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ABSTRACT
Recent investigations have revealed that dynamics of complex networks and systems are crucially
dependent on the temporal structures. Accurate detection of the time instant at which a system changes its
internal structures has become a tremendously significant mission, beneficial to fully understanding the
underlying mechanisms of evolving systems, and adequately modeling and predicting the dynamics of the
systems as well. In real-world applications, due to a lack of prior knowledge on the explicit equations of
evolving systems, an open challenge is how to develop a practical andmodel-freemethod to achieve the
mission based merely on the time-series data recorded from real-world systems. Here, we develop such a
model-free approach, named temporal change-point detection (TCD), and integrate both dynamical and
statistical methods to address this important challenge in a novel way.The proposed TCD approach, basing
on exploitation of spatial information of the observed time series of high dimensions, is able not only to
detect the separate change points of the concerned systems without knowing, a priori, any information of
the equations of the systems, but also to harvest all the change points emergent in a relatively
high-frequency manner, which cannot be directly achieved by using the existing methods and techniques.
Practical effectiveness is comprehensively demonstrated using the data from the representative complex
dynamics and real-world systems from biology to geology and even to social science.

Keywords: temporal systems, time series, change-point detection, complex dynamical systems

INTRODUCTION
The concepts of complex systems and complex net-
works have made a significant impact in many areas
[1–4], such as neuroscience [5], cell biology [6,7],
ecosystems [8,9], traffic networks [10] and social
sciences [11]. Structures, topologies and networks
of complex systems have been found as vital skele-
tons for the emergence of collective dynamics, di-
verse phenotypes and advanced functions.While the
dominance of the current research approaches as-
sumes static and time-invariant networks in complex
systems, it becomes increasingly clear thatmanynet-
works in practice always change their structure tem-
porally [12–15]. Often, external inputs and fluctu-
ations vary in time and sometimes drastically alter
the interactions that connect the individual agents
in networks. For example, functional connectivity
in the brain network may exert a different pattern
caused by drug injections [16]; extinction or blos-

som of certain species in an ecosystem can lead to
different connections of agents in the network [17];
and stockmarkets are affected by newly adopted do-
mestic and/or international polices as well as influ-
enced by newly added stocks [18].

From observational data gathered from the con-
tinuous output of a complex system, is it possible
to pinpoint the time at which the system changes
its internal structure? Although data sets of time se-
ries are regarded as carriers of evolving information
on the individual agents and their temporal interact-
ing structures [19–25], they are usually character-
ized by a tremendously large number of observable
agents, high changing frequency of temporal struc-
tures and unobservable dynamic deviations from the
past. Such intrinsic changes due to a possible change
of hidden interacting structures may not be easily
separated from other critical changes of the observ-
able dynamics in fixed networks, leading to a major
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challenge in the accurate detection of change points
[26–28].

Two major types of methods have recently been
developed for change-point detection. Supervised
methods such as the decision tree, the Hidden
Markov Model and the Bayesian Inference (BI)
[29–31] utilize statistical learning to train classi-
fiers through data sets. Naturally, their performance
depends on the size of training data and, in par-
ticular, the time series corresponding to each sub-
mode of interacting structures needs to be suffi-
ciently long for the method to be accurate. Such
long-time data sets are difficult to obtain due to the
omnipresence of the high frequency of the structure
change. On the other hand, unsupervised methods,
such as likelihood-ratio methods, subspace identifi-
cation and clustering methods, often present an es-
timation of probability densities before and/or after
every change point or group time series into differ-
ent states [26,32–34].These unsupervised methods
could either be parametric or non-parametric; how-
ever, the curse of dimensionality renders it computa-
tionally costly to construct an accurate probabilistic
model for the joint distribution of many variables in
the network [28,35]. Both types ofmethods assume,
to some extent, some prior model structure, lacking
the direct incorporation of potential non-linear in-
teractions in the network, which may result in struc-
ture changes while only subtle changes in the overall
network outputs are observed.

Here, we propose a model-free approach, named
temporal change-point detection (TCD), to detect
the change points merely on the time-series data
sets.TheTCDapproach involves two essential steps.
In the first step, we adapt our recently developed
Randomly Distributed Embedding (RDE) frame-
work [23] for generating prediction series.TheRDE
framework uses delayed and non-delayed coordi-
nates reconstruction theory [36,37] to fully exploit
the intrinsic interactions, allowing prediction via in-
tegrating information on different combinations of
the observable variables.This framework overcomes
the difficulty in the shortage of long-time series for
dynamics prediction, which is itself a major prob-
lem for those broadly used machine-learning meth-
ods. Instead of using the RDE for the mere purpose
of predicting with short time series, we take into
account and quantify the large deviation possibly
emergent in prediction series compared to the given
time series. Such an emergence of large deviation
can indicate an occurrence of essential change in the
structure of the network. So, in the second step, to
make this indication more quantitatively and prac-
tically, we utilize the Bayesian Online Changepoint
Detection (BOCD) test—a representative statis-
tical method for change-point detection [38]. To

show the practical efficacy of the TCD approach,
we apply it to time-series data sets from the repre-
sentative benchmark models and the real-world sys-
tems in which the temporal or time-variant struc-
tures are known tomake changes.We anticipate that
our model-free TCD approach has the potential to
be among a set of indispensable tools for identifying
fundamental temporal mechanisms when the only
access to a complex system is through its observa-
tional data.

A MODEL-FREE APPROACH FOR
TEMPORAL CHANGE-POINT DETECTION
For the time points produced by a high-dimensional
complex system whose structure is intermittently
variant, our TCD approach first utilizes the RDE
framework to compute predictions based on these
time points in a prescribed sliding window of short
length. In principle, when the underlying system un-
dergoes an abrupt structural change, the fidelity of
prediction is lost rapidly but recovers to its high
level soon after the short window slides through the
change point. In order to harvest quantitatively and
accurately on this loss of prediction fidelity, viz. a
series of change points, along the temporal direc-
tion, we develop the TCD approach by integrating
the RDE framework, a dynamics-based approach, in
a reversal manner with the BOCD test, a represen-
tative statistical method of change-point detection.
Thus, theTCDapproach consists of twomajor steps,
which are designated as follows.

First step: prediction-series generation
using the RDE framework
We use the RDE framework to generate prediction
series based merely on the observational time
series. For the sake of self-consistence of this
work, we hereby review this framework [23]. Let
{x(t)} denote a time series of m states generated
by an n-dimensional dynamical system (abbre-
viated as x(t) ∈ R

n for t = 1, 2, . . . ,m) and
xs (t) be one of the interested target elements
of the variable x. According to the generalized
embedding theory [36], one can reconstruct the
original system not only by a delayed attractorN =
{xs (t), xs (t + τ), . . . , xs (t + (E − 1)τ)} but
also by a non-delay attractor M =
{xk1(t), xk2(t), . . . , xkE (t)}, where k1, k2, . . . ,
kE are the indexes randomly selected from the
index set {1, 2, . . . , n}. Here, analytically, E > 2d is
required and d is the box-counting dimension of the
system dynamics. Hence, by virtue of the embed-
ding theory, there exists a diffeomorphism between
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the two attractors, � : M → N . In particular,
xs (t + τ) can be expressed component-wise as
xs (t + τ) = ψ(xk1(t), xk2(t), . . . , xkE (t)). The-
refore, a prediction could be made by fitting
ψ so as to minimize the residue ‖xs (t + τ)
− ψ(xk1(t), xk2(t), . . . , xkE (t))‖, where ‖ · ‖ is
an appropriately selected norm. Generally, we get
different ψ when different variables are randomly
selected as a combination to form a non-delay
attractor, and each such embedding reflects the
whole-system dynamics from a particular perspec-
tive. Normally, the higher the number of different
embeddings and mappings that are constructed,
the more comprehensive the information extracted
from all the variables becomes. Also excluded are
the outliers that are produced by those attractors
weakly correlated and the whole dynamics cannot
be represented. Therefore, we have the following
explicit algorithm to make one-step prediction
on xs (t + τ), and calculate the corresponding
statistical quantities as follows.

(i) Randomly select a tuple k =
(k1, k2, . . . , kE ) from the dimension
indexes of the original time series, where
E is the number related to the embedding
dimension and can be obtained using the
standard method [39].

(ii) For this tuple, fit a predictor
ψk by minimizing ‖xs (t + τ) −
ψ(xk1(t), xk2(t), . . . , xkE (t))‖2, where
the 2-norm is used in this numerical study.
Among various fitting methods in the
literature, Gaussian Process Regression
(GPR) [40] is used in this study.

(iii) Make a one-step prediction as x̂ ks (T + τ)
= ψk(xk1(t), xk2(t), . . . , xkE (t)) for a
given future time T + τ where ψk is
obtained using the GPR in the last step. In
this study, we simply set τ = 1.

(iv) Repeat Steps 1–3 by randomly picking up
another r tuples with replacement for q
times andall theqone-steppredictions form
a prediction set {x̂ ks (T + τ)}.

(v) Exclude the outliers from the prediction set.
The outliers are identified by calculating the
quartiles of the predictions and the values
beyond the upper or lower quartiles are ex-
cluded from the prediction set.

(vi) The remaining values in the prediction
set form a probability density function
p(x̂s (T + τ)) by using the method of
kernel-density estimation [41].

(vii) Set the final prediction by calculating the
expectation of the above density function,
denoted by E(x̂s (T + τ)).Calculate the

standard deviation, Std, of this density func-
tion by Std = D

1/2(x̂s (T + τ)). And the
prediction error, Err, at (T + τ) for test-
ing the data set could also be calculated as
a Err = E(x̂s (T + τ)) − xs (T + τ).

Second step: BOCD test
on prediction series
Once the one-step prediction at the time instant
(T + 1) ismade using the training data points in be-
tween the time window [1, T], we shift the window
forward by a step using the data in [2, T + 1] to pre-
dict xs (T + 2). Repeating this procedure, we can
make predictions successively on the interested tar-
get element xs (t). Simultaneously, we also get the
curves of the standard deviation and the prediction
error along the axis of time. From the two obtained
curves, we aim to detect the points that have abnor-
mal values emergent in the quantities of Std and/or
Err. This actually could be regarded as a problem of
statistical change-point detection. Accordingly, we
apply the BOCD test on the prediction results (in-
cluding the standarddeviationof thepredictions and
the prediction error).The BOCD algorithmmodels
the time since the last change point, called the run
length.The transition probabilities of the run length,
named the change-point posterior, are modeled by
calculating the posterior predictive distribution over
a new observation using the data so far observed be-
fore the change point [38]. Logically, the run length
at time t , named r t , can take binary values:

r t =
⎧⎨
⎩
0, if the change point appears

at time t,
r t−1 + 1, otherwise.

Here, the BOCD test aims at estimating the run-
length posterior distribution p(r t |x1:t) and the pos-
terior predictive distribution p(xt+1, |x1:t) with the
Bayesian inference [42]. In the BOCD test, this cal-
culation relies on the assumption of the exponential
family. Therefore, once the parameters of the run-
length posterior distribution and posterior predic-
tive distribution are updated, the distribution ma-
trix of the run length could be determined. Based
on the run length, the change point could be located
when the run length drops to zero.With somemath-
ematical assumptions on the distributions of the ob-
servational data, we include an analytical estimation
on the accuracy of the above change-point detection
in the online Supplementary Information (SI). This
also illustrates why the change point could be iden-
tified with a high probability. More specifically, the
above procedure could be summarized into the fol-
lowing steps.

Page 3 of 13



Natl Sci Rev, 2022, Vol. 9, nwab228

(i) For the interested target element xs (t),
make continuous predictions and construct
a set containing these predicted values, de-
noted by {x̂s(t)}with t ∈ {1, 2, . . . , M}.

(ii) Calculate the standard deviation of the pre-
dictions {Std(t)} and the prediction error
{Err(t)}.

(iii) Apply the BOCD test to detect the change
point of {Std(t)} or {Err(t)} and calcu-
late the distribution matrix of the run
length RM×M . Initialize the change-point-
detection algorithmwith tini = 0 and i = 1.

(iv) For the i-th row (i < M − tini), find the
column in which the maximum value of the
Tcol-th column of R(t) exists, denoted by
Tcol,i = argmax R(i, 1 : i − tini).

(v) If Tcol,i �= i , i.e. the run-length probability
does not reach its maximum value at the
diagonal, then the estimated change point
is identified as C P = i − Tcol,i if the dis-
tance between the current C P and the last
C P is large enough (≥10 time instants). If
Tcol,i = i , let i = i + 1 and repeat Step 4.

(vi) Once a change point is detected, reset the
starting point tini to i + 1. Repeat Steps 4–6
until the whole time series are covered and
no more change points are found.

MAIN RESULTS
Here, we apply the above-designed TCD approach,
a model-free method, to the data sets produced us-
ing several representative physical/biological mod-
els and three real-world systems. Also, we compare
theTCDapproachwith the otherwell-knownmeth-
ods in the literature. All the results fully demonstrate
the efficacy and usefulness of the approach.

Benchmark Model I: coupled
Lorenz systems
We detect the change points in a representative
model: coupled Lorenz systems with temporal
coupling structures. First, we study the time-
series data generated using the LORENZ60
model, in which 20 individual systems are cou-
pled through an underlying network and each
system is described by three variables, denoted
by xi , yi , zi (i = 1, 2, . . . , 20) (shown in
Fig. 1a are the time series of x1). The adjacency
matrix of the coupling network is prescribed in
a temporal manner, i.e. the entries of the matrix
change successively over the three constantmatrices
A k (k = 1, 2, 3) and the change occurs at the
time indices: t1 = 200 and t2 = 400, as indicated,

respectively, in Fig. 1a (for detailed configurations
of the model, refer to Appendix A1 and Fig. S1 in
SI). First, we set up a time window of fixed length
and apply the RDE framework to the time series
inside the window for making one-step predictions.
We make the predictions of one and/or some
of the interested target time series by sliding the
window along the axis of time. Here, we focus on
the prediction of the variable x1 only. Thus, Fig. 1b
show that the two loci are exactly consistent with
the corresponding change points that we set in
the model, a priori. More precisely, the BOCD
measure, estimated by calculating the distribution
of the run length, drops down to zero dramatically.
At the other points, the BOCD measures keep
approximately a linear growth. Clearly, the change
points of the coupling structures are successfully
detected at a high accuracy using our TCD ap-
proach directly, while, since the time series close
to the change points do not exhibit instantaneous
response to the internal structural change, it is
hard to make a precise detection purely using the
existent standard techniques of statistics without
investigating the dynamics of the system (refer to
comparison study presented in the ‘Discussion’
section). Also shown in Fig. 1b, the prediction
errors, as well as the standard deviations, sustain at
a lower level at other points, but increase drastically
right after the change points. So, in addition to
the BOCD test, it is sufficient to observe the large
deviation emergent in prediction errors or standard
deviations for change-point detection in the above
coupled Lorenz system.

For the cases in which the coupled systems are
perturbed by a certain intensity of noise, the TCD
approach still performs well. To demonstrate the
‘robustness’ of this approach against noise, we ap-
ply the 15-dimensional LORENZ15a model that
is composed of five coupled Lorenz oscillators,
where eachoscillator is denotedby xi , yi , zi for i =
1, 2, . . . , 5, and they are mutually linked by a con-
nection matrix changing successively over the three
constant matrices B k (k = 1, 2, 3) (refer to Ap-
pendix A1 and Fig. S1 in SI). Particularly, two types
of additive noises with different intensities are taken
into account: the white noise added to the vector
fields and the external noise added to the signals of
time series. As depicted in Fig. 1c, we are able to ac-
curately locate the outstanding peaks of the predic-
tion error, corresponding to the change points. To
be candid, the stronger the intensity of the noisy per-
turbations, the less efficient the performance of the
TCD approach becomes.

We further investigate on the ‘sensitivity’
of the TCD approach with the 15-dimensional
LORENZ15b model, where each parameter

Page 4 of 13



Natl Sci Rev, 2022, Vol. 9, nwab228

Time

Noise intensity

Ab
so

lut
e v

alu
e o

f p
re

d. 
er

ro
r

0

5 × 10-
5

1 × 10-
4

1.5 × 10-
4

2 × 10-
4 0

200

400

600

0.02

0.01

0

Ab
so

lut
e v

alu
e o

f p
re

d. 
er

ro
r

Time

Noise intensity

0.02

0.01

0

0

200

400

600

0

5 × 10-
5

1 × 10-
4

1.5 × 10-
4

2 × 10-
4

Time

15

0

-15

-30

Prediction values
-7.1919 -7.1918995400-40-6.6076051 -6.6076049

t = 425
SD = 2.2 × 10-7

t = 403
SD = 39.7

t = 375
SD = 5.8 × 10-8

Pr
ed

. p
ro

ba
bil

ity

0 100 200 300 400 500 600

Original
t1

Predicted
t2

x 1

ExpectationPDF Original

Run length

St
an

da
rd

 de
via

tio
n

150

100

50

0

0 200 400 600
Time

Time

100
200
300
400
500
600

100 200 300 400 500 600

100

50

0

Run length

Pr
ed

ict
ion

 er
ro

r

0 200 400 600
Time

10

5

0

Time

100
200
300
400
500
600

100 200 300 400 500 600

40

20

0

a

b

c

Figure 1. Change-point detection for a model of the coupled Lorenz systems with tem-
poral coupling structures. (a) The observed time series of the variable x1 and the one-
step predictions, highlighted by circles, using the RDE framework along the axis of
time. When the prediction deviates significantly from the observed time series, it sug-
gests a change point in the underlying system dynamics, here occurring at t1 = 200
and t2 = 400. Three typical one-step prediction distributions near the second change
point are plotted in the lower panel of (a). Here, the distributions are obtained by the
RDE framework at each time step, and their standard deviations (SDs) and expecta-
tions are computed by the standard method of kernel-density estimation. (b) For all the
one-step predictions along the time axis, the SD of the prediction distribution (the left
panel) and the prediction error (the right panel) are depicted, respectively. The corre-
sponding BOCD measure values, estimated by calculating the distribution of the run
length, are also illustrated. All the run-length-distribution matrices in this article are
plotted in a minus log scale with a color bar showing the exponents. (c) The absolute
value of the prediction error obtained by using the RDE framework when two types
of additive noises with different strengths are applied to the model: the white noise
added to the vector fields (the left panel) and the external noise added to the signals
of the time series (the right panel), where the outstanding peaks correspond to the
change points.

changes from the default value to a different value
at a preset change point (refer to Appendix for
the detailed configurations). For each parameter,
we estimate the threshold value at which the change
point could be just detected and the results are listed
in Table S2 and Fig. S9. The results indicate that
the TCD approach is able to detect subtle changes.
To further reinforce the validation of the efficacy
of the approach, we investigate the LORENZ30
model, where the connection matrix C 2 is obtained
by rewiring each directional connection from xi to
x j (i �= j ) in a priori given C 1 with a probability
p (refer to Appendix A1). Therefore, p , regarded
as a parameter, controls the temporal structure of
the network, probably leading to different types of
dynamical change. In our test, p is set at 0.005, 0.01
and 0.25, respectively, and 500 independent simu-
lations are carried out for each p. The results, shown
in Fig. S12, manifest that the value of the probability
can influence the detection accuracy using the TCD
approach. For moderate to large p , the average
number of rewired connections is sufficiently large
to influence the dynamics, so that the change point
is easier to be detected using the TCD approach.
For most cases of small p, the rewired connections
cannot bring essential difference in dynamics, which
renders the TCD approach as losing effectiveness.
However, the TCD approach still works for some
cases of small p. This indeed indicates that the TCD
approach could identify those very few but key
connections that determine the dynamics of the
system.

Additionally, in real-world systems, dynamical
changesmay exert a ‘chronic, gradual nature’ instead
of a sudden pattern. To validate the capability of
the TCD approach for such a situation, we investi-
gate the LORENZ15cmodel, whose coupling struc-
tures ‘change gradually in a linear manner’ (refer to
Appendix A1). Shown in the upper panel of Fig. 2
are the time series of x1. In this evolving dynam-
ical system, the adjacency matrix that governs the
coupling pattern linearly changes from B 2 to B 3,
and t1 = 200 and t2 = 400 stand, respectively, for
the beginning and the ending instants of the linear
change. Akin to the scenario in the above example
of the 60-dimensional Lorenz system, we still suc-
cessfully detect the above two instants of the linear
change period using the TCD method. As is clearly
shown in the inner panel of Fig. 2, quantifying the
dramatically changed shape of the BOCD measure
directly identifies the two instants t1 and t2. It is in-
teresting to note that there is no outstanding fluctu-
ation identified in between the duration (t1, t2) us-
ing our approach. This is because, when the sliding
window of the RDE method moves in between the
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consecutive change points t1 and t2, it is able to treat
the gradual change parameter as ‘a new separate vari-
able’ in an embedded system with a sufficiently high
dimension. Here, the embedding dimension is set as
four,which is larger than the typical dimensionof the
strange attractor of the uncoupled Lorenz oscillator.
However, when the sliding window moves past the
change times, the treatment of a new separate vari-
able could be implemented or terminated during a
use of theRDEmethod, which thus can be identified
using the BOCDmethod as shown in Fig. 2.

Benchmark Model II: biochemical
oscillator
Biological organisms and gene regulatory systems,
exhibiting complex dynamical behaviors, have been
investigated using various types of mathematical dy-
namical models [7,43,44]. However, due to enor-
mous cost, the number of experiments conducted
with high temporal resolution is limited. Often, the
regulatory structures in most biochemical models
used in data regressions are fixed with an unalter-
able structure, resulting in inaccurate dynamics that
deviate significantly from the true and unmeasured
biological outputs. To illustrate this point, we use
a biochemical model of enzyme-catalysed kinetics,
initially proposed by Decroly and Goldbeter [44].
This model contains two positive enzyme-catalysed
feedback loops (see Fig. 3a and Appendix A2 for
a detailed description of the biochemical reaction
procedure). In this model, we at first set the re-
moval rates ks 1 = 1.97, leading to dynamical os-
cillation of a limit cycle. We set a change point at
t = 4000, at which the model parameter is set to

ks 2 = 2.00 leading to chaotic, aperiodic oscillating
dynamics. As shown in Fig. 3a, in spite of the es-
sential difference between the twodynamical oscilla-
tions with different oscillating periods, the observed
time series itself does not appear to undergo a sig-
nificant change right after the change point we set,
thus posing challenges to detecting the change. In
order to use our TCD approach for change-point
detection, we took the time-delayed coordinates up
to two for each variable in this biochemical model,
thus making a nine-dimensional observable system
(see the SI for the detailed illustration). As shown
in Fig. 3b, a remarkable decrease in the BOCDmea-
sure appears within only five steps immediately af-
ter the true change point. Additionally, based on this
change point numerically detected, we use a two-
stage model to estimate respective values for the
parameter ks . Indeed, for these two stages, we ob-
tain k̂s 1 = 1.970 and k̂s 2 = 1.998 using our pre-
diction results, respectively, with the residual sums
of the squares RMSE = 1 × 10−3 and 0.12. How-
ever, when we use a one-stage model, estimating
ks through the entire time series without consid-
ering the change point, we obtain an estimation as
k̂s = 1.976 with RMSE = 7.1. Such an RMSE is
significantly higher than those RMSEs obtained by
the two-stage model (see Fig. 3c). Therefore, our
model-free TCD approach is beneficial in model-
driven analysis, allowing identification of the appro-
priatemodel configurations and estimating the time-
varying parameters.

Real-world data sets
In addition to testing on synthetic models and dy-
namics, we demonstrate the usefulness of our TCD
approach to change-point detection in several real-
world systems, including the data sets from the com-
plex systems of geology, historical glaciology, fi-
nance and brain diseases (refer to SI). In the main
text, we list three representative examples.

For the first example, we consider a set of earth-
quake records in Dannevirke (New Zealand) in
1975. The earthquake recorded 5.9 on the Richter
scale and had an epicenter ∼15 km south of Dan-
nevirke. Here, we collected its strong-motion data
set that contains 100-Hz accelerograph data mea-
sured in three orthogonal directions: two directions
for movement along the ground and one for verti-
cal movement (see Appendix A3 for more details)
[45,46]. The signals from the three directions thus
form a 3-dimensional system that could be regarded
as hints for complex interactions on the crust of
Earth. Before making predictions, we first take the
time-delayed coordinates up to five for each direc-
tion and thus render the dimension of the system
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Figure 3. Change-point detection in the model of biochemical oscillation with the pa-
rameter undergoing a change. (a) Biochemical oscillations based on the biochemical
reaction diagram, where the removal rate ks is a two-stage parameter with a preset
change point, t = 4000. The unit of each time point corresponds to 0.25 s, the curves
highlighted by the red circles contain the data used for change-point detection and the
dynamical behaviors do not alter much immediately after the removal rate changes.
(b) The change point detected using our TCD approach is within only five steps after
the true change point that was preset (the corresponding distribution of the run length
is illustrated in the inner panel). (c) In comparison with the estimated one-stage model,
the reconstructed two-stage model has a higher fidelity in restoring the true oscillating
dynamics.

as 18. Then, with a shifting time window contain-
ing 50 points (i.e. 0.5 s) as a training set, we predict
the kinematics of the S60W direction (illustrated in
Fig. 4a, the earthquake begins at T = −0.5 s). As
is shown in Fig. 4b, the standard deviation of the
predictions keeps at a low level most of the time
except for a duration starting from ∼6 s. To iden-

tify the moment after which the prediction becomes
inaccurate, we apply our approach to the standard-
deviation series. Our TCD approach successfully re-
ports a corresponding change point at 5.81 s (the
blackdashed line),which evidently is prior to the sig-
nal of the earthquake approaching the first peak (at
5.89 s) andalsobefore it approaches the loci atwhich
the largest motion in one direction occurs (at 6.08 s,
corresponding to the lowest valley in the upper panel
of Fig. 4). Strikingly, our detection results even sur-
pass those of some of the best recent studies [47],
in which the earliest change point detected to date
was identified as 5.87 s (almost at the first peak) by
applying non-parametric statistical approaches for
multivariate piecewise stationary time series. We
also evaluate our TCD method using another two
strong-motion time series from the samedata set and
acquire analogous results (refer to Fig. S5).

As the second example, we consider the data set
of the Greenland ice cores. It is known that iso-
tope abundance in ice cores is regarded as a key in-
dex used for deducing long-term climate changes in
the geological age [48,49]. Here, we consider the
δ18O data set collected in three drilling programs,
called, respectively, NGRIP, GRIP and GISP2, in
the ice cores [50,51]. The three drilling sites are
regarded as three tips of the iceberg containing
complex geographic interactions, where the climate
and the hydrologic conditions are considered as ex-
ternal driven forces. The data set consists of the
20-year mean δ18O concentration records for the
past 104 ka on the GICC05modelext timescale (see
part of the records in the upper panel of Fig. 5).
We take the time-delayed coordinates up to five for
each ice core so as to render the system as having a
high dimension (18 dimensions in total) and then
use our approach with a window containing 20 time
points (i.e. 400 years) as a training set to make the
one-step prediction on the NGRIP δ18O time se-
ries. Due to several historical events of abrupt sea-
ice loss, which are called the Dansgaard-Oeschger
(DO) events [52], the NGRIP δ18O concentration
fluctuated correspondingly and remarkably in those
event years. We therefore utilize the TCD approach
to identify the change points, the DO events, of the
abrupt sea-ice loss (refer to Appendix A4). As is in-
terestingly shown in the lower and the inner pan-
els of Fig. 5, the three DO events almost exactly
correspond to the three detected change points us-
ing our approach. However, the change points di-
rectly detected by merely applying the BOCD test
to the original data without making predictions us-
ing theRDEmethod are significantly behind the cor-
responding change points using our TCD approach
(see the following comparison study as well as
Fig. S6).
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Figure 4. Change-point detection for the earthquake strong-motion data set. Upper
panel: the acceleration data of the S60W direction. Lower panel: one change point is
detected by measuring the standard deviation of the predictions (black dashed line).
Inner panel: the run-length results on the standard deviations of the predictions.

Figure 5. Change-point detection for the Greenland ice-core data set. Here, all ice
cores obey the timescale of the Greenland Ice Core Chronology 2005 (GICC05). Upper
panel: the δ18O concentration (�) of the NGRIP ice core between 50 and 40 ka. Lower
panel: the standard deviation of the predictions obtained by our model-free approach
at each time point. Inner panel: three change points (red dashed lines) are highlighted
according to the run-length results using the BOCD test. Interestingly, the detected
change points are fairly close to but indeed before the estimated DO events that were
given in Ref. [50] and depicted in this figure using black dot-dash lines.

Thefinal example in themain text goes to change-
point detection for a particular data set of stockmar-
kets. Here, we focus on the time series of the clos-
ing prices from three randomly selected companies
on each market day during the 2008 global eco-
nomic crisis that was initially emblematized by the
declaration of the insolvency of Lehman Brothers,
one of the biggest investment banks, on 15 Septem-
ber 2008. In this example, we consider these three
companies as the nodes in a complex financial sys-
tem regulated by the global economic situation. Al-
though the three companies were not directly linked
to Lehman Brothers, they were seriously stricken
and suffered great loss from then on. It is of inter-
est to identify how the influence of the declaration
of the insolvency of Lehman Brothers dynamically
affected every node including these three companies
in this complex system. Detection of early signals or

change points is beneficial to the understanding of
such influence transmission. As such, the time-delay
approach is still used to construct an 18-dimensional
system (refer to Appendix A5).With ourmodel-free
TCD approach equipped with a sliding window of
45 observations, wemake predictions on the closing
price ofCisco Systems Inc. (CSCO). Figure 6 shows
that our approach detects a drastic decrease, right af-
ter 26 September 2008, in the run length (see the
inner panel) and thus a sudden increase in the pre-
diction errors (see the lower panel). This detected
change point reflects an early dynamical change in
the financial system that can be regarded as an early
consequence of the declaration of the insolvency of
Lehman Brothers resulting in the most abrupt de-
crease in stock prices this century. For the other time
duration, the predictability of the closing prices re-
mains relatively reliable. Comparing with the result
obtained by using the BOCD test alone on the orig-
inal time series, our result detects the change point
1 week earlier, suggesting an early-warning function
of our approach (see Fig. S7).

Comparison study
We compare our model-free approach with several
representative statisticalmethods that are frequently
used for change-point detection. First, we apply the
BOCD test directly to the original time series (in-
stead of the prediction errors or the standard devi-
ation of the predictions). Here, we consider an ex-
ample of the LORENZ15a model with two preset
change points: t1 = 200 and t2 = 400 (see Fig. 7a).
As shown in Fig. 7b, using the BOCD test on the
original time series is unable to either detect the
change points or detect a point significantly later
than the true change point. We obtain similar re-
sults when we use the BOCD test directly on the
Greenland data set as well as on the data sets of the
stock market during the 2008 economic crisis (see
Figs S6 andS7). Furthermore,we compare ourTCD
approach with the other four widely used methods,
viz. the Mann-Kendall test (MK) [53,54], the Cu-
mulative Sum (CUSUM) [55], the Dynamic Pro-
gramming (DP) [56] and the Pruned Exact Linear
Time Test (PELT) [57], using the time points from
the LORENZ15a model and from the earthquake
strong-motion data set as well. These four methods
fail to identify the preset change points accurately
for the LORENZ15amodel (see results in Fig. S10).
Also, the detected change points using these four
methods are all behind the marked time points for
the strongest motion in the original data set (see re-
sults in Fig. S11). As for the case inwhich the change
points are set in a non-uniformmanner, we compare
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Figure 6. Change-point detection for the data set of the stock market during the 2008 economic crisis. Upper panel: the time
series of the closing price of CSCO from March 2008 to December 2009. Lower panel: the prediction errors are calculated
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our approach with another two typical time-series
segmentation methods: Cpdetect and Dynsnap, re-
cently developed in Refs [58,59]. As shown in
Fig. S13, a satisfactory detection result is obtained
using the TCD approach; nevertheless, both the
Cpdetect andDynsnapalgorithms fail to identify any
of these two change points set for dynamical sys-
tems. All these results therefore suggest that a stan-
dard statistical method of change-point detection
alone cannot exactly and completely identify those
change points that are induced by structural fluc-
tuations in dynamical systems, particularly in non-
linear/complex dynamical systems. Our model-free
approach however provides a solution to this defi-
ciency when detecting such subtle but key change
points.
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Figure 7. Detection results only using the BOCD test to the original time series pro-
duced by the LORENZ15a model with two change points. (a) The time series of the
variable x1(t ) and the two change points are preset as t1 = 200 and t2 = 400. (b) The
BOCD test directly implemented on the original time series, where the time instant, as
indicated by the red dashed line, is different from the preset change points and is thus
a false-positive result.

DISCUSSION
Predictability as a prerequisite
for measuring unpredictability
Making accurate predictions is one of the focal
tasks for data mining using different model-based or
model-free approaches [22,60,61]. Our study, con-
trary to this task, concentrates on measuring the un-
predictability and uses the variance in the prediction
error to identify temporal instants at which struc-
tural changes occur in a complex dynamical system.
It should be pointed out that an accurate prediction
approach is still a ‘prerequisite’ for what we estab-
lish to detect the change points; otherwise, it is base-
less to compare those prediction errors obtained by
grossly inaccurate predictionmethods along the axis
of time. For this purpose, we adopt the RDE frame-
work developed recently to realize accurate predic-
tions merely using short-term but high-dimensional
time series. The RDE framework produces a prob-
ability distribution consisting of various prediction
results fromdifferent spatial embeddings. Investigat-
ing the shape of such distributions also provides a
new way of detecting change points because a large
standard deviation of the distribution often indicates
the existence of weak interactions and/or strong ex-
ternal perturbations to variables and thereby indi-
cates large unpredictability. Tomeasure such an un-
predictability more accurately, instead of using a di-
rect visual identification, we articulate a construc-
tive way that combines the RDE framework with
theBOCDtest—a representative statisticalmethod.
In fact, we apply the BOCD test on the predic-
tion errors and/or the standard deviations of the
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predictions for locating the loci at which the run
length falls with a high probability.This test is based
not on the original time series, but on the pre-
diction series, which thus integrates all the advan-
tages of the RDE framework into our approach. As
shown in all the examples above, our approach has
been demonstrated in efficiently identifying change
points from systems that are often replete with a
moderate strength of noise.

A short length of window
for the training set
One advantage of integrating the RDE framework
into our TCD approach is the need for only using
short-term data for accurate predictions. Structural
changes in real-world systems of high dimension can
occur at a high frequency, which makes it challeng-
ing for conventionalmethods that require long-term
time series for change-point detection. Our TCD
approach, transforming the spatial information into
time-course information, is well suited for dealing
with change-point detection for dynamical systems
switching at a relatively high frequency and using
merely time series in a short window. To illustrate
this, we test the LORENZ15a model to show that,
with a decrease in the window length for the train-
ing set, the accuracy of the change-point detection
shows a non-monotonic change (see Fig. 8a). As ex-
pected, the accuracy drops down when the length
of the window becomes long because such a win-
dow likely covers the time instant at which or the
duration for which the structures of the complex
systems change. Also, a shorter training set (a win-
dow of <10 time points for the current example)
could significantly deteriorate the accurate detec-
tion of those preset change points. Similar results
are obtained using the Greenland ice-core data set
(seeFig. S8).Actually, the prediction accuracy of the
RDEmethod has also been discussed and compared
systematically in Ref. [23]. Moreover, as strikingly
shown in Fig. 8a, sometimes it is sufficient to use a
window covering only 10 time points as the train-
ing set to detect the change point. We further test
the change-point-detection accuracy by increasing
the number of the change points that are added into
the dynamics. Here, we use a 15-dimensional cou-
pled Lorenz system but with different switching pa-
rameters producing a fixed length of time series (re-
fer to the LORENZ15d model in Appendix A1). As
shown in Fig. 8b, although the detection accuracy
using our approach decreases gradually as the num-
ber of change points increases, the accuracy always
sustains a level of >85%. All these demonstrate the
effectiveness of our TCD approach in the detection
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Figure 8. The change-point detection with different lengths
of the window for the training data set and with a different
number of change points added into the dynamics. (a) The
detected change-point position with different lengths of the
window, showing that the TCD approach loses its efficacy
when its window length becomes either too short (i.e. <10
points for this example) or too long (i.e. >45 points for this
example). Here, used as the example is the coupled Lorenz
system of 30 dimensions with a change point set as t =
50. For every given length of the window, the experiments
are repeated 10 times with randomly selected initial values
of the coupled Lorenz system. (b) Taken into account is the
15-dimensional coupled Lorenz system with different num-
bers of changing points. For each produced time series with
a given number of change points, the length of the time se-
ries is fixed as 700 points. Here, the results in both (a) and
(b) are depicted in a manner of ‘mean ± SD’.

of change points appearing at a relatively high fre-
quency. However, even though our approach is suit-
able for cases in which change points emerge at a rel-
atively high frequency, it does indeed lose efficacy
for those strong and random perturbations contin-
uously injected into the systems. As such, the data
produced by these systems become effectively ran-
dom, making it impossible to distinguish any essen-
tial change point from the data.

Online change-point detection
Generally, change-point-detection problems could
be largely divided into two classes: ‘offline’ and ‘on-
line’ detections. Offline detection, a more easily im-
plemented task, uses the time series as a whole and
identifies all possible change points at a time. On-
line detection is a type of real-time task that re-
quires detecting a change point as soon as it occurs
or, more practically, demands that the detection be
achieved before the next change point appears [62].
In fact, ourmodel-freeTCDapproach could be used
not only for offline detection, but also for online
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detection in a practical manner. As shown in Fig. 8a,
choosing an appropriate short length of the window
for trainingdata, the changepoint in the example can
be detected within only two steps after it truly oc-
curs. Furthermore, it is worthwhile mentioning that
the integration of the BOCD test into our approach
mainly serves as an essential step to detect the oc-
currence of change points as early and as accurately
as possible. This is tremendously valuable for the
achievement of online change-point detection.

CONCLUDING REMARKS
To summarize, we have presented a model-free ap-
proach to detect changes in structures in complex
dynamical systems. Our TCD approach comple-
ments well the existing statistical and/or machine-
learning techniques that detect change points based
on statistical variances, providing a new set of tools
for uncovering hidden dynamical fluctuations in-
duced significantly by temporal structures in the
system. We have demonstrated the effectiveness of
our approach from several aspects, including cases
of change points occurring at a relatively high fre-
quency, online detection of change points in a timely
manner and temporal structures appearing in com-
plex dynamical systems of extremely high dimen-
sions (also see change-point detection in brain sig-
nals in Appendix A6 and Fig. S13).

Our approach does have some limitations in ap-
plications. When the change of the structure in the
complex systems is too subtle to arouse the essen-
tial change in dynamical behaviors, the TCD ap-
proach definitely cannot identify such a change,
since our approach crucially relies on the occurrence
of dynamical variance (see the sensitivity test in the
‘Benchmark Model I: coupled Lorenz systems’ sec-
tion). Furthermore, the TCD approach is so far only
suitable for time series with a uniform sampling size
because using the state space reconstruction always
results in such a kind of time series. For non-uniform
time series, preprocessing such as an interpolation
technique could be introduced. Moreover, our ap-
proach is not suitable for dealing with time series
perturbed by extremely strong noise because such a
case violates the prerequisite for using the TCD ap-
proach, i.e. the time points are largely generated by
a dynamical system with noise at weak to moderate
levels.

Anyway, our TCD approach could be widely
used in detecting essential change points in real-
world systems with temporal structures—the first
step for both data-driven andmodel-driven research
when selecting appropriate piecewise mathematical
models. We anticipate that the parameters config-
ured in our TCD approach under the RDE frame-

work and the BOCD test can be further improved,
optimized and automatedbymachine-learning tech-
niques in dealing change-point-detection problems
for real-world data.

DATA AVAILABILITY
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