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Professor Danijela Čabrić, Co-chair

With the rapid increases in the number of wireless devices, fixed spectrum allocation

has shown to be a major limitation to the evolution of wireless technologies. Cognitive

radio (CR) allows opportunistic spectrum access by searching and utilizing temporally

and spatially unused spectrum, provided that CR users do not cause interference to

the primary users of the spectrum. Spectrum sensing over a wide bandwidth increases

the probability of finding under-utilized spectrum for cognitive radios. However, the

realization of wideband sensing is challenging because strong primary users introduce

large dynamic range and spectral leakage to adjacent unused bands.

This work presents an algorithm-architecture co-design framework for wideband

spectrum sensing. The suppression of spectral leakage is achieved by multitap-windowed

FFT processing, which also enables reduced sensing time. The sensing time and de-

ii



tection threshold are adapted according to channel-specific spectral leakage, enabling

reliable wideband detection within constrained sensing time. Power and area cost of

the compute-intensive FFT block is minimized by using parallelism, radix factoriza-

tion, and compact delay lines. A per-channel floating point data processing for large

dynamic range signal is employed for power and area saving. A partial PSD estimation

scheme that performs energy detection on only the band-of-interest further improves

the energy efficiency. Two chips have been designed to demonstrate these concepts.

These chips guarantee reliable weak signal detection with short sensing time, and out-

perform the prior work by at least 22x in power/bandwidth. Techniques developed

in this dissertation enable energy-efficient chip implementation of advanced wideband

signal processing for cognitive radios.
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CHAPTER 1

Introduction

1.1 Cognitive Radios

Wireless technology is rapidly proliferating into all aspects of daily life, and the

demand for wireless connectivity is ever increasing. Higher and higher data rates are

required for real-time and high-quality data transmission, with a rapid increase in the

number of wireless devices. Till now, only specific users are allowed to access the wire-

less resources based on the spectrum polices. Figure 1.1 shows the spectrum allocation

of the United States, where most of the radio spectrum is assigned to licensed users.

This fixed spectrum allocation, however, does not guarantee the spectrum is efficiently

utilized at all times. As indicated by numerous reports [1-4], the usage of the spectral

resources is significantly under-utilized. A survey [1] reported in 2002 showed that,

on average, only 2% of allocated spectrum in the United States is in use at any given

moment. Another report [3], based on the measurement for the frequency bands below

3 GHz from January 2004 to August 2005, concluded that the averaged spectrum oc-

cupancy is only about 5.2%. Figure 1.2 [4], conducted by Berkeley Wireless Research

Center (BWRC) over frequency bands from 0 to 6 GHz, illustrates the frequency bands
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Figure 1.1: Spectrum allocation of the United States.

beyond 2 GHz are highly under-utilized.

Dynamic spectrum access with cognitive radios (CRs), introduced by Joseph Mitola

III [5], is a promising solution to improve the efficiency of spectrum utilization. Cogni-

tive radio is defined as a wireless communication system that is aware of its surrounding

electromagnetic environment, has artificial intelligence to surveil the spectrum utiliza-

tion, and finally adapts to the current environment to provide the most appropriate wire-

less services. Cognitive radios sense the electromagnetic environment to reliably detect

the presence of legitimate users, which have higher priorities of spectrum usage, in

order to avoid harmful interference and then utilize the remaining spectrum holes.

CR technology has been standardized in November 2004, the IEEE 802.22 Working
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Figure 1.2: Measurement of 0-6 GHz spectrum utilization at BWRC [4].

Group (WG) [6]. The IEEE 802.22 WG allows the development of physical (PHY)

and medium access control (MAC) layers for the use by license-exempt devices in TV

bands. The 802.22 admits license-exempt devices to reuse vacant TV spectrum without

introducing any harmful interference to primary users. The 802.22 has a leading and

key role for facilitating the CR development and its outcome will serve as the basis for

new and innovative research in this promising area.

1.2 Spectrum Sensing

The enabling technology for CR systems is spectrum sensing, in which the presence

of primary users is detected in the band of interest to avoid harmful interference. The

key requirement for spectrum sensing is reliable signal detection, with high sensitivity

3



within a constrained sensing time. The high sensitivity requirement prevents a CR

system from causing interference to the primary users [7-13]. The sensitivity improves

by increasing the sensing time, but a long sensing time reduces the effective time for

communication on an unused primary channel, thus reducing the CR throughput. On

the other hand, a short sensing time enhances the throughput but increases the chance

of unintended collisions. The constrained sensing time balances the tradeoff between

CR throughput and unintended collisions.

Wideband (> 100 MHz) sensing is a highly desirable feature of CR systems, since

it allows for simultaneously sensing of multiple channels and thus increases the prob-

ability of finding available channel. Several algorithms have been proposed to resolve

wideband spectrum sensing problem. Wideband sensing, however, imposes many de-

sign challenges at the physical layer [14-20]. The wideband front-end must have suffi-

cient linearity to avoid mixing interferers into the band of interest [17-20]. The analog-

to-digital converter (ADC) requires high resolution to support large-dynamic-range sig-

nals and high sampling rate to adequately sample wideband spectrum [20]. In the dig-

ital baseband, the sensing processor needs to provide a reliable signal detection in a

negative SNR regime while operating in real time [14-16]. The DSP baseband, there-

fore, must accommodate advanced signal processing algorithms within limited power

and area. This dissertation focuses on development of a DSP baseband processor for

wideband spectrum sensing.

Generally, the spectrum-sensing algorithms can be categorized into two types: en-

ergy (power) detection and feature detection.
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Energy detection identifies the presence of signals by comparing the measured en-

ergy level to a threshold. The processing gain is proportional to the observation time

T . Longer observation time improves the signal detection accuracy that enhance the

detection performance. Energy detection is widely used for spectrum sensing because

it is easy to implement and is able to detect noise level and interferers, without the

knowledge of electromagnetic environment. However, several drawbacks of energy de-

tection might diminish its implementation simplicity. First, the detection performance,

false-alarm probability and detection probability, are highly susceptible to the chang-

ing noise level and the activity of interferers. The threshold used for energy detection

needs to be decided carefully to keep a balance of false-alarm probability and detec-

tion probability. This problem becomes more serious in large-dynamic-range wideband

spectrum sensing. Second, energy detection is unable to differentiate between modu-

lated signals, noise, and interferers. Adaptive signal processing cannot be applied for

cancelling the interferers. In addition, when the system is required to treat noise and

other secondary users differently, more sophisticated signal processing algorithms need

to be developed.

Feature detection identifies the channel occupancy by using the cyclostationary

property of a modulated signal [21-25]. The cyclostationary property is commonly

characterized by spectral correlation function [21-22]. Since only a modulated signal

has a specific feature at a nonzero cyclic frequency, this feature can be used to differenti-

ate background noise and modulated signals. In addition, different types of modulated

signals (such as BPSK, QAM, FSK), even having the same power spectrum density
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function, have highly distinct spectral correlation functions. Thus, feature detection

is able to distinguish modulated signals, noise, and interferers. Furthermore, signals

with overlapping feature in their power spectrum have non-overlapping feature in their

spectral correlation functions, indicating feature detection is able to differentiate over-

lapping signals as well. The computation complexity of feature detection, however,

is much higher than energy detection [15]. As far as energy efficiency is concerned,

feature detection is not feasible for real-time and low-cost implementation.

There are still other signal detection algorithms for wideband sensing, e.g. com-

pressive spectrum sensing [26-32] or cooperative spectrum sensing [33-35]. Compres-

sive sensing exploits spectrum scarcity and detects signals with sub-Nyquist sampling

rates. Cooperative sensing improves detection performance by exploiting spatial diver-

sity. [26-35] have shown these algorithms outperforming energy detection and feature

detection. However, these algorithms are not applicable for low power implementation.

In this dissertation, we adopt energy detection with associated adaptation algorithms

for reliable signal detection and energy-efficient implementation, making this design

applicable to portable devices.

1.3 Motivation for This Work

The major challenge of wideband spectrum sensing comes from the large-dynamic-

range spectrum. Without notch filters for the detected spectrum, it is inevitable having

both weak signals and strong blockers. The blockers might be strong primary users,
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or illegal or unexpected jammer. In the worst case, a weak signal with negative SNR,

which is adjacent to two strong blockers, has to be detected. As shown in Fig. 1.3,

under this scenario, an interfering power leaks into the band occupied by the weak

signal. The interfering power comes from two sources. First, a modulated signals is

shaped (by digital pulse-shaping and analog bandpass filters) in frequency according to

a pre-defined frequency mask, which in reality is not a perfect brick-wall filter. As a

result, the tail of the modulated signal spectrum might introduce significant interfering

power in the adjacent band, provided that this modulated signal is very strong. Second,

the time-domain received samples at the sensing processor are channelized with a non-

ideal filter (e.g. FFT filterbank), which also causes spectral leakage. Both effects are

represented by the shaded areas in Fig. 1.3. We call the combination of these two

effects interfering power, which makes weak signal detection more difficult.

As energy detection is applied for wideband sensing, signal detection in real time

is challenging because the detection performance is sensitive to the dynamic nature of

electromagnetic environment. The threshold used for energy detection highly depends

on the noise level and the activity of interferers. To accommodate the variation in back-

ground noise, an adaptive algorithm for the detection threshold needs to be designed.

Also, with the presence of strong adjacent-band blockers, the detection threshold needs

to be adapted to the channel condition. In addition to developing adaptive algorithms,

the detection threshold needs to be channel-specific and adapted to real-time measured

data.

Real-time and large-dynamic-range signal processing not only imposes challenges
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on algorithmic development, but also makes low-power architectural design difficult.

Wideband sensing in real time indicates high-throughput signal processing is required.

A low-power and high-throughput VLSI design is not an easy task. Also, large-dynamic-

range datapath dictates large wordlengths, which increases the cost of arithmetic op-

erations and data storage. A low-power and high-throughput architecture for large-

dynamic-range signal processing is the main focus in this dissertation.

1.4 Dissertation Outline

In response to the challenges of reliable weak signal detection in the presence of

strong adjacent-band interferers, an algorithm-architecture co-design framework is de-

veloped . Chapter 2 reviews wideband spectrum sensing algorithms. The development

of wideband spectrum sensing algorithms are presented in Chapter 3. The algorithms

have been verified on a real-time FPGA hardware testbed. Fast Fourier Transform

(FFT) is intensively involved in wideband spectrum sensing process. To enable energy-
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efficient design, a design methodology for power-area minimized FFT processor is de-

scribed in Chapter 4. The implementation of a wideband spectrum sensing processor

and its measurement results are described in Chapter 5. Channelization of the entire

spectrum is not always necessary, especially when the spectrum is scarce. A partial

PSD estimation scheme, which dynamically channelizes only a portion of spectrum is

proposed to enhance energy efficiency. A wideband band segmentation for blind sig-

nal classification is used as a design example. The associated algorithm-architecture

co-design framework is demonstrated in Chapter 6. Chapter 7 concludes this work and

discusses future research directions.
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CHAPTER 2

Wideband Spectrum Sensing in Cognitive Radios

In order to define challenges addressed in this work, this chapter introduces energy

detection algorithm and the associated conventional channelization scheme.

2.1 Frequency-Domain Wideband Spectrum Sensing

We first consider a sideband signal composed of several non-overlapping narrow-

band signals (primary users), where each signal has the same bandwidth and modu-

lation scheme, as shown in Fig. 2.1. Additive while Gaussian noise (AWGN) applies

uniformly across the band. As a result, the noise power in all the individual narrowband

channels is statistically equal.

Frequency-domain power detection (FPD) is adopted as the sensing algorithm for

energy-efficient realization. In FPD, the Fast Fourier Transform is used to channelize

the entire spectrum, where the model for each channel is similar to that in narrowband

signal detection [35], [36-37]. The detection problem for each channel k can be mod-

eled by a binary hypothesis test, where hypothesis H0(k) stands for noise only, and

hypothesis H1(k) means that both noise and signal are present.
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Frequency-domain power detection involves power spectrum density (PSD) estima-

tion of the entire band. The accuracy of the estimation is determined by the variance

estimated PSD, which can be reduced by averaging (accumulating) the estimated chan-

nel power. Thus, for reliable signal detection, the power detection requires an adequate

number of samples to obtain accurate PSD estimation. Then, the estimated PSD is

compared to a detection threshold to decide between H0(k) and H1(k). The decision

rule is represented by

T (k),
M−1

∑
m=0

∣∣X̂m(k)
∣∣2 H1(k)

≷
H0(k)

γ(k) (2.1)

where the test statistic T (k) indicates the channel power in one FFT bin and γ(k) is the

corresponding detection threshold in channel k. Xm(k) is the FFT output from the bin

(channel) index k and block index m. For the baseband sampling rate Fs, FFT size N

and the number of FFT frames M, the corresponding sensing time is

Tsensing = M×N×1/Fs (2.2)
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The probability of false-alarm (PFA) and the probability of detection (PD) are the met-

rics for the sensing algorithm performance. PFA is the probability that a CR system

fails to identify an unoccupied spectral segment; it measures the utilization of unused

spectrum. PD is the probability that a system detects the presence of a primary user,

and measures the rate of avoiding interference. The probabilities of false-alarm and

detection in channel k (PFA(k) and PD(k)) are determined by the test statistic T (k) and

the channel-specific detection threshold γ(k). According to the central limit theorem,

T (k) is asymptotically normally distributed if M is large enough (M ≥ 20 is sufficient

in practice). Using the mean and variance of T (k), PFA and PD can be defined as

PFA(k) = Q
(

γ(k)−µ(T (k)|H0(k))
σ(T (k)|H0(k))

)
, (2.3)

and

PD(k) = Q
(

γ(k)−µ(T (k)|H1(k))
σ(T (k)|H1(k))

)
, (2.4)

respectively, where Q(·) is the tail probability of a zero-mean unit-variance Gaussian

random variable.

The number of FFT frames (sensing time) M and detection threshold γ(k) strongly

affect PD and PFA. The sensing time dictates PD and PFA through the test statistic T (k).

A longer sensing time implies utilizing more samples for PSD estimation, which results

in a smaller estimation error of T (k) and thus higher PD and lower PFA. The detection

threshold γ(k) is strongly related to the sensing rates. The threshold determines the

power-detector operating point, where γ(k) is set usually according to a desired PFA.

Underestimating the threshold leads to a higher PD but also higher PFA; overestimation
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leads to a lower PFA and lower PD. If the sensing time is to be minimized for a given

detection rate, an accurate formulation for the detection threshold is required.

According to [35] and [36-37], the sensing time and detection threshold are deter-

mined by the target SNR, PD, PFA, and the measured noise power, σ2
v f . The formulations

of the sensing time M and detection threshold γ(k) are given by

M =

(
Q−1 (PFA)−Q−1 (PD)

SNR
−Q−1 (PFA)

)2

, (2.5)

and

γ(k) =
(

Q−1 (PFA) ·
√

M+M
)
·σ2

v f (c). (2.6)

2.2 Overview of Conventional Channelization Schemes

Channelization of a wideband spectrum into several channels can be realized in sev-

eral ways. Directly feeding time-domain samples into an FFT to decouple the channels

in the frequency domain is the most straightforward method. This process can be also

viewed as applying a rectangular window before the FFT, which only provides a 13.6

dB suppression of adjacent-band interferer [38]. For a 30 dB SNR sinusoidal signal

that is 1.5 bin (300 kHz if the frequency resolution is 200 kHz) away from the band of

interest, the detected-band interfering power is still 16.4 dB. It leads to a severe inter-

ference if the signal strength of the detected band is only −5 dB SNR. As a result, the

filtering capability has to be improved to reduce the adjacent-band interfering power.

To enhance the filtering, a time-domain window (other than a rectangular window)

can be applied to the time-domain samples before feeding them into the FFT. This leads

13



to a degradation in the frequency resolution and SNR loss [38]. Alternatively, using a

larger time-domain window with a larger FFT size could compensate for such degrada-

tion. Both the sensing time and the computational complexity would be increased due

to the larger FFT size. Channelizing the overlapped time-domain samples could reduce

the sensing time, but this requires multiple FFT processors operating in parallel and

still needs a larger FFT size. Such an idea is not practical, considering the increased

computational complexity and hardware cost.

Differences in the above methods can be explained by analyzing the test statistic

expression (2.1). The same formula applies to all the methods, but the FFT output,

X̂m(k), has different expression for the different power detection methods, as given by

X̂m(k) =
N−1

∑
n=0

w[n]x[n+m(1−d)N]e− j 2πnk
N , (2.7)

where x[n] is the time-domain sample with time index n, w[n] is the normalized window

coefficient, and d is the overlapping ratio between two time-domain N-sample blocks.

2.3 Overview of Previous Work

Wideband spectrum sensing based on power spectrum density (PSD) is generally

used. In [39-44], wavelet transforms were used to estimate the PSD over a wide fre-

quency range. The multi-resolution feature of wavelets is beneficial, but a wavelet

function needs to be specifically designed for the signals to be detected, which is not

feasible in real-time sensing and blind signal detection. [45-48] used filter bank with

eigenvalue decomposition for PSD estimatin. The computation of eigenvalue decom-
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position, however, renders hardware realization impractical. PSD estimation through

FFT with poly-phase filter bank [49-50] was applied for the simplicity in hardware im-

plementation. However, [49-50] underestimated the detection threshold and sensing

time, thus reducing the CR system throughput.

Applying a proper detection threshold is critically important for reliable detection

when strong adjacent-band users are present. Methods to model detection threshold

were given in [51-52]. Those models are inadequate as they underestimate the threshold

in the presence of strong adjacent-band primary users. In fact, no existing literature

considers the effects of adjacent-band interfering power.

Silicon realization of spectrum sensing is limited. [53-57] have demonstrated spec-

trum sensing for single narrow-bandwidth signal. [53-55] use analog correlators for the

IEEE 802.22 standard with 1 MHz and 10 MHz sensing bandwidths with frequency

resolution of 100 kHz. [56] proposes a multi-resolution spectrum-sensing processor

with a reconfigurable filter for resolution from 12.5 kHz to 400 kHz. In [53-56], only

power spectrum density (PSD) estimation is performed, while the sensing time and

detection threshold are determined offline. [57] proposes a reconfigurable engine for

multi-purpose sensing up to 6 GHz, but the instantaneous sensing bandwidth is only 20

MHz.
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2.4 Summary

This chapter illustrates conventional wideband spectrum sensing algorithms for

cognitive radios. However, with the presence of strong blockers, these algorithms are

not energy efficient and unable to guarantee reliable weak signal detection within a lim-

ited processing time. In the next chapter, several energy-efficient wideband spectrum

sensing algorithms will be presented, while these algorithms guarantee reliable weak

signal detection with the presence of strong interferers.
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CHAPTER 3

Wideband Speccturm-Sensing Algorithms and

Real-Time Testbed

This chapter develops algorithms for weak signal detection in the presence of strong

adjacent-band primary users. We propose a multitap-windowed frequency-domain

power detector, which reduces the spectral leakage, maintains frequency resolution,

and mitigates SNR loss simultaneously. Formulations of the sensing time and the de-

tection threshold are presented to achieve reliable sensing rates with minimum sensing

time. The proposed algorithms are experimentally validated on an FPGA-based radio

testbed. Finally, we project the power and area requirements for a future ASIC imple-

mentation.

3.1 Wideband Spectrum-Sensing Design Problem

In order to define challenges addressed in this work, this section introduces the

system model and the design specifications. The system model and these specification

will be used in Chapter 3 and Chapter 5 as a design example.
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3.1.1 System Model

We consider a wideband signal composed of several non-overlapping narrowband

primary users, where each primary user has the same bandwidth and modulation scheme.

Additive white Gaussian noise (AWGN) applies uniformly across the band. As a result,

the noise power in all the individual narrowband channels is statistically equal.

3.1.2 Design Specification

The physical-layer design specifications are introduced here. The set of specifica-

tions consists of radio bandwidth, frequency resolution, detection sensitivity, sensing

time, PD and PFA. The radio bandwidth dictates the minimum sampling frequency of

the ADC and also limits the maximum number of channels that can be sensed at a time.

The frequency resolution sets the minimum signal bandwidth of the detected primary

user and the required FFT size. The detection sensitivity determines the minimum SNR

for reliable detection specified by PD and PFA. The sensing time can be used to improve

the reliability of signal detection but at the same time affects the cognitive radio system

throughput. The detection sensitivity, sensing time, PD and PFA jointly depend on the

specific signal detection algorithm.

Next, we define the hardware design constraints for our DSP baseband spectrum-

sensing processor. State-of-the-art ADCs can operate at 500 MHz with 10-bit resolu-

tion [58]. Thus, we target a 200-MHz radio bandwidth for a feasible low-power and

high-resolution wideband ADC. A 200-MHz specification relaxes the linearity require-
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ment of the analog front end while still providing a considerable channel bandwidth.

We target a 200-kHz frequency resolution, which means a 1024-point FFT is required

to channelize the spectrum. This resolution would be sufficient to sense wireless mi-

crophones in the TV band or GSM signals.

Since power detection requires minimum a priori knowledge of the primary user

signal, the sensitivity of power detection is drastically limited by noise uncertainty [59-

64]. Thus, signals cannot be detected at arbitrarily low SNRs by increasing the sensing

time. According to [59], the signal SNR should be at least−6 dB for a 0.5 dB noise un-

certainty. We apply a 1 dB margin to accommodate for noise uncertainty, which brings

the minimum SNR to −5 dB. The sensing time below 50 ms is our design choice for

a good tradeoff between throughput loss due to sensing and reliability in primary user

detection [65]. The target PD and PFA are 0.9 and 0.1, respectively, based on the IEEE

802.22 draft standard specification for the detection of DTV signals and wireless mi-

crophones. The maximum tolerable interferer-to-noise ratio (INR) is defined by the

transmitter frequency mask. As shown in Fig. 1, the interfering power is composed of

leakage power and interferer in-band power. In this work, we only consider the spectral

leakage by constraining INR to the values where interferer in-band power can be ne-

glected. As a result (shown in Fig. 3.1), the adjacent-band signal power is constrained

by:

INRmax = Attenuation(BWPU)+SNRmin−Margin (3.1)

Take the wireless micronphone [66] as an example: the attenuation of the brick-wall
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Figure 3.1: Maximum tolerable INR. For a 200 kHz wireless microphone primary user,

the maximum INR is constrained by 30 dB.

portion is 40 dB, the minimum SNR is −5 dB, and we keep 5 dB for the margin. As

a result, in our system the maximum INR for the wireless microphone primary user is

constrained by 30 dB. The design specification is summarized in Table 3.1

3.1.3 Design Challenges

The development of proposed wideband sensing algorithms can be motivated by

observing Fig. 3.2, which shows the receiver operating characteristic curves for the

conventional rectangular-windowed FFT method. A −5-dB SNR signal is detected be-

tween two adjacent-band primary users with a 30-dB INR. The solid line is the sensing-
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Figure 3.2: Receiver operating characteristic of the conventional rectangular-windowed

FFT power detector for sensing times of 0.5 ms (solid line) and 50 ms (dashed line).

The strong adjacent-band interferers and the weak band-of-interest signal are 30-dB

INR and −5-dB SNR, respectively.
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Table 3.1: Wideband CR System Specification

Radio bandwidth 200 MHz

Frequency resolution 200 kHz

Sensitivity SNR≥−5 dB

Sensing time Tsensing ≤ 50 ms

False-alarm probability PFA ≤ 0.1

Detection probability PD ≥ 0.9

Interferer-to-noise ratio INR≤ 30 dB

rate performance for a 0.5-ms sensing time. The dashed line shows the maximum at-

tainable performance using this method, for a sensing time set to the maximum value

of 50 ms. The results are still outside the desired operating region bounded by PD ≥ 0.9

and PFA ≤ 0.1. This is because the filtering capability of the rectangular window is

not adequate for the case of adjacent-band primary users with INR ≥ 20 dB. Clearly,

the conventional FFT power detector cannot achieve reliable signal detection within

constrained sensing time in the presence of strong interferers.

Adjusting the sensing time alone is sufficient to improve the detection rates. Allo-

cating equal sensing time to all channels is also sub-optimal, even if the sensing time

could be increased to accommodate the worst-case channel. Since different channels

may experience different levels of the interfering power from the adjacent-band primary

users, equal sensing time would be an overestimate for many channels. An overesti-

mated sensing time not only degrades the access time to available channels, it also
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increases the computational complexity and radio energy consumed in sensing. There-

fore, every channel should adapt its own sensing time to the channel condition in order

to maximize the throughput and minimize energy.

Conventional methods for the estimation of detection threshold are inadequate in

the presence of strong interferers. The detection threshold based on (2.6) fails to reach

PD ≥ 0.9, as shown in Fig. 3.2 by the gray circle marks. An underestimate of the

threshold results in an increased PFA, as shown by the white circle marks. Thus, the

formulation of detection threshold in Eq.(2.6) must be modified to achieve PFA ≤ 0.1

and PD ≥ 0.9.

3.2 Proposed Wideband Spectrum-Sensing Algorithms

This section proposes algorithms that mitigate the design challenges associated with

wideband spectrum sensing in the presence of strong adjacent-band interferers. The-

oretical results are presented and verified by simulations to show that the proposed

algorithms meet the system specifications defined in Table 3.1.

When strong primary users are present in adjacent bands, the resulting interfering

power in the band of interest has to be reduced in order to reduce the required sensing

time. The interfering power also has to be estimated to enable the adjustment in the

sensing time and the detection threshold according to channel conditions. These two

techniques combined ensure reliable detection within the PD and PFA constraints with

minimum sensing time.
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Figure 3.3: Block diagram of the proposed wideband spectrum sensing processor. The

processor consists of a multitap-windowed frequency-domain power detector for PSD

estimation, sensing-time adaptation for optimal sensing time, and detection-threshold

adaptation for desired sensing rate.

Fig. 3.3 shows the block diagram of the proposed spectrum-sensing processor. It

consists of a multitap-windowed frequency power detector, a sensing-time and detection-

threshold adaptation blocks. The objectives of the algorithm design are to provide

reliable detection rates with minimum sensing time and low hardware cost. The algo-

rithmic steps are outlined next.

Fig. 3.4 is a high-level view of the proposed algorithm. The procedure starts by

turning off the RF antenna to perform noise power calibration. Next, coarse sensing is

performed using 64 averages (corresponding to 0.3 ms for a sampling frequency of 200

MHz). The coarse sensing is needed because not all channels need the same number

of averages. The next two stages perform the estimation of in-band interfering power,
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Figure 3.4: Wideband spectrum sensing procedure.

based on which sensing time is adapted for each channel. The in-band interfering power

is projected by the corresponding estimated adjacent-band interferer powers [67]. The

fifth step is to perform the PSD estimation. In this step, different sensing times from

the previous step are applied to different channels to enhance the system throughput

and reduce the power consumption. In the final stage, detection-threshold adaptation

is performed. The detection threshold for each channel is adapted to the estimated

interfering power and the corresponding number of averages. The decision about the

presence of primary users is made right after the threshold is determined. The key

algorithmic blocks are described below.

3.2.1 PSD Estimation Using Multitap-Windowed FFT Processing

In our proposed multitap-windowed frequency-domain power detector (MW-FPD),

we apply a multitap window to overcome the spectral leakage problem of the FFT. The
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traditional approach is to use either a windowed frequency-domain power detector (W-

FPD) or a windowed-overlapped frequency-domain power detector (WO-FPD). Both

methods require 2048-point FFT to channelize the time-domain samples. The W-FPD

necessitates a long sensing time, which can be mitigated in the WO-FPD by using

overlapped time-domain samples and two 2048-point FFT blocks. The idea in MW-

FPD is to overlap and add the samples in time domain and channelize the resulting

samples using a single 1024-point FFT. The overlap-and-add approach allows the use

of a time-domain window with size that is larger than the FFT size, as shown in Fig.

3.5. The longer time-domain window simultaneously reduces the interfering power and

compensates the degradation in frequency resolution.

The detection rule of MW-FPD can be still formulated by (2.1), but X̂m(k) is given

by

X̂m(k) =
N−1

∑
n=0

(
P−1

∑
p=0

w[n+ pN]x[n+ pN +mN]

)
e− j 2πnk

N , (3.2)

where p is the tap index and P is the number of taps of the multitap window. (3.2)

represents using P× longer time domain window and then overlapping-and-adding the

windowed samples to keep the FFT size. A Gaussian assumption can be also applied

to the test statistic. Therefore, (2.3) and (2.4) can be applied to model the sensing-rate

performance in the MW-FPD method.
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Figure 3.5: Detection procedure for the windowed frequency-domain power detector

(W-FPD), the windowed-overlapped frequency-domain power detector (WO-FPD), and

the proposed multitap-windowed frequency domain power detector (MW-FDP).
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3.2.2 Power Detector Matrix Model

In this subsection, we generalize (2.1) to include conventional FFT frequency-

domain power detector (C-FPD), windowed frequency-domain power detector (W-

FPD), and multitap-windowed frequency-domain power detector (MW-FPD). A matrix

formulation for the test statistic T (k) facilitates a unified treatment of the performance

of all three estimators.

In the following expressions, F is an N×N FFT matrix. Sk is a N×N selection

matrix, which is used to select the k-th bin of the FFT. Sc is given by,

Sk = diag(ek). (3.3)

ek is an N×1 vector, where the k-th entry is one and others are zeros. When a W-FPD

is applied to reduce the spectral leakage between FFT bins, the matrix form for the

time-domain window is

W = diag([w0, ..,wN−1]) , (3.4)

where w’s are the normalized window coefficients that satisfy 1/N ∑
N−1
n=0 |w[n]|

2 = 1. In

Sec. 3.2.1, the MW-FPD uses a longer time-domain window (sample size > N) to im-

prove leakage reduction and utilizes an overlap-and-add approach to form an N-point

samples that allows using an N-point FFT for channelization. Such windowing and

overlapping-and-adding processes are given by concatenating several N×N windowing

matrices to form a N×NP block matrix. The formulation of this block matrix is as fol-

lows. First, we decompose the NP coefficients in (3.2) into P N×1 coefficient vectors,
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where the p-th coefficient vector is wp = [wpN , ...,wpN+N−1]
T . The NP coefficients are

power normalized, such that 1/N ∑
NP−1
n=0 |w[n]|

2 = 1. Then, the P coefficient vectors

form P N×N windowing matrices, with the p-th windowing matrix Mp = diag(wp).

Finally, we combine the windowing matrices for the multitap-windowed process,

WMW = [W0, ...,WP−1]. (3.5)

Combining (3.3), (3.4), and (3.5), we represent the test statistic T (k) for C-FPD,

W-FPD, and MW-FPD respectively by

TC(k) =
1
M

M−1

∑
m=0

(SkFxm)
H SkFxm =

1
M

M−1

∑
m=0

xm
H

Λk,Cxm,

TW (k) =
1
M

M−1

∑
m=0

(SkFWxm)
H SkFWxm =

1
M

M−1

∑
m=0

xm
H

Λk,W xm,

TMW (k) =
1
M

M−1

∑
m=0

(SkFWMW xm,MW )H SkFWMW xm,MW

=
1
M

M−1

∑
m=0

xm,MW
H

Λk,MW xm,MW ,

(3.6)

where the N × 1 time-domain sample vector xm = [x[mN], ...,x[mN +N−1]]T . The

sample vector xm,MW in (3.6) concatenates P N × 1 time-domain sample vector xm,

in the form of xm,MW = [xT
m, ...,xT

m+P−1]
T . Λk,C, Λk,W , and Λk,MW combine the FFT,

bin selection, and windowing operations. Each matrix weights the squared 2-norm of

the time-domain samples to produce the test statistics. These matrix formulations are

used to compute the detection threshold and required sensing time. More details are

represented in the next subsection.

29



3.2.3 Interfering Power Estimation

This subsection quantifies the performance degradation caused by strong adjacent-

band interferers. Assume the interferer i is allocated in bin l and MW-FPD is utilized

for channelization, the expected interring power in bin k is

σ
2
i f (k) = E

∣∣∣∣∣N−1

∑
n=0

(
P−1

∑
p=0

w[n+ pN]i[n+ pN +mN]

)
e− j 2πnk

N

∣∣∣∣∣
2
 . (3.7)

Since the interfering power σ2
i f (k) is relatively small and co-exists with signal power

σ2
s f (k) and noise power σ2

v f (k), σ2
i f cannot be measured independently of σ2

s f (k) and

σ2
v f (k). Since the ratio of main-lobe power and side-lobe power is constant regardless

of the center frequency [67], the interfering power σ2
i f (k) can be estimated from its

main-lobe power σ2
i f (l). Assume the interferer power σ2

i f (l) dictates the power in bin

l, the estimated interferer power in bin l is approximated by

σ̂
2
i f (l) =

1
M

M−1

∑
m=0

xm,MW
H

Λl,MW xm,MW , (3.8)

and the estimated interfering power in bin k is given by

σ̂
2
i f (k) = σ̂

2
i f (l) ·β, (3.9)

where β = gH
i Λk,MW gi. The column vector gi represents the time-domain impulse re-

sponse of the strong interferer, which is related to the modulation scheme of the in-

terferers (primary users). In addition, this column vector is normalized to the band of

detection, i.e. gH
i Λl,MW gi = 1.
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3.2.4 Detection-Threshold and Sensing-Time Adaptations

The theoretical detection threshold can be derived from (2.3). In order to dynam-

ically update the detection threshold, the threshold should be a function of measured

powers, namely the noise power and interfering power (if adjacent-band interferers are

present). We proposed a framework to derive the mean and variance of T (k) under

H0(k) and H1(k) [67]. For illustration, we only discuss the case of MW-FPD. Others

can be derived using analogy.

We use a matrix formulation for (3.2), which is discussed in Sec. 3.2.2, to derive the

mean, variance and covariance of
∣∣X̂m(k)

∣∣2 as in [68]. The outer summation process of

(2.1) is modeled by a P-dependent sequence [69]. The correlation between FFT frames∣∣X̂m(k)
∣∣2 is non-zero due to overlapping samples in the time domain. Combining the

matrix formulation, the P-dependent sequence model, and the Gaussian assumption for

(2.1), the mean and variance of the test statistic in H1 and H0 are

E[T (k)|H0(k)] = σ
2
v f (k)+σ

2
i f (k), (3.10)

Var[T (k)|H0(k)] =
1
M
·α ·

(
σ

2
v f (k)+σ

2
i f (k)

)2
, (3.11)

and

E[T (k)|H1(k)] = σ
2
s f (k)+σ

2
v f (k)+σ

2
i f (k), (3.12)

Var[T (k)|H1(k)] =
1
M
·α ·

(
σ

2
s f (k)+σ

2
v f (k)+σ

2
i f (k)

)2
, (3.13)

where α =
tr(Λk,MW+Γ)
tr(Λk,MW)

2 is the fitting factor determined by the modulation scheme of

the primary user and the time-domain multitap window. Γ is the covariance term that

models the increased variance due to the correlation between FFT frames [67].

31



Using (3.10), (3.11), (3.12), (3.13), and the Gaussian assumption, the false-alarm

and detection probabilities are

PFA(k) = Q

 γ(k)−
(

σ2
v f (k)+σ2

i f (k)
)

√
1/M ·α ·

(
σ2

v f (k)+σ2
i f (k)

)2

 , (3.14)

PD(k) = Q

 γ(k)−
(

σ2
s f (k)+σ2

v f (k)+σ2
i f (k)

)
√

1/M ·α ·
(

σ2
s f (k)+σ2

v f (k)+σ2
i f (k)

)2

 . (3.15)

From (3.14), the detection threshold is

γ(k) =
(

Q−1 (PFA)
√

α ·M(k)+M(k)
)
·Σ0(k). (3.16)

Σ0(k) = σ2
v f (k)+σ2

i f (k), the interfering power is estimated using the power measure-

ments in the adjacent bands, as discussed in Sec. 3.2.3.

Using the methodology described above, the sensing time for each channel is ob-

tained as

M(k) = α

(
(1+ψ(c))

Q−1(PFA)−Q−1(PD)

SNR
−Q−1(PD)

)2

= α

(
Q−1(PFA)−Q−1(PD)

SINR
−Q−1(PD)

)2

,

(3.17)

where ψ(k) = σ2
i f (k)/σ2

v f (k). According to (3.17), the sensing time is approximately

proportional to inverse square of SINR. In addition, correlation between FFT frames

introduces α× increase in sensing time.

Therefore, by adapting the detection threshold and sensing time to the adjacent-

band interfering power, the proposed wideband spectrum-sensing processor is able to

achieve the constrained sensing rates with minimum sensing time.
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Figure 3.6: Receiver operating characteristic curves for different power detectors. The

multitap-windowed frequency-domain power detector achieves the best detection rate.

3.3 Numerical Simulations

We verified the performance of the proposed algorithms by comparing the derived

PD and PFA, and Monte Carlo simulations. The simulations are obtained assuming a

signal strength in the band of interest to be−5 dB SNR. We also assume the worst-case

wideband scenario, where two primary users are present in bands adjacent to the band

of interest.
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(b). The proposed multitap-windowed power detector requires the least sensing time to
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3.3.1 Improvement in ROC

Fig. 3.6 demonstrates the improvement in detection rate by means of MW-FPD

as compared to conventional methods. To make a fair comparison, we assume a fixed

hardware cost for the FFT processor, which is 1024 points for all methods. This is a

good approximation of the overall hardware cost since the FFT block dominates the

area. The WO-FPD requires two FFT cores, so we compare the conventional FFT,

the W-FPD, and the proposed MW-FPD. A prolate-spheroidal window is applied as

the time-domain window for both the W-FPD and the MW-FPD, but the W-FPD has a

length of 1024 and the MW-FPD has a length of 2048. In this example, two primary

users with 20 dB INR are placed two bins (400 kHz) away from the band of interest.

The number of averages M in all three methods is 100, corresponding to 0.5 ms for

a 200-MHz sampling frequency. The receiver operating characteristics in Fig. 3.6

indicate that only the proposed MW-FPD meets the sensing rate constraints within 0.5

ms. For a fixed PFA = 0.1, MW-FPD achieves a 2x increase in PD compared to the

conventional FFT power detector due to better filtering, and a factor of 1.3 increase in

PD over the W-FPD due to the compensation of SNR loss.

3.3.2 Improvement in Sensing Time

The sensing-time improvement from the proposed MW-FPD detector is illustrated

in Fig. 3.7. The impact of the frequency distance between the interfering primary users

and band-of-interest signal is shown in Fig. 3.7 (a). The distance is 1 bin (200 kHz) to
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8 bins (1.6 MHz), and the INR of the primary users is 30 dB. At 1-bin distance, only

our proposed power detector meets the sensing time constraint (< 50 ms). Observe that

the sensing time of the MW-FPD remains constant when the distance is larger than two

bins (400 kHz). Therefore, when applying the multitap window, the spectral leakage

is confined to the nearest bins for SNR ≥ −5 dB and INR ≤ 30 dB. Additionally,

when the primary users are placed 8 bins away from the band of interest, the W-FPD

requires more sensing time than the conventional FFT power detector due to the SNR

loss inherent to the windowing process.

The impact of the interfering power on sensing time is shown in Fig. 3.7 (b), as-

suming that two primary users are placed one bin (200 kHz) away from the band of

interest. All three power detectors adapt the sensing time to the corresponding in-band

interfering power according to (3.17) to achieve fixed sensing rates (PFA = 0.1 and PD =

0.9). The proposed MW-FPD achieves more than a 10x reduction in sensing time com-

pared to the conventional FFT power detector at an INR of 30 dB. The W-FPD requires

the longest sensing time due to the frequency resolution that is larger than one bin.

This highlights the necessity of using a multitap window to maintain a fine frequency

resolution.

3.3.3 Improvement in False-Alarm Rate

Validation of the detection-threshold adaptation algorithm is illustrated in Fig. 3.8.

The two primary users (INR ≤ 30 dB) are placed one bin (200 kHz) away from the

band of interest. Simulation results indicate that without threshold adaptation, PFA
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starts to rapidly increase once the INR exceeds 5 dB. The proposed threshold adaptation

effectively satisfies the target false-alarm rate constraint (PFA ≤ 0.1) for INR ≤ 30 dB

(20 dB shown on the plot). For INR ≥ 10 dB, the proposed adaptation algorithm

achieves a decrease of PFA by at least a factor of 2. Therefore, the algorithms proposed

in this section demonstrate reliable signal detection in the presence of strong adjacent-

band primary users.

3.4 Proposed VLSI Architecture and Experimental Results

In order to further validate the proposed algorithms, this section proposes a VLSI

architecture and discusses its hardware complexity. The architecture is implemented on

a real-time FPGA-based cognitive radio testbed to experimentally validate simulation

results. Radio measurements in the ISM band show excellent matching of experimental

and simulation results.

3.4.1 Proposed VLSI Architecture

A VLSI architecture suitable for the proposed wideband spectrum-sensing proces-

sor is presented in this subsection. Fig. 3.9 (a) shows the architecture of the MW-FPD

block. A pipelined FFT architecture provides the highest throughput with acceptable

hardware cost. The window coefficients are programmed in a block random access

memory (BRAM). This BRAM provides us with the flexibility to reconfigure the time-

domain window. The block for PSD estimation and programmable averaging is con-
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trolled by the number of averages M(k). This block is disabled when the processing

time exceeds the required sensing time for the corresponding channel.

Architectures of the sensing-time adaptation (STA) and detection-threshold adapta-

tion (DTA) blocks are shown in Figs. 3.9 (b) and (c), respectively. The pre-calculated

parameters Q−1(PFA), Q−1(PD), SNR, and α are programmed in a look-up table. This

look-up table can be reprogrammed with other values of design parameters and sensing

specifications. The DTA and STA blocks allow for dynamic tracking of channel condi-

tions to maintain the PD and PFA specifications within the minimum sensing time. How-

ever, this adaptation adds processing-time latency, which degrades the overall sensing

efficiency. To mitigate the processing-time latency overhead, a radix-2 long divider

with 10 pipeline stages and a CORDIC-based square root with 8 pipeline stages are

adopted in STA and DTA, respectively. A 10-µs processing time overhead is achieved

(for a 200-MHz sampling frequency) for both STA and DTA, which corresponds to 2%

of the total sensing time if no adjacent-band interferer is present and 0.01% of the total

sensing time if adjacent-band primary users with 30 dB INR are present.

3.4.2 Fixed-Length vs. Reconfigurable FFT

In practice, CR primary users can have different (distinct) signal bandwidths. Al-

though we have assumed that all primary users have the same signal bandwidth in our

system model, our proposed architecture can accommodate multiple frequency reso-

lutions required by different communication standards. The 1024-point FFT processor

channelizes the spectrum into several sub-bands with a resolution equal to the minimum
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signal bandwidth (200 kHz), and the channel-occupancy decision is made FFT-bin by

FFT-bin. For a channel that occupies multiple FFT bins, the decision results of the

corresponding bins are combined to identify the occupancy of the channel.

Another approach is to utilize a reconfigurable FFT processor that supports different

FFT sizes to provide multiple frequency resolutions. In high-resolution mode, the FFT

processor is reconfigured into a large FFT size to reduce the leakage power. In low-

resolution mode, the FFT processor is reconfigured into a small FFT size to reduce the

active area and power consumption.

A tradeoff between sensing performance (sensing rates and sensing time) and power

consumption exists between these two approaches. For example, assume a 6 MHz DTV

signal. In a 200 MHz bandwidth sensing, the required size of the FFT processor for the

6 MHz signal is 32 points. Using the reconfigurable architecture results in a 2x lower

power consumption than using a 1024-point fixed-length FFT. This is due to the smaller

FFT size and assuming the computational complexity is proportional to log2(N). How-

ever, as shown in Fig. 3.10, the 1024-point fixed-length FFT provides higher spectral

resolution and less interfering power. This higher resolution leads to better sensing

rates and less sensing time, provided strong adjacent-band interferers are present. The

reconfigurable FFT processor can therefore be used to explore the tradeoff between the

sensing performance and power consumption. The fixed-length FFT always provides

a higher frequency resolution and is less vulnerable to the environment with strong

adjacent-band interferers. In this work, we target a wideband scenario with strong

adjacent-band interferers, so we use the fixed-length FFT that meets our specifications.
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3.4.3 Hardware Complexity

Comparisons of the relative hardware cost (area), sensing time and, computational

complexity for several windowed power detector implementations are shown in Fig.

3.11 and Table 3.2. The conventional FFT power detector is not considered since it

cannot satisfy the sensing-time requirement when strong adjacent-band primary users

are present. Also note that the W-FPD and WO-FPD require a 2048-point FFT to

meet the system specifications. Assuming that the same window is applied to the time-

domain samples, the three power detectors would achieve the same sensing rate with the

same M. The W-FPD requires the longest sensing time since a larger FFT processor is

required to achieve the target frequency resolution. The WO-FPD reduces the sensing

time by using two FFT processors, but has the highest hardware cost due to multiple

FFT processors. The proposed MW-FPD achieves a 50% reduction in sensing time

compared to the W-FPD and a 50% reduction in hardware cost compared to the WO-

FPD. The computational complexity is calculated as M×N × (Cadd +Cmult), where

Cadd and Cmult are the complexity of an adder and a multiplier, respectively. A 50%

reduction in the computational complexity is achieved by using the MW-FPD compared

to the W-FPD and WO-FPD. Therefore, the MW-FPD has the lowest sensing time,

lowest computational complexity, and lowest hardware cost.

The hardware cost in terms of FPGA and ASIC resources was also estimated using

chip synthesis. The FPGA hardware resource breakdown is summarized in Table 3.3.

The proposed architecture requires 205 Kb of BRAM, 17.6 K slices and 39 embedded
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Table 3.2: Hardware Complexity Estimates of W-PFD, WO-FPD, and MW-FPD

W-FPD WO-FPD MW-FPD

Window

Memory - - N

Cadd - - 1

Cmult 1 1 2

FFT

Memory 2N−1 2 · (2N−1) N−1

Cadd 2log2(2N) 4log2(2N) 2log2(N)

Cmult log2(2N)−1 2 · (log2(2N)−1) log2(N)−1

multipliers. This is equivalent to a chip area of 0.98 mm2 in a standard 65-nm CMOS

process, as estimated from chip synthesis. The memory and logic blocks would occupy

0.82 mm2 and 0.16 mm2, respectively. The estimated power consumption is 25.1 mW

at 200 MHz from a 1-V supply. Table 5.2 compares the state-of-the-art processors

[53-55] to our design. Our design can achieve a 200x wider detection bandwidth than

[53-54] with a 2x higher power, and a 20x wider detection bandwidth than [55] with a

3x higher power. When optimized for low power using the methodology in [70], our

design is estimated to operate below 8 mW. A low-power ASIC that integrates MW-

FPD and sensing adaptation algorithms will be presented in Chapter 5.

3.4.4 Implementation on CR Testbed

The proposed algorithms were verified on a cognitive radio testbed, which consists

of a Berkeley Emulation Engine 2 (BEE2) [71-73] and a custom RF front end [74]. The
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Figure 3.11: Comparison of relative hardware cost, sensing time, and computation

complexity for W-FPD, WO-FPD, and MW-FDP.

BEE2 consists of five high-performance Xilinx Virtex-II FPGAs, and each FPGA has

access to four XAUI multi-Gigabit interfaces that allow connectivity to external boards.

We use those interfaces to connect the BEE2 to the RF front end, which allows us to

verify our proposed algorithm in a true real-time radio. The radio front end operates in

the unlicensed 2.4-GHz ISM band and can be tuned over 80 MHz. It also contains two

12-bit ADCs running at 64 MS/s for both the I and Q components giving a 64 MHz of

bandwidth in the digital domain. Since the radio bandwidth in our testbed is limited

by the ADC, we scale the target bandwidth from 200 MHz to 64 MHz. The resulting

frequency resolution and sensing time constraint are therefore 62.5 kHz and 150 ms,

respectively.
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Table 3.3: FPGA Hardware Resource Breakdown for MW-FPD

BRAM Slices Embedded Mults

Window 30 Kb 1.2 K 4

FFT Processor 80 Kb 13.5 K 27

Power Meas. 80 Kb 0.9 K 2

DTA + STA 15 Kb 2.0 K 6

Overall 205 Kb 17.6 K 39

Table 3.4: Comparison with State-of-the-Art Power-Detector ASICs

[53-54] [55] This Work

Power *11.7 mW *8.4 mW 25.1 mW

Area 0.36 mm2 0.36 mm2 0.98 mm2

Sensing Bandwidth 1 MHz 10 MHz 200 MHz

*Normalized to a 65-nm CMOS technology.

3.4.5 Experimental Results

FM-modulated signals in the ISM band were used to experimentally validate our

simulation results on a radio testbed. A 50-kHz signal at a carrier frequency of 2.483

GHz was generated in the band of interest. The signal strength is−115 dBm, which cor-

responds to −5 dB SNR. Another signal generator provided the adjacent-band primary

user signals, with the same bandwidth of 50 kHz and signal strength from −110 dBm

to −80 dBm (corresponding to INR from 0 to 30 dB). The frequency spacing between
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the two FM signals was 60 kHz, which corresponds to 1 FFT bin in the FPGA imple-

mentation. We measured the change in PFA and detection threshold γ(k), as well as the

change in PD and the number of averages M(k), as we increased the signal strength of

the adjacent-band primary users. The experiments were repeated 1000 times in order

to get statistically relevant results for PFA and PD.

The proposed sensing-time adaptation algorithm is validated in Fig. 3.12. The

lines with gray square markers represent the detection probability without sensing-time

adaptation while the lines with gray circle markers correspond to the case with sensing-

time adaptation. The lines with hollow circle markers show the adapted number of

averages, which are related to sensing time as given by (2.2). Without sensing-time

adaptation, PD starts decreasing rapidly as the INR exceeds 15 dB. At 20 dB INR, PD

decreases by 25% when no adaptation is used. A 3x increase in the sensing time is

required to raise PD to the desired value of 0.9. The experimental results (solid lines)

closely match the simulation results (dashed lines) discussed in Section 3.3.

Fig. 3.13 demonstrates the validity of the proposed detection-threshold adaptation

scheme. The lines with gray square markers represents the false-alarm probability with-

out threshold adaptation while the lines with gray circle markers illustrate the case with

detection-threshold adaptation. The lines with hollow circle markers show the adapted

detection threshold, which is normalized to the threshold when no adjacent-band pri-

mary user is present. Without threshold adaptation, PFA shows a rapid increase as INR

exceeds 5 dB. At an INR of 10 dB, PFA increases by more than a factor of 2 when no

adaptation is used. A 20% increase in the decision threshold is sufficient to compensate
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for this PFA degradation, bringing it back to the desired value of 0.1. This validates

that the PFA is highly sensitive to the in-band interfering power when a signal detection

is performed in a negative SNR regime. Again, the experimental results (solid lines)

closely match the simulation results (dashed lines) discussed in Section 3.3.

3.5 Summary

In this chapter, we presented a wideband spectrum-sensing processor for weak-

signal detection in the presence of strong adjacent-band primary users. We found that

increasing the sensing time is not always a good way to achieve reliable detection rates

when strong adjacent interferers are present. Instead, adaptive methods are needed. Our

design consists of a multitap-windowed frequency-domain power detector, sensing-

time, and decision-threshold adaptation algorithms.

The proposed design achieved minimum sensing time within constrained sensing

rates. The adaptive algorithms, which adapt the sensing time and the detection threshold

to the in-band interfering power, have demonstrated the power detector to maintain

PFA = 0.1 and PD = 0.9 for −5 dB SNR and INR from 0 to 30 dB. The performance of

the proposed algorithms is validated in simulation and real-time hardware radio testbed.

Simulation studies have shown that in the presence of adjacent-band interferers with

INR ≥ 10 dB, our system shows at least a 2x improvement in the PFA compared to

conventional methods. The proposed power detector is able to perform reliable signal

detection within 50 ms for a−5-dB SNR signal when primary users with INR≤ 30 dB

49



are present in the adjacent bands. An order-of-magnitude reduction in sensing time is

achieved as compared to a conventional FFT power detector. The reduction in sensing

time leads to a significant reduction in the number of operations required to reach a

PD of 0.9 and a PFA of 0.1. The performance of our algorithms has been confirmed on

FPGA-based real-time radio experiments in the ISM band. The obtained experimental

results are in excellent agreement with the simulation estimates.
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CHAPTER 4

Power and Area Minimization of Reconfigurable FFT

Processor

This chapter presents a design methodology for power and area minimization of

flexible FFT processors. The proposed methodology provides fast evaluation in the

power-area space that is obtained by adjusting algorithm, architecture, and circuit vari-

ables. Radix factorization is the key technique for achieving high flexibility and energy

efficiency. Architecture parallelism and delay line implementation are next most signif-

icant design techniques. The reconfigurability is achieved by data-path inter-connection

of atomic processing units (PUs) that explore radix-2 to radix-16 factorization.

4.1 Overview of FFT Designs

Fast Fourier transform is an important digital signal processing (DSP) technique

to analyze the phase and frequency components of a time-domain signal. FFT proces-

sors have been widely used in various applications such as communications, image, and

biomedical signal processing. For example, high-performance and low-power FFT pro-

cessing is indispensible in orthogonal frequency-division multiplexing (OFDM) sys-
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tems. Applications are now changing towards increasing diversity of features and stan-

dards that need to be supported on a single device. This change in applications greatly

emphasizes the need for flexibility. At the same time, maintaining high levels of en-

ergy efficiency is of crucial importance for mobile terminals. We therefore investigate

energy efficiency of flexible FFTs that be configured to a variety of FFT sizes and sam-

pling rates.

FFT architectures have been extensively studied. Traditional architectures include

memory-based [75], pipelined [76], array [77], and cached-memory architecture [78].

Advanced circuit techniques such as minimum-energy operation [79-80], dynamic volt-

age and frequency scaling (DVFS) [81], asynchronous logic [82], and deep pipelin-

ing [80] have also been used to enhance energy efficiency of FFT processors. The ben-

efits of radix factorization for reduced hardware cost of custom FFTs have been largely

unexplored. A ring-structured multiprocessor architecture was proposed in [83] to uti-

lize mixed radix. A mixed-radix (radix 4 and radix 8) multipath delay feedback (MR-

MDF) architecture and indexed-scaling pipelined architecture were introduced in [84]

and [85], respectively. Prior work optimized various individual aspects of the FFT pro-

cessors, which resulted in sub-optimal energy and area. A systematic design methodol-

ogy that integrates parallelism, radix factorization, and memory parameters for flexible

FFT design has not been thoroughly investigated.

We propose an FFT design methodology that jointly considers algorithm, archi-

tecture, and circuit parameters. We contribute with insights on how to use FFT radix

structure for highly energy- and area-efficient implementations. Many combinations
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of radix exist. For example, there are around a hundred architectures for a 2048-point

FFT based on the degree of parallelism and radix factorization, as will be discussed in

this chapter. Hardware estimates of energy and area are considered in the algorithm

stage in order to choose FFT radix structure that best minimizes power/energy and

area. Architecture parallelism is combined with FFT decomposition to explore power-

area tradeoffs. Apart from parallelism and radix, delay buffers need to be efficiently

implemented. Memory size partition and memory elements for delay lines of differ-

ent lengths have to be evaluated. Our approach provides a cross-layered FFT design

methodology to jointly optimize above parameters. For illustration, we will design for

minimum power-area product.

4.2 FFT Algorithms and Architectures

The N-point discrete Fourier transform (DFT) of an input sequence x[n] is defined

as

X [k] =
N−1

∑
n=0

x[n]W nk
N (4.1)

where k = 0,1,2, ...,N − 1 and WN = e− j2π/N is known as the twiddle factor. Di-

rect implementation of (4.1) requires N2 complex multiplications and N(N− 1) com-

plex additions. By taking advantage of symmetry (W k+N/2
N = −W k

N) and periodicity

(W k+N
N =W k

N) of the twiddle factors, DFT can be computed more efficiently. The com-

putationally efficient algorithms are collectively referred to as fast Fourier transform

algorithms. The efficiency is further improved by using the divide-and-conquer tech-
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nique that recursively breaks the N-point DFT into several smaller-size DFTs [86]. For

example, for N = M×L and k = Mp+q, where 0≤ p≤ L−1 and 0≤ q≤M−1, the

N-point FFT can be represented in two-dimensional form as in Eq. (4.2).

X [k] =
L−1

∑
l=0


M−1

∑
m=0

x[l, m]W mq
M︸ ︷︷ ︸

M−pt DFT

W lq
N

 W l p
L

︸ ︷︷ ︸
L−pt DFT

(4.2)

The calculation of X [k] is hence decomposed into three steps: 1) compute M-point

DFT, 2) multiply the DFT outputs by twiddle factors, and 3) compute L-point DFT.

Due to decomposition, the number of complex multiplications is reduced from N2 to

N(M+L+1). The number of additions is reduced from N(N−1) to N(M+L−2). To

get a hardware cost for architecture exploration, individual blocks have to be examined.

We start by looking at radix-2 butterfly based architecture to realize the M-point and

L-point FFTs.

4.2.1 Radix-2-Butterfly Based Architecture

The radix-2 FFT algorithm decomposes the N-point DFT into 2-point DFT opera-

tions recursively. It requires (N/2)log2N multiplications and Nlog2N additions, lead-

ing to a significant saving for a large N compared to direct-mapped DFT. The basic

arithmetic module of radix-2 FFT is the butterfly operation, as shown in Fig. 4.1(a).

Decimation-in-time (DIT) and decimation-in-frequency (DIF) radix-2 butterfly oper-

ations have similar structures with different placements of the WN multiplication. In

this work, DIF structure is adopted, but the proposed design methodology is also ap-
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Figure 4.1: (a) Signal flow graph of radix-2 butterfly for DIT and DIF structures. (b)

Radix-2k single-path delay feedback (SDF) architecture. Output of stage k does not

need twiddle-factor multiplication.

plicable for DIT. N-point DFT can also be decomposed into r-point DFTs. This is

known as radix-r FFT algorithm. There are logrN stages and N/r butterflies per stage.

Each butterfly requires r− 1 complex multiplications. When r = 2k, the radix-r but-

terfly can be further decomposed by cascading k radix-2 stages, known as radix-2k

algorithm [87]. The total number of complex multiplications of radix-r algorithm is

[N(r− 1)/r][(logrN)− 1] considering that the twiddle factors of the last stage are al-

ways equal to unity. As we will describe later, all multipliers internal to the radix-r

butterfly (r = 2k) can be implemented as constant multipliers in order to reduce area

and power. The number of complex additions is Nlog2N regardless of r.

Due to its regular structure, the FFT can be realized using radix-r (r = 2k) butter-

flies, delay lines, and complex multipliers. Radix-r can be realized using several archi-
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tectures considering a tradeoff between silicon area and execution time. The memory-

based time-multiplexed architecture [75] has only one radix-r butterfly and r−1 com-

plex multipliers. The inputs, outputs, and interim results are read from and written

back to memory for complete FFT operation. This architecture has the lowest area and

longest execution time. Another extreme is the direct-mapped fully parallel architec-

ture, which requires [N(r−1)/r][(logrN)−1] complex multiplications. Between these

two extreme cases, there is a pipelined architecture which provides a balanced trade-

off between area and execution time. Two major types of pipelined architectures are

multi-path delay commutator (MDC) and single-path delay feedback (SDF) [87]. For

higher-radix algorithms, the SDF architecture is preferred since it requires less memory

and fewer complex multipliers than the MDC architecture [87].

The radix-2 SDF architecture for 2k-point FFT is shown in Fig. 4.1(b). In each

stage, the required N/2 butterfly operations are time-multiplexed onto one butterfly

operator. Delay buffers are used to support the time-multiplexing. The inter-stage

multipliers are used to multiply stage outputs by twiddle factors W kn
N . The radix-2

SDF architecture requires log2N−1 inter-stage complex multipliers, 2log2N complex

adders, and N−1 delay buffers.

4.2.2 Reconfigurable Architecture

Based on the pipelined SDF architecture, a reconfigurable FFT architecture can be

implemented by cascading several radix-2k stages in order to accommodate different

FFT sizes. The signal-flow graphs for radix-2 to radix-24 butterflies are shown in Fig.
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Table 4.1: Radix Implementations of Radix-2, Radix-22, Radix-23, and Radix-24 Pro-

cessing Elements

Type Implementation Butterfly adders Constant multipliers

Radix-2 PU1 4 0

Radix-22 PU2 + PU1 8 1

Radix-23 PU2 + PU3 + PU1 12 13

Radix-24 PU2 + PU3 + PU4 + PU1 16 43

4.2. Note that the minus signs in the butterfly modules are ignored for simplicity. The

highlighted inter-stage multiplications are all implemented as constant (complex) mul-

tipliers as opposed to full multipliers. The radix-2k can be realized by cascading several

atomic processing units (PUs) as in Table 4.1. The PUs are shown in Fig. 4.3. The cost

of the constant multipliers in terms of equivalent adders is shown in brackets. Radices

beyond 24 are impractical, because the increasing number and complexity of required

constant multipliers makes them no longer advantageous over full multipliers. In ad-

dition, full multipliers need extra ROMs to store coefficients, but dedicated constant

multipliers are all hard-wired and their coefficients can be locally computed. Therefore,

radix-2 to radix-24 is the right level of granularity for mixed-radix FFT implementation.

As shown in Fig. 4.3(a), each PU contains a basic butterfly module and dedicated

constant multipliers. The butterfly module is initialized to the data-switch mode until

57



–j

–j

–j

–j

–j

–j

C1

C1

C2

C2

–j

C1

C2

C3

C4

C5

C6

Radix-4 butterfly

–j

–j

–j

–j

C1

C2

Radix-8 butterfly

Radix-16 butterflyRadix-2 butterfly

Figure 4.2: Radix-2, radix-22, radix-23, and radix-24 butterfly operations.

58



the delay buffers are filled by the valid inputs and then switched to the butterfly mode

for FFT operation. The required constant multipliers for PUs 1-4 are shown in Fig.

4.3(b). Only half the twiddle factors (dark-filled circles) are generated in the PUs,

the other half (gray-filled circles) are created using the symmetry property. PUs with

lower index can be deduced from the PUs with higher index. This back-compatibility

feature will be leveraged for reconfigurable designs. All the multipliers inside the PUs

for a 2k-point FFT (k ≤ 4) are constant multipliers. Full multipliers are used for the

multiplications for the inter-stage twiddle factors. Since the inter-stage full multipliers

have higher hardware cost than the intra-stage constant multipliers, radix factorization

should be done in such a way as to minimize the number of full multipliers.

Radix factorization was utilized in prior work with a limited success. A variable-

length FFT processor that integrates two radix-2 stages and three radix-23 stages for

FFT sizes 512, 1024 and 2048 was proposed in [88]. A single architecture is consid-

ered without investigating other possible factorizations. We consider all feasible solu-

tions to select the final architecture. Also, the use of high-radix is commonly believed

to be more area-efficient than low-radix algorithms [81] [84]. While true for generic

hardware, this observation is inaccurate for dedicated designs that consider the use of

constant multiplications and variable wordlengths of twiddle operators. The complex-

ity analysis only considering the asymptotic trend O(NlogrN) may lead to an inefficient

architecture for dedicated designs.

Apart from radix factorization, architecture- and circuit-level parameters have to be

considered. Although many point-wise solutions have been proposed at the architecture

59



WN
kn

PU1   4

Delay

+
Butterfly mode

Data-switch mode

–j

–j

C1

C2

–j

C1

C6 –j
C1C2

C3C6

C5 C4

1

–j
C1C2

1

–j

1

1

PU1 (0)

PU2 (1)

PU3 (12)

PU4 (30)

(a) (b)

Figure 4.3: Processing units (PUs) of a reconfigurable FFT processor that supports

radix-2 to radix-24 factorizations. (a) The architecture and (b) the constant multipliers

of the PUs. The numbers in brackets next to each PU indicate relative cost (in terms of

equivalent adders) of its constant multiplier.

60



level, the tradeoff between sequential and parallel architectures has not been thoroughly

investigated. At the circuit level, memory cells and logic elements have to be carefully

chosen to minimize the power and area. Our methodology for power and area mini-

mization jointly considers radix factorization, architecture and circuit techniques.

4.3 Power and Area Minimization

We propose a systematic methodology to explore feasible FFT realizations and se-

lect those that best minimize power and area. Different realizations will be made using

architecture parallelism and FFT decomposition, radix factorization, and memory im-

plementation. Given many feasible solutions, the optimal design can be selected from

the power-area tradeoff. To evaluate feasible realizations early in the algorithm devel-

opment stage, high-level area and power estimation are developed. Area is estimated

as the total area of multipliers, adders, and memory. Power is estimated from the area,

switching activity, operating frequency and voltage.

FFT realizations are systematically explored in three steps. First, architecture par-

allelism combined with FFT decomposition is used to explore the power-area space

through voltage scaling. Next, radix factorization is explored for a given FFT size. The

third step consists of memory partition, selection of memory cells and logic operators.

To support multiple FFT sizes, optimal mapping of processing units that considers all

required FFT sizes is performed.
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4.3.1 Parallel Architecture with FFT Decomposition

Parallelism is an effective technique to increase throughput [81] or to reduce power

consumption [89-90] of an FFT processor. For a fixed throughput, voltage scaling and

a lower clock frequency improve the energy efficiency of a parallel architecture. Since

time-multiplexing is inherently applied to SDF architecture, parallelism is used to move

the design point in the area-energy-delay plane [70]. The arithmetic property of FFT

allows for an area-efficient parallel architecture by leveraging FFT decomposition. As

shown in Fig. 4.4(a), an N-point FFT is decomposed into M-point FFT and L-point

FFT. The direct-mapped architecture by the level of parallelism P is described in Fig.

4.4(b). The resulting area of logic and memory is increased by P (ignoring the overhead

of the serial-to-parallel and parallel-to-serial circuitry). For the case where P = L, the

P identical L-point SDF FFT can be combined into a single L-point parallel FFT, as in

Fig. 4.4(c). This architecture simplification is possible since the M-point FFTs can be

computed first and combined into the L-point (L = N/M) output stage to compute an

N-point FFT. Instead of distributing multiple data streams into parallel branches as in

Fig. 4.4(b), one data stream is processed by a single L-point FFT unit as in Fig. 4.4(c).

The architecture in Fig. 4.4(c) contains L[(log2M)− 1] +L+L[(log2L)− 1]/2 =

L[(log2NM)−1]/2 complex multipliers and L(2log2M)+Llog2L = L(log2NM) com-

plex adders. Besides reduced arithmetic complexity compared to Fig. 4.4(b), effective

implementation of memory is required. L−1 delay buffers used for scheduling of the

L-point FFT in Fig. 4.4(b) can be removed since the inputs of L paths are available
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ture. The level of parallelism = P. (c) A significant reduction in complexity is achieved

when P = L.
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and aligned in time in Fig. 4.4(c). The total number of delay buffers is reduced from

L(N−1) to L(N−1)−L(L−1) = L(N−L).

Finally, the hardware complexity of the M-point FFT can be reduced. Combining L

streams in Fig. 4.4(b) necessitates zero-padding of data and the length of delay buffers

in the M-point FFTs to be a multiple of L. When L = P, as in Fig. 4.4(c), the length-L

delay buffers in each of the M-point FFTs can be replaced by length-1 buffers at L times

lower rate to match the delay. This reduces the number of delay buffers in Fig. 4.4(c)

from L(N−L) to L(N−L)/L = N−L = L(M− 1), which is the minimal number of

delay buffers required for an L-path M-point FFT.

4.3.2 Estimation of Area and Power

To evaluate the area and power for different levels of parallelism, high-level area

and power models are required for the FFT building blocks. The area of the L-path

SDF architecture in Fig. 4.4(c) is estimated as

Area = Amult ·L[(log2NM)−1]/2+Aadd ·L(log2NM)+Amem ·L(M−1), (4.3)

where Amult , Aadd , and Amem represent the area of multiplier, adder, and delay buffer,

respectively. These three parameters can be estimated from synthesis. Without loss of

generality, we use 12-bit arithmetic and DFF-based delay buffers in our analysis.

Delay of a FO4 inverter is used to estimate the critical-path delay as a function of

supply voltage. Figure 4.5 shows the delay vs. supply voltage curve in the typical-

typical (TT) corner in a standard-VT TSMC 65nm CMOS. The delay-voltage curve is
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Figure 4.5: Delay and energy vs. supply voltage for a FO-4 inverter in TSMC 65nm

CMOS.

used to predict the amount of voltage scaling, analyze high-level architecture retiming

and fine-grain circuit pipelining. FO4 inverters are also used for power estimation. The

use of Fig. 4.5 for low-voltage design can be exemplified on a design required to run at

20 MHz. Since digital libraries are characterized for nominal voltage, designing for 20

MHz at 0.45 V in the TT corner translates to 160 MHz at 1 V for logic synthesis. By

reducing VDD from 1 V to 0.45 V and frequency from 160 MHz to 20 MHz, the power

consumption is reduced by 46.3x. The normalized power of the FFT can be therefore

estimated by

Power = Area ·P(VDD, f), (4.4)

where f is the switching frequency.

Power cost is estimated by considering both switching (Psw) and leakage (Pleak)
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components. A ratio Psw/Pleak = 13.5 is estimated from a FO4 inverter chain at 0.45

V for 20 MHz (around 135x FO4 delay). The switching power Psw of the processing

units can be estimated as the product of utilization rate α and active area Atotal per cycle

since circuits are operated at the same voltage and frequency, as indicated by

Psw =CV 2 f ∝ αAtotal, (4.5)

where Atotal is the area cost. Inactive blocks are disabled by using clock gating or wired-

AND circuits. As shown in Fig. 4.2, the two complex adders (implemented as four real

adders) in the butterfly module of PUs have utilization rate of 1/2 because the periods

for data-switch mode and butterfly mode are the same, resulting in 2 real additions per

cycle, on average. According to the signal-flow graph in Fig. 4.1, the utilization rate of

each constant multiplier is 1/4, 1/8, and 1/16 per clock cycle for PU2, PU3, and PU4,

respectively. The utilization rate of the inter-stage full-precision multipliers depends on

the preceding PUs and it is accounted for in our analysis.

4.3.3 Mixed-Radix Implementation

As mentioned in Section 4.2.1, higher-radix structures could be made more area

efficient by replacing full multipliers with constant multipliers. These constant multi-

pliers are implemented using canonic signed digit (CSD) representation [91], as shown

in Fig. 4.6. A 10-bit precision is assumed. Each of the constant factors requires no more

than 4 simple additions, which leads to a large area reduction. Due to the symmetry

property of twiddle factors, the area of constant multipliers is minimized through hard-
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Figure 4.6: Area-efficient implementation of constant multipliers.

ware sharing for multiple multiplicands. Only 30 adders are need for all twiddle-factor

multiplications as shown in Fig. 4.2. The cost of implementing radix-2 to radix-24

operations, which will be used in radix factorizations, is summarized in Table 4.1.

To minimize the hardware cost of inter-stage full multipliers (between radix-2k

blocks), full complex multipliers are implemented by using 3 real multipliers and 5

real adders (rather than 4 real multipliers and 2 adders) [92] as follows:

(a+ jb)(c+ jd) = [c(a−b)+b(c−d)]+ j[d(a+b)+d(c−d)]. (4.6)

The equivalent number of adders in a full real multiplier is estimated as the wordlength

of twiddle factors. Since the adders for butterfly operations exist in all radix structures,

only the equivalent adders for (constant vs. full) complex multiplications can be used
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for quick comparison of different FFT architectures. The number of equivalent adders

for 4- to 16-point FFTs with twiddle factor wordlengths 8b-16b is summarized in Table

4.2. As an example, a 16-point FFT can be implemented by two radix-22 stages, each

having 1 adder (Table 4.1), along with an inter-stage full multiplier (with 3 multipliers

and 5 adders). For 8-bit twiddle factors, the number of equivalent real adders is there-

fore 2 + (38 + 5) = 31. FFTs up to 16 points are considered, because this is adequate

level of granularity for radix factorization. The use of radix depends on the FFT size

and twiddle-factor wordlength. Radix structures with minimum area are highlighted.

Radix-22 architecture needs only one adder for 4-point FFT, but the radix-2 architec-

ture needs 29-53 adders due to the use of full multipliers. Using higher radix makes

sense here, because radix-22 exactly matches 4 FFT points. As the FFT size increases,

a larger number of constant multipliers required to support higher radix diminishes the

area advantage over full multipliers. For 16 points, the radix-24 architecture needs 37-

49 adders while the radix-2 architecture needs 87-159 adders (a 2.53-3.24x larger area).

The area saving for the 16-point FFT is not as large as that for the 4-point FFT. The

wordlength of twiddle factors also affects the area. Radix-22 architecture is the most

area efficient for twiddle factors below 14 bits, else radix-24 should be used. There-

fore, radix-2 is the least area efficient. Higher radix (up to 24) is generally better unless

wordlength of twiddle factors is small (less than 14 bits).

Based on the area and power models from Section 4.3.2, we can quickly evalu-

ate area-power tradeoff for various radix factorizations and degrees of parallelism. As

an example, Fig. 4.7 shows the area-power tradeoff space for 1024-point FFT imple-
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Table 4.2: The Number of Equivalent Adders Required to Implement FFT

FFT size 4 points 8 points

TW bits 8 10 12 14 16 8 10 12 14 16

Radix-2 29 35 41 47 53 58 70 82 94 106

Radix-22 1 1 1 1 1 - - - - -

Radix-23 - - - - - 11 13 13 13 15

Radix-24 - - - - - - - - - -

FFT size 16 points

TW bits 8 10 12 14 16

Radix-2 87 105 123 141 159

Radix-22 31 37 43 49 55

Radix-23 - - - - -

Radix-24 37 43 43 43 49

mented using architecture from Fig. 4.4(c). Partitioning with M = 128 and L = P = 8

gives the lowest power-area product (PAP) for 1024 points. It achieves a 4.3x lower

PAP than M = 1024, L = 1 design. Next, since M > 24, we have to examine radix

factorization of 128-point FFT for further area and power reduction. Radix structure of

128-point FFT is shown in Fig. 4.8. The architecture with seven radix-2 stages (A1)

occupies the largest area, as expected from prior analysis. Architecture A8 (consisting

of two radix-22 stages and one radix-23 stage) has the lowest PAP. A 4x reduction is

achieved from radix-2 only (A1) to radix-22/22/23 (A8) due to radix factorization. An

69



0 1 2 3 4 5 6

1

0.1
N

o
rm

al
iz

e
d

 P
o

w
e

r

Normalized Area

Radix-2
Mix Radix

Final DesignRef. Design

P=2

P=4

P=8
P=16

Figure 4.7: Power and area minimization through FFT factorization and radix factor-

ization.

overall 17.2x PAP reduction compared to the direct mapped architecture (M = 1024,

L = 1) is achieved through FFT decomposition (4.3x) and radix factorization (4x).

4.3.4 Delay-Buffer Architecture and Memory Element

After FFT decomposition and radix factorization, the next step is the power-area

optimization of delay buffers. Three options are considered for delay buffer implemen-

tation: 1) DFF-based shift register, 2) register file (RF)-based, and 3) SRAM-based

delay buffer [87]. Architecture and memory cells for various delay lengths have to be

evaluated. To illustrate our methodology, we assume delay lengths up to 1024.

We start by comparing RF-based and SRAM-based delay buffers, which have dif-

ferent memory cells and peripheral circuits. A straightforward implementation is a

dual-port (DP) RF/SRAM-based architecture, as shown in Fig. 4.9(a). If the RF/SRAM
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Figure 4.8: Power and area for feasible radix factorizations of 128-point FFT. Archi-

tecture A10 has the lowest power-area product.

memory size is N, the output of the dual-port RF/SRAM is read after N−1 cycles, so

an overall N-cycle delay is achieved. Area and power of RF and SRAM designs are

evaluated using commercial memory compilers for the target 65-nm technology. For

32-bit (for complex-valued input) delay buffers, RF-based design is superior since it

consumes 41-49% power with a 66-82% silicon area compared to the SRAM-based

counterpart.

Next, we compare RF-based and DFF-based designs. RF-based delay buffers are

more area efficient than DFF-based designs due to the compact 6T/bitcell structure

but the peripheral circuitry contributes considerable area overhead for smaller memory

size. However, RF-based designs cannot be operated at very low voltage due to cell

read margin and sense amplifier operation. Since DFF-based designs can operate in

a low-voltage regime, they are more energy efficient despite their area disadvantage.
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Besides voltage scaling, the power consumption of the DFF-based delay buffers can be

reduced through a pointer-based architecture shown in Fig. 4.9(b). Instead of shifting

the data, we use a shift-delay-line to choose the corresponding DFF to read and write.

The remaining DFFs are clock gated when they are not activated by the shift-delay-line,

eliminating significant dynamic power. To evaluate the tradeoff between RF-based and

DFF-based delay buffers, power and area for the delay line lengths of interest are shown

in Fig. 4.10. For the delay buffers longer than 256, the RF-based design operated at 0.9

V has a smaller PAP compared to the DFF-based design operated at 0.4 V at 20 MHz.

Therefore, the delay buffer of length 512 and 1024 are implemented using RFs.

The power of RF can be further improved through memory partitioning. Fig. 4.11

shows the possible memory partition schemes and the optimal partition for lengths 512

and 1024. We minimize PAP, but the architecture with lower power is chosen if multiple

instances have the same PAP. The instances with two and four 256x32b RF banks are

chosen for the delay buffers of length 512 and 1024, respectively.

Finally, one length-256 dual-port (DP) RF module can be replaced with two length-

128 single-port (SP) RF modules to achieve even lower PAP: 0.63x and 0.58x lower

PAP for lengths 512 and 1024, respectively. The final memory structure for delay

buffers of lengths 512 and 1024 is shown in Fig. 4.12. In the final design, eight

128x32b and four 128x32b register files are used to implement length 1024 and 512 de-

lay buffers. Input/output of two SP RF modules are written/read alternatively to create

adequate delays. For the remaining delay buffers, DFF-based registers with aggressive

voltage scaling are used instead.
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4.3.5 Area-Efficient Twiddle-Factor Generator

Twiddle factors are generated in an area-efficient way by trigonometric approxima-

tion [87] instead of fetching coefficients from ROMs. The trigonometric approxima-

tion is realized by a first-order linear approximation [93], which can be described as

follows. First, by means of the symmetry of sine/cosine values, angles [0, π/4) can be

used to construct the whole sine/cosine space. Second, sine values can be approximated

through piecewise-linear approximation, as given by

sin(2πα)≈


25/4α

41α/8+9/128

0≤ α < 1/16

1/16≤ α≤ 1/8.
(4.7)

Third, cos(2πα) =
√

1− sin2(2πα) for 0 ≤ sin(2πα) ≤ 0.7071 is approximated by

another linear approximation as

cos(2πα)≈



1− sin(2πα)/16

65/64−3sin(2πα)/16

17/16−3sin(2πα)/8

5/4−3sin(2πα)/4

0≤ sin(2πα)< 1/8

1/8≤ sin(2πα)< 1/4

1/4≤ sin(2πα)< 1/2

otherwise.

(4.8)

Based on these approximations, only shift and add operations are needed to generate

twiddle factors (TFs). The overall number of intra-stage TF generators is (L− 1)+

(F−1), where F is the number of stages of PUs in the M-point FFT block. Since TFs

for the multipliers in the same stage of the L M-point FFT blocks can be shared, only

F − 1 unique TF generators are necessary. In addition, there are L− 1 TF generators

for the multipliers between M-point and L-point FFTs.
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4.4 Summary

An FFT processor design methodology yielding optimal power-are tradeoff is ex-

plored by examining feasible parallel architectures and radix factorizations. The use of

constant multipliers for intra-stage twiddle factors enables substantial area and power

savings compared to the use of full multipliers. Radix factors up to 16 should be used.

Radices beyond 16 are ineffective due to a large number of constant multipliers re-

quired. Short delay line buffers (up to 256) are best realized in D-flip-flops, medium

buffers (length 512 and 1024) are the most energy and area efficient when realized with

register files. Twiddle factors are generated using trigonometric approximations as op-

posed to ROM memories. More detailed design example will be illustrated in Chapters

5 and 6.
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CHAPTER 5

Chip 1: 200MS/s Wideband Spectrum Sensing

Processor

This chapter presents our first chip: a practical solution to the wideband sensing

problem with adjacent-band interferers. An FFT-based multitap windowing power de-

tector architecture is used for wideband (200 MHz) sensing; sensing time and detec-

tion threshold are dynamically adjusted to remove the impact of adjacent-band inter-

ferers [94]. The chip power and area are minimized by jointly considering algorithm,

architecture, and circuit parameters. The chip, implemented in a 65-nm CMOS tech-

nology, outperforms state-of-the-art [53-56] in detection performance and power dis-

sipation per bandwidth. Its high performance allows fast, reliable spectrum sensing

for future cognitive radios. The low power dissipation makes it applicable to portable

devices.

5.1 Design Challenges of Wideband Spectrum Sensing

Figure 5.1 shows the block diagram of the proposed spectrum-sensing processor. It

consists of a multitap-windowed frequency power detector and two sensing adaptation
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blocks, sensing-time adaptation (STA) and detection-threshold adaptation (DTA). As

shown in Fig. 5.1, key design challenges for power- and area-efficient implementation

are high-speed FFT-based power measurement and large dynamic range datapaths. Two

adaptation blocks, STA and DTA, dynamically track channel conditions to maintain

the specification, but this adaptation adds extra processing-time latency. The latency

overhead should be minimized to increase sensing-time efficiency.

The FFT is the most hardware-intensive block in our architecture. Its throughput

and size dictate the sensing time and frequency resolution. To support real-time sensing

of 200 MHz, the FFT processor requires a throughput of 200 MS/s. In our application,

1024 points are required to sense 200 MHz with 200 kHz resolution. Thus, a power-

area efficient FFT processor is required.

The large dynamic range, required for precise and simultaneous detection of both

strong interferes and weak primary users, dictates large wordlengths, which increase

the cost of arithmetic operations and storage of the estimated PSD, noise power, and

interferer power. Since the increased wordlength is used to represent the large dynamic

range signal rather than enhance the precision, fixed-point arithmetic is inefficient. In-

stead, floating-point arithmetic will be used.

The adaptation blocks, STA and DTA, dynamically track channel condition to main-

tain system performance. As shown in Fig. 5.2, the shorter the processing time of PSD

estimation, STA, and DTA, the longer the time the system can utilize available spec-

trum. The processing time of PSD is the sensing time needed to meet the sensing rates

(PD and PFA) and this processing time is fixed. The processing time of STA and DTA
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Figure 5.1: Proposed wideband spectrum sensing processor. An FFT-based multitap

windowed frequency power detector estimates PSD, noise and interfering power. Sens-

ing-time adaptation (STA) and detection-threshold adaptation (DTA) blocks adapt their

parameters on a per-channel basis.

blocks doesnt influence the sensing rates. These blocks affect the sensing time; hence,

their processing time overhead has to be minimized.

5.2 Architecture and Circuit Design

Several architectural and signal processing techniques are proposed to minimize

power and area. The FFT processor uses parallelism and radix factorization to achieve

minimum power-area product (PAP). A fixed-to-floating point converter is designed to

minimize wordlengths of the mantissa and exponent, which helps reduce memory size.

The power and latency of STA and DTA blocks are reduced by utilizing the Newton-

Raphson division and square-root algorithms.
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Figure 5.2: Processing time for spectrum sensing consists of fixed time for MW-FPD

calculation and variable time for STA and DTA blocks. The MW-FPD determines

the sensing rate performance. The overhead introduced by the STA and DTA blocks

degrades the sensing-time efficiency and has to be minimized.

5.2.1 Multi-path Pipelined MW-FPD

A multi-path pipelined FFT is adopted to achieve high throughput and low power.

The power efficiency of the pipelined architecture is improved through architecture

parallelism, which allows for voltage scaling due to a lower operating frequency. Also,

a radix-factorization methodology [95] is used to determine the optimal radix structure.

Fig. 5.3 shows the architecture of the 1024-point FFT, which is decomposed into eight

banks of 128-point pipelined FFTs followed by an 8-point parallel FFT to minimize

power-area product.

The 1024-point FFT is designed by using the methodology as described in Chapter

4. The amount of parallelism is determined by choosing the minimum power-area

product point. The 8-path single-delay-feedback (SDF) architecture operated at 0.6 V

is chosen as the optimal design, resulting in a 4.3x PAP reduction compared to the

reference design with no parallelism. The optimal radix factorization is selected from
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all feasible combinations of radix-2/22/23/24 processing elements (PEs). A 4x PAP

reduction is achieved from radix-2 only to the final design radix-22/22/23. An overall

17.2x PAP reduction is achieved through FFT decomposition (parallelism) and radix

factorization.

The delay lines are designed for minimum PAP by exploiting the power-area trade-

off between register files (RFs) and D flip-flops (DFFs) [96]. RFs (6T/bitcell) occupy

less area compared to DFFs while DFFs allow lower VDD for power reduction. Delay

lines of lengths 512 and 1024 are implemented using register files (RFs) that operate at

0.9 V; else DFFs operating at 0.6 V are used. Level-shifters are placed between low-

VDD (0.6 V) and high-VDD (0.9 V) domains. Such partitioning reduces the core area

by 0.4 mm2 (20%) with power increased by 0.3 mW (4%) as compared to a DFF-only

implementation.

The energy and area of the 200 MS/s 1024-point FFT measured at 0.7 V are 20

nJ/FFT and 0.75 mm2, respectively. Our chip measurements at 200 MS/s were consis-

tent with synthesis estimates. Next, we re-synthesize for 240 MS/s and compare our

mix-radix design with the 240 MS/s 1024-point radix-4 FFT [80] that was designed for

minimum energy using circuit-level techniques for subthreshold operation. The com-

parison in Fig. 5.4 shows that synthesized mix-radix design dissipates lower energy and

achieves smaller area than custom design from [80]. The energy and area gains from

radix factorization exceed those available from circuit-level tuning. At 240 MS/s, syn-

thesized design operates at 0.46 V as compared to 0.27 V in [80], which leaves ample

room for circuit-level optimizations if desired.
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5.2.2 Floating-point Signal Processing

The power estimation block uses multipliers and memory banks to perform squar-

ing and accumulation for the 1024 FFT outputs. In addition, channel-specific STA

and DTA blocks consist of multipliers and dividers, as described by (3.16) and (3.17).

These operators and storage elements occupy large area and power due to the in-

creased wordlength for large dynamic range signal processing. Using the fixed-point

wordlength reduction [97], the PSD estimation requires at least 30 bits for INR of 30

dB and SNR of −5 dB. The hardware area is reduced by exploiting two data proper-

ties. First, we assume the spectrum does not change significantly during the sensing

period of 50 ms. The per-channel variation is several orders of magnitude smaller than

the variation across the entire spectrum. That is, the required dynamic range for each

channel is much smaller than the dynamic range of the entire spectrum. Second, signal

processing involved in power estimation and programmable averaging as well as sens-

ing adaptation is performed channel by channel. When the magnitude of a channel is

large, calculations can be performed using only MSBs. When a channel has a small

magnitude, only LSBs contain signal information. In other words, not all 30 bits are

necessary for arithmetic. These two observations suggest a floating-point data format,

which is composed of mantissa for precision and exponent for magnitude, as the best

candidate for signal processing in the adaptation blocks [98-100].

The implementation of required floating-point operations is shown in Fig. 5.5. Two

inputs M12E1 and M22E2 are assumed, where M1 and M2 are the mantissas and E1 and
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E2 are the exponents. Both mantissas and exponents are in 2s complement format.

Assuming E1 ≥ E2, the addition of M12E1 and M22E2 can be represented by M12E1 +

M22E2 = (M1 +M2 · 2(E2−E1)2E1 , as in Fig. 5.5(a). The mantissa and exponents of

the sum can be calculated by conventional 2’s complement operators. The shaded area

shows circuitry needed to match the two exponents. The MUXes are used to swap

M12E1 and M22E2 if E1 < E2, and M2 · 2(E2−E1) is realized by the barrel shifter. The

floating-point format is inherently suitable for multiplication, (M12E1) ·(M22E2)= (M1 ·

M2)2(E1+E2), Fig. 5.5(b). No additional block is needed to match the exponents E1

and E2. Squaring is a special case of multiplication, (M12E1)2 = M2
122E1 , Fig. 5.5(c).

All the above floating-point operations are realized by using standard 2’s complement

arithmetic.

Fixed-point to floating-point conversion is made by removing the consecutive zeros

in MSBs. The resulting MSBs are set as mantissa; the number of zeros is accounted as

bias in the exponent. The fixed-to-floating point converter is realized by a barrel shifter

and a priority encoder, as shown in Fig. 5.7(a). The barrel shifter and priority encoder

are used to generate the mantissa and exponent, respectively. The use of floating-point

data for large-dynamic range processing allows the use of only mantissa for arithmetic,

which drastically reduces the area of arithmetic blocks. Fig. 5.6 shows the architecture

of the power estimation block. The wordlength reduction not only saves the area of

arithmetic blocks, but also saves the required memory for storing averaged PSD (M1),

noise power (M2), and interfering power (M3). The wordlengths of the mantissa and

exponent are designed to have minimum area without affecting PD and PFA. Beyond a
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Figure 5.6: Architecture of the power estimation block.

10-bit mantissa and 5-bit exponent, further increase in wordlength does not influence

the sensing rates. This holds for the entire sensing range down to −5 dB SNR. As

shown in Fig. 5.7(b), the wordlength reduction from floating point results in a 2x

less logic area and a 2x less logic power of the power estimation block. The required

memory size for M1, M2, and M3 is reduced from 105 kb to 60 kb, a 35% saving. As

shown in Fig. 5.8, the use of floating-point arithmetic and the associated wordlength

pruning reduces the overall core area and core power by 27.5% and 20.1%, respectively.

5.2.3 Processing Time Overhead Reduction

STA and DTA blocks, Eqs. (3.16) and (3.17), use multiply, divide, and square-root

operations. Realization of the divide and square-root using conventional radix-2 long

division [101-104] and CORDIC [105-107] would result in processing time of 0.14

ms [94]. When a −5 dB SNR weak primary user without adjacent-band interferers is
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The plots of logic power and logic area of the power estimation block vs. mantissa

wordlength show that the sensing performance spec is met with 10-bit mantissa. The

floating-point format results in a 2x logic power reduction and a 2x logic area reduction

as compared to the fixed-point reference design.
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detected, the required processing time for PSD estimation is only 0.5 ms, indicating that

the STA and DTA blocks occupy a 30% of the entire processing time. This processing

time overhead has to be minimized to enhance throughput.

Several design techniques are combined to reduce power and processing time over-

head of the STA and DTA blocks. The first step is to reduce power of the multipliers.

The calculation of the number of averages, M(k), can be simplified by leveraging con-

stant factors α, Q−1(PFA), Q−1(PD) and SNR [94], shown by

M(k) = α

(
(1+ψ(k))

Q−1(PFA)−Q−1(PD)

SNR
−Q−1(PD)

)2

= 74.25 · (1.15+ψ(k))2 .

(5.1)

This simplification is possible since the specs for PD, PFA and SNR are known. The

constant multipliers make use of CSD representation leading to a 50% lower power in

the STA block.

The second step is to reduce processing time. The bottleneck of processing time

is the calculation of ψ(k) = σ2
i f (k)/σ2

v f (k). The realization of ψ(k) using radix-2 long

division achieves throughput of 1 b/cycle making the processing time proportional to

the wordlength of ψ(k). To reduce processing time, the wordlength of ψ(k) is reduced

by exploiting two data properties. First, the number of averages, M(k), is constrained

by the 50 ms sensing time. Thus, the dynamic range of ψ(k) can be determined by the

output wordlength instead of input wordlengths, resulting in a lower dynamic range and

fewer integer bits: only 4 integer bits are needed. Second, M(k) is a positive integer

with precision of only 20, indicating the precision requirement of ψ(k) is dictated by

M(k), not by σ2
i f (k) and σ2

v f (k). Based on these two observations and applying [97]
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to optimize the wordlength, 10-bit output is allowed instead of a full 20-bit precision.

This leads to a 2x lower processing time overhead and a 30% lower power in the STA

block. The latency of division is further reduced by using the iterative Newton-Raphson

algorithm, which achieves quadratic convergence (2 b/cycle). Since σ2
v f (k) has a small

variation during the sensing period, 1/σ2
v f (k) can be updated in one clock cycle instead

of ten clock cycles after the first reciprocal value is calculated.

Figure 5.9 is the architecture of the STA block incorporating the above techniques.

The initial-value-calculation and iterative-reciprocal-calculation calculate 1/σ2
v f (k) by

using the Newton-Raphson algorithm. The sensing time calculation realizes Eq. (5.1).

The initial-value-calculation constrains the mantissa between 384 and 738, so we set

the initial values of 1/σ2
v f (k) to 1/512. Since one pipeline register is inserted in the

reciprocal calculation loop, data interleaving is used to reduce area. Namely, a 4-way

parallelism is applied in the STA block instead of 8-way parallelism. Applying the

above techniques in the STA and DTA blocks, an overall 7x reduction in processing

time overhead is achieved. The processing time is reduced to only 0.02 ms, representing

a negligible overhead in spectrum sensing.

5.2.4 Summary of Design Optimization

The power and area of the baseband wideband spectrum sensing processor are min-

imized by architecture-circuit co-design. The optimization framework includes power-

area optimized FFT processor, wordlength pruning, and voltage scaling.

Figure 5.11 summarizes our optimization procedure. First, an 8-way parallel 1024-
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point FFT with 25 MHz clock and logic voltage of 0.6 V results in minimum PAP,

which represents a 2.3x reduction. Then, applying the radix-factorization with radix-

22/22/23 and power-area optimized delay lines to the eight banks of 128-point FFTs

leads to another 2x reduction in PAP. Next, parallelism along with 25 MHz clock and

logic voltage of 0.6 V is applied at the top level. Memory voltage of 0.9 V is chosen to

minimize power consumption of the memory bank, resulting in a 1.7x reduction in PAP.

Finally, floating-point signal processing is utilized to reduce the power and area of the

large-dynamic-range datapath. Floating point with 10-bit mantissa and 5-bit exponent

reduces PAP by 1.6x without introducing performance loss. An overall 17.9x reduction

in power and 11.9x reduction in PAP is achieved.

5.3 Chip Implementation

Figure 5.12 shows the die photo of the wideband spectrum sensing processor that

supports PSD estimation with sensing-time and detection-threshold adaptations. The

core area is 1.14×1.44 mm2. The logic and memory are placed and routed first as

hard macros, then carefully placed to facilitate global clock tree synthesis and signal

routing. To guarantee timing and support multiple voltage domains, the buffers and

cross-coupled level shifters are placed and routed in the remaining area. The total chip

area with I/O pads is 2.77 mm2. The core supply voltage is tunable between 0.6 V to 1.0

V, and the supply voltage for I/O pads is 1.0/2.5 V. Measurements at 0.7 V confirmed

real-time 200 MS/s operation. At the core-I/O boundary, the level shifters are also
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An overall 17.9x reduction in power and 11.9x reduction in power-area product are

achieved.
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inserted to drive output pads for the entire range of supply voltage.

5.3.1 FPGA-aided Verification

ASIC verification is performed with the use of an FPGA board [108] for pattern

generation and data analysis, as shown in Fig. 5.13. The I/O interface between the PC

terminal and the FPGA board is built on the BPS environment [71]. Test vectors are

stored on the FPGA board, which stimulates the ASIC over two high-speed Z-DOK+

connectors. An external clock source is used to provide a wide range of operating

frequency. The outputs of the ASIC are captured into block RAMs for analysis.
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Figure 5.13: FPGA-aided I/O verification. Test vectors are loaded from Matlab into the

FPGA board. The results are sampled in BRAM on the FPGA and read back by the

terminal.
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The FPGA board also contains a XAUI multi-Gigabit interface that allows connec-

tivity to external components. A reconfigurable RF front-end processor with two 12-bit

ADCs was connected to the FPGA board through this interface to verify the function-

ality in a true real-time radio. The whole system, including antenna, analog front-end

and ADC, has been verified on this FPGA platform [94] before chip implementation.

5.3.2 Measurement Results

The chip measurements are shown in Fig. 5.14. Fig. 5.14(a) is a snapshot of spec-

trum sensing from a 200 MHz bandwidth, with two 30-dB INR interferers and sensing

time of 30 ms. A−5 dB SNR primary user is 200 kHz away from the narrowband inter-

ferer. A 20x reduction in spectral leakage is achieved by using MW-FPD architecture

compared to the conventional FFT-based spectrum sensor. In addition, two bins away

from a strong interferer, the interfering power is completely removed by the multitap

windowing. The effect of residual interfering power is compensated by the STA and

DTA blocks. Fig. 5.14(b) shows that these two blocks maintain PD and PFA at 0.9 and

0.1, respectively, for a −115 dBm signal in the band of interest (BOI) with adjacent-

band interferer power increasing from −80 dBm to −110 dBm. Resolution of 200 kHz

is demonstrated in the presence of adjacent-band interferers, with sensing times < 1ms

for 20 dB and < 50 ms for 30 dB INR.

The chip features are summarized in Table 5.1. To minimize power, the design is

partitioned into voltage islands consisting of logic and memory blocks, respectively.

Clock gating is applied to reduce switching activity of inactive paths. The logic and
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Table 5.1: Summary of Chip Features

Technology 65nm 1P9M CMOS

Supply Voltage Core: 0.7 to 1.0 V, I/O: 2.5 V

Core Size 1.44 × 1.14 mm2

Gate Count 1.46M

On-chip Memory 106 Kb

Peak Performance 37.5 GOPS @ 200 MS/s

Power Efficiency 5.1 GOPS/mW

Area Efficiency 22.9 GOPS/mm2

memory blocks occupy 0.82 mm2 each and operate at 0.7 V and 0.9 V, respectively.

The chip dissipates 7.4 mW (3.3 mW by logic, 4.1 mW by memory). The power and

area efficiency of the chip are 5.1 GOPS/mW and 22.9 GOPS/mm2, respectively (OP =

16-bit add).

5.3.3 Performance Comparison

A comparison of the chip with state-of-the-art is listed in Table 5.2. In spectrum

sensing performance, this work supports a 20x wider bandwidth than prior work. It can

sense a 200 MHz bandwidth with SNR of −5 dB, PD ≥ 0.9, PFA ≤ 0.1, and sensing

time < 50 ms, with 30 dB adjacent-band INR. Adaptation of sensing time and deci-

sion threshold enabled meeting a short sensing time and low SNR requirements in the

presence of strong adjacent-band primary users. On the contrary, the detection and

99



Table 5.2: Comparison with Prior Work

[53-54] [55] [56] Chip #1 [96] [111]

Radio Bandwidth (MHz) 1 10 0.4 200

PD - - - 90%

PFA - - - 10%

Processing Time - - - < 50 ms

Technology 0.18 µm 0.18 µm 65 nm 65 nm

Area (mm2) *0.36 *0.36 #0.16 1.64

Power (mW) *11.7 *8.4 #3.45 7.4

P/BW (mW/MHz) *11.7 *0.84 #8.62 0.037

*Normalized to 65 nm # Synthesis estimate

sensing performance of prior work is not guaranteed since only power spectrum den-

sity estimation was performed. The larger area of our chip is needed to accommodate

wideband sensing algorithms, but the power is comparable with other chips. To make a

fair comparison, power per bandwidth is shown. With 7.4 mW to sense 200 MHz, our

design outperforms prior work in power dissipation per bandwidth by at least 22x de-

spite adding the on-chip sensing-time and detection-threshold adaptations. The lower

power dissipation per bandwidth mainly comes from digital as opposed to analog im-

plementation. The digital approach allows voltage scaling and sophisticated sensing

algorithms for wideband detection to support simultaneous multiple-channel detection

with low power. The power and area efficiency are further improved by the power-
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area optimization methodology that incorporates power-area efficient FFT processor,

floating-point signal processing, and clock gating.

5.4 Summary

A wideband spectrum sensing processor ASIC is realized in 1.64 mm2 in a 65-

nm CMOS technology. Parallelism is used extensively along with frequency scaling,

voltage scaling, and clock gating for high-throughput and low-power wideband signal

processing. The power and area of computation-intensive FFT block are minimized

by considering parallelism, radix factorization, and the implementation of delay lines.

A per-channel floating-point data processing scheme for large dynamic range signal

effectively reduces the core area. The sensing time efficiency is improved by applying

coefficient lookup, wordlength reduction, and Newton-Raphson algorithms in STA and

DTA blocks. Compared to the prior state-of-the-art, our chip dissipates 22x less power

per bandwidth for a 20x wider sensing bandwidth. Therefore, a wideband (> 100

MHz) spectrum sensing should leverage multitap windowed frequency power detection,

adaptive sensing time and detection threshold estimations.
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CHAPTER 6

Chip 2: 500MS/s Wideband Band Segmentation

Processor for Blind Signal Classification

This chapter presents our second chip to demonstrate a energy-efficient channeliza-

tion scheme. As we found in Chapter 5, channelization by the computation-intensive

FFT processor contributes more than 50% of the overall power consumption (4 mW out

of 7.4 mW), after design optimizations. The high power comes from the large sensing

bandwidth and large FFT size for the required frequency resolution. Channelizing the

entire spectrum, however, is not necessary, provided that the spectrum is under-utilized.

Instead, we should only channelize a portion of spectrum for low power. We adopt a

wideband band segmentation processor for blind signal classification application as a

design example. In this design, a partial PSD estimation scheme, which channelizes

only the band of interest, is developed for low power. The band of interest is detected

via a smaller FFT, which size is determined by minimizing the overall energy dissi-

pation. An miss-detection tolerant signal detection algorithm is proposed for reliable

real-time signal detection as well as energy saving. These algorithms and the associated

VLSI architectures are implemented in 40-nm CMOS technology.
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6.1 Design Specifications

Band segmentation is the key module for energy-efficient blind signal classification

application. Figure 6.1 shows a high level system block diagram of blind signal classi-

fication. The main objective of band segmentation is to detect only signals of interest

from a wideband spectrum and then reconstruct the signals in a lower sampling rate to

blind signal classifier for low power. In addition, band segmentation estimate signal

parameters (bandwidth and center frequency) in order to reduce the processing time of

blind signal classifier. Table 6.1 summarizes the design specifications of the proposed

band segmentation processor. We consider wideband of 500 MHz with a 100 kHz fre-

quency resolution in order to allow a fine frequency resolution to detect narrowband

interferers. The minimum signal strength is 0-dB SNR, and the signal bandwidth is

arbitrary from 100 kHz to 500 MHz. The band segmentation processor should identify

channel occupancy with a detection probability PD of 95% and a false-alarm proba-

bility PFA of 0.5%. The proposed processor needs to meet an energy constraint of 50

µJ and a processing time of 1 ms. An algorithm-architecture co-design framework is

developed for an energy-efficient wideband band segmentation processor. The energy

minimization methodology will be presented in the next section.
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Table 6.1: Wideband CR System Specification

Radio bandwidth 500 MHz

Frequency resolution 100 kHz

Sensitivity SNR≥ 0 dB

False-alarm probability PFA ≤ 0.5%

Detection probability PD ≥ 95%

Processing time Tsensing ≤ 1 ms

Energy Consumption 50 µJ

6.2 Energy Minimization Methodology

An algorithmic design framework for energy-efficient signal processing is presented

in this section. Key algorithms for energy minimization are: 1) partial PSD estima-

tion algorithm that saves computation for channelization and 2) miss-detection tolerant

signal detection algorithm that reduces processing time for parameter estimation. The

partial PSD estimation algorithm decomposes the signal detection procedure into multi-

ple steps for low power. The miss-detection tolerant signal detection algorithm applies

a probabilistic approach to combines multiple binary decision results to enhance the

signal detection performance. Based on these two algorithms, the band segmentation

procedure has three steps: 1) coarse sensing, 2) band-pass filtering and fine sensing,

and 3) time-domain signal reconstruction. Coarse sensing exploits the channel scarcity

and estimates the bandwidth and center frequency of the band of interest with a smaller

size FFT. Then, the band of interest, which is only a portion of the spectrum, is selected
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and down-sampled by a band-pass filter, and fine sensing channelizes this selected band

by a larger size FFT with frequency resolution of 100 kHz. The passband bandwidth,

passband center frequency, and the FFT size are programmable, and the configuration

is controlled by the estimated bandwidth and center frequency from coarse sensing.

Fine sensing finally identifies the channel occupancies and estimates the signal param-

eters (bandwidths and center frequencies) using the proposed signal detection algo-

rithm. These signal parameters are used to configure the band-pass filter to reconstruct

the time-domain signal of interest with lower sampling rate.

The development of the proposed channelization and signal detection algorithms is

detailed in the following.

6.2.1 Partial PSD Estimation

The configuration of coarse sensing and fine sensing is presented in this subsec-

tion. Coarse sensing is the enabling technique for partial PSD estimation, which es-

timates the band-of-interest parameters for fine sensing, based on the binary decision

results. The number of the consecutive H1’s represents the normalized bandwidth b̂,

and the FFT index of the middle of the consecutive H1’s stands for the normalized

center frequency ĉ. Assume a Ncoarse-point FFT is utilized for coarse sensing, the

coarse-estimated normalized bandwidth and center frequency are respectively given by

b̂ = dBWBOI ·Ncoarse/Fse and ĉ = d fBOI ·Ncoarse/Fse. BWBOI and fBOI are the band-of-

interest bandwidth and center frequency, respectively. The knowledge of b̂ and ĉ allows

fine sensing to channelize only the band of interest. Therefore, the FFT size for fine
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sensing is reduced, which also enables reduced sampling rate. The minimum FFT size

used for fine sensing is N f ine,min = 2 · (N/Ncoarse), where we assume fine sensing has

2× over-sampling to prevent aliasing. N is the FFT size for entire spectrum estimation

with frequency resolution of 100 kHz, given by N = 2dlog2(Fs/100kHz)e.

Determining the optimal coarse-sensing FFT size Ncoarse is challenging. A larger

coarse-sensing FFT is able to detect narrower band-of-interest bandwidth, which allows

a smaller fine-sensing FFT for power saving. However, the coarse-sensing FFT itself

introduces overhead in both processing and power consumption. The optimal Ncoarse

balances the energy overhead from coarse sensing and the energy saving from fine

sensing. In order to quantify the energy dissipated by different coarse-sensing and fine-

sensing configurations, we decompose the overall energy into three parts: 1) coarse

sensing, 2) band-pass filtering, and 3) fine sensing. Each part is formulated by the

product of power and processing time. A high-level model for the power and processing

are presented next.

The power is modeled by the required multiply-accumulate (MAC) operations per

second. Coarse sensing involves an Ncoarse-point FFT for channelization and a MAC

operation for power estimation with sampling rate of Fs. Fine sensing performs the

same operation as coarse sensing, but with N/N f ine times lower sampling rate. The

high-level model of power consumption for coarse and fine sensing are (1+ log2Ncoarse)·

Fs and
(
1+ log2N f ine

)
·Fs ·N f ine/N, respectively.

The processing time determines signal detection performance. The required pro-

cessing time that guarantees reliable signal detection can be found by using the con-
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strained sensing probabilities (PFA(k) and PD(k)) and the test statistic T (k).

Conventionally, T (k) is approximated by Gaussian distribution, and PD(k) and PFA(k)

are expressed by a Q(·) function, according to (2.4) and (2.3). This Gaussian approx-

imation, however, is no longer valid when the constrained PD and PFA are ≤ 0.005 or

≥ 0.995. Under this circumstance, PD(k) and PFA(k) should be modeled by their true

probability density functions. Theoretically, T (k) is chi-square distributed with degree

of freedom 2M [38]. According to [38], the true expressions for PD(k) and PFA(k) are

PD(k) =
∫

∞

γ0(k)
f (T (k);2M|H1(k))dT (k), (6.1)

and

PFA(k) =
∫

∞

γ0(k)
f (T (k);2M|H0(k))dT (k), (6.2)

where M is the number of FFT frames and f (T (k);2M) represents a chi-square-distributed

probability density function with degree of freedom 2M and unit noise power. Using

(6.2) and (6.1), the required FFT frames M and normalized detection threshold γ0(k)

can be computed off-line. The detection threshold γ(k) for signal detection should be

updated in real-time by scaling the pre-computed γ0(k) with the measured noise power.

Let Mcoarse and M f ine be the FFT frames for coarse and fine sensing. The required

processing time for the coarse and fine sensing are Mcoarse ·Ncoarse/Fs and M f ine ·N/Fs,

respectively.

Using the model developed in this section, the normalized energy by using partial

PSD estimation is expressed by (6.3). EBPF represented the dissipated energy from

band-pass filtering. Since the configurations of coarse sensing and fine sensing has only
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limited possible values, Ncoarse and N f ine can be obtained through enumeration. Assume

0-dB SNR, the required number of FFT frames for coarse sensing and fine sensing are

160 and 40, respectively. Let N = 8192, the normalized energy with respect to different

coarse-sensing and fine-sensing configurations is shown in Fig. 6.2. a 64-point FFT

for coarse sensing results in minimum energy dissipation. Coarse sensing that uses a

FFT with size smaller than 64 points is unable to provide adequate resolution for fine

sensing, leading the fine-sensing FFT fail to reconfigure to a smaller size for energy

saving. On the other hand, provided that coarse sensing uses a FFT with size larger

than 64 points, the sensitivity of energy overhead is larger than the sensitive of energy

reduction. It indicates that we can’t get further improvement in energy efficiency when

the coarse-sensing FFT size is beyond 64 points. The 64-point FFT balances the energy

overhead from coarse sensing and the energy saving from fine sensing.

Normalized Energy = Mcoarse ·Ncoarse ·1/Fs︸ ︷︷ ︸
Coarse TProcessing

×(1+ log2Ncoarse) ·Fs︸ ︷︷ ︸
Coarse Norm. Power

+M f ine ·N ·1/Fs︸ ︷︷ ︸
Fine TProcessing

×(1+ log2N f ine) ·Fs ·N f ine/N︸ ︷︷ ︸
Fine Norm. Power

+EBPF.

= Mcoarse · (Ncoarse +Ncoarse · log2Ncoarse)︸ ︷︷ ︸
FineEnergy

+M f ine · (N f ine +N f ine · log2N f ine)︸ ︷︷ ︸
FineEnergy

+EBPF

(6.3)

The energy dissipation of the band-pass filter is temporally ignored, because it

doesn’t affect the energy tradeoff from the configurations of coarse sensing and fine
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Figure 6.2: Normalized energy with respect to different coarse-sensing and fine-sens-

ing FFTs configuration. 64-point FFT for coarse-sensing results in minimum energy

dissipation.

sensing. The specification of the band-pass filter, however, influences the configuration

of fine sensing. The design of the band-pass filter is presented in the following.

The band-pass decimation filter selects the band of interest and down-samples sig-

nals for low power. The band-pass filter is implemented by down-converting the band

of interest into the baseband and low-pass filtering the down-converted signals. Ideally,

provided that the low-pass filter has brick-wall frequency response, the down-sampling

ratio should be Rideal = bFs/BWBOIc= bNcoarse/b̂c. However, because a CIC filter with

brick-wall frequency response is infeasible, the down-sampling ratio needs to be re-

duced for anti-aliasing. In other words, the down-sampling ratio is related to not only

the band-of-interest bandwidth, but also the filtering performance. Fig. 6.3 gives an
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Figure 6.3: Filtering performance of a 3rd-order CIC filter.

example of the filtering performance of a third-order CIC filter. As shown in Fig. 6.3,

given a band-of-interest bandwidth of Fs/40 and a filtering performance of 60 dB, the

maximum down-sampling ratio for a third-order CIC filter is 8. This indicates that the

sampling rate for fine sensing is 5× faster than the band-of-interest bandwidth.

The fine-sensing FFT size is N f ine = N/R, where R is the maximum down-sampling

ratio that prevents the band of interest aliased by undetected blockers. According to

[112-114], the frequency response of a CIC filter is characterized by down-sampling

ratio Φ and the cascade order S. Given a band-of-interest bandwidth b̂ and a filter-
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performance constraint A, R is given by

R = arg max
Φ

Φ

subject to f
(

BWBOI/2
Fs

,Φ

)
≥ f

(
1
Φ
− BWBOI/2

Fs
,Φ

)
where f (x,Φ) =

∣∣∣∣sin(π · x ·Φ)

sin(π · x)

∣∣∣∣2S

, Φ = 2i, i = 0, ...6.

(6.4)

We define the over-sampling ratio for fine sensing as Fs/R/BWBOI . Smaller over-

sampling ratio indicates smaller fine-sensing FFT. Fig. 6.4 illustrates the the over-

sampling ratio for different band-of-interest bandwidth. As shown in Fig. 6.4, a higher-

order CIC filter, which has sharper frequency response and thus better filtering per-

formance, allows using a smaller FFT. The increased order, however, imposes larger

dynamic range on intra-stage datapath, leading to increased wordlength and energy.

The CIC filter specification is designed by investigating the tradeoff between energy

consumption and filtering performance. The optimal cascade order S minimizes the

overall energy consumption (6.3). A high-level model for power and processing time

to quantify EBPF is presented in the following.

A digital mixer is realized by one multiplier operated at Fs. An Sth-order CIC filter

involves S addition running at Fs, and another S addition running at Fs/R. The required

wordlength of an Sth-order CIC filter to support the intr-stage dynamic range is

WLCIC = S · log2R+WLFFT , (6.5)

where WLFFT and WLCIC represent the wordlength of the FFT processor and CIC filter,

respectively. The required processing time is the same as for fine sensing. Combining
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the power consumption and the processing time, the energy consumption of this band-

pass filtering module is expressed in (6.6). WLCIC/WL2
FFT is the scaling factor to

normalize a WLCIC addition to a WLFFT ×WLFFT multiplication.

EBPF = M f ine ·N ·1/Fs︸ ︷︷ ︸
TPrcessing

×(Fs +WLCIC/WL2
FFT · (S ·Fs +S ·Fs ·N f ine/N)︸ ︷︷ ︸
Norm.Power

= M f ine · (N +WLCIC/WL2
FFT ·S · (N +N f ine)).

(6.6)

Combining (6.3), (6.4), (6.5), and (6.6), the energy dissipation for different band-

of-interest bandwidth and cascade order is quantified. Let the filtering performance

as 60-dB. The normalized energy dissipation for different band-of-interest bandwidth

with respect to different cascade order is shown in Fig. 6.5. This figure illustrates

the impact of filtering performance on the fine-sensing FFT configuration and energy

saving. Smaller S has poor filtering performance, which limits the configuration of fine-

sensing FFT. Take S = 2 for example, only two configurations (N f ine = 8192 and 4096)

are allowed. As S = 4, the number of configurations of fine-sensing FFT becomes five

(N f ine = 8192, 4096, 2048, 1024, and 512). In addition, for the same band-of-interest

bandwidth, larger cascade order allows utilizing smaller fine-sensing FFT. Take a band-

of-interest of 0.016 for example, the fine-sensing FFT size changes from 4096-point to

512-point, provided that S increases from 2 to 4. This also indicates larger S allows

larger range of band-of-interest bandwidth channelized by a smaller FFT. Arbitrarily

increasing S, however, doesn’t improve energy efficiency further. When S > 4, the

overhead in energy dictates the saving from the performance gain. Keeping increasing
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ferent fine-sensing FFT configurations are shown: a) 4096-point, b) 2048-point, c)

1024-point, d) 512-point.

S, however, doesn’t guarantee lower achievable energy dissipation due to the larger

energy overhead. Therefore, S = 4 is selected for the CIC filter specification. Our

partial PSD estimation, which uses a 64-point FFT for coarse sensing and a fourth-

order CIC filter for band-pass filtering, achieves a 6.25x saving in energy as compared

the conventional entire PSD estimation.
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6.2.2 Miss-detection Tolerant Signal Detection

As mentioned in Sec. 6.2.1, the channel occupancy is identified by comparing the

test statistics to detection thresholds. Based on the binary decision, the number of the

consecutive H1’s represents the normalized bandwidth, and the FFT index of the middle

of the consecutive H1 represents the normalized center frequency. Using the consecu-

tive H1’s for parameter estimation, however, is not robust when the bandwidth is large.

As shown in Fig .6.6, a signal of interest is detected on when all the occupied chan-

nels are H1. In other words, one of the channels has miss detection leads the signal

of interest to be regarded as multiple signals. In this scenario, the signal of interest

will no longer be classified. Conventionally, to guarantee all occupied channels to be

detected, the detection probability of each channel needs to increase, especially for the

signal with large bandwidth. Provided that the signal of interest occupies b channels

and the required detection probability for this signal is PD(SOI), the required detection

probability of these channels is PD(k) = b
√

PD(SOI). Assume a signal occupies 1,000

channels and the signal detection probability is 95%, the detection probability of each

channel PD(k) is approximately 1. This detection probability can be achieved by in-

creasing the processing time by 7×. However, longer processing time results in higher

energy consumption.

Instead of increasing processing time to enhance PD(k), an miss-detection tolerant

signal detection scheme is proposed to improve PD(SOI). In the proposed algorithm,

an empty channel is found only when the adjacent few channels are all H0. When the
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Figure 6.6: Bandwidth and carrier frequency estimation by the binary decision results.

The underestimated bandwidth makes the DSP processor unable to classify the signals.

number of those consecutive H0 is smaller than or equal to a threshold, we claim those

H0 as H1 and use the updated binary decision results for parameter estimation. As a

result, PD(SOI) obtained from the updated binary decision results becomes PD(SOI) =

PD(k) ·Pr(b− 2|x) ·PD(k). Pr(b− 2|x) represents a detection probability of having at

most x consecutive H0’s among b− 2 channels. Assume each channel is statistically

independent with detection probability of PD(k), Pr(b|x) is given by (6.7), which can

be computed recursively with initial condition of Pr(b|x) = 1,∀b≤ x.

Pr(b+1|x) = PD(k) ·Pr(b|x)

+(1−PD(k)) · (Pr(b|x)− (1−PD(k))
x ·PD(k) ·Pr(b− x−2|x)) .

(6.7)

Fig. 6.7 shows PD(SOI) under different bandwidth b and threshold x. Given PD(k) =

95%, for b < 8192, x = 3 guarantees signal detection probability larger than 95%. This

approach maintains the reliable real-time signal detection without increasing processing
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time, resulting in a 7× saving in energy.

6.2.3 Design Example

A design example is shown in Fig. 6.8. We generate a 10 MHz QPSK signal in a 500

MHz spectrum. The signal is centered at 137.5 MHz at SNR of 0 dB, as shown in Fig.

6.8(a). A 64-point FFT is used in coarse sensing to exploit the channel scarcity. The

estimated PSD and the detection threshold are depicted in Fig. 6.8(b). The detection

threshold is constant due to the AWGN channel. Fig. 6.8(c) illustrates the binary de-

tection results from coarse sensing, by which b̂ and ĉ are estimated. The digital mixer

shifts the band-of-interest into baseband according to ĉ = 16.5, and the fine-sensing
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Figure 6.8: A design example. (a) Power spectrum density of the wideband scenario.

(b) Estimated PSD and the detection threshold of coarse sensing. (c) Binary decision

result from coarse sensing. (c) Estimated PSD and the detection threshold of fine sens-

ing. (e) Binary decision result from fine sensing.
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FFT is reconfigured to 512 points according to b̂ = 2. Fig. 6.8(d) demonstrates the

estimated PSD and the detection threshold in fine-sensing stage. The detection thresh-

old is shaped by the frequency response of the 4-order CIC filter. The binary detection

results from fine sensing are shown in Fig. 6.8(e). The false-alarm probability is <

0.5%. The fine estimated bandwidth b̂ = 170 and carrier frequency ĉ = 132 are used

to reconstruct the down-sampled time-domain signals. These two parameters are also

passing for signal classification to reduce computational complexity [110]. Resolution

of 100 kHz is demonstrated, with sensing times < 1ms for 0 dB SNR.

6.3 Proposed VLSI Architecture

Figure 6.9 shows the block diagram of the proposed band segmentation processor.

It consists of a digital mixer, a CIC filter, a reconfigurable FFT processor, a power

estimation module, and a parameter estimation module. The digital mixer and the

CIC filter are used for computationally efficient band-pass filter. The reconfigurable

FFT processor, the power estimation module, and the parameter estimation module

are shared for coarse sensing and fine sensing. The FFT processor and CIC filter

are the two key modules that need to be carefully designed to improve energy effi-

ciency. The high-throughput reconfigurable FFT processor is computational-intensive,

and the intra-stage datapath of the CIC filter requires large dynamic range. Several

architectural and signal processing techniques are proposed to minimize power and

area. The FFT processor uses parallelism and radix factorization to achieve minimum
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fine sensing. Coarse sensing is to select band-of-interest, and fine sensing is to chan-

nelize the selected band with finer resolution.

energy-area product. A feed-forward CIC architecture is designed to reduce the re-

quired wordlengths and enable parallelism for low power.

6.3.1 Energy-Area Efficient Reconfigurable FFT

A 64-8192 point FFT is implemented using a multi-path pipelined architecture,

which provides high throughput and low power, thus maximizing energy efficiency.

The energy efficiency of the pipelined architecture is further improved via architec-

ture parallelism [89-90], which allows for voltage scaling due to a lower operating fre-

quency. Also, a radix-factorization methodology [95] is used to determine the optimal

radix structure. This reconfigurable FFT is decomposed into 16 banks of 4-512-point

pipelined FFTs followed by a 16-point parallel FFT to minimize power-area product.
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Fig. 6.10 presents the proposed architecture and the corresponding reconfiguration.

Fig. 6.11 shows the comparison with the state-of-the-art FFTs. Number of 1024-

point FFTs per µJ ·mm2 is adopted to evaluate the performance. Compared to [80],

which was designed for minimum energy using circuit-level techniques for subthresh-

old operation, we demonstrate a 4.1x improvement in energy-area product. However,

compared to our dedicated 1024-point FFT design [111], this work scarifies a 2.3x

higher energy-area product due to the flexibility.

6.3.2 Energy Efficient CIC Filter

The conventional Sth-order CIC decimation filter with down-sampling ratio of R

consists of a cascade of S integrator operating at the input sampling rate Fs, and R-

fold decimator, and a cascade of S comb filters operating at the reduced sampling rate

Fs/R. This architecture, however, has two major challenges for low power design: 1)
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The intra-stage adders of the CIC filter requires long wordlength to support the large

dynamic range. According to (6.5), to support down-sampling ratio up to 1024, extra

40 bits are required for the intra-stage adders. 2) The recursive nature of the CIC filter

makes the integrators unable to be pipelined or parallelized, indicating that aggressive

voltage scaling is not allowed for this module.

Several signal processing techniques are applied to reduce the power of the CIC

filter. By exploring the down-sampling ratios for fine sensing are only power of 2, the

transfer function of the filter can be represented as a purely feed-forward function [115],
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as shown in (6.8).

H(z) =

(
1−Z−R)S

(1−Z−1)
S

=
(
1+Z−1)S(

1+Z−2)S · · ·
(

1+Z−R/2
)S

.

(6.8)

The modified transfer function is realized by the architecture shown in Fig. 6.12. This

feed-forward architecture allows the wordlength of the intra-stage adders increase by

only 4 bits, which significantly reduces the hardware cost and shortens the critical path

delay of each intra-stage adder. Ten cascaded stages of (1+Z−1)4 are needed for the

maximum down-sampling ratio of 1024, and each stage operates at 2x lower sampling

rate than the previous stage. Only the first i stages turn on for down-sampling ratio

of 2i. The last 10− i stages are clock-gated for power saving. This feed-forward ar-

chitecture also allows parallelism for voltage scaling. A 16-way parallelism is chosen
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Figure 6.13: Power saving from the feed-forward architecture.

to synchronize CIC filter and FFT processor, which reduces the clocking power and

improves the system robustness.

The impact of the feed-forward architecture on power saving is quantified. The

number of 1-b full-adder operation per cycle scaled by the supply voltage is used to

represent the normalized power. Fig. 6.13 illustrates the power saving with respect to

different optimization techniques. As shown in Fig 6.13, at least 2.5x saving is achieved

from the wordlength reduction. The 16-way parallelism allows supply voltage of 0.5 V,

resulting in an additional 4x saving in power.
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6.3.3 Summary of the Design Optimization

The energy consumption of the band segmentation are minimized by algorithm-

architecture co-design. The optimization framework includes partial PSD estimation

scheme, real-time signal detection algorithm, power-area optimized reconfigurable FFT

processor, wordlength pruning, and voltage scaling.

Figure 6.14 summarizes our optimization scheme with respect to different signal

bandwidths. Different signal bandwidth has different energy saving. Take signal band-

width of 10 MHz for example. First, a miss-detection tolerant signal detection scheme

enables reliable real-time signal detection, leading to a 7x reduction in processing time

and energy consumption. Then, using a 64-point FFT to detect the band-of-interest

and partially channelizing the band-of-interest via a smaller FFT result in a 6.25x sav-

ing in energy. Then, In addition, a 16-way parallel 64-8192-point FFT with optimal

radix factorization enables energy-efficient VLSI signal processing, a 10x low energy

is achieved compared to state-of-the-arts [95]. Finally, the feed-forward CIC filter al-

lows smaller wordlength and voltage scaling, reducing the energy by 3.75x. In sum-

mary, algorithmic optimization achieves 7x−45x reduction in energy consumption, and

architectural optimization contributes to another 5x−10x energy saving. An overall

70x−210x saving in energy is achieved by the algorithm-architecture co-design.
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6.4 Chip Implementation

The proposed algorithms and the associated optimized architectures are imple-

mented in a standard 40-nm CMOS process. Fig. 6.15 shows the blind signal clas-

sification processor, where the wideband band segmentation processor is on the bottom

right corner. The layout view of the band segmentation processor is shown on the bot-

tom, including a 64-8192-point reconfigurable FFT, a digital mixer, and a CIC filter for

partial PSD estimation algorithm. The core area is 1.19×1.08 mm2. Different from the

first chip, only the logic is placed and routed first as a hard macro. Then, this logic

macro, memory banks are carefully placed to facilitate global clock tree synthesis and

signal routing. To guarantee timing and support multiple voltage domains, the buffers

and cross-coupled level shifters are placed and routed in the remaining area. The core

supply voltage is tunable between 0.65 V to 0.9 V, and the supply voltage for I/O pads

is 0.9/1.8 V. Measurements at 0.65 V confirmed real-time 500 MS/s operation. At the

core-I/O boundary, the level shifters are also inserted to drive output pads for the entire

range of supply voltage.

6.4.1 FPGA-aided Verification

ASIC verification is performed with the use of a Xilinx Kintex-7 board for pattern

generation and data analysis, as shown in Fig. 6.16. The I/O interface between the

PC terminal and the FPGA board is build on Xilinx ChipScope Pro through Joint Test

Action Group (JTAG) cable. Test vectors are stored on the FPGA board, which stim-
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Figure 6.16: FPGA-aided I/O verification. Test vectors are stored on the FPGA board.

The results are sampled and verified in real-time by using Xilinx ChipScope.

ulates the ASIC over one high-speed FMC connector. The nominal voltage for FMC

pins is 2.5 V, which can be real-time adjusted and monitored via Fusion Digital Power

Designer from Texas Instruments. The clock signal is generated by the Xilinx Digital

Clock Manager (DCM) module, providing a wide range of operating frequency. The

outputs of the ASIC are captured by the ChipScope Integrated Logic Analyzer (ILA),

allowing real-time monitor and analysis.

6.4.2 Measurement Results

The chip features are summarized in Table 6.2. To minimize power, the design is

partitioned into voltage islands consisting of logic and memory blocks, respectively.

Clock gating is applied to reduce switching activity of inactive paths. The logic and

memory blocks occupy 0.58 mm2 and 0.70 mm2 and operate at 0.65 V and 0.75 V,
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Table 6.2: Summary of Chip Features

Technology 40nm 1P9M CMOS

Supply Voltage Core: 0.65 to 0.9 V, I/O: 2.5 V

Core Size 1.19 × 1.08 mm2

Gate Count 2.30M

On-chip Memory 298 Kb

Peak Performance 138 GOPS @ 500 MS/s

Power Efficiency 3.9 GOPS/mW

Area Efficiency 107.8 GOPS/mm2

respectively. For entire spectrum estimation, the chip dissipates 35.4 mW. For partial

PSD estimation, the chip dissipates only 10.2 mW. The peak power and area efficiency

of the chip are 3.9 GOPS/mW and 107.8 GOPS/mm2, respectively (OP = 16-bit add).

Figure 6.17 shows the measured energy with respect to different signal bandwidths.

In order to save the energy, the fine-sensing FFT configurations depend on channel

scarcity and signal bandwidths. The measurement results validate that the partial PSD

estimation algorithm effectively improves the energy efficiency. The maximum energy

is 23.7uJ for detecting the entire spectrum, and the minimum energy is 7.2uJ for de-

tecting only 1/16 spectrum. Without partial PSD estimation, the energy dissipation

is 23.7uJ regardless the signal bandwidth, indicating that a maximum 3.2x saving in

energy is achieved.

The impact of the band segmentation to blind signal classification is shown in Fig.
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Table 6.3: Comparison with Prior Work

[53-54] [55] [56] Chip #1 Chip #2

Radio Bandwidth (MHz) 1 10 0.4 200 500

PD - - - 90% 95%

PFA - - - 10% 0.5%

Processing Time - - - < 50 ms < 1 ms

Technology 0.18 µm 0.18 µm 65 nm 65 nm 40 nm

Area (mm2) *0.18 *0.18 *#0.08 *0.82 1.28

Power (mW) *8.3 *5.9 *#2.4 *5.2 10.2

P/BW (mW/MHz) *8.3 *0.59 *#6 *0.026 0.02

*Normalized to a 40-nm CMOS technology. #Synthesis estimate

6.18. The gray bar represents the required energy for classifying a 10-MHz signal

from a 500-MHz spectrum without band segmentation. It dissipates 1mJ. Since band

segmentation estimates signal bandwidths and carrier frequencies for the blind signal

classifier, the processing time of the blind signal classifier is reduced by more than 100x,

resulting in a 30.9x saving in energy. The partial PSD estimation provides additional

1.9x reduction in energy. Therefore, an overall 58.7x reduction in energy is achieved.

This demonstrates the value of the band segmentation for energy-efficient blind signal

classification.
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6.4.3 Performance Comparison

A comparison of this work with the state of the art is listed in Table 6.3. This work

supports a 2.5x wider bandwidth than our first chip, and a 50x wider bandwidth than

the state-of-the-art. It can sense a 500-MHz bandwidth with an SNR of 0 dB, PD ≥

95%, PFA ≤ 0.5%, and processing time < 1 ms. Only our chips guarantee real-time

reliable signal detection, since the prior work only performed power spectrum density

estimation. We use power per bandwidth as the metric for a fair comparison. With

10.2 mW to sense 500 MHz, our second chip outperforms [53-56] in power dissipation

per bandwidth by at least 29.5x. As compared to our first chip, we demonstrate a 20%

improvement in power per bandwidth, even with penalty from flexibility, larger FFT

size, and finer frequency resolution. This low power consumption come from the partial

PSD estimation algorithm and the optimization framework for the reconfigurable FFT

processor and the large-dynamic-range CIC filter.

6.5 Summary

In the second chip, we presented an energy-efficient band segmentation proces-

sor used for blind signal classification. The band segmentation is the key function to

reduce the dissipated energy from signal classification. First, the band segmentation se-

lects only signal-of-interest to the signal classifier that allows the classifier using lower

sampling rate for signal processing. Also, the band segmentation provides estimated

signal parameters that reduce the processing time from the signal classifier. However,
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the band segmentation is energy consuming due to high throughput and fine frequency

resolution requirement. An algorithm-architecture co-design framework is proposed to

improve the energy efficiency.

In the algorithmic development, the partial PSD estimation scheme saves the en-

ergy consumption by detecting only band-of-interest and thus reducing the computa-

tional complexity. A miss-detection tolerant signal detection algorithm is proposed to

reduce the processing time. The threshold is probabilistically defined, and it guaran-

tees reliable real-time signal detection. In the architectural design, the power and area

of computation-intensive reconfigurable FFT block are minimized by parallel architec-

ture and radix factorization. The low-power feed-forward CIC architecture results from

wordlength pruning and voltage scaling. This algorithm-architecture co-design yields a

70x−220x saving in energy dissipation. where 7x−45x saving comes from algorithmic

optimization, and 5x−10x comes from architectural optimization.

As a proof of concept, the proposed algorithms and architectures are implemented

in a standard 40-nm CMOS technology. The area is 1.28 mm2, and the power with

throughput of 500 MS/s is 35.4 mW and 10.2 mW for entire spectrum estimation and

partial spectrum estimation, respectively. Compared to the prior state-of-the-art, our

second chip dissipates 29x less power per bandwidth for a 50x wider sensing band-

width. Also, our second chip achieves 20% lower power per bandwidth, even with

penalty from flexibility, larger FFT size, and finer frequency resolution. Therefore,

an energy-efficient wideband band segmentation (spectrum sensing) should leverage

partial PSD estimation and miss-detection tolerant signal detection algorithms.
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CHAPTER 7

Conclusions

This dissertation presents an energy-efficient digital-circuit design framework for

cognitive radio wideband signal processing, while guarantees reliable real-time signal

detection. The energy efficiency is improved in both algorithmic and architectural ap-

proaches. In the algorithmic development, the main challenges lies in weak-signal de-

tection in the presence of strong adjacent-band interferers. A low-complexity multitap-

windowed frequency-domain power detector, which mitigates spectral leakage with-

out scarifying frequency resolution, is the solution for energy-efficient wideband chan-

nelization. The channel-specific sensing time and detection threshold are necessary

to guarantee reliable signal detection. The sensing time and detection threshold are

adapted to the measured noise power and interfering power, hereby allowing real-time

signal detection. When the spectrum is scarce, instead of channelizing the entire spec-

trum, channelization of only a portion of spectrum further improves the energy effi-

ciency. In the architectural design, high-throughput power/area-efficient FFT processor

and the associated large-dynamic-range signal processing are the main challenges. Par-

allelism, radix factorization, and DFF/RF-mixed delay line are essential to minimize

the power and area of a computation-intensive FFT processor. A mini floating-point
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signal processing is area- and energy-efficient for large-dynamic-range datapath. The

proposed algorithms and architecture is validated in simulation and real-time hardware

radio testbed.

For the proof of concept, these algorithms and architecture are implemented in two

chips. The first chip is a wideband spectrum sensing processor, with radio bandwidth of

200 MHz and fixed-and-known signal bandwidth of 200 kHz. The multitap-windowed

frequency-domain power detector with the sensing adaptation schemes is demonstrated

in this baseband processor. Compared with the prior state of the art, this chip dissipates

22x less power per bandwidth for a 20x wider radio bandwidth. The second chip is

a wideband band segmentation processor, with radio bandwidth of 500 MHz and ar-

bitrary signal bandwidth. This chip demonstrates the energy saving from partial PSD

estimation with the associated signal processing techniques. An additional 6.25x sav-

ing in energy dissipation is achieved as compared to channelizing the entire spectrum.

The proposed synthesis-based methodology is robust to process scaling and can quickly

port across technologies. The methodology can be further refined with circuit-level cus-

tomizations if that is available to the designer. It is also applicable to digital filters and

general DSP architecture optimization.

7.1 Research Contributions

Major contributions:

• Development of a spectrum sensing algorithms, including multitap-windowed
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frequency-domain power detector (MW-FPD), sensing-time adaptation (STA) al-

gorithm, and detection-threshold adaptation (DTA) algorithm. Simulations with

a 20-dB INR indicate a 2x improvement in detection compared to conventional

power detectors. An order-of-magnitude improvement in sensing time is achieved

in the presence of 30-dB interferers, while maintaining a false-alarm rate of 0.1

and a detection rate of 0.9.

• Development of partial PSD estimation algorithm, including coarse sensing, band-

pass filtering, and fine sensing, to replace entire PSD estimation. The configura-

tions of the coarse-sensing and fine-sensing FFTs is determined by minimizing

the overall energy dissipation, a 6.25x saving in energy dissipation is achieved.

• Development of a methodology for power-area-minimized FFT processor by ex-

ploring parallelism, radix factorization, and delay line implementation. Our FFT

processor achieves 67 1024-point FFTs per muJ · mm2.

• Development of floating point signal processing for large dynamic range arith-

metics. The use of floating-point arithmetic and the associated wordlength prun-

ing reduces the overall core area and core power by 27.5% and 20.1%, respec-

tively.

Minor contributions:

• Development of a framework to evaluate the detection performance of MW-FPD.

The detection performance is characterized by the measured noise power and

interfering power, allowing real-time sensing adaptation.
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• Implementation of STA and DTA by using Newton-Raphson algorithms for high

throughput. An overall 7x reduction is processing time is achieved.

• Development of a miss-detection tolerant signal detection algorithm for real-time

signal detection. A 7x reduction in processing time is achieved.

• Implementation of a CIC decimation filter by using feed-forward architecture for

low power. The uses of voltage scaling and wordlegnth pruning result in a 2.5x

reduction in power as compared to the conventional recursive architecture.

7.2 Future Work

The research on wideband spectrum sensing is still in its infancy. This work demon-

strates a methodology of an energy-efficient wideband spectrum sensing processor that

allows reliably detecting a −5-dB SNR weak signal in the presence of 30-dB INR

adjacent-band interferers. However, there are still some challenges remaining: 1) im-

provement of sensitivity, and 2) improvement of interference cancellation, for exam-

ples. As far as the sensitivity is concerned, in the presence of shadowing, the spectrum

sensing processor needs to identify signals that are as much as 20-dB below noise.

When the noise uncertainty issue is taken into account, due to the SNR wall [59], ap-

plying energy detection only and purely increasing sensing time is unable to improve

detection performance. As for interferers, the 30-dB INR limitation is too small for fu-

ture devices. According to standards of 802.22 [6], the white space for CR in the future

will operate in a variety of bands from 470 MHz to ISM bands up to 5 GHz. Traffic
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from broadcast television, existing cellular, and WiFi devices will coexist in this white

space, indicating that the dynamic range requirement might exceed 100 dB, so as the

INR requirement. In this scenario, adaptation to interfering power only will no longer

be adequate to maintain sensing performance with constrained sensing time.

To address these challenges, more sophisticated digital signal processing algorithms

and the associated circuit architecture should be developed. One research direction is

to build a hybrid spectrum sensing scheme, including both energy detection and feature

detection to improve the sensitivity. The energy detection could be utilized as coarse

sensing to detect the band of interest for low power. Then, the feature detection, which

is more robust to noise uncertainty, could detect only the band of interest to achieve

reliable signal detection with SNR of−20 dB. Investigation of interference cancellation

algorithm is another research direction. The strong interferers could be suppressed in

both analog and digital domain. A simple notch filter with reconfigurable bandwidth

could be used to mitigate interferers in analog domain to improve the resolution of the

analog-to-digital converters. In digital domain, more complex DSP algorithms could

be developed for mitigation of the residual interferers. It is also interesting to look into

the reconfiguration and the trade-off of these blocks.
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