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Abstract

LONG-READ SEQUENCING FOR IMPROVING GENOMES AND

TRANSCRIPTOMES

By Matthew S. Adams

All the processes of life are controlled by the complex and carefully regulated usage

of the genome. Thus, the understanding of an organism's genomic DNA sequence and

regions of the genome that are transcribed into complementary RNA transcripts is

critical to the study of life and biomedical research. Our understanding of the DNA

and RNA composition of a cell has been heavily based on the high throughput

short-read sequencing by synthesis technology. However, DNA and RNA molecules,

polymers consisting of long chains of molecular subunits, stretch on for lengths far

beyond these methods capabilities such that it requires their fragmentation prior to

sequencing followed by computational assembly of the short fragments to estimate

their arrangement in the much larger original molecule. Thus, I have developed and

optimized methods utilizing nanopore based long-read sequencing to improve the

accuracy and completeness of genome assemblies and genomic annotations

(transcriptome). These methods include a hybrid genome sequencing and assembly

workflow that works with minimal amounts of DNA to generate chromosome-scale

assemblies, the conversion of short-read libraries for highly accurate nanopore

sequencing that makes DNA sequencing more accessible and, an approach for the

deep sequencing of full length transcript isoforms to improve genomic annotations for
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model organisms. Together, this work improves our ability to understand how living

things operate on the molecular level.
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Introduction

A Brief History of Sequencing Technology

Determining the precise sequence of residues in nucleic acids is critical in the

study of biology and biomedical research. And, while the discovery of the structure

and function of DNA was discovered in 1953, the ability to read, in order, the

sequence of individual subunits of nucleic acids proved to be a greater challenge.

Prior to the 1970’s the researchers used a combination of selective nucleases to

partially fragment molecules then use biochemical methods to determine the

nucleotide composition of the smaller fragments (Heather and Chain 2016). These

techniques were only effective for short molecules such tRNA for which the Nobel

prize was awarded for the sequencing of the alanine transfer RNA in 1968

(Barciszewska, Perrigue, and Barciszewski 2016). But, the first major breakthrough

in sequencing came in 1977 with development of the chain termination method which

synthesizes a complementary strand to the target molecule utilizing radiolabelled

ddNTPs that terminate synthesis when added to the new strand, fragments are then

separated by gel electrophoresis to determine the nucleotide at each position. This

method, developed by Fredick Sanger and awarded the nobel prize in 1980, became

the dominant method for almost 30 years and is still used regularly today for certain

applications. But, even with advanced automation of the Sanger method, the

throughput was greatly inefficient for the needs of researchers given the enormous

diversity of life.
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The second major advancement in sequencing technology came in the 1990’s

and early 2000’s. These methods still relied on sequencing by synthesis like the

Sanger method but could be massively parallelized since they did not require gel

separation. Instead, these methods detected light emissions from the addition of each

base by using a charged couple device (CCD), which are commonly used as sensors

in digital cameras. Instruments using this method, developed by 454 Life Sciences

and Solexa (later acquired by Illumina), could achieve what would have taken years

using the Sanger method in just days or weeks. The increase in sequencing

capabilities now grew at a faster rate than advances in computing power as described

by Moore's law, that the complexity of microchips (measured by density of

transistors) doubles every two years, while sequencing throughput from 2004 to 2010

doubled every five months (Stein 2010). This radically changed biological and

biomedical science and ushered in the “genomic revolution” (Shendure et al. 2017).

Third Generation Long-Read Sequencing

The next generation sequencers produced by Illumina have gone on to become

the “gold standard” and have obtained a near monopoly within the field. And while

they can produce billions of highly accurate sequencing reads at low cost, the

technology can only sequence DNA fragments about 150 bp long. These short

fragments can be computationally assembled back into the larger original molecule

but repetitive genomic elements and alternative transcript isoforms are nearly

impossible to resolve with 100% certainty (Steijger et al. 2013).
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Third generation sequencing technologies like Oxford Nanopore Technologies

(ONT) and Pacific Biosciences (PacBio) can produce much longer reads, for PacBio

about 10-20 kb, and for ONT reads of 100s of kb and more are possible. These

technologies enable repetitive genomic regions to be accurately resolved and entire

full length transcripts to be sequenced end-to-end (Byrne, Cole, et al. 2019).

Nanopore based sequencing appears to be the most promising third generation

technology due to its theoretically unlimited read lengths, ability to directly sequence

single molecules of DNA or RNA, direct detection of chemically modified bases, and

low instrument costs.

Nanopore sequencing works by using an electrical signal to pass a single

molecule through a nanopore embedded in a membrane, as the molecule passes

through, the signal is disrupted in a distinct way depending on the molecules

sequence which can then be interpreted into the ‘A’, ‘C’, ‘G’, ‘T’ and ‘U’ subunits of

nucleic acids. But, when ONT introduced the first commercially available nanopore

sequencer, the MinION in 2014, the per base read accuracy was less than impressive.

Initially, per base accuracy of about 85% was reported, making it difficult to align

reads, demultiplex mixed samples with short barcodes, and detect single nucleotide

variation. Due to these limitations, the rolling circle amplification to concatemeric

consensus method (R2C2), was developed in the Vollmers lab at UCSC (Volden et al.

2018), greatly improved the accuracy of ONT sequencing by sequencing multiple

copies of the same molecule then generating a more accurate consensus sequence.
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As part of my graduate work documented here, I showed that R2C2 can be

used in a hybrid sequencing workflow to cheaply, and easily, generate

chromosome-scale genome assemblies using minimal amounts of input DNA. I also

show how this method can be used to replace large and expensive Illumina

instruments by producing nearly equivalent data on the much more accessible ONT

MinION device. And lastly, I generated an isoform level transcriptomic reference for

a dozen mouse tissues using exclusively full-length cDNA sequencing.
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Chapter 1

One fly - one genome : Chromosome-scale genome assembly of a
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Abstract

A high quality genome assembly is a vital first step for the study of an

organism. Recent advances in technology have made the creation of high quality

chromosome scale assemblies feasible and low cost. However, the amount of input

DNA needed for an assembly project can be a limiting factor for small organisms or

precious samples. Here we demonstrate the feasibility of creating a chromosome scale

assembly using a hybrid method for a low input sample, a single outbred Drosophila

melanogaster. Our approach combines an Illumina shotgun library, Oxford nanopore

long reads, and chromosome conformation capture for long range scaffolding. This

single fly genome assembly has a N50 of 26 Mb, a length that encompasses entire

chromosome arms, contains 95% of expected single copy orthologs, and a nearly

complete assembly of this individual’s Wolbachia endosymbiont. The methods

described here enable the accurate and complete assembly of genomes from small,

field collected organisms as well as precious clinical samples.
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Introduction

The creation of high quality genome assemblies is a key step for the study of

organisms on both the level of individuals and populations (Dudchenko et al. 2017).

Conventional genome sequencing projects rely on whole-genome shotgun sequencing

approaches that generate huge numbers of short sequence reads at low cost. While

short reads can be reassembled into larger contiguous genome segments by

identifying overlapping reads, they often fail to generate chromosome length

assemblies due to the challenge of assembling repetitive DNA sequences.

Consequently, many published genomes are highly fragmented (Worley, Richards,

and Rogers 2017). Fragmented genomes can be valuable for gene-level studies but

many genomic analyses such as understanding chromosome-scale evolution,

resolving full-length haplotypes, association studies, and quantitative trait locus

mapping require high-quality chromosome-scale assemblies. New hybrid genome

assembly approaches can produce highly contiguous assemblies that represent true

chromosome length genomes (Rice and Green 2019).

Two recent advances in genomic technologies have dramatically raised the

quality of genome assemblies (Yuan et al. 2017). First, third generation long-read

sequencing technologies are capable of sequencing entire long repetitive sequences,

but they suffer from higher error rates and lower throughput (Worley, Richards, and

Rogers 2017). Second, proximity-ligation sequencing, or Hi-C, produces short-read

pairs representing sequences that are close together in three-dimensional space

(Lieberman-Aiden et al. 2009). This allows high throughput “scaffolding” of

7

https://paperpile.com/c/NPzu7r/8DOF6
https://paperpile.com/c/NPzu7r/XqiEG
https://paperpile.com/c/NPzu7r/XqiEG
https://paperpile.com/c/NPzu7r/ixjTW
https://paperpile.com/c/NPzu7r/KQIob
https://paperpile.com/c/NPzu7r/XqiEG
https://paperpile.com/c/NPzu7r/XqiEG
https://paperpile.com/c/NPzu7r/mWNaw


challenging genomic regions (Putnam et al. 2016). However, these impressive gains

in genome assembly quality have not been realized across all species due to important

biological constraints.

Genome projects can be complicated by the small size of many organisms,

which yield corresponding low amounts of DNA from a single individual.

Consequently it is not always feasible to obtain sufficient input material for the

genomic approaches described above without pooling individuals (F. Li et al. 2019).

Nonetheless, developing applications for single individual genome assemblies offers

several key advantages. First, it may not be possible to obtain more than a single

individual for some species. Second, even if many could be found, pooling several

individuals increases the genetic diversity in the DNA input, imposing challenges for

accurate genome assembly. For wild caught samples, the possibility of combining

cryptic species has the potential to impact assembly quality and introduce spurious

biological conclusions. Finally, low input sequencing methods could be used to

assemble genomes from precious clinical samples. There is therefore a clear need for

new methods that can assemble highly contiguous genomes from a single isolate with

limited available DNA.

Recently, Kingan et al. released a whole-genome assembly obtained from a

single mosquito, Anopheles coluzzii, sequenced using three PacBio SMRT Cells

(Kingan, Heaton, et al. 2019). Although the assembly has high contiguity (contig N50

3.5 Mb), the authors were unable to obtain chromosome-scale contigs or scaffolds

and the resulting assembly does not include biologically important regions of the
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genome that contain chromosomal inversion breakpoints (Kingan, Heaton, et al.

2019; R. B. Corbett-Detig et al. 2019). Additionally, the input material used,

approximately 100 ng of high quality DNA, may still be challenging to obtain from a

single field-collected individual in many species. Nonetheless, this pioneering work

suggests a powerful solution in developing low-input protocols for simultaneously

obtaining Hi-C and long-read data from single individuals.

Here, we present a chromosome scale hybrid genome assembly of a single

Drosophila melanogaster female. From this single individual, we produce long reads,

short reads and proximity ligation sequencing data. Our assembly approach leverages

the unique value added by each data type to produce a chromosome-scale and

accurate genome assembly. This approach is applicable for millions of small species

and for irreplaceable clinical samples

Results

Sample Selection

Although numerous studies have assembled genomes from completely (M. D. Adams

2000) or partially (Kingan, Heaton, et al. 2019) inbred arthropods, the genomes of a

field collected samples will likely be highly heterozygous outbred individuals. To

make our assembly task conservatively challenging yet straightforward to evaluate,

we generated an outbred fly by crossing females of the D. melanogaster reference

strain y; cn, bw; sp, or ISO1 (M. D. Adams 2000), to males of another inbred and

genetically distinct strain, I38 (Grenier et al. 2015). Importantly, I38’s genome is

collinear with the reference on broad scales, although smaller rearrangements, such as
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small-scale indels and copy number variants, are almost certainly present in the

genome (Grenier et al. 2015; Lack et al. 2015). We can therefore use progeny from

this cross to demonstrate the applicability of our method for assembling genomes of

outbred field-collected arthropod individuals and we can easily verify the accuracy of

the assembly by comparison to the ISO1 reference genome. To facilitate the use of

several sequencing methods, the single outbred fly chosen for sequencing (referred to

as H3) was first laterally dissected (Figure 1).
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Figure 1. Experimental flow chart. A heterozygous fly (H3) was produced by crossing
ISO1 and I38 strains. A single female offspring was laterally dissected. From the posterior
half, HMW DNA was extracted and used to prepare the two primary assemblies, a R2C2
genomic library for nanopore sequencing, and a Tn5 tagmentation library for paired end
Illumina sequencing. The anterior portion was used to isolate intact chromatin to generate a
Hi-C paired end Illumina library. The two primary assemblies were merged into one then
arranged into chromosome length scaffolds using the Hi-C contact frequency data.
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Primary Sequencing Datasets

From a single outbred adult female fly, we produced short-read shotgun, long-read

shotgun and Hi-C libraries (Figure 1). From the posterior half, we extracted high

molecular weight (HMW) DNA and we obtained approximately 104 ng in total. We

used 78 ng to produce an Oxford Nanopore Technology (ONT) sequencing library

following the R2C2 protocol (Volden et al. 2018) with slight modification for

genomic DNA (see Methods). The R2C2 protocol generated ONT raw reads that

contain tandem repeats of Drosophila genomic DNA sequence separated by splint

sequences. The R2C2 post-processing pipeline (C3POa) processes these raw reads

and generates two types of output reads: 1.) Consensus reads are generated if an ONT

raw read is long enough to cover an insert sequence more than once which is

evaluated by detecting a splint sequence in the raw read and 2.) Regular “1D” reads

for which no splint could be detected in the raw read. In total, 277,305 consensus

reads and 1,769,380 “1D” reads were generated from a single ONT MinION flow

cell. Both read types were included in the assembly. We additionally produced an

Illumina sequencing library using a standard Tn5-based protocol (Methods) and from

this we obtained 133,135,777 total paired-end reads (Table 1).

Because both R2C2 and our Tn5 protocol are optimized for low DNA inputs,

they require some amplification to produce suitable quantities of libraries for high

throughput sequencing. Likely as a consequence, the variance in sequencing depth

exceeds the theoretically expected variance if reads were sampled uniformly at

random from the genome. Indeed, for libraries with mean depths 236x and 39.7x we
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obtained depth variances of 8382 and 1038 for Tn5 and ONT respectively.

Nonetheless, we show below that moderately long contigs can still be generated from

these data (Supplementary Figure S1).

We also produced a Hi-C library to enable long-range scaffolding across the

genome. We optimized a chromatin conformation capture sequencing method (Belton

et al. 2012; Lieberman-Aiden et al. 2009) for application to samples with minimal

input materials (See Methods). Using this approach and just the anterior half of the

fly, we were able to produce 68,400,787 reads in total from a Hi-C library (Table 1).

This represents an average of approximately 93,991 clone coverage across the

genome. Furthermore, despite low-input, the PCR duplication rate is quite modest

(12%). These data therefore indicate that our single-fly Hi-C approach can produce

high complexity libraries suitable for scaffolding high quality genomes.

Library Total Number of Reads Read Length Predicted
Coverage

Illumina Tn5 133,135,777 151 bp (paired end) 333x
ONT R2C2 2,046,685 3,541 bp (median length) 60x
Illumina HiC 68,400,787 151 bp (paired end) 171x

Table 1. Summary of sequencing data used for assembly and scaffolding

Primary assemblies

To accommodate the unique features of each input data type we produced two

primary assemblies. First, we assembled the short-read shotgun dataset using the

heterozygosity aware de Bruijn graph-based algorithm Meraculous (Chapman et al.

2011). As we are interested in assembling a single haploid genome sequence, we
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collapsed the program’s resulting diplotigs into a single haploid assembly (i.e.

“diploid mode 1”). Second, we assembled the processed ONT reads using wtdbg2

(Ruan and Li 2019) (Table 2). As expected given the substantially larger input read

lengths, we obtained a much larger contig N50 using this program, than in our

short-read based primary assembly (Table 2).

Merging Primary Assemblies

To combine the short and long-read primary assemblies we used the meta-assembler

quickmerge. Quickmerge combines two input assemblies to produce an assembly

with higher contiguity. Since the input assemblies come from the same individual,

gaps in one assembly can be bridged by the other using the alignment of contigs from

each input (Chakraborty et al. 2016). The resulting merged assembly had a contig

N50 of 274.6 kb (Table 2).

Contig N50 (Kbp) Scaffold N50 (Kbp) Assembly Size
(Mbp)

Meraculous 51 N/A 112.1
wtdbg2 97.7 N/A 112.3

Quickmerge 274.6 N/A 111.2
Hi-Rise N/A 26,182 111.36

Pilon-Polishing N/A 26,279 112.22
H3 Genome* N/A 26,279 110.96

Table 2. Summary of primary and scaffold assembly statistics.*Final assembly size of the H3 fly
after removal of the endosymbiont Wolbachia genome (see section Genomic Bycatch).

Scaffolding

Although the final merged primary assembly is reasonably contiguous, we observed

by far the greatest gains in scaffold size after using our Hi-C data. We ran HiRise to
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scaffold the merged primary assembly and a single punitive misjoin was removed

before rerunning HIRise a second time (see methods) from which we obtained a

scaffold N50 of 26 Mb. Our final scaffolded assembly contains all the major

chromosome arms in the D. melanogaster genome represented as single scaffolds,

and correctly joins arms 2L and 2R across their heterochromatin-rich centromeric

region (Figure 2). It therefore appears that the ability to produce high quality Hi-C

libraries from extremely limited input material is the most essential component of our

method for making contiguous genome assemblies for single individuals in small

species.

Figure 2: Genome Contiguity. (A) The read density map for Hi-C read pairs mapped onto the five
largest contigs in our final assembly. (B) Dot plot of Hi-C scaffold assembly mapped to the dm6
reference genome. Continuous diagonal lines represent full length scaffolds of all major
chromosome arms. For clarity of visualization, we restricted this plot to alignments of 5Kb or more
using delta-filter in the mummerplot package.

Polishing and Gap Filling

Because we combined diverse data types, and in particular because our primary

assembly relies on error-prone long reads, we sought to polish the contigs and fill
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gaps in the final highly contiguous assembly. In total we performed four rounds of

iterative polishing with Pilon ((Walker et al. 2014), See Methods), until we did not

observe significant additional improvements (Supplementary Table S2). The final

assembly produced by this step, which we use for all validation below, is the largest

of all of our assemblies at 112.2Mb (110.96 Mb after removing wolbachia contigs),

which presumably reflects the success in our polishing and gap filling by

incorporating additional sequences.

Quality of the Final Assembly

We assessed our final assembly quality using several metrics. First, we applied the

Benchmarking Universal Single-Copy Orthologs, BUSCO, algorithm (Simão et al.

2015). Briefly, the program provides an assessment of assembly quality specifically

with respect to genic sequences by searching for a set of nearly-universal and single

copy genes. In applying this quality metric we obtained a BUSCO score of 95.2%

completeness for our final assembly. This is slightly lower than the current D.

melanogaster ISO1 reference BUSCO score of 98.9%, but it is not dramatically

different. We therefore conclude that the majority of the expected genic sequences are

complete in our assembly.

Second, to compare the assembly of our H3 fly to the dm6 reference and

quantify misassemblies we used the genome quality assessment tool QUAST

(Gurevich et al. 2013). In addition, we used QUAST to compare another high quality

assembly of a different D. melanogaster strain, A4 (Chakraborty et al. 2018), to the

dm6 reference to set a benchmark for the expected differences between genetically
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diverse strains (Table 3). Because A4 was completely inbred and independently

isolated from ISO1, whereas our H3 sample is heterozygous for the ISO1 genome,

our assembly should more closely match the reference genome. The reason is that we

would expect the reference allele to be selected 50% of the time at non-reference

sites, and we should therefore observe approximately half as many apparent

differences in our final assembly as for A4 relative to the ISO1 reference genome. As

expected, our assembly had substantially fewer misassemblies, mismatches and indels

than the A4 strain when compared to the dm6 reference, likely because of the

relatedness between ISO1 and our assembled individual.

Although our bioinformatic approach has produced a highly contiguous and

accurate genome assembly, we acknowledge that alternative approaches might

improve on our results. It is typically not possible to extensively optimize a

bioinformatic pipeline including all possible variations. We therefore caution that this

method should be considered guidelines for processing these types of data, but that

researchers should evaluate them carefully for a given assembly task to ensure

optimal results can be obtained.
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H3 against dm6 reference A4 against dm6
reference

# misassemblies 798 2309
# misassembled contigs 15 145
# local misassemblies 1251 3491

# mismatches per 100 kbp 525.36 1136.97
# indels per 100 kbp 88.7 118.84

Table 3. Summary of QUAST output comparing H3 and A4 assemblies to the dm6 reference

genome

Repeat Content

Despite similar BUSCO scores and the modest rate of misassemblies that we observe,

our genome assembly is approximately 20% smaller than the canonical D.

melanogaster reference genome. We suspected that much of the difference occurs

because our assembly relies on relatively short reads and therefore collapsed

repetitive regions. To evaluate this, we used the dm6 annotation data to evaluate

coverage across different types of genomic features for both our single-fly assembly

and a separate comparison of the A4 assembly. We found that while unique sequence

including genes and especially exon sequences were captured in their entirety the

majority of the time, highly duplicated elements such as transposons and tRNAs were

much less likely to be covered by the H3 assembly (Table 4). This is a general

weakness of short-read assemblies (Treangen and Salzberg 2011) and should be

acknowledged by any forthcoming analysis applying this method of assembly.
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H3 Assembly A4 Assembly Control
Coding Sequence (CDS) 94.0% 97.9%

Exon 93.9% 99.5%
Long noncoding RNA 90.6% 98.8%

microRNA 93.7% 99.6%
tRNA 76.5% 98.7%

Mobile genetic elements 55.3% 82.0%

Table 4. Sequence uniqueness strongly impacts assembly coverage. The columns are H3
assembly without any polishing and a non-reference control assembly of standard coverage
and size. The rows are annotation types. The value corresponds to the percent of aligned
annotated elements with at least 90% of their sequence captured in our assembly. The
coverage distribution of our assembly is bimodal, with the vast majority of elements being
either covered by a single assembled contig or not covered at all. An expanded table
including more annotation types and counts, polished versions of the assembly, and overall
assembly statistics can be found in the supplement (Supplementary Table S1).

Phasing

We next evaluated our prospects for phasing the genome of this outbred individual,

i.e. assigning each heterozygous allele to a chromosome. To do this, we realigned our

short-read data to our final genome assembly and called all heterozygous variants

using GATK (McKenna et al. 2010). We then realigned the Hi-C and long-read data

as well and attempted to infer the phase using combinations of these data and the

Hapcut2 algorithm (Edge, Bafna, and Bansal 2017). Because our individual is outbred

and we know the complete genome sequence of both ancestors, it is straightforward

to quantify the phase accuracy.

Using just the short-read data to phase heterozygous SNPs in the H3

individual, we achieve a modest combined mismatch and switch error rate (sensu

(Edge, Bafna, and Bansal 2017)) of 0.00147 errors/site. Briefly, mismatch errors
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denote sites where single variants are phased incorrectly in an otherwise correct block

and switch errors denote a change where at least two subsequent variants are phased

incorrectly relative to preceding sites. However the mean phase block length is just 14

heterozygous variants or approximately 2 kb. When we incorporated our Hi-C data,

the combined error rate increased to 0.0147 error/site, but nearly entire chromosomes’

variants were included in a single phase block (i.e., 99.95% of variants/chromosome).

The addition of Hi-C increased switch errors in particular by 0.0126 errors/site. This

is likely a consequence of somatic chromosome pairing in dipterans (Cooper 1948),

which has previously been demonstrated to create an excess of sister chromosome

contacts in Hi-C data (R. B. Corbett-Detig et al. 2019; AlHaj Abed et al. 2019). The

increased switch error rate suggests that approximately 17% of Illumina-phasable

blocks that are joined by the addition of Hi-C result in switch errors. Therefore, phase

inferred from these data could be useful across relatively short distances (e.g., 5 kb),

but should be regarded with caution at larger genomic distances. This might not be

suitable for all applications of phasing, but would be sufficient for many population

genetic questions that rely on short-distance haplotype and linkage information.

Genomic Bycatch

Although not a primary consideration in this work, we found that our assembly

captures additional material that is potentially of interest and underscores the power

of our approach. First, our selected individual was phenotypically female,

nonetheless, we discovered a non-trivial rate of Y-chromosome mapping contigs.
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Importantly, we found a similar Y-mapping rate in all three raw sequencing datasets

(Supplementary Table S3), and the relevant Y:Autosome depth closely resembles that

of typical phenotypic males (unpublished data). We therefore believe this is an XXY

female. Despite the abundance of Y-derived reads, our Y chromosome assembly is

exceedingly fragmented, as most Y chromosome assemblies are, reflecting the

challenges of assembling extremely repeat-dense chromosomes (Kuderna et al. 2019).

Nonetheless, this finding highlights the value of sequencing individuals rather than

pools because pooling would likely obscure this relationship of relative chromosome

depths.

Second, the reference strain is known to harbor the symbiotic bacteria

Wolbachia, as we used this as the female parent in the cross Wolbachia is present in

our sample due to infected embryos. Despite the differences in read-depths relative to

the nuclear genome, our assembly includes nearly full coverage of the Wolbachia

genome with few apparent misassemblies (Figure 3 and Supplementary Figure S2).

Wolbachia in particular (Pietri, DeBruhl, and Sullivan 2016), and endosymbionts

more generally (Russell, Chappell, and Sullivan 2019), are frequently present in host

somatic tissues, likely explaining the similar abundances of Wolbachia-derived reads

across sequencing libraries prepared from different parts of the fly. This suggests that

in addition to nearly complete nuclear genomes, our assembly method might also be a

powerful tool for investigating individual’s endosymbiont communities – a

fundamental consideration in arthropod biology (Blow and Douglas 2019).

Additionally, the analysis of a single individual obviates important concerns about
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pooling for interpreting inter-strain endosymbiont diversity (as in, (Medina, Russell,

and Corbett-Detig, n.d.)), and again emphasizes the potential impact of this approach.

See also, Kingan et al for a related approach assembling complete endosymbiont

genomes from the genomic data of a single insect (Kingan, Urban, et al. 2019).

Figure 3. Dot-plot comparison of our nearly-complete
Wolbachia assembly to the canonical wMelWolbachia genome
sequence. Note that the apparent discontinuity in the top
right/left, reflects the circular nature of the bacterial genome, and
simply indicates that our assembly breaks the circle at a slightly
different place.

Conclusion

Recent advances in technology have greatly increased the quality of genome

assemblies but generally require a relatively large DNA input. This limitation reduces

the applicability of these methods for many precious, rare, and/or field collected
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specimens. Here, from a single fly we were able to construct a chromosome scale

genome assembly with an N50 of 26 Mb. The primary assemblies were made with

less than 90 ng of total input DNA. Therefore, our approach demonstrates that high

quality chromosome-scale assemblies can be obtained from limited sample inputs.

Our method also compares favorably for total cost outlay. The DNA isolation

and library preparation involves only basic molecular biology methods and

equipment. We produced all necessary sequencing data on approximately one half of

a HiSeq 4000 lane and a single MinION flow cell. We can therefore produce a

contiguous, high quality genome for approximately $1,200 in total materials and

reagent costs. For cost effectiveness, our approach compares quite favorably with

available alternatives such as Pacbio SMRT cells at $2,000 each.

There are many genome assembly approaches available, and ours may not be

optimal for all applications. When input materials are severely limited, the approach

we describe here provides an appealing set of trade-offs and may be the only option to

produce highly contiguous genome assemblies. Indeed, we have been able to make

R2C2 libraries with as little as 10 ng of input DNA. Nonetheless, if more DNA is

available, recent advances in PacBio library preparations (Kingan, Heaton, et al.

2019) might be a more appealing option for the long-read assembly. This method

does not require amplification, and results in a less biased coverage. However,

without Hi-C data for scaffolding, chromosome-scale assemblies are unlikely to be

achievable. We therefore consider the addition of our Hi-C approach a necessary

prerequisite for high quality genomes.
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Perhaps the most fundamental concern for the suitability of our approach is

the researcher’s specific questions and motivations for making a genome.

Applications that require high contiguity in an assembly would be enhanced

significantly using this approach. For example, association studies and quantitative

trait locus mapping approaches generally require knowledge of large-scale linkage

among sites to be successful (Ashton, Ritchie, and Wellenreuther 2017). Similarly,

many population genetic frameworks, e.g. those for local ancestry inference (Maples

et al. 2013; R. Corbett-Detig and Nielsen 2017), and for estimating past effective

population sizes (H. Li and Durbin 2011), are based on the spatial distribution of

markers along a reference genome. Finally, comparative studies of large-scale

chromosome structure would be significantly enhanced by contiguous genome

assemblies (R. B. Corbett-Detig et al. 2019). However, if the distributions of

repetitive elements across the genome are of interest, our specific method is unlikely

to perform well. Many studies are concerned primarily with coding regions, and for

those our approach presents a reasonably high quality option.

This approach can serve as a guide point for genome projects of small

organisms which make a large majority of the diversity of life. Approximately 80

percent of known species are insects, and approximately 5 million total insect species

are believed to exist on earth (Stork 2018). Additionally, any research projects dealing

with minimal DNA could achieve chromosome scale genomic information from this

approach. This approach is therefore positioned to revolutionize our understanding of

genome structure across diverse species.
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Materials and Methods

DNA Extraction

High molecular weight DNA was extracted from one half of a single Drosophila

melanogaster female using a Qiagen MagAttract HMW DNA kit. One half of a single

fly was placed in a 1.5 ml tube with lysis buffer and proteinase k then crushed with a

pestle using an up and down motion as to not shear DNA. The lysis and proteinase k

digestion was incubated overnight at 37 C. The rest of the purification was performed

according to the manufacturer’s protocol. The total amount of DNA recovered was

104.4 ng measured with a Thermo Fisher Qubit fluorometer and Qubit dsDNA HS

assay kit. This sample was subsequently used for the Tn5 and nanopore library prep.

Illumina Short-Insert Tn5 Sequencing

From the HMW DNA sample, 10 ng of gDNA was tagmented with Tn5 transposase

for 8 minutes at 55ºC. The reaction was halted by adding 0.2% SDS and incubated at

room temperature for 7 minutes. Four separate PCR reactions were set up using the

KAPA Biosystems HiFi Polymerase Kit and amplified for 16 cycles using uniquely

indexed i5 and i7 primers. The amplified libraries were pooled and purified using the

≥ 300 bp cutoff on the ZYMO Select-a-Size DNA Clean and Concentrator Kit. 500

ng of the purified library pool was run on a Thermo Fisher 2% E-Gel EX Agarose Gel

and cut between 550 and 800 bp. The gel cut was purified with the NEB Monarch

DNA Gel Extraction Kit and quantified using the Qubit dsDNA HS Assay Kit and

the Agilent TapeStation.
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Nanopore Sequencing

From the HMW DNA sample, 78.3 ng was used as input. The sample was first

sheared using a Covaris g-TUBE centrifuged for 30 seconds at 8600 RCF. The

sheared DNA was size selected using Solid Phase Reversible Immobilization (SPRI)

beads at 0.7 beads:1 sample ratio and eluted in 25 ul ultrapure water.

End repair and A-tailing was performed using NEBNext Ultra II End

Repair/dA-Tailing Module followed by ligation of Nextera adapters using NEB

Blunt/TA Ligase Master Mix following the manufacturer's protocol. The adaptor

ligated sample was purified by SPRI beads at a 1:1 ratio and eluted in 50 ul of

ultrapure water. The sample was divided into six, 25 ul PCR reactions with Nextera

primers and KAPA HiFi Readymix 2x (95 C for 30 s, followed by 12 cycles of 98 C

for 10 s, 63 C for 30 s 72 C for 6 min, with a final extension at 72 C for 8 min then

hold at 4 C). The PCR reactions were pooled and purified by SPRI beads at a 1:1 ratio

and eluted in 60 ul of ultrapure water. Concentration was measured to be 110 ng/ul

using the Qubit dsDNA HS assay. The entire sample was size selected by gel

electrophoresis using a 1% low melting agarose gel. An area from 6-10 kb was cut

out and digested using NEB Beta Agarase I following the manufacturer's protocol

then purified using SPRI beads at a 1:1 ratio.

One hundred nanograms of size selected DNA was mixed with 50 ng of a

DNA splint and circularized by Gibson assembly using 2x NEBuilder HiFi DNA

Assembly Master Mix incubated for 60 min at 50 C. Non circularized DNA was
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digested overnight at 37 C using Exonuclease I, Exonuclease III and Lambda

Exonuclease (all NEB). Circularized DNA was purified by SPRI beads at a 0.8:1 ratio

and eluted in 40 ul of ultrapure water.

The circularized DNA was split into 8 50 ul rolling circle amplification (RCA)

reactions (5 ul 10x Phi29 buffer (NEB), 2.5 ul 10 mM dNTPs (NEB), 2.5 ul 10 uM

exonuclease resistant random hexamer primers (Thermo), 5 ul DNA, 1 ul Phi29

polymerase (NEB), 34 ul ultrapure water). Reactions were incubated overnight at 30

C. All reactions were pooled and debranched using T7 Endonuclease (NEB) for 2

hours at 37 C. To shear ultra-long RCA products the sample was run through a Zymo

Research DNA Clean and Concentrator-5 column and eluted in 40 ul ultrapure water.

A final size selection was performed by gel electrophoresis using a 1% low melting

agarose gel. An area at approximately 10 kb was cut out and digested using NEB Beta

Agarase I following the manufacturer’s protocol then purified using SPRI beads at a

1:1 ratio.

The cleaned and size selected RCA product was sequenced using the ONT 1D

Genomic DNA by Ligation sample prep kit (SQK-LSK109) and a single MinION

flow cell following the manufacturer's protocol. The raw data was basecalled using

the Guppy basecaller. Consensus reads were generated by Concatemeric Consensus

Caller with Partial Order alignments (C3POa).
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HiC Library

The anterior half of the fly was placed into a 1.5 ml tube with 1 ml of cold 1x PBS.

31.25 ul of 32% paraformaldehyde was added. The sample was briefly vortexed and

incubated for 30 minutes at room temperature with rotation. After incubation the

supernatant was removed and washed twice with 1 ml of cold 1x PBS. 50 ul of lysate

wash buffer was added before grinding with pestle. 5 ul of 20% SDS was added then

vortexed for 30 seconds and incubated at 37 C for 15 minutes with shaking. 100 ul of

SPRI beads were added to bind chromatin. Bound sample was washed 3 times with

SPRI wash buffer.

Beads were resuspended in 50 ul of Dpn II digestion mix (42.5 ul water, 5 ul

10x DpnII buffer, 0.5 ul 100 mM DTT, 2 ul DpnII) and digested for 1 hour at 37 C

with shaking. Beads were washed twice with SPRI wash buffer and resuspended in 50

ul of end fill-in mix (37 ul water, 5 ul 10X NEB Buffer 2, 4 ul 1 mM biotin-dCTP, 1.5

ul 10 mM dATP dTTP dGTP, 0.5 ul 100 mM DTT, 2 ul Klenow fragment) then

incubated for 30 minutes at room temperature while shaking. Beads were washed

twice with SPRI wash buffer and resuspended in 200 ul of intra-aggragete mix (171

ul water, 1 ul 100 mM ATP, 20 ul 10x NEB T4 DNA Ligase Buffer, 1 ul 20 mg/ml

BSA, 5 ul 10% Triton X-100, 2 ul T4 DNA ligase) then incubated at 16 C overnight

while shaking. Beads were placed on a magnet to remove supernatant then

resuspended in 50 ul of crosslink reversal buffer (48.5 ul crosslink reversal mix, 1.5

ul proteinase K) then incubated for 15 minutes at 55 C, followed by 45 minutes at 68

C while shaking. Beads were placed on a magnet and the supernatant was transferred
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to a clean 1.5 ml tube. 100 ul of SPRI beads were added to the supernatant and

allowed to bind before washing twice with 80% ethanol and eluting sample with 50 ul

of 1X TE buffer.

The sample was then fragmented by sonication. Fragmented sample was end

repaired and adapter ligated using the NEBNext Ultra II kit following the

manufacturer's protocol. The sample was purified from ligation reaction by SPRI

beads, washed twice with 80% ethanol, and eluted in 30 ul of 1X TE. Biotin tagged

fragments were enriched using streptavidin C1 Dynabeads. Enriched fragments were

indexed by PCR (23 ul water, 25 ul 2x Kapa mix, 1 ul 10 uM i7 index primer, 1 ul 10

uM i5 index primer) and amplified for 11 cycles. Reaction was purified by SPRI

beads and quantified using the Qubit dsDNA HS Assay Kit and the Agilent

TapeStation.

Assembly

We produced short-read assemblies using the variation-aware de Bruijn graph

algorithm, Meraculous (Chapman et al. 2011). Long-read data was assembled using

Wtdbg2 (Ruan and Li 2019) using the following options “wtdbg2 -x ont -g 120m -p 0

-k 15 -S 1 -l 512 -L 1024 --edge-min 2 --rescue-low-cov-edges” followed by the

wtdbg2 consensus caller wtpoa-cns (Ruan and Li 2019). The two primary long and

short-read assemblies were combined using quickmerge default merge_wrapper.py

command.
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Scaffolding

We polished the hybrid shotgun and long-read assembly using the Illumina

shotgun dataset using the bwa mem algorithm (version 0.7.17) (H. Li and Durbin

2009) to map the Illumina reads back to the genome and samtools (version 1.7) to sort

the reads. We input the sorted alignment to the consensus for wtdbg (wtpoa-cns)

(version 2.5) using the command “-x sam-sr” to polish the contigs of the hybrid

assembly. We scaffolded the polished assembly using the scaffolding tool HiRise

(version 2.1.1) run in Hi-C mode using the default parameters with the Hi-C library as

input. After the first round of scaffolding, we sought to remove putative misjoins in

our assembly. To do this, we computed the insulator score across the genome using a

1Mb window on either side of a focal test point. We obtained the expected insulation

score for a misjoin between two unlinked contigs by computing the same metric for

artificial false-joins between random pairs of unlinked contigs. We then broke the

assembly at one aberrantly low insulation score site---indicating little Hi-C support

for a specific join consistent with our between contig comparisons.

Polishing

The draft assembly went through a total of four iterative rounds of polishing

using the automated software tool Pilon using default settings. For each round the

short and long-read data was mapped to the draft assembly using minimap2. After

each round, the assembly was evaluated for misassemblies, indels, mismatches, N50,
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and assembly size using QUAST (Gurevich et al. 2013) to determine if further

polishing would increase the assembly correctness.

Evaluation

To evaluate the completeness of the H3 assembly we searched for conserved genes

using Benchmarking Universal Single-Copy Orthologs v3, (BUSCO) with the

metazoa odb9 lineage gene set (Simão et al. 2015). To compare to the current

reference genome we used the genome quality assessment tool QUAST using the

“--large --k-mer-stats” options (Gurevich et al. 2013). Misassemblies are defined by

the following criteria, a position in the assembled contigs where 1) the left flanking

sequence aligns over 1 kbp away from the right flanking sequence on the reference,

2) flanking sequences overlap on more than 1 kbp, 3) flanking sequences align to

different strands or different chromosomes. Local misassemblies are defined by the

following criteria 1) the gap or overlap between left and right flanking sequences is

less than 1 kbp, and larger than the maximum indel length (85 bp), 2) The left and

right flanking sequences both are on the same strand of the same chromosome of the

reference genome.

Repetitive and genic region coverage analysis

We aligned three separate versions of H3 assembly with zero, one, and two rounds of

polishing with Pilon to the Drosophila melanogaster reference using Minimap2 with

default parameters and sam output (H. Li 2018; Walker et al. 2014). We then applied
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samtools compression and sorting to produce sorted bam files ((H. Li et al. 2009;

Quinlan and Hall 2010)), to which we applied bedtools genomecov with options

-ibam and -bga to produce a file of region coordinates and coverage values of 0 or

more for each region across the genome (H. Li et al. 2009; Quinlan and Hall 2010) .

We combined this information with the annotation gff3 file with a custom script that

assigned coverage values to all annotated spans base by base (Quinlan and Hall

2010). The average coverage per base was calculated for each annotated span, then

the average and mean value of coverages for all spans for each annotation type was

calculated. As a control for comparison we performed this procedure on a complete

non-reference melanogaster assembly and calculated similar values to elucidate any

particular weakness our assembly exhibits.

Phasing

To phase the genome, we realigned all short-read data to our final genome assembly

using BWA mem (H. Li and Durbin 2010). We then called all heterozygous variants

using GATK (McKenna et al. 2010) on the four largest scaffolds in our assembly, and

we filtered this set to exclude SNPs and indels in the bottom 10% or top 10% of

observed sequencing depths. As the H3 genome is a mosaic of I38 and dm6 alleles,

we “polarized” each heterozygous variant by realigning the dm6 genome using

minimap2 (H. Li 2018) to determine whether H3 contained the dm6 allele. We then

aligned all Hi-C data using BWA mem (H. Li and Durbin 2010) and the ONT data

using minimap2 (H. Li 2018) and attempted to phase the genome using varying

combinations of these data using hapcut2 (Edge, Bafna, and Bansal 2017). We
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quantified mismatch and switch errors as described in (Edge, Bafna, and Bansal

2017).

Data Access

The sequencing data and final assembly generated in this study has been submitted to

the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under

accession number PRJNA591165.
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A

B

Supplementary Figure S1: Coverage depth. Sequencing coverage depth of primary assembly data
mapped to the dm6 reference genome (A) long-read data set (B) short-read data set. Generated by
aligning raw reads to the reference genome using Minimap2 then samtools depth function to
calculate depth of sequencing per base of autosomes.
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Supplementary Figure S2. Wolbachia Hi-C contact map.
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Assembly
size (mb)

N50
(mb)

# misassemblies # mismatches
per 100 kbp

# indels per
100 kbp

Pre-polishin
g

111.36 26.182 777 671.83 163.30

1st round 111.84 26.24 802 556.68 96.31

2nd round 112.02 26.26 802 532.23 92.40

3rd round 112.14 26.272 800 524.78 89.12

4th round 112.22 26.279 798 525.36 88.77

Supplementary Table S2: Polishing. Brief summary of QUAST genome assembly metrics from
four iterative rounds of polishing using Pilon.
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ChrY sequencing coverage ChrY:Autosome
Average sequencing depth

ONT R2C2 library 20 % 2.3x : 46x

Illumina Tn5 library 44 % 40x : 244x

Illumina Hi-C library 37 % 19x : 132x

Supplementary Table S3: Chromosome Y coverage. Coverage of the Y chromosome. Generated
by aligning raw reads to the dm6 reference genome using Minimap2 then samtools depth function to
determine the percent of Y chromosome coverage and depth of sequencing per base of the Y
chromosome.
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Abstract

High-throughput short-read sequencing has taken on a central role in research and

diagnostics. Hundreds of different assays exist today to take advantage of Illumina

short-read sequencers, the predominant short-read sequencing technology available

today. Although other short read sequencing technologies exist, the ubiquity of

Illumina sequencers in sequencing core facilities, and the high capital costs of these

technologies have limited their adoption. Among a new generation of sequencing

technologies, Oxford Nanopore Technologies (ONT) holds a unique position because

the ONT MinION, an error-prone long-read sequencer, is associated with little to no

capital cost. Here we show that we can make short-read Illumina libraries compatible

with the ONT MinION by using the R2C2 method to circularize and amplify the short

library molecules. This results in longer DNA molecules containing tandem repeats of

the original short library molecules. This longer DNA is ideally suited for the ONT

MinION, and after sequencing, the tandem repeats in the resulting raw reads can be

converted into high-accuracy consensus reads with similar error rates to that of the

Illumina MiSeq. We highlight this capability by producing and benchmarking

RNA-seq, ChIP-seq, as well as regular and target-enriched Tn5 libraries. We also

explore the use of this approach for rapid evaluation of sequencing library metrics by

implementing a real-time analysis workflow.
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Introduction

Over the last 15 years, high-throughput short-read sequencing technology has

revolutionized biological, biomedical, and clinical research. Hundreds of sequencing

based methods exist today to query gene expression (RNA-seq(Mortazavi et al.

2008)), chromatin state (ChIP-seq(Barski et al. 2007) and ATAC-seq(Buenrostro et al.

2013)), protein abundance(Stoeckius et al. 2017), and of course to aid the assembly of

genomes(Burton et al. 2013) - among many other things. All of these methods

produce a final sequencing library that contains ~200-600bp double stranded DNA

molecules with ends of a known sequence. In the vast majority of cases, these ends

are Illumina sequencing adapters.

Despite the existence of other sequencing technologies, Illumina has been the

dominating short-read sequencing technology over the last decade. However, due to

the high capital cost of Illumina short-read instruments, all but the most well

equipped labs outsource their Illumina sequencing to core facilities. While this

provides access to the most recent sequencing technology, this outsourcing can lead

to long delays between running an experiment and receiving results. Therefore,

placing a benchtop sequencer with capabilities comparable to an Illumina sequencer

in most molecular biology and diagnostic labs could be truly transformative by

accelerating as well as fully integrating genomics assays into standard lab workflows.

In a molecular biology lab, it would speed up developing or establishing new types of

sequencing libraries. In a diagnostic lab it could enable fast sample turn-around as

well as encourage the transition away from diagnostic methods like Fluorescence In
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Situ Hybridization (FISH) which is still routinely used for the detection of gene

fusions in certain cancers despite having >20% false negative rate and more accurate

sequencing based replacements being available (Ali et al. 2016; Nohr et al. 2019).

Over the last few years Oxford Nanopore Technologies (ONT) sequencers

have rapidly matured. Currently, the ONT MinION sequencer’s base throughput (up

to 30 Gb per flow cell) can exceed that of the Illumina MiSeq sequencer (18 Gb for a

2x300 bp run). Intriguingly, this throughput comes with tunable read length, so a

successful MinION run can in theory produce 10 million 3kb reads or 5 million 6kb

reads. Further, the MinION sequencer is only a fraction of the cost of other

high-throughput sequencers. However, standard per-base sequencing accuracy of the

newest basecalling software guppy5 is only around 96% and dominated by insertion

and deletion errors which are almost absent in Illumina data. Furthermore, ONT

MinION’s sequencing accuracy declines with shorter reads (Thirunavukarasu et al.

2021).

Here, we implemented a simple workflow that converts almost any Illumina

sequencing library into DNA of lengths optimal for the ONT MinION and generates

data at similar cost and accuracy as the Illumina MiSeq. We made this possible by

using the previously published and optimized R2C2 (Rolling Circle to Concatemeric

Consensus) method (Volden and Vollmers 2020; Cole et al. 2020; Byrne, Supple, et

al. 2019; Volden et al. 2018; Vollmers et al. 2021a; M. Adams et al. 2020a). R2C2

circularizes dsDNA libraries and amplifies those circles using rolling circle

amplification to create long molecules with multiple tandem repeats of the original
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molecule’s sequence. These long molecules can then be sequenced on ONT

instruments to generate long raw reads which are then computationally processed into

accurate consensus reads. In previous studies focused on full-length cDNA molecules

we have achieved median read accuracies of 99.5% with this method (Vollmers et al.

2021a). Since Illumina libraries are shorter than full-length cDNA, we modified the

R2C2 protocol to generate a large number of shorter MinION raw reads while

maintaining consensus accuracy levels on par with the Illumina MiSeq sequencer.

We benchmark this extension of the R2C2 method by converting and

sequencing RNA-seq, ChIP-seq, as well as regular and target-enriched genomic DNA

Tn5 Illumina libraries. We implemented a computational workflow for

demultiplexing Illumina library indexes from R2C2 data and have, where possible,

relied on established analysis workflows for downstream analysis originally

developed for Illumina data. If R2C2 and Illumina data required different

computational approaches, i.e. assembly and variant calling, we chose the optimal

tool for either data type.

To take advantage of the real-time data generation of ONT sequencers, we

also developed PLNK (Processing Live Nanopore Experiments), for monitoring and

rapid evaluation of sequencing runs. PLNK uses several tools to basecall,

demultiplex, and map reads as they are generated. PLNK then reports, in real-time,

run features like what percentages of reads belong to each library in a library pool,

what percentage of reads in each library map to a list of target regions, and what the

read coverage of these target regions is for each library. We show that for rapid
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evaluation purposes, PLNK allows users to observe whether library generation and

pooling was successful - enabling Quality Control of libraries often less than an hour

into a run. Further, we show that for run monitoring purposes, PLNK makes it

possible to evaluate when a predetermined read coverage of a list of target regions is

reached. In both cases sequencing runs can be stopped early, saving time and

preserving flow cells for future experiments.

Results

To generate R2C2 data for a diverse selection of Illumina libraries, we processed and

sequenced 1) Illumina RNA-seq libraries of the human A549 cancer cell line, 2)

Illumina ChIP-seq and Input libraries of soybean samples, 3) Illumina Tn5-based

genomic DNA libraries of a Wolbachia-containing Drosophila melanogaster cell line,

and 4) Illumina Tn5-based genomic DNA libraries generated from lung cancer cell

lines NCI-H1650 and NCI-H1975 which we enriched for the protein coding regions

of ~100 cancer relevant genes (Fig. 1).

Fig. 1: Experiment overview. Illumina RNA-seq, ChIP-seq, and Tn5-based genomic libraries (regula
and enriched) were generated from different samples. The Illumina libraries were then circularized an
amplified using rolling circle amplification (RCA). The resulting DNA, containing tandem repeats o
Illumina library molecules, was then prepped for sequencing on the ONT MinION sequencer.
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To convert these Illumina libraries into R2C2 libraries, we circularized them

using Gibson assembly (NEBuilder/NEB) with DNA splints compatible with Illumina

p5 and p7 sequences (Table S1). After the DNA circles are amplified with rolling

circle amplification using Phi29 polymerase, we fragmented and size selected the

resulting high molecular weight DNA. We then sequenced this DNA on the ONT

MinION using the LSK-110 ligation chemistry and 9.4.1 flow cells. We generated

between 4 and 9.5 million raw reads per MinION flow cell (Table 1). All data was

then basecalled with the guppy5 dna_r9.4.1_450bps_sup.cfg model and consensus

called using C3POa (v2.2.3) (https://github.com/rvolden/C3POa).

To benchmark the R2C2 data for the Illumina libraries, we sequenced the

same libraries with regular ONT 1D reads and on different Illumina sequencers. We

then compared the metrics most relevant to the different library types.

Evaluating R2C2 for the sequencing of Illumina RNA-seq libraries

First, we benchmarked the ONT-based R2C2 method for the generation of RNA-seq

data from Illumina libraries. We prepared four technical replicate libraries from a

single RNA sample in the form of dual indexed paired-end Illumina libraries using

the NEBnext Ultra II Directional RNA kit with RNA of the human lung carcinoma
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cell line A549. We pooled and sequenced these libraries with the ONT MinION both

directly (1D) and after R2C2 conversion (R2C2) as well as with the Illumina MiSeq.

To establish the effect of R2C2 conversion on the throughput of the ONT

MinION when sequencing short Illumina libraries, we processed the raw reads

generated by both 1D and R2C2 sequencing runs. Raw read numbers for 1D and

R2C2 runs generated from one ONT MinION flow cell were similar at ~11.8 million

reads. However, 1D reads were less likely than R2C2 reads to 1) pass filter during

basecalling, 2) contain both p5 and p7 Illumina adapter sequences, and 3) be

successfully demultiplexed. After preprocessing, only 2.5 million 1D reads (21%)

remained compared to ~8 million R2C2 reads (Table 2). This means that even a much

more productive 1D run, potentially generating up to 20 million raw reads for

molecules of this length (F. Pardo-Palacios et al. 2021), would still generate fewer

demultiplexed reads (21% of 20 million or <5 million) than the R2C2 run we

performed here.

To validate the demultiplexing of Illumina library pools from R2C2 data, we

compared the ratio of reads assigned to each library in Illumina MiSeq, R2C2, and

ONT 1D data based on their combination of i5 and i7 indexes. For all three methods,

three technical replicate libraries were pooled at a 4:2:1 ratio. The Illumina MiSeq

produced a 4:2.03:1.58 read ratio after demultiplexing. R2C2 produced a 4:1.91:1.34
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ratio and ONT 1D produced a 4:2.5:1.82 ratio. With these results being quite similar,

the differences are likely due to pipetting variability when pooling the libraries for the

different sequencing methods. Further, to evaluate our ability to quantitatively pool

libraries at different points in the R2C2 workflow, we processed a fourth replicate in

parallel and added it at a specific ratio after rolling circle amplification. The fourth

replicate represented 40.5% of the R2C2 data which is slightly more than the 30% of

R2C2 DNA it represented in the MinION sequencing run. Finally, 9.71% of R2C2

reads were not assigned to any index combination and 1.7% of R2C2 reads were

assigned to index combinations not present in the pool, implying only 0.0289%

(1.7%*1.7%) R2C2 reads were assigned to the wrong index combination due to index

hopping.

Next we established the effect of R2C2 conversion on read accuracy when

compared to ONT 1D and Illumina MiSeq datasets. We aligned all complete p5 and

p7 containing and demultiplexed R2C2 (8,066,704) and 1D reads (2,530,950) as well

as Illumina MiSeq reads (20,830,560 2x300 bp paired-end reads) generated from

these RNA-seq libraries using minimap2. We then calculated the median read

accuracy, accuracy per base, and read position dependent accuracy per base (Table 3).
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While median read accuracy is a useful and often reported metric to compare

error-prone long-read sequencing technologies, it becomes less useful in this study.

The sequencing reads we aim to compare are very short - either due to the short

length of the molecules sequenced (1D and R2C2)(Fig. 2A) or technology limitations

(Illumina MiSeq) - and often accurate enough to be unlikely to contain errors at that

length, causing many individual sequencing reads to be 100% accurate. This is

obvious with read 1 of the Illumina MiSeq having a median accuracy of 100% which

contains little information on the real Illumina MiSeq error rate. Accuracy per base

(%), i.e. (correct bases of all reads/all bases of all reads)*100, is a more useful metric

to compare accurate short reads. Using this metric we see that 1D reads are the least

accurate with an accuracy per base of 96.59%. R2C2 falls between Illumina MiSeq

read 1 (99.47%) and read 2 (98.57%) with an accuracy per base of 98.87%.

Interestingly, while R2C2 reads contained more deletion and insertion errors, they

contained fewer mismatch errors than both Illumina MiSeq read 1 and read 2.

Read position dependent accuracy of 1D, R2C2, and Illumina MiSeq read 1

and read 2 adds further detail to this comparison. In contrast to 1D and R2C2 data,

Illumina MiSeq base accuracy decreased with increasing read cycles, particularly in

read 2, with R2C2 surpassing Illumina MiSeq accuracy for read 2 lengths over ~175

bp (Figure 2B and D). To ensure that our Illumina MiSeq run wasn’t an outlier in

terms of accuracy typical of Illumina benchtop sequencers, we performed the same

position dependent accuracy analysis on publicly available Illumina MiSeq, iSeq, and

MiniSeq data, which showed the same overall trends (Fig. S1).
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Next, we aimed to establish whether R2C2 RNA-seq and ONT 1D data could

be analyzed using computational tools designed and established for Illumina

RNA-seq data. To quantify gene expression levels, we aligned and evaluated the

entire demultiplexed R2C2 (8,066,704 reads) and ONT 1D (2,530,950 reads) datasets

as well as our Illumina MiSeq dataset (20,830,560 read pairs) using the STAR

aligner(Dobin et al. 2013) (STARlong executable for R2C2 and ONT1D data) which

is routinely used for standard Illumina RNA-seq analysis. 7,365,398 R2C2 reads

(91.66%), 1,834,065 ONT 1D reads (72.48%) and 18,649,031 Illumina MiSeq reads

(90.08%) mapped uniquely to the human genome, indicating that a larger percentage

of ONT 1D reads aren’t accurate enough to be aligned by the STAR aligner.

Based on these read alignments, STAR determined normalized gene counts for

Illumina MiSeq, R2C2, and ONT 1D datasets. Illumina MiSeq gene counts showed

Pearson’s r-values of 0.995 and 0.987 when compared to R2C2 (Fig. 2C) and ONT

1D, respectively. Additionally, STAR also determined normalized splice junction

counts for the three datasets which provide a higher resolution view of the

transcriptome. Illumina MiSeq splice junction counts showed Pearson’s r-values of

0.974 and 0.929 when compared to R2C2 (Fig. 2C) and ONT 1D. Finally, we also

tested whether ultra-fast pseudo-alignment based tools will generate reliable gene

expression levels based on R2C2 and ONT 1D reads which feature more insertion

and deletion rates compared to standard Illumina data. We used one such tool, kallisto

(17), and found that gene expression values as determined for Illumina MiSeq had
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Pearson’s r values of 0.985 and 0.973 when compared to R2C2 (Fig. 2C) and ONT

1D.

Overall this comparison showed that using R2C2, we can convert Illumina

RNA-seq libraries into DNA ideally suited for the ONT MinION. Not only does

R2C2 generate more reads than regular ONT 1D ligation protocols but R2C2 reads

are also much more accurate. Because they are more accurate, R2C2 reads are also

more efficiently demultiplexed and aligned than ONT 1D reads. Further, because they

are similar in accuracy to Illumina reads, standard Illumina tools, like STAR and

kallisto, can be used to analyze them. The gene expression and splice junction values

generated by R2C2 are highly similar to those generated by Illumina MiSeq data from

the same libraries.
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Fig. 2. Sequencing Illumina RNA-seq libraries on the ONT MinION after R2C2 conversion.
Insert length distribution (A) and read position dependent identity to the reference genome (B) of
R2C2 and Illumina MiSeq reads generated from the same Illumina library. C) Comparisons of R2C2
and Illumina MiSeq read-based gene expression and splice junction usage quantification by STAR and
kallisto are shown as scatter plots with marginal distributions (log2 normalized) shown as histograms.
D) Genome browser-style visualization of read alignments. Mismatches are marked by lines colored
by the read base (A - orange; T - green; C - blue; G - purple). Insertions are shown as gaps in the
alignments while deletions are shown as black lines.
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Evaluating R2C2 for the sequencing of Illumina ChIP-seq libraries

Next, we tested the ability of R2C2 for the quality control of Illumina ChIP-seq

libraries. To do this, we converted a previously generated ChIP-seq library targeting

the H3K4me3 histone modification in a Glycine max (soybean) sample. The

H3K4me3 library and its corresponding control Input library had previously been

sequenced on an Illumina NovaSeq 6000 to a depth of 8,413,865 and 32,377,813

2x150bp paired end reads, respectively (Table 4). Based on their alignment, the

sequenced molecule libraries had an insert length of 390 bp (H3K4me3) and 312 bp

(Input) (Table 4).

Because the H3K4me3 and Input libraries were prepared with only a single

index distinguishing them, we converted the libraries separately with R2C2 using

distinct DNA splints that contained unique index sequences. This added an extra level

of indexing to minimize concerns of potential index crosstalk. We splint-indexed, and

pooled the H3K4me3 and Input ChIP-seq Illumina libraries and sequenced the pool

on a single ONT MinION flow cell. We then demultiplexed the resulting R2C2 reads,

assigning 2,493,021 and 1,530,914 reads (1.6:1) to the H3K4me3 and Input libraries

(Table 4), respectively, a ratio which corresponded well with the 1.35:1 ratio at which

they were pooled prior to sequencing. Importantly, the demultiplexing script scored

only 163,489 (3.9%) reads as “undetermined” and assigned only 4,014 (0.1%) reads

to a combination of indexes not present in the library. This indicated that the extra

level of indexing was highly successful in minimizing index hopping.
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The demultiplexed R2C2 reads showed median read accuracy of 99.23%

(H3K4me3) and 98.8% (Input) as well as median read length of 556 bp (H3K4me3)

and 459 bp (Input) (Table 4). Molecules sequenced by R2C2 were therefore longer

than molecules sequenced by the Illumina NovaSeq 6000 (Fig. 3A). The difference

between the technologies is likely due to the bias of the Illumina NovaSeq towards

shorter molecules.

Sample Illumina NovaSeq
Reads

Median Insert
length

R2C2 Reads Median Insert
length

H3K4me3 8,413,865 390 2,493,021 556
Input 32,377,813 312 1,530,914 459
Table 4. ChIP-seq read characteristics

To test whether R2C2 reads could replace the same number of Illumina reads,

we subsampled the Illumina sequencing data to the depth of the R2C2 data for both

samples. We then aligned both Illumina NovaSeq 6000, subsampled Illumina

NovaSeq 6000, and R2C2 reads to the Glycine max genome

(Gmax_508_v4.0)(Valliyodan et al. 2019). For alignment, we chose the short-read

preset of the minimap2(H. Li 2018) aligner for both Illumina and R2C2 data. We then

called peaks on the full H3K4me3 Illumina NovaSeq 6000 dataset using MACS2 and

tested whether both subsampled Illumina NovaSeq 6000 and R2C2 data could be

used to evaluate the success of a ChIP experiment. Visual inspection of the data using

the Phytozome JBrowse genome browser(Goodstein et al. 2012) as well as our own

tools (Fig. 3D) showed that subsampled Illumina NovaSeq 6000 and R2C2 data both

demonstrate the same enrichment patterns as the full Illumina NovaSeq 6000 data. A

systematic analysis showed that 84% of R2C2 reads and 69% of subsampled
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Illlumina reads overlap with an H3K4me3 peak identified on the full Illumina data,

whereas only 18% and 11% of the respective Input reads do so (Fig. 3B).

To investigate this discrepancy in percentage of reads overlapping with

H3K4me3 peaks, especially for the H3K4me3 library, we focused on differences

between the R2C2 and Illumina sequencing reads. The most obvious difference is the

read length with the Illumina reads originating from much shorter molecules (or

library inserts). Indeed, when we recalculated this read percentage for Illumina reads

originating from inserts longer than 450nt, it increased to 76%. Next, we analyzed the

GC content of Illumina and R2C2 reads and found that - in contrast to all other

experiments in this manuscript (Fig. S2) - Illumina reads had a lower GC content than

R2C2 reads (39% vs 42%). To see whether the difference in insert length and GC

content together would explain the discrepancy in percentage of reads overlapping

with H3K4me3, we again recalculated this read percentage only for Illumina reads

originating from inserts longer than 450nt and with a GC content >39%, i.e. reads

derived from long and GC rich molecules. Here, we found that this read percentage

increased to 83.2%, virtually matching the R2C2 percentage. Ultimately, this

suggested that R2C2 sampled longer and slightly more GC rich molecules from the

ChIP-seq libraries. While it is not clear why the longer molecules are more likely to

overlap with H3K4me3 peaks, these peaks happen to be more GC rich than the rest of

the genome (40% vs 30%) explaining why more GC rich molecules are more likely to

overlap with H3K4me3 peaks.
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To compare whether R2C2 and subsampled Illumina NovaSeq 6000 datasets

are also similar quantitatively, we counted how many reads for each of the datasets

fell into each H3K4me3 peak we identified using the full Illumina NovaSeq 6000

dataset and MACS2. We found that the peak depths are correlated (Pearson’s

r=0.776) (Fig. 3C). This correlation is increased to r=0.866 when this analysis was

performed with the longer/more GC rich subsample of Illumina reads but remained

lower than what we observed with the RNA-seq data. This means that while R2C2

can be used to evaluate whether a ChIP-seq experiment successfully enriched targeted

chromatin, in this particular experiment R2C2 sampled a different population of

molecules than the Illumina NovaSeq 6000, thereby complicating quantitative

comparisons.
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Fig. 3. Sequencing Chip-seq libraries on the ONT MinION after R2C2 conversion. A) Insert
length distribution of R2C2 and Illumina NovaSeq 6000 reads generated from the same Illumina
library. B) Percentage of reads in the R2C2, Subsampled Illumina and full Illumina datasets
overlapping with H3K4me3 peaks generated from the full Illumina H3K4me3 dataset using MACS2.
C) Comparison of the number of R2C2 and subsampled Illumina reads overlapping with H3K4me3
peaks is shown as scatter plots with marginal distributions shown as histograms. Pearson’s r is shown
in the bottom right. D) Genome annotation, H3K4me3 peak areas and read coverage histograms are
shown for a section of the Gmax genome.
Evaluating R2C2 for the sequencing of size-selected Illumina Tn5 libraries

In contrast to the other parts of the manuscript which represent head-to-head

comparisons between R2C2 and Illumina-based sequencing of the same short-read

libraries, here, we tested whether the ability of R2C2 to sequence “medium-length”
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molecules >600nt could aid in small genome assembly tasks. Illumina library

preparation methods like Tn5-based tagmentation can generate library molecules

>600nt which are too long to be sequenced efficiently by Illumina sequencers but can

be efficiently processed and sequenced using R2C2. To generate these medium-length

molecules for the purpose of genome assembly, we chose to size-select a Tn5-based

Illumina library for molecules between 800-1200 bp lengths, corresponding to

genomic DNA inserts of ~600-1000 bp. We then R2C2-converted and sequenced this

size-selected library on the ONT MinION.

For this test, we chose to sequence the 1.2 Mb genome of the Wolbachia

bacterial endosymbiont of Drosophila melanogaster and prepared Tn5 libraries from

DNA extracted from Wolbachia-containing Drosophila melanogaster S2 cells. We

generated a total of 3,338,280 R2C2 consensus reads with a median length of 680 bp.

Out of these reads, we assembled 879,303 reads that did not align to the Drosophila

melanogaster genome. We used miniasm(H. Li 2016) for this assembly task and

polished the resulting assembly using Medaka (v.1.4.4;

https://github.com/nanoporetech/medaka). The resulting assembly contained 95

contigs which covered 97.2% of the Wolbachia genome (Fig. 4), had a NGA50 of

29,963 bp and 8.5/5.6 mismatches/indels per 100 kb of sequence.

We also generated an assembly from Illumina Nextseq 2x150 bp generated

from a non-size selected Tn5 library of the same cell line. From 2,552,018 2x150 bp

Illumina reads we extracted 779,206 reads that did not align to the Drosophila

melanogaster genome and assembled those reads using Meraculous(Chapman et al.
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2011). The resulting assembly contained 136 contigs which covered 91.6% of the

Wolbachia genome (Fig. 4), had a NGA50 of 23,217 bp and 0.5/0.6

mismatches/indels per 100 kb of sequence. Neither assembly had misassemblies as

determined by QUAST(Gurevich et al. 2013).

Comparing Illumina and R2C2 assemblies of the Wolbachia genome

(NC_002978.6) showed R2C2 can generate more contiguous and complete

assemblies from the same library type. However, systematic errors produced by the

ONT MinION cannot be fully removed by the R2C2 consensus process or Medaka

polishing. The assembly we generate does therefore have more mismatches and indel

errors than its Illumina counterpart. This ultimately suggests that when limited to a

single Tn5 library due to sample constraints, R2C2 can be a valuable addition to an

assembly effort but, depending on use case, further polishing with Illumina data

might be required to achieve the desired base accuracy.

Fig. 4 Comparing R2C2 and Illumina based assemblies of a small genome. Illumina 2x150 reads
were assembled in 134 contigs using Meraculous. R2C2 reads were assembled using Miniasm into 95
contigs. The alignments of the contigs of both assemblies - (A) Illumina and (B) R2C2 - are shown as
dot plots generated by mummer(Kurtz et al. 2004). Both approaches fail to assemble a section of the
Wolbachia genome that contains pseudogenes and a transposable element near to coordinate 500,000.
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Evaluating R2C2 for the sequencing of target-enriched Illumina Tn5 libraries

We tested the ability of R2C2 to evaluate target-enriched Tn5 libraries and benchmark

our ability to detect germline variants in the resulting data. To this end, we generated

dual-indexed Tn5 libraries from genomic DNA of two cancer cell lines (NCI-H1650

and NCI-H1975) with known mutations in the EGFR gene. We pooled these libraries

and enriched the pool for a panel of cancer genes based on the Stanford solid tumor

STAMP panel(Newman et al. 2014) using a Twist Bioscience oligos panel and

reagents (Table S2). We performed this enrichment experiment once, without

optimization, and using custom blocking oligos, therefore expecting enrichment to be

far from optimal. To compare R2C2 and Illumina MiSeq, we sequenced these

enriched Tn5 libraries on 1) a multiplexed Illumina MiSeq 2x300 bp paired end run

and 2) on an ONT MinION after R2C2 conversion.

The multiplexed MiSeq run generated 7,430,624 read pairs for the

NCI-H1650 library and 1,142,187 read pairs for the NCI-H1975 library. The ONT

MinION run generated 3,825,657 R2C2 reads after C3POa processing.

Demultiplexing then assigned 2,057,155 (53.7%) R2C2 reads to the NCI-H1650

library and 1,021,758 (26.7%) R2C2 reads to NCI-H1975. Although 537,997 (14.1%)

R2C2 reads were not assigned to any sample, only 5.4% of reads were assigned to

one of the two combinations of Illumina indexes not included in the pool implying

that only 0.29% (5.4%*5.4%) of reads were assigned to the wrong sample in our dual

indexed library.
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After demultiplexing we compared the insert length and target enrichment

across samples and methods. We did so by merging the Illumina MiSeq read pairs

using bbmerge(Bushnell, Rood, and Singer 2017). As with the ChIP-seq experiment,

R2C2 data showed longer insert lengths than the Illumina MiSeq, with the R2C2

insert length more closely resembling the actual length of the input library (Fig. 5A,

D, and S3). We aligned the reads of different samples and methods to the human

genome using the short-read preset of minimap2 and determined the percentage of

reads overlapped with a target region and the coverage for each region. For

NCI-H1650, 15.8% of R2C2 reads and 14.4% of Illumina MiSeq reads overlapped

with a target region producing a median coverage of 128 (5th percentile: 28; 95th

percentile: 310) for R2C2 and 558 (5th percentile: 134; 95th percentile: 1220) for

Illumina MiSeq. For NCI-H1975, 18.5% of R2C2 reads and 16.8% of Illumina MiSeq

reads overlapped with a target region with a median coverage of 69 (5th percentile:

13; 95th percentile: 166) for R2C2 and 110 (5th percentile: 23; 95th percentile: 225)

for Illumina MiSeq. The per-base coverage of R2C2 and Illumina MiSeq datasets was

very well correlated within samples with NCI-H1650 showing a Pearson’s r=0.91 and

NCI-H1975 showing a Pearson’s r=0.89 (Fig. 5B and E).

Next, we used the read alignments to determine per-base accuracy levels for

all samples and method combinations. The NCI-H1975 sample - which also produced

fewer reads than expected on the Illumina MiSeq - produced reads at lower than

expected accuracy. Read alignments suggested that the average per-base accuracy for

read 1 and read 2 in NCI-H1975 were 96.81% and 98.26% compared to 98.37% and
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97.88% for NCI-H1650. As expected the per-base accuracy was highly position

dependent and declined with increasing sequencing cycle number (Fig. 5C and F).

Furthermore, the actual accuracy of the MiSeq reads is likely even lower due to

alignments not being extended once the read and genome are too dissimilar. The

accuracy of R2C2 reads in both NCI-H1975 and NCI-H1650 were similar and stable

throughout the reads at 98.40% and 98.28%, meaning that, in this case, the R2C2

reads had a higher per-base accuracy than the combined MiSeq reads.

Visualizing Illumina MiSeq and the R2C2 read alignments showed that both

methods successfully enriched for (Fig. 5G) and detected the 15 base pair

heterozygous deletion in the EGFR gene in the NCI-H1650 cell line and the C to T

heterozygous variants in the EGFR gene in the NCI-H1975 cell line (Fig. 5H). To

systematically evaluate the germline variant detection ability of Illumina MiSeq and

R2C2 reads, we used Deepvariant(Poplin et al. 2018) for calling germline variants

based on the Illumina MiSeq data and Pepper-DeepVariant(Shafin et al. 2021), a

variant caller designed for ONT datasets, for calling germline variants in the R2C2

sequencing results. Because of the poor sequencing performance of the Illumina

MiSeq for the NCI-H1975 library, we only performed this analysis on NCI-H1650.

For NCI-H1650, Illumina/Deepvariant detected 119 variants in the enriched genomic

regions when using a QUAL cut-off of >=33.3. R2C2/Pepper-Deepvariant detected

122 variants in the enriched genomic regions when using a QUAL score >= 3.8

including 117 of the 119 Illumina/Deepvariant calls. When we used
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Illumina/Deepvariant variants as ground truth, the R2C2/Pepper-Deepvariant method

achieved 95.9% Precision and 98.3% Recall.

When we visualized the reads on which the False Positive and False Negative

R2C2/Pepper-Deepvariant variant calls were made (Fig. S4), we found that the False

Positive variants were supported by less than half of the R2C2 reads. Interestingly,

when we colored the reads based on the direction of their raw reads, we found that

False Positive variants were supported only by reads originating from one raw read

direction. We hypothesized that if we oriented reads using the direction of their raw

reads - instead of using the p5 and p7 adapters on their ends - before variant calling, it

would more closely resemble regular ONT reads and provide more useful information

to Pepper-Deepvariant. Indeed, when reanalyzing the reoriented reads and using a

QUAL score >=9, Pepper-Deepvariant detected 116 variants which were all present

in the Illumina/Deepvariant calls. This means that reorienting the reads before variant

calling eliminated all False Positives in the R2C2/Pepper-Deepvariant variant calls.

Reflecting known systematic errors of ONT sequencers, two of the three False

Negatives missing from the R2C2/Pepper-Deepvariant variant calls were a deletion

(TA -> T) next to a 13nt A homopolymer at Chr 17: 7,667,260 and a variant (G->C)

next to a 8nt C homopolymer at Chr 12: 120,994,314. The third missing variant, a

G->A call at Chr 5: 112,839,666 had a 46% frequency in both Illumina and R2C2

reads, was initially identified as a candidate by Pepper-Deepvariant, but was

ultimately scored as a “RefCall”, not a variant. Overall, reorienting the reads by raw
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read direction before running Pepper-Deepvariant increased Precision to 100% while

achieving a Recall to 97.4%.

This showed that R2C2 can accurately quantify what percentage of molecules

in an enriched Tn5 Illumina library overlap with a target region. Despite showing

longer insert lengths than the Illumina MiSeq dataset, the R2C2 dataset showed

per-base coverage that was highly correlated with the Illumina MiSeq data.

Interestingly in this experiment, R2C2 actually showed a higher average per-base

accuracy than the Illumina MiSeq. After reorienting R2C2 reads, variants called

based on R2C2 and Illumina MiSeq data were very similar. This shows the promise

of variant calling based on ONT data but also highlights that extra care has to be

taken when preparing data for use in neural network based variant callers like

Deepvariant.
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Fig. 5 Evaluating target-enriched Tn5 libraries with R2C2. A and D) Inserts length of library
molecules sequenced by Illumina or R2C2 approaches. B and E) Comparison of per-base coverage in
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Illumina and R2C2 datasets. Marginal distributions are log2 normalized. C and F) Alignment based
read position dependent accuracy shown for the indicated sequencing reads and methods.
G and H) Sequencing coverage plot of the target-enriched Tn5 libraries for R2C2 and Illumina results
at chromosome 7:55,134,584-55,211,629 which covers a part of the EGFR gene. Top panel shows the
annotation of one EGFR isoform. The x axis of the coverage plot is the base pair position and the y
axis is the total number of reads at each position. The dotted lines indicate zoomed-in views of exons
that contain the 15 bps deletion in NCI-H1650 (left) and the C to T and T to G point mutations in
NCI-H1975 (right). Both samples’ Illumina reads and the R2C2 read alignments of the selected
regions are shown. The mismatches are colored based on the read base (A - orange; T - green; C -
blue; G - purple).

Real-Time Analysis of Illumina library metrics using PLNK

To enable the real-time monitoring of sequencing runs and the rapid evaluation of

metrics of libraries sequenced in those runs, we created the computational pipeline

PLNK (Processing Live Nanopore Experiments). PLNK controls real-time

basecalling, raw read processing into R2C2 consensus reads, demultiplexing of R2C2

reads, and the alignment of demultiplexed R2C2 reads to a genome. Based on the

resulting alignments and the user defined regions of interest, PLNK then determines

the on-target percentage and resulting target coverage for each demultiplexed sample.

PLNK runs alongside a MinION sequencing run, tracking the creation of new fast5

files and processing them individually in the order they are generated. To do this,

PLNK controls several external tools: guppy5 for basecalling, C3POa for R2C2

consensus generation, a separate python script for demultiplexing (based on splint

sequences and Illumina indexes), and mappy (minimap2 python library) for aligning

reads to a provided genome (Fig. 6A).
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Fig. 6: Real-time characterization of Illumina sequencing libraries. A) Diagram of PLNK
functionality, fast5 files processed in the order they are produced. PLNK controls guppy5 for
basecalling, C3POa for consensus calling, mappy for alignment, and calculates metrics based on those
alignments. B-D) Simulation of real-time analysis for enriched Tn5 (B), ChIP-seq (C), and RNA-seq
(D) libraries. For each timepoint, panels from top to bottom show 1) The number of fast5 files are
produced and processed. 2) The number of demultiplexed reads produced by
guppy5/C3POa/demultiplexing. 3) The percentage of reads associated with each library in the
sequenced pool. 4) The percent of reads overlapping with target regions 5) The median read coverage
of bases in the target regions.

To test whether our pipeline could keep up with ONT MinION data generation

and provide real-time analysis, we simulated ONT MinION runs using fast5 files

from previously completed sequencing experiments, our Tn5, ChIP-seq and RNA-seq

data. We used the fast5 files’ metadata to determine the time intervals at which files
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were generated by the MinKnow software and copied the fast5 files to a new output

directory at those intervals. We then started PLNK to monitor the generation and

control the processing of fast5 files in this new output directory. First, we simulated

the real-time analysis of the target-enriched Tn5 data. Using a desktop computer and

limiting PLNK to the use of eight CPU threads and two Nvidia RTX2070 GPUs, the

pipeline processed sequencing data at the same rate a single MinION produced fast5

files. Importantly, both the library composition (percentage of demultiplexed reads

assigned to either sample (NCI-H1650 and NCI-1975)) as well as the percentage of

reads on-target stabilized after less than an hour and agreed very well with the

numbers generated from the whole dataset (Fig. 6B). Additionally, throughout the

run, PLNK reported the overall coverage of target regions in real-time.

When we simulated the analysis of ChIP-seq and RNA-seq experiments,

PLNK kept up with ChIP-seq but not with the RNA-seq experiment. Since the

RNA-seq experiment produced the largest amount of data in the study, this was not

unexpected. In both cases, however, library composition and on-target percent both

stabilized within the first hour of sequencing and reflected the number derived from

the complete dataset. This means that the library composition and quality of

target-enriched Tn5 libraries (as measured by reads overlapping target areas),

ChIP-seq libraries (as measured by reads overlapping with peak areas, promoters, or

gene bodies - depending on targeted histone mark) and RNA-seq libraries (as

measured by reads overlapping with exons) can be determined with minimal

sequencing time.
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The bottleneck for analysis in our desktop computer setup seemed to be the

guppy5-based basecalling using the slower yet most accurate “sup” basecalling

configuration. While we could use a faster, less accurate setting to keep up with even

the fastest data producing experiments, using the most accurate model means the data

can be used for in-depth analysis once the run has completed and PLNK has

processed all the files, without the need to re-basecall the raw data.

Overall, this suggests that PLNK can be used to monitor ONT sequencing

runs in real-time. This makes it possible to stop ONT sequencing runs when the goal

of an experiment is achieved. For the rapid evaluation of library pools this could be

one hour into a run once library composition and quality metrics have stabilized. For

run monitoring, this could be several hours into a run once a specific coverage of

defined target regions is reached. In both cases a run can be stopped allowing the

ONT MinION flowcell to be flushed, stored, and ultimately reused.

Discussion

The capabilities of the dominant Illumina sequencing technology - producing massive

numbers of short reads - have shaped the development of sequencing based assays

more than any other single factor.

While long-read sequencers by PacBio and ONT have now superseded

Illumina instruments as the gold standard technology for genome assembly,

producing libraries for these long-read sequencers requires relatively large amounts of

high quality DNA material. In many cases, both DNA input amount and/or quality of

a sample may not match these requirements, leaving amplification-based short-read
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sequencing as the only option to extract large amounts of sequencing data from that

sample.

Beyond the sequencing and assembly of genomes, there are hundreds of

assays adapted for short reads. These assays are highly diverse and require different

levels of read numbers and accuracy and many, like standard RNA-seq, ChIP-seq or

targeted sequencing of PCR amplified genomic DNA, are unlikely to ever take

advantage of the raw read length ONT and PacBio sequencers provide. However,

there have been several studies to take advantage of long-read sequencing instruments

in sequencing shorter molecules. Some assays [OCEAN, MAS-Iso-Seq] work by

either concatenating (Thirunavukarasu et al. 2021; Al’Khafaji et al. 2021) or

otherwise preparing (Baslan et al. 2021) short molecules for sequencing on the

PacBio or ONT instrument. While these assays can generate more short reads, they

either have to contend with the high cost of the PacBio Sequel IIe sequencer, or the

low per-base accuracy of raw ONT reads which even with the latest guppy5 algorithm

is only 96% in our hands. Even at 96%, this ONT raw accuracy is likely sufficient for

certain applications like ChIP-seq where reads simply have to be aligned to a genome

and counted. For these applications, preparing and sequencing short-read libraries

directly on an ONT sequencer is a straightforward option. This approach would also

allow the usage of native ONT barcoding strategies which are more robust at low

accuracy. However, sequencing short read libraries directly on ONT sequencers has

the downside that these sequencers have reduced output when sequencing short
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molecules <1kb. There is therefore room to optimize ONT library preparations for

short read sequencing.

Taking inspiration from the highly accurate but throughput-limited PacBio

IsoSeq and HiFi workflows, circularizing-based [R2C2 (Volden et al. 2018), INC-seq

(C. Li et al. 2016), HiFRe (Wilson, Eisenstein, and Soh 2019)] methods have been

developed to trade throughput for accuracy on ONT MinION and PromethION

sequencers. Using a modified R2C2 method we present here, we show that we can

convert any Illumina sequencing library with double-stranded adapters - PCR-free

“crocodile adapter”-style libraries will not work - into an R2C2 library that is several

kilobases long and therefore takes full advantage of the ONT MinION’s throughput.

As a result, these R2C2 libraries produced not only more accurate reads but also a

higher number of total reads than regular ONT 1D libraries of the same short-insert

Illumina libraries. In fact, the throughput and accuracy of R2C2 were comparable to

Illumina MiSeq 2x300 bp runs.

By generating up to 8.99 million reads (8.1 million demultiplexed) with a

per-base accuracy of 98.87% (Illumina MiSeq read 1: 99.47%; read 2: 98.57%) from

a single ONT MinION flow cell, this approach can compete with the Illumina MiSeq

and other benchtop Illumina sequencers on accuracy and cost - even without taking

instrument cost into account (Table S3). Improved consensus tools (Silvestre-Ryan

and Holmes 2021), the consistently improving ONT sequencing chemistry and

basecallers, and the imminent release of a much cheaper ONT PromethION variant

(P2Solo) all have the potential to further skew both accuracy and throughput
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comparison in R2C2’s favor in the near future. Not only might improving ONT

sequencing chemistry improve throughput but it might also mitigate the considerable

variability in throughput we see in R2C2 read output (4-9 million reads).

We have shown the capabilities and limitations of this approach here by

evaluating the conversion of RNA-seq, ChIP-seq, genomic Tn5, and target-enriched

genomic Tn5 libraries. The R2C2 data was more than accurate enough to demultiplex

Illumina libraries based on their i5 and i7 indexes. Furthermore, RNA-seq data

produced with R2C2 were almost entirely interchangeable with data produced by the

Illumina MiSeq. Library metrics derived from R2C2 data generated from ChIP-seq

and target-enriched Tn5 libraries showed library metrics very similar to those

determined from data generated by Illumina sequencers. One notable exception to this

were insert length distributions of Illumina libraries where R2C2 produced longer

insert distributions than Illumina sequencers which are known to prefer shorter

molecules enough to affect analysis outcomes(Gohl et al. 2019). For the ChIP-seq

experiment, but no other experiment in this manuscript (Fig. S3), R2C2 reads also

had a slightly higher GC content which made the Illumina/R2C2 comparison less

quantitative than it was for example in the RNA-seq experiment. For Germline

variant calling, R2C2 reads analyzed with Pepper-Deepvariant produced variant calls

highly similar to Illumina/Deepvariant variant calls, with no False Positives

(Precision 100%) and only three False Negatives (Recall 97.4%), two of which were

next to homopolymers which are known to be a challenge for ONT sequencers.
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Taken together, we have established that R2C2 can be used as a drop-in

replacement for many sequencing based applications that would usually demand a

dedicated short-read Illumina sequencer. However, R2C2 requires a library to

undergo several processing steps and ONT sequencers feature a unique underlying

technology that is totally distinct from Illumina or any other short read sequencing

technology. As a result, converting short-read libraries with R2C2 and sequencing

them on an ONT sequencer may change what molecules in a pool will be sequenced.

For example, in some experiments, R2C2/ONT sampled longer molecules than

Illumina sequencers. Further, in the ChIP-seq experiment alone, those longer reads

were also more GC rich. Additionally, applications where very high read and/or

consensus accuracy is required, e.g. somatic variant calling, will pose a challenge for

R2C2. In essence, before R2C2 is used for a short-read experiment, the requirements

for this experiment should be carefully considered. Luckily, the barrier-of-entry for

R2C2 and ONT sequencing is low so performing a pilot experiment to establish

whether R2C2 would be a good replacement for any particular short-read assay

should be possible.

In addition to Illumina libraries, the R2C2 method can also be easily adapted

to libraries generated for one of several other sequencing instruments now entering

the market, simply by modifying the splint used to circularize the library. As part of

our C3POa tool, we now provide a script that designs splints and the oligos needed to

make them for any amplified sequencing library based on the primers used to amplify

it.
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Beyond simply competing with benchtop sequencers like the Illumina MiSeq,

R2C2 can be used for a new group of assays around “medium-length” 600-2000nt

reads. Libraries with insert lengths of this size can be size-selected from standard

Illumina library preparations and R2C2 is easily adapted to libraries with different

insert lengths by modifying the size-selection of its rolling circle amplification

product to include only molecules bigger than 3-4 times the original library size. We

provided one example of the resulting “medium length” R2C2 reads by analyzing

size-selected Tn5-libraries. We showed that these reads can, for example, provide an

advantage for the sequencing of small genomes. Among many other potential

applications, “medium-length” reads could be applied to standard

fragmentation-based RNA-seq libraries to provide more contiguous splicing

information for very long transcripts (>15kb) where full-length cDNA based

approaches fail.

One of the unique strengths of ONT-based sequencing methods is that, beyond

the standard approach of analyzing sequencing runs once they are completed, many

library metrics can be derived in real-time. This is starting to get exploited in clinical

and metagenomics assays with tools like SURPIrt(Gu et al. 2021) or with more

powerful tools like MinoTour(Munro et al. 2021). The PLNK tool we developed here

is therefore a powerful tool to monitor sequencing runs and can be used for the rapid

evaluation of library metrics. This makes it possible to stop a run once a

predetermined target coverage is reached or once it is clear whether a library

construction and pooling was successful. For example, using PLNK, we showed that
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key metrics of RNA-seq, ChIP-seq and enriched Tn5 libraries can be evaluated in

under 1 hour of sequencing, making it possible to flush, store, and reuse the flow cells

used for these experiments.

In summary, we have shown that, using R2C2, the ONT MinION can - with

some limitations - be used as an accurate short-read sequencer with several

advantages over dedicated short-read sequencers. Because the ONT MinION comes

with minimal instrument cost, R2C2 allows standard short-read genomic assays to be

performed in any lab immediately after a library is produced. The use-cases for this,

just as the many use-cases for Illumina benchtop sequencers, will vary from lab to

lab. For labs performing small-scale experiments - like RNA-seq of a few samples -

the R2C2/ONT MinION combination should be entirely sufficient. For labs

performing large scale experiments - like ChIPseq of dozens of samples - the

R2C2/ONT MinION combination should be useful to rapidly evaluate library pool

compositions and metrics before committing to the cost and turnaround time that

deeply sequencing a library pool at a core facility on an Illumina HiSeq or NovaSeq

6000 requires.

In either case, the presence of a capable short read sequencer in most

molecular biology or clinical labs could be truly disruptive by eliminating long

turnaround times and therefore dramatically accelerating experiments.
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Methods

Library Preparation

RNA-seq

Four RNA-seq libraries were prepared with the NEBNext Ultra II Directional RNA

Library Prep Kit for Illumina (NEB #E7760) following the manufacturer's protocol.

For each library, 100 ng of polyA selected RNA from the human lung carcinoma cell

line A549 (Takara #636141) was used as input. The RNA fragmentation step was

performed at 94C for 5 minutes. PCR enrichment of adaptor ligated DNA was

performed for 9 cycles using the NEBNext Multiplex Oligos for Illumina (NEB

#E7600S) kit to add Illumina dual index sequences. Three libraries were pooled at a

4ng, 2ng, and 1ng before sequencing on an Illumina MiSeq instrument for paired end

2x300 bp sequencing. The same three RNA-seq libraries were pooled again at the

same ratio for further R2C2 library preparation. For the 1D and R2C2 runs, the fourth

RNA-seq library was prepared and added right before ONT library preparation.

ChIP-seq

Chromatin immunoprecipitation (ChIP) was performed following the detailed

protocol of Ricci et al. with minor modification(Ricci, Levin, and Zhang 2020). In

brief, approximately 30 developing seeds at the cotyledon stage were used for

chromatin extraction. Immediately after harvesting, the tissue was crosslinked as

described in the referenced protocol and immediately flash-frozen in liquid nitrogen.

To make antibody-coated beads, 25μl Dynabeads Protein A (Thermo Fisher
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Scientific, 10002D) were washed with ChIP dilution buffer and then incubated with

2μg antibodies (anti-H3K4me3, Millipore-Sigma, 07–473) for at least 3 hours at 4 °C.

After the nuclei extraction, the lysed nuclei suspension was sonicated to 200-500 bp

on a Diagenode Bioruptor on the high setting for 30 min. Tubes were centrifuged at

12,000g for 5 min. at 4 °C and the supernatant was transferred to new tubes. At this

point, 10 μl of ChIP input aliquots were collected. Sonicated chromatin was diluted

tenfold in the ChIP dilution buffer to bring the SDS buffer concentration down to

0.1%. The diluted chromatin was incubated with antibody-coated beads at 4 °C

overnight, then washed and reverse-crosslinked. The library was prepared in

accordance with the referenced protocol.

Tn5

Genomic DNA from a Wolbachia-containing Drosophila Melanogaster cell line was

extracted using a lysis-buffer plus SPRI-bead purification. The Tn5 reaction was then

performed using 1ul (22ng) of this genomic DNA, 1ul of the loaded Tn5-AR, 1ul of

the loaded Tn5-BR, 13 ul of H2O and 4 ul of 5× TAPS-PEG buffer and incubated at

55°C for 8 minutes (Table S1). The Tn5 reaction was inactivated by cooling down to

4°C and the addition of 5 µl of 0.2% sodium dodecyl sulfate then incubated for 10

minutes. 5 ul of the resulting product was nick-translated at 72°C for 5 minutes and

further amplified using KAPA Hifi Polymerase (KAPA) using Nextera Index primers

with an incubation of 98°C for 30 s, followed by 16 cycles of (98°C for 20 s, 65°C for

15 s, 72°C for 30s) with a final extension at 72°C for 5 min. Before R2C2 conversion,
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the resulting Tn5 library was size-selected for molecules between 800-1200bp on a

1% low-melt agarose gel.

Target-enriched Tn5

The Tn5 library was prepared using genomic DNA from cell lines NCI-H1650

(ATCC CRL-5883D) and NCI-H1975 (ATCC CRL-5908DQ). A total of 100ng

genomic DNA of each sample was treated with Tn5 enzyme loaded with Tn5ME-A/R

and Tn5ME-B/R. The Tn5 reaction was performed using 1ul of the gDNA, 1ul of the

loaded Tn5-AR, 1ul of the loaded Tn5-BR, 13 ul of H2O and 4 ul of 5× TAPS-PEG

buffer and incubated at 55°C for 8 minutes. The Tn5 reaction was inactivated by

cooling down to 4°C and the addition of 5 µl of 0.2% sodium dodecyl sulfate then

incubated for 10 minutes. 5 ul of the resulting product was nick-translated at 72°C for

5 minutes and further amplified using KAPA Hifi Polymerase (KAPA) using

Nextera_Primer_B_Universal and Nextera_Primer_A_Universal (Smart-seq2) with

an incubation of 98°C for 30 s, followed by 16 cycles of (98°C for 20 s, 65°C for 15

s, 72°C for 30s) with a final extension at 72°C for 5 min.

The resulting Tn5 library was then enriched with Twist fast hybridization reagents

and customized oligo panels that were designed based on the Stanford STAMP panel.

The hybridization reaction of the panel and the Tn5 libraries was performed using

294ng of NCI-H1975 Tn5 library, 360ng of NCI-H1650 Tn5 library, 8ul of blocking

oligo pool [100uM], 8ul of universal blockers, 5ul of blocker solution and 4ul of the

custom panel. The mix was dehydrated using SpeedVac and was resuspended in 20ul
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Fast Hybridization mix at 65C. After the addition of 30 ul of Hybridization

Enhancer, the mixture was incubated at 95C for 5 minutes and 60C for 4 hours. After

hybridization, the reaction mix was incubated with pre-washed Streptavidin binding

beads and washed using the Fast Wash buffer one and Fast Wash buffer two for six

times. The Streptavidin beads and the DNA mixture was used directly for

reamplification with Universal primers and Equinox Library Amp Mix. The mixture

was incubated at 98°C for 45 s, followed by 16 cycles of (98°C for 15 s, 65°C for 30

s, 72°C for 30s) with a final extension at 72°C for 1 min. The final enriched Tn5

library DNA product was cleaned up using SPRI beads at 1.8:1 (Beads:Sample) ratio.

R2C2 Conversion

Pooled Illumina libraries were first circularized by Gibson assembly with a DNA

splint containing end sequences complementary to ends of Illumina libraries (Table

S1). Illumina libraries and DNA splint were mixed at a 1:1 ng ratio using NEBuilder

HiFi DNA assembly Master mix (NEB #E2621). Any non-circularized DNA was

digested overnight using ExoI, ExoIII, and Lambda exonuclease (all NEB). The

reaction was then cleaned up using SPRI beads at a 0.85:1 (Bead:Sample) ratio. The

circularized library was then used for an overnight RCA reaction using Phi29 (NEB)

with random hexamer primers. The RCA product was debranched with T7

endonuclease (NEB) for 2 hours at 37C then cleaned using a Zymo DNA Clean &

Concentrator column-5 (Zymo #D4013). The cleaned RCA product was digested

using NEBNext dsDNA Fragmentase (NEB #M0348) following the manufacturer
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protocol with a 10 minute incubation. For the regular Tn5 library digested RCA

product was cleaned using SPRI beads. For all other libraries, the digested RCA

product was size selected using a 1% low melt agarose gel: DNA between 2-10 kb

was excised from the gel which was then digested using NEB Beta-Agarase. DNA

was then cleaned using SPRI beads.

ONT sequencing

ONT libraries were prepared from R2C2 DNA or directly from Illumina libraries

using the ONT ligation sequencing kit (ONT #SQK-LSK110) following the

manufacturer's protocol then sequenced on an ONT MinION flow cell (R9.4.1).

When preparing ONT libraries from Illumina libraries, SPRI bead purifications

throughout the protocol were adjusted to accommodate for their short length.

Additional library was loaded on the same flow cell after nuclease flush.

Illumina sequencing

Library pools were sequenced either on the Illumina MiSeq using 2x300 (RNA-seq

and target enriched Tn5 libraries), the Illumina NextSeq500 2x150 (Tn5 library) or

the Illumina NovaSeq 6000 (ChIP-seq)
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Analysis

R2C2 and 1D

Raw nanopore sequencing data in the fast5 file format was basecalled using the “sup”

setting of guppy5 to generate fastq files. R2C2 raw reads in fastq format were then

processed by C3POa (v.2.2.3 - https://github.com/rvolden/C3POa) to generate

accurate consensus reads. R2C2 consensus reads and ONT 1D reads were further

processed with C3POa (C3POa_postprocessing.py), using the --trim setting and the

following p5/p7 adapter sequences:

>3Prime_adapter

CAAGCAGAAGACGGCATACG

>5Prime_adapter

AATGATACGGCGACCACCGAGATCT

Custom scripts (available at https://github.com/kschimke/PLNK) were used to

demultiplex reads based on the sequences of their DNA splints and Illumina indexes

and to trim the rest of the Illumina sequencing adapters.

RNA-seq

To determine accuracy levels R2C2, 1D, Illumina MiSeq reads were aligned to the

human genome reference (hg38) using minimap2 (v2.18-r1015)(H. Li 2018).

minimap2 -ax splice --cs=long --MD –secondary=no

Position dependent accuracy was determined after converting sam files with the

sam2pairwise tool(LaFave and Burgess 2014).
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Illumina reads were adapter trimmed using cutadapt (v3.2)(Martin 2011)

cutadapt -m 30 -j 50 -a AGATCGGAAGAGC -A AGATCGGAAGAGC

Illumina and R2C2 reads were aligned to the human genome (hg38) using STAR and

STARlong (v2.7.3a)(Dobin et al. 2013)

STAR --quantMode GeneCounts --outSAMattributes NH HI NM MD AS nM jM jI XS

To determine insert length, Illumina read pairs were merged using bbmerge (v38.92)

with default settings.

ChIP-seq

Illumina reads were sub-sampled using a custom script

(https://github.com/alexanderkzee/BWN) to match the total reads from the

corresponding R2C2 library.

Illumina and R2C2 reads were aligned to the Glycine Max genome (Gmax_508_v4.0)

using minimap2 (v2.18-r1015)(H. Li 2018).

minimap2 -ax sr --cs=long --MD --secondary=no

Peaks in H3K4me3 Illumina data were called using MACS2(Zhang et al. 2008)

macs2 callpeak -t K4.bam -c INPUT.bam -f BAM -n K4_Illumina --nomodel --extsize

200

Tn5

R2C2 reads were aligned to the Drosophila melanogaster genome (dm6) using

minimap2 ((v2.18-r1015)

minimap2 -ax sr --cs=long --MD --secondary=no
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R2C2 reads that didn’t align to the Drosophila genome were then assembled using

miniasm

minimap2 -x ava-ont [dehosted r2c2 file] [dehosted r2c2 file] > [ava paf file]

miniasm -f [dehosted r2c2 file] [ava paf file] -m 450 -s 250 > [gfa raw assembly]

We aligned Illumina reads to the Drosophila melanogaster genome (dm6) using bwa

mem(H. Li 2013) under default parameters. We then extracted the sample IDs for

reads that did not map to the host genome and extract that set from the raw fastq files.

Illumina reads that didn’t align to the Drosophila genome were then assembled using

meraculous, setting the minimum contig depth to 10, expected genome size to 0.013,

and using a k-mer of 51 and otherwise default parameters.

Target-enriched Tn5

Illumina reads were adapter trimmed using cutadapt (v3.2)

cutadapt -m 30 -j 50 -a AGATCGGAAGAGC -A AGATCGGAAGAGC

Trimmed Illumina and R2C2 reads were aligned to the human genome (hg38) using

minimap2 (v2.18-r1015).

minimap2 -ax sr --cs=long --MD –secondary=no

Germline variants in Illumina data of NCI-H1650 were called using

Deepvariant(Poplin et al. 2018). Germline variant in R2C2 data of NCI-H1650 were

called using Pepper-Deepvariant(Shafin et al. 2021)
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Real-time Analysis with PLNK

RNA-seq, ChIP-seq and Enriched Tn5 MinION runs were simulated by reading the

mtime metadata entry of fast5 files in the output folder of the completed runs and then

calculating the time intervals at which files were created by the MinKNOW software.

Files created during the first 48 hours or until the first library reload were then copied

into a new folder at those intervals. PLNK (https://github.com/kschimke/PLNK) was

started after the simulation and was given key information about the run (splint and

Illumina indexes in the format of a sample sheet, target regions in bed format,

genome sequence in fasta format) and a config file containing paths to tools used by

PLNK.

Analysis of public MiniSeq, iSeq, and MiSeq data

Sequencing runs of genomic E.coli DNA were downloaded from SRA. We selected

three runs each for MiniSeq (SRR20643069,SRR20643071,SRR20643072 -

generated by the GenomeTrakr project), iSeq

(SRR14617007,SRR14617041,SRR14617075) (Mitchell et al. 2022), and MiSeq

(SRR19575967,SRR19575968,SRR19575973 - generated by the National

Microbiology Laboratory).

To generate accuracy-by-position data, reads for each run were processed separately.

First reads were aligned to a E.coli reference genome (CP014314 downloaded from

GenBank) using minimap2. Then the genome was then polished using these

alignments with pilon (Walker et al. 2014). Reads were then realigned to the polished
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genome using minimap2 and position dependent accuracy was calculated after

converting the resulting sam files using the sam2pairwise tool.

General Analysis

samtools(H. Li et al. 2009) (v1.11-18-gc17e914) was used extensively during analysis

for sam file processing. Python(Oliphant 2007), matplotlib(Hunter 2007),

numpy(Harris et al. 2020), and scipy(Virtanen et al. 2020) were all used to analyze

and visualize the data
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Data Access

All raw and processed sequencing data generated in this study have been submitted to

the NCBI Sequence Read Archive under accession number PRJNA775962

All code used for analysis is available at the following github repositories

https://github.com/kschimke/PLNK

https://github.com/alexanderkzee/BWN

https://github.com/rvolden/C3POa

as indicated throughout the method section.
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Fig. S1: Read position dependent accuracy of benchtop Illumina sequencers and ONT
sequencers. Publicly available iSeq (left), MiniSeq(center), and MiSeq (right) reads of genomic
E.coli DNA were processed to evaluate read accuracy. This accuracy, is shown for 3 separate
sequencing runs for each read position as percent (top) or log converted Q score (bottom). In each
case, Illumina benchtop sequencer accuracy is compared to R2C2 and 1D ONT data generated by us
for this study as shown in figure 2B.
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Fig. S2: GC-content of Illumina and R2C2 reads sampling from the same library. Log10
converted read fractions of reads with different GC content is shown for all experiments performed
for this study. For the ChIPseq study, read fractions for both libraries in the analyzed pool are shown
(H3K4me3 and INPUT). Illumina reads are shown in orange and R2C2 reads are shown in blue.

89



Fig S3. Target-Enriched Tn5 library size.
The size of the target-enriched Tn5 library pool as determined by Agilent Tapestation run.
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Fig S4: Read context around R2C2/Pepper-Deepvariant miscalls. Subsampled Illumina as well
as R2C2 read alignments are shown in genome browser style visualizations around variant calls
where R2C2/Pepper-Deepvariant disagreed with Illumina/Deepvariant. R2C2 data and variant calls
are shown in both their original orientation (center: p5->p7) as well as reoriented direction (bottom:
Raw read direction). Illumina variant call (e.g. A->G) and R2C2 variant call status (FP - False
Positive, FN - False Negative, TP - True Positive, TN - True Negative) is indicated for both
orientations. In the read alignments, mismatches are marked by lines colored by the read base (A -
orange; T - green; C - blue; G - purple). Insertions are shown as gaps in the alignments while
deletions are shown as black lines. “Plus” strand alignments are shown with a white background,
while “Minus” strand alignments are shown with a grey background.
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Splint oligos
>UMI_Splint_1_F_Next_A
GATCTCGGTGGTCGCCGTATCATTTGAGGCTGATGAGTTCCATANNNNNTATATNNNNNATC
ACTACTTAGTTTTTTGATAGCTTCAAGCCAGAGTTGTCTTTTTCTCTTTGCTGGCAGTAAAA
G
>UMI_Splint_1_R_Next_B
ATCTCGTATGCCGTCTTCTGCTTGAAAGGGATATTTTCGATCGCNNNNNATATANNNNNTTA
GTGCATTTGATCCTTTTACTCCTCCTAAAGAACAACCTGACCCAGCAAAAGGTACACAATA
CTTTTACTGCCAGCAAAGAG
>UMI_Splint_2_F_Next_A
GATCTCGGTGGTCGCCGTATCATTTGCCGGTTGGGTATCAATAANNNNNTATATNNNNNATT
GCCTTTATTCTATCTACTTAGTTTTGGCGATGTAGTCTACCTATCCTGATGCTGAATAAAGGC
>UMI_Splint_2_R_Next_B
ATCTCGTATGCCGTCTTCTGCTTGAATTAGGTTCTAGGATCACGNNNNNATATANNNNNCTG
CCATCGAAAATTTTTCACCCGTAACAAGAACTTACAACTCTCTGACGCCTATATCATGAAGG
CCTTTATTCAGCATCAGGA

Tn5 oligos
Tn5ME-R 5'-[phos]CTGTCTCTTATACACATCT-3'
Tn5ME-A (Illumina FC-121-1030): TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
Tn5ME-B (Illumina FC-121-1031): GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

Nextera_Primer_A1 AATGATACGGCGACCACCGAGATCTACAC [i5 index]
TCGTCGGCAGCGTCAGATG
Nextera_Primer_B1 CAAGCAGAAGACGGCATACGAGAT [i7 index]
GTCTCGTGGGCTCGGAGATGTGTAT

Custom blocking oligos for target-enriched Tn5 library prep
>NextA_F_Blocking
AATGATACGGCGACCACCGAGATCTACAC IIIIIIII
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG/3ddC/
>NextA_RC_Blocking
CTGTCTCTTATACACATCTGACGCTGCCGACGA IIIIIIII
GTGTAGATCTCGGTGGTCGCCGTATCATT
>NextB_F_Blocking
CAAGCAGAAGACGGCATACGAGAT IIIIIIII 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG/3ddC/
>NextB_RC_Blocking
CTGTCTCTTATACACATCTCCGAGCCCACGAGAC IIIIIIII
ATCTCGTATGCCGTCTTCTGCTTG

Table S1: Custom oligos used in the IBWN study
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Abstract

Mice are one of the most commonly used model organisms for biomedical research.

Having accurate and complete genomic annotations for model organisms is critical

for research efforts. Conventional short-read RNA-seq is unable to accurately capture

and quantify gene isoforms due to the initial fragmentation of RNA during library

prep. Genome annotation references rely heavily on short-read RNA-seq to create

isoform models and thus are incomplete nor do they contain tissue level specificity or

quantification of isoform expression. Here, using the nanopore-based R2C2 long-read

sequencing method and the Mandalorion isoform tool, we generated a deep, long

read, tissue level transcriptome atlas of the BALB/c mouse. This dataset consists of

64 million highly accurate full length cDNA consensus reads, averaging 5.4 million

reads per tissue for a dozen tissues. Our mouse atlas represents a valuable reference

providing isoform level information for a vital model organism.
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Introduction

The mouse has been widely used as a model organism for studying basic

biology and biomedical research for almost 100 years. Mice are small, easy to care

for, and have short lifespans. Inbreeding of mice has led to genetically identical

strains allowing for accurate and reproducible experiments. They share over 15,000

protein coding genes with humans and are susceptible to many of the same diseases

(Eppig et al. 2015). Mice are easily genetically engineered to simulate almost any

human condition. These features combined make mice critical for scientific research.

For any model organism, a high quality genomic reference and accompanying

annotation are invaluable research tools (McGarvey et al. 2015). The initial mouse

reference genome was published 20 years ago and recent advances in sequencing

technology have improved the completeness and contiguity of genome assemblies to

point of true telomere to telomere genome assemblies (Mouse Genome Sequencing

Consortium et al. 2002). But complete reference annotations of functional DNA

elements are a more complicated challenge. Many projects have set out to work on

this task ((Frankish et al. 2019),(Kawai et al. 2001), (McGarvey et al. 2015),

(ENCODE Project Consortium 2004)). The most basic level of genome annotation

defines on the nucleotide level the location of coding and non coding genes and

regulatory elements. For multicellular eukaryotic organisms creating complete

genome annotations requires the analysis of every cell type using a number of

different experimental methods due to unique gene expression patterns and post
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transcriptional processing (Morillon and Gautheret 2019). As a consequence,

references are incomplete due to limitations of sequencing technology.

Short read RNA-seq has become the gold standard for understanding

transcriptomes due to its high throughput nature, and ability to quantify gene

expression and exon inclusion (Mortazavi et al. 2008). This has made it the most

common method for genomic annotations. Short read RNA-seq requires the

fragmentation of RNA during library prep but even the most advanced computational

methods fail to assemble short reads into full length isoforms (Steijger et al. 2013).

Consequently this method is unable to provide a comprehensive isoform level view of

the transcriptome.

Third generation long-read sequencing technology such as ONT and PacBio

are capable of generating sequencing reads of many kilobases and even up to

megabase long reads (Byrne, Cole, et al. 2019). For the application of RNA-seq this

means that entire full length transcripts can be captured as single reads that include

the poly(A) sites, transcription start sites (TSS), and splice sites without the need to

assemble short fragments. Genome annotation research using long-read sequencing

((Sharon et al. 2013), (Glinos et al. 2022)) have shown the value of capturing full

length transcript isoforms but also the limitations in regards to throughput, accuracy,

and molecule length bias during library prep and sequencing.

Here, we have utilized the nanopore based R2C2 long-read sequencing

method ((Volden et al. 2018), (M. Adams et al. 2020b),(Vollmers et al. 2021b), (Zee

et al. 2022)) and the Mandalorion isoform calling pipeline (Volden et al. 2022) to
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create a high quality isoform level transcriptome reference for 12 tissues from the

BALB/c mouse strain to determine what isoforms are expressed for each gene, at

what relative expression level, and how isoform usage varies across tissues.

Results

Sequencing Overview

A tissue level, long-read transcriptome atlas was constructed using commercially

available high quality RNA (Takara) from 12 mouse tissues (brain, eye, heart, kidney,

lung, liver, salivary gland, smooth muscle, spinal cord, spleen, testis), each pooled

together from dozens to hundreds of male and female balb/c mice. Sequencing

libraries were prepared using a modified Smart-Seq2 protocol and oligo(dT) primers

(see methods). To increase sequencing coverage of longer transcripts, which are

biased against during multiple steps in the library preparation and sequencing process,

some of the cDNA was size-selected for molecules 2 kb in length and above by gel

electrophoresis.

Non size-selected and size-selected libraries were prepared for sequencing using the

R2C2 protocol and sequenced on a combination of Oxford Nanopore Technologies

MinION and PromethION sequencers (R9.4 pore chemistry and SQK-LSK110 library

preparation kits). After basecalling using Guppy (v.5) we generated accurate full

length cDNA consensus reads using the C3POa pipeline. In this way, we produced 64

million full length cDNA consensus reads, averaging 5.4 million reads per tissue. For

non size selected libraries the median insert length was approximately 750 bp while

the size selected libraries had median insert length approximately 2kb. Together, the
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distribution of non size-selected and size-selected read lengths reflected the length of

likely full-length transcripts in GENCODE basic vM30 annotation. Further, the

full-length R2C2 consensus reads were very accurate, with the median per base

identity for non size selected and size selected reads being 99.8% and 98.9%,

respectively (Figure 1).

Figure 1. Overview of data set. Top panel, read counts in millions split between non
size-selected and size selected libraries. Second from the top, read accuracy of C3POa full
length consensus reads split between non size-selected and size-selected libraries. Second
from bottom, insert length split between non size-selected and size selected libraries.
Bottom panel, insert length of combined non size-selected and size selected libraries.

Gene Level Analysis and Illumina Comparison

Next, we determined whether the full-length cDNA R2C2 reads we generated could

be used for gene level analysis. The first analysis we performed aimed to determine if

our sequencing depth was enough to capture all annotated genes (GENCODE)

present in the sample (Figure 2A). We compared gene saturation of our data set to

publicly available Illumina data (right panels) generated from the same RNA for ten

of the twelve tissues we sequenced (all but stomach and testis)(PMID: 25730492
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). Comparing data sets on the level of individual tissues (top panels), we see the R2C2

data set approaching a plateau but with fewer total genes than the Illumina data which

can be at least partially attributed to the significant difference in read counts. The

combined data sets for both methods each identify just under 40,000 annotated genes.

A key output of RNA-seq experiments is the quantification of gene

expression by counting the number of reads that align to a particular annotated gene.

We compared gene expression quantifications produced by the R2C2 method to the

more standard short read Illumina sequencing data using the same RNA. We

compared tissue level combined datasets of size selected and non size selected reads

(Figure 2B). Pearson correlation gave an r value of ~0.85 across tissues (only brain

shown) indicating a strong correlation of gene quantification between the two

methods.

We also investigated the number of unique annotated genes detected by either

R2C2 and Illumina sequencing. Because the illumina data contained significantly

higher read counts we randomly subsampled 3 million reads from each tissue for both

methods to achieve a more balanced comparison. We grouped subsets of genes

identified by each method (Figure 2C). The majority of genes detected were

identified by both methods and the method that identified the most genes varied

depending on the tissue.
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Figure 2. Gene level analysis. Panel A, gene level saturation curve analysis, left side,
R2C2 data, right side, Illumina data, top panels, individual tissues, bottom panels, all
tissues combined. Panel B, scatter plot of gene counts from R2C2 vs. Illumina for brain.
Panel C, Comparison of genes detected by either R2C2 or Illumina.

Isoform Characterization

Next, we aimed to use the full-length R2C2 consensus reads to move beyond gene

level analysis and define comprehensive isoform annotations for each of the 12

tissues in this study. To identify isoforms in a way that is highly specific, i.e. reports
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few false positive isoforms while retaining high sensitivity for previously annotated

and new isoforms, we analyzed the R2C2 reads we produced using Mandalorion

(v4.0) tool. Mandalorion takes as input a 1) reference genome (fasta) and 2)

annotation (gtf, optional) along with full length transcript sequence data (R2C2 or

Iso-Seq). It aligns reads to the genome using minimap2 (H. Li 2018) and groups reads

into isoforms and creates a consensus for each isoform. Mandalorion then aligns

isoform sequences and filters the consensus isoforms. We ran Mandalorion on both

the entire data set, as well as on individual tissue data sets. When run on the entire

combined dataset, Mandalorion produced 167,079 isoforms. The median isoform

length was approximately 2kb (Figure 3A) and median isoform accuracy 99.97%.

When run on the individual tissue data sets, Mandalorion identified between

22,727(salivary gland) and 63,948 (testis) isoforms. To determine whether we

sequenced these data sets to exhaustion, i.e. more reads would not result in more

isoforms being identified, we performed a saturation analysis for each tissue which

also highlights the transcriptional complexity of each tissue (Figure 3B). Because we

did not reach saturation for most tissues, we wanted to determine that we at least

identified one isoform for each expressed gene identified in the illumina data. We

found that on average across tissues, for ~80% of the genes detected by Illumina that

had greater than 1 TPM, we had at least one isoform in our data, and ~91% for genes

with greater than 5 TPM (Figure 3C).

This initial isoform-level identification and analysis showed that our

consensus isoforms have very few errors and a length distribution that matches

102

https://paperpile.com/c/NPzu7r/faQS5


closely with GENCODE annotations. While we did not reach isoform level

saturation, we were able to capture at least one isoform for the majority of genes.

Figure 3. Isoform Characterization Panel A, Isoform length distribution for each tissue
and the combined data set compared to GENCODE vM30 basic protein coding transcripts.
Panel B, Isoform level saturation curves for each tissue. Panel C, R2C2 isoforms that
match genes detected by Illumina, sorted from lowest to highest TPM from Illumina data,
left most black bar marks 1 TPM, right most black bar marks 5 TPM.

Isoform classification

Next we aimed to further classify the isoforms we had identified. To this end, we used

SQANTI3 (Tardaguila et al. 2018) to characterize the full length consensus isoforms

Mandalorion had identified for each tissue. When we analyzed the combined dataset,

SQANTI3 detected 68,947 genes, 25,331 annotated genes and 43,616 unannotated

genes. Approximately 80% of annotated genes had more than one isoform and ~30%
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had over 6 isoforms. For novel genes only ~8% produced had more than one isoform.

86% of isoforms produced by novel genes contained just one exon, compared to

~20% of isoforms produced by annotated genes.. This indicates that many

Mandalorion isoforms identified as novel genes by SQANTI3 can likely be attributed

to genomic contamination, antisense transcripts from known genes, or transcribed

enhancer regions.

SQANTI3 classifies isoforms into four main categories based on comparison

to the reference annotation file: full splice match (FSM), incomplete splice match

(ISM), novel in catalog (NIC), novel not in catalog (NNC). For FSM, the isoform

must have the same number of exons and matching splice junctions, while the exact

5’ and 3’ ends can differ, ISM have fewer terminal exons but still match annotated

splice junctions, NIC uses some combination of known splice junctions and, NNC

have at least one splice junction that is novel. Across tissues we see approximately

50% of isoforms called by Mandalorion classified as a FSM to GENCODE

annotation and about 80-90% falling into the four main categories at similar ratios

with the exception of testis with a disproportionate number NNC isoforms indicating

poor annotation of isoforms unique to testis in GENCODE. (Figure 4). When

analyzing the data from individual tissues using SQANTI3, we found that the testis

expressed the highest number of genes and isoforms followed closely by neural tissue

(brain, spinal cord).
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Figure 4. Isoforms Classification. SQANTI3 isoform classification categories for each
tissue.

Differential Isoform Usage Across Tissues

Next, the quantitative nature of the R2C2 approach as well as the multiplexed setup

of our sequencing strategy allowed us to compare isoform expression across tissues.

To do so, we used the isoforms identified from the combined data set for which

Mandalorion quantified the expression in each tissue.

To identify genes with differential isoform expression across tissues, we performed a

Chi-squared contingency table test. We found 5,654 genes that had significant

differential isoform usage (p-value < 0.05) with a minimum of 50 reads in at least two

tissues. An example of one such gene, Rab3il1 shown in Figure 5, highlights

differential isoform usage across tissues particularly in regards to the use of
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alternative TSS and first exons, as well as alternative internal exon usage within the

same tissue.

Figure 5. Differential Isoform Usage. Genome Browser shot of Rab3il1 is shown with
GENCODE v30 annotation on top and isoforms called by Mandalorion below. Right side,
relative usage of each isoform in each tissue, yellow indicates higher usage, blue indicates
lower usage.

Novel Genes and Isoforms

We investigated sequences determined to be novel genes or isoforms by Mandalorion.

Less than 1% of reads in the whole data set were assigned to a novel gene and almost

half of those were assigned to just five novel genes . Further investigation revealed

the five most highly expressed novel genes were the results of unannotated gene

duplications (Mucl1, Ahsp, and a ribosomal LSU gene) and unannotated pseudogenes

(Cox7 and Gm12338).

Testis

Testis are known to be the most transcriptionally complex tissue in mammals in terms

of the number of expressed genes and isoforms (Kaessmann 2010) and for this reason

we chose to further investigate the nature of isoform expression in testis. In our data,

we found 63,948 isoforms expressed in testis and over half, 32,843, had unique
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transcription start sites compared to any other tissue (+ or - 100bp), significantly

higher than any other tissue which averaged just over 3,000 TSS not used in another

tissue. We then investigated if the use of alternative TSS could be validated by

transcription factor binding data. To do this, we used available transcription factor

ChIP-Seq data from Chip-Atlas.org (Oki et al. 2018) that included data for 4 different

TFs [Rfx2, Taf7l, Tbpl1,Mybl1] expressed in the testis. We found that ~33% of the

testis unique TSS were within a TF ChIP peak (Figure 5, bottom panel).

Figure 6. Validation of Unique TSS Top panel, the total number of isoforms with unique
TSS for each tissue. Bottom panel, percentage of isoforms with unique TSS from each
tissue that had TSS overlap with TF ChIP data from ChIP-atlas.

Data Sharing

Unlike existing genomic reference annotations, our data set includes isoform level

expression for genes across tissues. To create an easily accessible resource for
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researchers needing isoform level expression data we have created a custom genome

browser session using the UCSC genome Browser (Navarro Gonzalez et al. 2021)

(https://genome.ucsc.edu/s/vollmers/MouseAtlasOfTissueLevelTranscriptomes). This

session contains Mandalorion isoform models and quantification which provides

researchers with information on what isoforms are present for their gene(s) of interest

and their relative usage.

Discussion

Here, we have presented a high quality isoform level tissue transcriptome atlas for

BALB/c mouse. We sequenced approximately 64 million full length transcripts across

a dozen tissues averaging 5.4 million reads per tissue and covering almost all high

and medium expressed transcripts and a significant portion of lower expressed

transcripts. This data set will be a valuable resource for scientists requiring detailed

isoform level information for their genes of interest. Researchers can easily look up

the highest expressed isoform for a particular gene of interest in a given tissue and

have it synthesized for use in functional assays and other experiments. Current

annotations are unable to capture this information due to their reliance primarily on

short read RNA-seq that is limited in its ability to identify and quantify transcripts at

the isoform level. As long-read sequencing technology continues to improve and gain

acceptance we will see great improvements in the completeness and accuracy of

genome annotations for all organisms. Indeed, GENCODE has developed the

TAGENE pipeline to incorporate long-read data sets into their transcript models,

resulting in the addition of new genes and transcripts to their most recent annotations
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(Frankish et al. 2023). Additionally, the Long Read RNA-seq Genome Annotation

Assessment Project (LRGASP) consortium (F. J. Pardo-Palacios et al. 2022),

launched by GENCODE and other partners, has systematically evaluated various long

read sequencing methods and computational analysis tools (including

R2C2/Mandalorion) and will certainly advance the adoption of long-read RNA

sequencing.

Methods

Sample Multiplexing

RNA was acquired from Takara (Cat# 636644). Multiplexing samples was done using

one of two methods, the first used barcoded DNA splints for Gibson assembly then

pooling samples after rolling circle amplification, the second method used barcoded

oligo(dT) for cDNA synthesis wich allowed pooling before Gibson assembly. Both

methods produce equivalent data. Approximately 80% of the data used in this study

was generated by using barcoded oligo(dT) primers for multiplexing tissues. Library

Preparation and Sequencing

RNA was first mixed with dNTPs and oligo(dT) primer, either barcoded or

non-barcoded, then denatured to remove secondary structure for 3 minutes at 72C.

First strand reverse transcription (RT) using Smartscribe Reverse Transcriptase

(Clontech) and SmartSeq template switching oligo (TSO) with DTT and

SUPERaseIN was performed for 1 hour at 42C then heat inactivated for 5 minutes at

70C. Second strand synthesis and PCR with KAPA 2x master mix and ISPCR primer

with RNaseA and lambda exonuclease for 12 cycles3 (37C for 30 minutes, 95C for 3
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minutes, 98C for 20 seconds, 67C for 15 seconds, 72C for 8 minutes, 72C for 5

minutes, 4C hold). cDNA was cleaned up and size-selected using SPRI beads at a

1:0.85 (sample:beads). After quantification by Qubit the cDNA libraries were pooled

together if barcoded oligo(dT) primers were, if not, cDNA from individual tissues

would still be kept separate. The cDNA was then split for size selected and non size

selected R2C2 library preparation. For size selection, cDNA was run on a 1% low

melt agarose gel and everything over 2 kb was excised and purified using

beta-Agarase digestion and SPRI bead clean up. Size selected and non size selected

cDNA were further processed separately but identically. cDNA libraries were

circularized by gibson assembly (NEBbuilder HiFi) with a short DNA split that

overlaps with the ends of the cDNA. For cDNA that was not barcoded during cDNA

synthesis a barcoded DNA split was used. To remove un-circularized molecules, a

linear exonuclease digestion with ExoI, ExoII, and Lambda Exonuclease (all NEB)

was carried out for 16 hours at 37C then heat inactivated for 20 minutes at 80C. The

reaction was then cleaned using SPRI beads at a 1:0.85. The clean, circularized

library is then used as a template for rolling circle amplification (RCA) using Phi29

(NEB) with a random hexamer primer for 18 hours at 30C then heat inactivated for

10 minutes at 65C. The phi29 reaction was then debranched using T7 endonuclease

for 2 hours at 37C before being cleaned and concentrated using Zymo DNA clean and

concentrator column. The library was quantified by Qubit and gel extracted as

described above but the region extracted was a bright band just over the 10 kb marker.

After gel extraction, the library was quantified again by Qubit. Libraries barcoded
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during the Gibson assembly step were now pooled together at equal mass. We used

the Genomic DNA by Ligation (SQK-LS110) kit from ONT to prepare for

sequencing following the manufacturer's protocol. The final library was loaded onto

either a ONT MinION or PromethION sequencer. Flowcells were nuclease flushed

and loaded with additional library partway through sequencing based on pore

availability statistics shown in the MinKNOW software to increase sequencing

throughput.

Data Processing

All ONT fast5 files were basecalled using Guppy (v.5) with the super accurate

configuration. R2C2 full length consensus reads were generated and demultiplexed

by C3POa (v2.4.0). Read trimming was performed using a custom python script.

Isoforms were called by the Mandalorion Isoform analysis pipeline (v4.0) run on both

individual tissue data and the combined data set.

Analysis

Per base identity was determined by aligning reads to the mouse reference genome

(GRCm39) and parsing the alignment using a custom script.

Gene level saturation curves were produced by random subsampling of featureCounts

output for each tissue and the combined dataset. Isoform level saturation curves were

produced by random subsampling fasta files output by C3POa and running

Mandalorion on each subsample.

Scatter plots comparing Illumina and R2C2 gene quantification were produced using

gene read counts from featureCounts and the figure was generated from a custom
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python script. R2C2 data was aligned to the reference genome using minimap2 while

Illumina was aligned using STAR aligner.

Mandalorion isoforms produced from both individual tissues and the combined

dataset were used as input for the sqanti_qc.py script of SQANTI3 v5.1.

Differential isoform usage analysis was performed using Chi2 contingency test with a

custom python script utilizing SciPy.

A tissue unique TSS was determined using a custom python script that compared

every isoforms TSS from each tissue to the entire dataset. A tissue unique TSS was

defined as a TSS in one tissue that did not exist in any other tissue + or - 100 bp. A

custom python script was used to determine TSS overlaps with publicly available

ChIP-seq (https://chip-atlas.org/). Data from chip-atlas.org was downloaded as a BED

file from the peak browser tool by selecting the following options: Assembly: M.

musculus mm10, experiment type: ChIP TF, Cell Type Class: Gonads, Threshold for

Significance: 50, ChIP Antigen: all, Cell Type: testis.
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