescaled to a canonical form. The latter predicts a chaotic hydrodynamic instability 

for the film surface. This chaotic behavior is illustrated using the attractors and diagnostic 

deterministic-chaotic parameters for the variations of the dimensionless film thickness along the 

coordinate and time. 

1. Introduction 

A number of laboratory experiments have shown that dripping water (Shaw, 1984) and 

water flow along a plane (Cheng et aI., 1989) exhibit chaotic behavior. At very large Reynolds 

numbers (R > 1,000), the high-flow falling films exhibit turbulence (Floryan et aI., 1987). At 



moderately high Reynolds numbers (300 < R < 1,000), gravity-capillary hydrodynamic 

instabilities appear (Chang, 1994). At zero flow rates, the stagnant, thin water film ruptures 

because of the effect of intermolecular forces (Williams and Davis, 1982). However, for film 

with a nonzero base flow (of a plain Couette type), Babchin et al. (1983a) showed that within 

certain limits of the interfacial shear stress, one-dimensional disturbances driven by the 

molecular forces will fail to break up the film. 

Evidence of a chaotic fluctuation of liquid pressure was obtained from flow experiments 

conducted at Lawrence Berkeley National Laboratory (Berkeley Lab) on fracture replicas and 

water dripping through capillary tubes (Faybishenko, 1999; Faybishenko et al., 1999). In order 

to predict liquid flow behavior, one needs to develop adequate mathematical models describing 

the physics of flow. A better understanding of the physics of flow along the solid surfaces can 

be obtained by taking into account both molecular and capillary forces arising at the water-solid 

surface-air interface. 
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The goal of this paper is to derive a one-dimensional equation describing the slow motion 

of a very thin liquid film along an impermeable inclined plane, taking into account gravitational, 

capillary and molecular forces. The paper includes the derivation of a highly nonlinear equation 

governing the film surface evolution, which in a weakly nonlinear limit is rescaled to a canonical 

form. Chaotic behavior of the film surface is illustrated using the phase-space attractors and 

deterministic-chaotic parameters for a dimensionless film thickness. 

2. Equation of the Film Surface Evolution 

First, we consider a slow (low Reynolds number, R« 1) one-dimensional motion of a 

liquid film along the inclined (nonhorizontal) plane as depicted in Figure 1. For a long-wave 

slow evolution of the lubricating film with negligible inertial effects, we can write the following 

simplified Navier-Stokes equations as (Babchin et ai., 1983b; Frenkel et ai., 1987; Middleman, 

1995): 



a2v ap . 
j1--=--pgsma 

dy2 ax 

ap =0 
dy 
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(1) 

where P is liquid pressure (neglecting the hydrostatic pressure due to the normal component of 

gravity), accounting for molecular (Pm) van der Waals forces and surface tension (capillary 

forces, Pc), P = Pm + Pc; V = V(x,y,t), with V being the velocity, and x and y Cartesian 

coordinates, t is time, /..l is the liquid viscosity; P is the liquid density; g is the gravity 

acceleration; and a is the plane inclination from horizontal. From consideration of the molecular 

x 
Figure 1. Inclined plane with a disturbed film 

interactions between solid, liquid and air, one obtains the following expression for the molecular 

component of pressure: 

(2) 
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where h is the film thickness; n is an integer, n > 3; and A and B are coefficients of the Lenard

Jones molecular interaction potential. 

The expression for the capillary pressure, Pc, is given by 

(3) 

where ris the liquid-air surface tension, and the expression in brackets expresses the curvature of 

the liquid surface. For long-wave flow regimes, we have (dhldX)2 « 1, and Equation (3) 

becomes 

(4) 

Combining· the expressions for the molecular (2) and capillary (4) components of 

pressure, we obtain 

(5) 

Note that in Equation (1), V(x,y,t) = f[h(x,t), y], and the boundary conditions for Equation (1) are 

V=o for y = 0, 

and (6) 

dVldy =0 for y = h(x,t) 

As is readily verified by the direct substitution, the solution of (1) with boundary 

conditions (6) is 

1 ( . dP12hY y2 J V(x,y,t)=- pgsma-- ---
2 dx 11 11· 

(7) 
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Integration of (7) yields the liquid flux (the flow rate across the area of [lcm x width h(x,t)]) 

rh(x,l) ( dPJ h
3 

q = J( V(x,y)dy = pgsina-- -
o dx 3f.i 

(8) 

By differentiating Equation (5), we obtain 

(9) 

Substituting this expression for dPldx in (8), we find 

[ . (3A nB Jdh d3h] h3 

q= pgsma+ ---- --+y- -
. h4 h n

+1 dx dx 3 3f.i 

(10) 

For an incompressible fluid, the equation of mass balance for film flow is 

(11) 

From (10) and (11), we obtain the following highly nonlinear equation of the evolution of the 

film surface: 

(12) 
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Equation (12) is a further development related to the problem of flow-induced nonlinear 

effects on the instabilities of thin liquid films (Babchin et aI., 1983a,b; Frenkel and 

Indireshkumar, 1996). 

3. Derivation of a Canonical Equation 

Equation (12) can be reduced to a canonical form using the following renormalization 

(13) 

where ho is the mean film thickness. Assuming that F is small, F-E« 1, and substituting (13) in 

(12), we obtain to the order of r 

of pg sin all; of 2pg sin ah; F of rh; 04 F 
-+ + -+---+ at J.1 ax J.1 ax 3J.1 ox4 (14) 

In the frame of reference moving with an unperturbed film surface, a new coordinate z is 

given by 

pgh; sina 
z=x- t (15) 

J.1 

so that Equation (14) becomes 

(16) 



Equation (16) can be rescaled using the following dimensionless variables: 

FIFo = f/J 

t Ito = T 

zl Lo = x 
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(17) 

where Fo, to, and Lo are the characteristic amplitude, time, and length, respectively, which are 

detennined from the following system of equations: 

2gph; sin a toFo = 1 

P Lo 

,ng ~=1 
3p L~ 

( 
3A nB J kg to - 1 
h~ - htl 3p L~ -

(18a) 

(18b) 

(18c) 

Hence, Equation (16) for the surface evolution obtains the following canonical form 

(Sivashinsky and Michelson, 1980): 

(19) 

Sivashinsky and Michelson (1980) were the first who indicated that the detenninistic 

equation (19) leads to a chaotic behavior. The numerical solution of Equation (19) (see below) 

shows that <\> is of the order of unity, as are the dimensionless characteristic time scale and length 

scale 

a a 
--I--aT ax 

With the characteristics scales (18) being known, every term in the full Navier-Stokes 

problem neglected in the derivation of Equation (19) can be estimated to be actually small as 

compared to the retained terms, provided the system parameters satisfy the constraints 
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corresponding to the requirements L »ho, Fo« 1, and (in order for the inertial forces to be 

negligible as compared to the van der Waals forces) 

(A detailed discussion of such constraints, or the validity conditions for the derivation of the film 

evolution equations, can be found in Frenkel and Indireshkumar, 1996). 

Assuming A_lO-13 ergs (Williams and Davis, 1982), one can see that Equation (19) can 

be used to describe the evolution of a film with a thickness less than 10-4 em for planes that are 

not too close to horizontal. For thicker films, the destabilizing effect of inertia forces (Frenkel 

and Indireshkumar, 1999) is more important than that of the van der Waals forces. 

To take into account the normal component of gravity, the evolution equation has to be 

modified by adding the hydrostatic stabilizing term pgcosE> into every occurrence of the 

expression (3A1h4 
- nBlhn+l) in Equations (12) and (16). For films with a thickness of 10-5 cm 

and thinner, the stabilizing effect of the normal component of gravity is negligible, even for films 

which are nearly ·horizontal. Under such conditions, Equation (19) would become inadequate, 

and, instead, the highly nonlinear equation (12) would have to be used. 

It is well known that the solution of Equation (19), which describes nonlinear dynamics 

of film flow, exhibits chaos in both space and time (Manneville, 1990). Thus, the nonlinear 

effects of the base flow in cooperation with the destabilizing effect of the van der Waals forces 

and the stabilizing action of the surface tension lead to a chaotic behavior of the film surface . 
. 

Furthermore, the film disturbance creates the spatio-temporal fluctuations of the liquid pressure 

inside the film. 
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4. Illustration of the Chaotic Behavior Generated. Using Equation (19) 

Equation (19) was solved with periodic boundary conditions using a Fourier pseudo

spectral method. The spatial derivatives were computed using the discrete Fast Fourier 

Transform, and a third order explicit Adams-Bashforth method was· used for advancing the 

solution in time. To illustrate the results, Figure 2a shows the variation of the relative film 

thickness for 256 points along the dimensionless coordinate x for two moments of time. Figure 

2b shows the corresponding 3D attractors for the film thickness for these moments of time. It is 

interesting to note that, despite a significant difference in the changes of the film thickness along 

the coordinate, the attractors appear to be similar. 

Figure 3a shows the variation of film thickness at two points along the dimensionless 

time coordinate; Figure 3b shows the corresponding 3D attractors. Table 1 summarizes the 

results of calculations of the time delay using the mutual information function, which was used 

in plotting the attractors shown in Figure 3b, Global Embedding Dimension, the Lyapunov 

Dimension, and Lyapunov exponents. Calculations ·were conducted using the CSPW code 

(Abarbanel, 1996). The negative value of the sum of Lyapunov exponents, the positive value of 

the largest Lyapunov exponent, and the presence of well-defined three-dimensional attractors 

(which have identical patterns in Figure 3b) confirm that chaotic behavior is inherent in the 

solution of Equation (19) that describes the one-dimensional spatio-temporal fluctuations of the 

film thickness. 

Table 1. Characteristic Parameters of the Chaotic Time Variation of the Film Thickness 

Parameters Point 1 Point 2 
Time Delay 6 3 
Global Embedding 3 3 
Dimension 
DLvav 1.154 2.39 
Sum of Lyapunov -0.82 -0.37 
exponents 
Largest Lyapunov 0.1 0.35 
Exponent 
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Figure 2. The results of the solution of Equation (19) illustrating (a) the fluctuations of the 

dimensionless film thickness (<I» along the dimensionless coordinate (x) for two dimensionless 

times, and (b) corresponding 3D attractors for Time 1 (left) and Time 2 (right). 
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Figure 3. The results of the solution of Equation (19) illustrating (a) the fluctuations of the 

dimensionless film thickness (<I» for two points with dimensionless time, and (b) corresponding 

3D attractors for Point 1 (left) and Poit 2 (right). 
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5. Conclusions and Directions of Future Investigations 

The derivation of the evolution equation for the inclined film flow taking into account 

gravitational, capillary, and molecular forces leads to a canonical form given by Equation (19). 

The solution of this equation shows a chaotic spatial and temporal behavior of the thickness of 

toe flowing liquid film. The presence of chaos is demonstrated by calculating diagnostic 

parameters of chaos for the solution of Equation (19). Future research in this area could be 

aimed at the derivation of (1) two-dimensional equations for the film thickness to describe the 

water channeling phenomena along the inclined surface, which was observed in fracture replica 

experiments (Faybishenko et aI., 1999); and (2) an equation for a stratified flow of water and an 

immiscible viscous organic liquid using the approach given by Shlang et ai. (1985). 
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