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Computing Free Energies with Fluctuation Relations on Quantum Computers

Lindsay Bassman,1 Katherine Klymko,1 Norm M. Tubman,2 and Wibe A. de Jong1

1Lawrence Berkeley National Lab, Berkeley, CA 94720
2NASA Ames Research Center, Mountain View, CA 94035

One of the most promising applications for quantum computers is the dynamic simulation of
quantum materials. Current hardware, however, sets stringent limitations on how long such simu-
lations can run before decoherence begins to corrupt results. The Jarzynski equality, a fluctuation
theorem that allows for the computation of equilibrium free energy differences from an ensemble
of short, non-equilibrium dynamics simulations, can make use of such short-time simulations on
quantum computers. Here, we present a quantum algorithm based on the Jarzynski equality for
computing free energies of quantum materials. We demonstrate our algorithm using the transverse
field Ising model on both a quantum simulator and real quantum hardware. As the free energy is
a central thermodynamic property that allows one to compute virtually any equilibrium property
of a physical system, the ability to perform this algorithm for larger quantum systems in the fu-
ture has implications for a wide range of applications including the construction of phase diagrams,
prediction of transport properties and reaction constants, and computer-aided drug design.

I. INTRODUCTION

Thermodynamics is one of the most well-established
and powerful physical theories, with impacts ranging
from deep concepts, such as the arrow of time, to prac-
tical and technological applications, like the steam en-
gine. Its principles can be used to make predictions about
heat transport, complex chemical reactions, and biolog-
ical processes without detailed knowledge of the micro-
scopic constituents. Its ability to compute bulk prop-
erties of macroscopic systems stems from dealing with
averages over very large numbers of particles where in-
dividual deviations from the mean become insignificant.
However, as system sizes decrease down to microscopic
scales, these deviations, or fluctuations, from the average
become appreciable. In finite temperature systems, ther-
mal motion is the main source of fluctuations, while in
zero- and low-temperature systems quantum effects be-
gin to play an important role. Regardless of their source,
when fluctuations about the average become significant,
classical thermodynamics begins to lose accuracy and it
becomes necessary to apply stochastic thermodynamics.

Stochastic thermodynamics allows thermodynamic
concepts such as work and heat to be defined in terms
of the statistics of trajectories of the system [1–3]. This
framework has led to the discovery of fluctuation rela-
tions [4, 5], which relate fluctuations in non-equilibrium
processes to equilibrium properties like the free energy.
As a result, fluctuation relations can be used to study
the behavior of systems far from equilibrium. Arguably
the most celebrated fluctuation relation is the Jarzyn-
ski equality [6, 7], in which the free energy difference
between two equilibrium states of a system may be de-
rived from an exponential average over an ensemble of
measurements of the work required to drive the system
from one state to the other in an arbitrarily short amount
of time (i.e. via a non-equilibrium process). While the
Jarzynski equality was initially proven and experimen-
tally verified for classical systems [8–13], it has since been
extended to the quantum regime, for both closed [4, 14–

17] and open systems [18–26]. Experimental verification
of the quantum Jarzynski equality was proposed [27] and
later demonstrated with a liquid-state nuclear magnetic
resonance platform [28] and with cold trapped-ions [29].

While the Jarzynski equality has proven important
theoretically, providing one of the few strong statements
that can be made about non-equilibrium systems, its util-
ity for computing free energies of relevant quantum sys-
tems has thus far been limited. This is because simulat-
ing the exact trajectories of quantum systems on classi-
cal computers requires resources that scale exponentially
with system size. Therefore, computing even a single
trajectory of a quantum system with tens of particles
can quickly become intractable on classical computers,
let alone an ensemble of trajectories.

One potential path forward is to employ quantum com-
puters to compute this ensemble of trajectories of the
quantum system. Simulating quantum systems is a nat-
ural application for quantum computers, which can effi-
ciently simulate their dynamics given an initial state and
governing Hamiltonian [30–33]. Above and throughout
the rest of the paper we use the term trajectory to evoke
the correspondence with classical stochastic thermody-
namics but we note that the classical notion of a trajec-
tory is not directly applicable to quantum systems. We
instead use the term trajectory as a mathematical tool
to define physical quantities that are given by averages
over single realizations of physical processes [34].

Current and near-term quantum computers, known
as noisy intermediate-scale quantum (NISQ) computers
[35], suffer from short qubit decoherence times and high
gate error-rates. Furthermore, they do not yet have high
enough numbers of qubits to implement error-correcting
schemes that will alleviate these constraints in the fu-
ture. As a result, NISQ computers are limited in the
depth of quantum circuits that they can execute with
high-fidelity. Long-time simulations of general quantum
systems, therefore, are currently not feasible on NISQ
computers, as circuit depths tend to grow with increas-
ing numbers of simulation time-steps [36, 37]. Short-time
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simulations, however, are more feasible.
The Jarzynski equality, which can utilize an ensem-

ble of short-time, non-equilibrium dynamic simulations
to compute the free energy of a quantum system is thus
a perfect match for NISQ computers. Here, we present a
quantum algorithm to compute free energy differences
of quantum systems based on the Jarzynski equality.
By capitalizing on the ability of quantum computers to
efficiently perform short-time dynamic simulations, our
algorithm enables the computation of thermodynamic
properties of quantum systems, allowing for deeper ex-
ploration into the evolving field of quantum thermody-
namics.

II. THEORETICAL BACKGROUND AND
FRAMEWORK

To use the Jarzynski equality in practice, we define a
parameter-dependent Hamiltonian for the system of in-
terest,

H(λ) = T + U(λ), (1)

where λ is an externally controlled parameter of the sys-
tem that can be adjusted according to a fixed protocol, T
is the kinetic energy of the system and U is the potential
energy. Without loss of generality, we assume the ini-
tial equilibrium state of the system is represented by the
Hamiltonian H(λ = 0), and the final state is represented
by H(λ = 1). An ensemble of measurements of the work
performed on the system as the parameter λ is varied
from 0 to 1 is then collected. A single evolution of the
system through time as λ is varied is generally referred
to as a trajectory of the system. The Jarzynski equality
uses work measurements from an ensemble of trajectories
to compute the free energy difference between the initial
and final equilibrium states. The equality is given by

e−β∆F = 〈e−βW 〉, (2)

where β = 1
kBT

is the inverse temperature T of the system

(kB is Boltzmann’s constant) in its initial equilibrium
state, ∆F is the free energy difference between the initial
and final equilibrium states, W is the work measured for
a single trajectory, and 〈...〉 represents taking an average
over the ensemble of trajectories.

In the lab, this can be accomplished by performing
a large number of experiments measuring the work per-
formed during the evolution of the system from a fixed
initial equilibrium state as some external knob varies λ
according to a fixed protocol λ(t). Since engineering pre-
cise initial conditions and parameter-varying protocols
that are identical across all experimental trajectories can
be difficult to achieve, computer simulation provides a
promising alternative for collecting an ensemble of work
measurements, as it is trivial to set the initial conditions
and the λ(t) protocol for each simulation. In this compu-
tational setting, a large number of non-equilibrium dy-
namic simulations of the system are performed as the

parameter λ is varied from 0 to 1. The initial state of
the system for each trajectory is sampled from the initial
equilibrium (Boltzmann) distribution at inverse temper-
ature β, and the work performed during each simulation
is measured.

In the simulation of classical systems, where particles
are represented by well-defined positions and momenta,
it is straightforward to compute work incrementally by
monitoring the instantaneous values of these variables
throughout the simulation. For a quantum system, how-
ever, the position and momentum of a particle are defined
as distributions, which cannot be measured simultane-
ously, nor without destroying the quantum state of the
system. This makes the work performed in a single sim-
ulation a non-trivial value to compute. In fact, work is
not an observable for quantum systems [38]. One way to
understand this is that the range of possible values for
work is generally larger than the Hilbert space of the sys-
tem [39, 40] and thus a Hermitian operator representing
work cannot exist. Another way to understand this is
that work characterizes a process rather than an instan-
taneous state of system [41].

While there is still active debate over how best to define
work for open quantum systems [3, 4, 41–51], a general
consensus seems to have been formed for defining work
in closed quantum systems, namely the two-measurement
protocol (TMP) [4, 15, 16, 52]. In the TMP, the energy
of the isolated quantum system is measured at the begin-
ning and at the end of the trajectory, and the work over
that trajectory is defined as the difference between the
initial and final energy measurements. Thus, the TMP
can be used to generate a work distribution from an en-
semble of trajectories, where each trajectory is initialized
in a thermal state of the system in equilibrium at some
inverse temperature β.

Preparing thermal states on a quantum computer is
a non-trivial problem for which only a handful of algo-
rithms have been proposed, most of which are either not
NISQ-friendly (in terms of circuit complexity) or strug-
gle to scale to large or complex systems. Algorithms for
thermal state preparation fall into two main paradigms.
The first are algorithms that initialize the qubits into
the full thermal (i.e., mixed) state. The thermal average
of an observable can be computed directly by measur-
ing the observable in this state. Examples include algo-
rithms that prepare the Gibbs state using phase estima-
tion [53, 54], which require quantum circuits that are too
large for NISQ computers. Other examples include the
variational quantum thermalizer (VQT) [55] as well as
methods that prepare thermofield double states [56, 57],
which rely on variational techniques; the variational na-
ture of these algorithms necessitates the classical calcu-
lation of a cost function. These cost functions involve
computation of the system entropy or knowledge of the
eigenstates of the system Hamiltonian, both of which are
generally hard to compute for relevant systems, render-
ing these methods difficult to scale to large or complex
systems.
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In the second paradigm, the qubits are initialized into
one pure state at a time, where each pure state has
been sampled according to the correct statistics from the
mixed thermal equilibrium state. To calculate thermal
averages, the desired observable is measured in each of
the different pure states and the results are averaged over
the ensemble. As pure states are much easier to prepare
on a quantum computer than mixed states, this model
for thermal state preparation is more promising for NISQ
computers.

One sampling method that is particularly promising
for quantum computers produces a Markov chain of sam-
pled pure states, known as minimally entangled typi-
cal thermal states (METTS) [58, 59], whose statistics
identically mimic those of the desired thermal system.
The quantum version of the METTS algorithm, known
as QMETTS, gives a procedure to generate METTS
on quantum computers using quantum imaginary time
evolution (QITE) [60]. While initially presented as an
algorithm to obtain thermal averages of static observ-
ables, QMETTS was recently shown to enable calcula-
tion of time-dependent observables by time-evolving the
METTS on quantum computers [61]. Thus, QMETTS
can be used to generate the initial sampled states for the
non-equilibrium trajectories to generate initial and final
thermal energies to compute the work distributions for
use in the Jarzynski equality.

III. ALGORITHM

We now describe our algorithm, which provides a
procedure for obtaining a work distribution from non-
equilibrium dynamic simulations of a closed quantum
system on a quantum computer which can be used to
compute free energies using the Jarzynski equality in Eq.
(2). The non-equilibrium dynamic simulations require
three main steps: (i) prepare the initial thermal states
of each trajectory, (ii) evolve the quantum system un-
der the time-dependent Hamiltonian H(λ) as λ is varied
from λ = 0 to λ = 1 according to λ(t), and (iii) measure
the work for the given trajectory. Our algorithm utilizes
QMETTS to address task (i), Trotterized time-evolution
to address task (ii) and TMP to address task (iii).

Pseudocode for the algorithm is shown in Algorithm 1.
The algorithm takes as input the parameter-dependent
Hamiltonian H(λ), the inverse temperature β of the ini-
tial system at equilibrium, the protocol λ(t) to evolve
the parameter from λ = 0 to λ = 1, and the total
number of trajectories T . The algorithm builds up a
work distribution by looping over the T trajectories. For
each trajectory, a circuit is generated which prepares the
sampled initial state at inverse temperature β, denoted
as circ TS in Algorithm 1. According to the QMETTS
protocol, this is accomplished by initializing the qubits
into an initial product state (i.e., a computational ba-
sis state), denoted by the variable QMETTS state in Al-
goirthm 1, and then evolving the system under the initial

Algorithm 1: Pseudocode for computation of
free energies using Jarzynski equality on

quantum computers

Input: H(λ), β, λ(t), T
Output: Free energy difference

1 work distribution = [ ]
2 QMETTS state = random product state()

/* Loop over T trajectories */

3 for n=[0,T] do
/* make thermal state preparation circuit */

4 circ TS = TS circ(β
2

, H(λ = 0), QMETTS state)
/* get initial state for next trajectory */

5 QMETTS state = collapse(circ TS, n)
/* measure inital energy */

6 Ei = measure(circ TS, H(λ = 0))
/* make Hamiltonian evolution circuit */

7 circ hamEvol = hamEvol circuit(λ(t), H(λ))
/* measure final energy */

8 total circ = circ TS + circ hamEvol
9 Ef = measure(total circ, H(λ = 1))

10 work = Ef - Ei
11 work distribution.append(work)

12 return compute free energy(work distribution, β)

Hamiltonian H(λ = 0) for an imaginary time β/2 using
QITE. For the first trajectory, QMETTS state is a ran-
dom product state, while for all subsequent trajectories
QMETTS state is determined by a projective measure-
ment of circ TS from the previous trajectory. This pro-
jective measurement happens next, by collapsing circ TS
into a basis which depends on the parity of the trajectory.
In order to ensure ergodicity and reduce autocorrelation
times, it is helpful to switch between measurement bases
throughout sampling [59]. Following the method of Ref.
[59] proposed for spin- 1

2 systems, for even trajectories we
measure (i.e., collapse) along the z−axis, while for odd
trajectories we measure along the x−axis.

The thermal state circuit is then used twice more to
measure the initial and final energies of the system which
can be used to compute the work value for the trajec-
tory using the TMP. Therefore, the next step measures
the initial energy Ei by measuring the initial Hamilto-
nian H(λ = 0) in the thermal state. Next, a circuit is
created that evolves the system through real-time under
the time-dependent Hamiltonian H(λ) as it is varied ac-
cording to the protocol λ(t). The real-time evolution by
a time-dependent Hamiltonian is carried out with Trot-
terization according to the method outlined in Ref [62].
This circuit, denoted as circ hamEvol in Algorithm 1, is
concatenated with circ TS, and this total circuit, denoted
as total circ in Algorithm 1, is used to measure the final
energy by measuring H(λ = 1). With the initial and final
energies computed, the value of work for the given tra-
jectory is appended to the work distribution array, and
the loop continues to the next trajectory. After the work
distribution has been generated from the T trajectories,
it is a straightforward matter to compute the free energy
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difference using the Jarzynksi equality in Eq. (2).
A workflow diagram for the circuits that must be gen-

erated and executed is shown in Figure 1. The ther-
mal state (TS) preparation circuit is depicted in Fig-
ure 1a. The circuit is embedded into three separate cir-
cuits shown in Figure 1b: one to generate the next sam-
pled thermal state according to the QMETTS procedure
(MM), and two more for computing a value for work
with the TMP, one circuit each to measure the initial
and final energies. The initial energy measurement cir-
cuit (Ei) simply composes the TS circuit with a set of
gates that measures the value of the initial Hamiltonian,
H(λ = 0). The final energy measurement circuit (Ef )
composes the TS circuit with real-time evolution of the
system as H(λ) is varied according to the protocol λ(t),
as well as a set of gates that measures the value of the fi-
nal Hamiltonian, H(λ = 1). Figure 1c shows how a work
value is derived from these circuits for each trajectory
and how measurement of the MM circuit from the pre-
vious trajectory provides input to the TS circuit for the
next trajectory. We note that the first few work values
should be discarded as “warm-up” values to remove the
effect of choosing a random initial product state for the
first trajectory [58].

IV. RESULTS

We demonstrate our algorithm on both a quantum
simulator and real quantum hardware with a parameter-
dependent transverse field Ising model (TFIM), where
the strength of the transverse magnetic field will be con-
trolled by the parameter λ. The Hamiltonian is defined
as

H(λ) = −Jz
N−1∑
i=1

σzi σ
z
i+1 − [1− λ(t)]µx

N∑
i=1

σxi , (3)

where N is the number of spins in the system, Jz is
the strength of the exchange interaction between pairs
of nearest neighbor spins, µx is the strength of the trans-
verse magnetic field, and σαi is the α-Pauli operator act-
ing on spin i. The system starts in thermal equilibrium
at an inverse temperature β with an initial Hamiltonian
Hi = H(λ = 0). Thus, the system begins with the trans-
verse field fully turned on with a strength of µx. The
parameter λ is then increased to λ = 1 according to a
linear protocol λ(t), resulting in a system with a final
Hamiltonian Hf = H(λ = 1), where the transverse field
is completely turned off. By measuring the work per-
formed as λ is varied from 0 to 1 over many trajectories,
we can construct a work distribution which can be used
in the Jarzynski equality to compute the free energy dif-
ference. We perform this procedure for a range of initial
values of µx.

Generating the thermal state preparation circuits for
general systems can be computationally expensive due
to their dependence on the QITE algorithm, which re-

quires multiple steps of classical optimization and gen-
erates long quantum circuits. Therefore, we limit our
demonstrations to toy models with either two or three
qubits. Previous work, however, has shown that these
costs can be drastically reduced for systems with certain
symmetries [61]. Therefore, our algorithm can in princi-
ple be extended to larger systems with special symmetry
properties.

Figure 2 shows the free energy differences for a 3-qubit
TFIM computed with our algorithm for various initial
values of the transverse magnetic field µx, calculated on
a quantum simulator (i.e. a classical computer that sim-
ulates a quantum computer). The system was initialized
to an equilibrium inverse temperature of β = 9.0. The
blue circles give the analytically computed free energy
differences, which are possible to compute due to the
small system size and serve as reference points for the
ground truth. The red circles are the free energy differ-
ences computed with our algorithm using the Jarzynski
equality with an ensemble of one thousand simulated tra-
jectories. We observe that the results from the quantum
simulator agree well with the analytically computed re-
sults.

Without applying the mathematical tricks outlined
in [61] to reduce the depths of the circuits generated
by the QITE algorithm, the thermal state preparation
circuits are too deep for high-fidelity results on current
hardware for system sizes larger than 2-qubits. All 2-
qubit circuits, however, can be reduced to a short con-
stant depth [63, 64], and thus can be executed on a real
quantum processor. We therefore provide a proof-of-
concept demonstration of our algorithm on a real quan-
tum processor for a 2-qubit system. In principle, how-
ever, using circuit optimization techniques such as those
that reduce the depths of QITE circuits [61] or those that
reduce the depths of time-evolution circuits [65], can ex-
tend our algorithm to larger systems on quantum proces-
sors.

Figure 3 shows the free energy differences for a 2-qubit
TFIM computed with our algorithm for various initial
values of the transverse magnetic field µx, calculated on
the IBM quantum processor imbq bogota. The system
was initialized to an equilibrium inverse temperature of
β = 5.0. The blue circles give the analytically computed
free energy differences, while the red circles are the free
energy differences computed via the Jarzynski equality
from an ensemble of one hundred simulated trajectories.
The results from the quantum computer give the raw
data with no error mitigation of any kind performed. We
observe remarkable agreement between the results com-
puted on the quantum computer with our algorithm and
the analytically computed results.

The work distributions for the different initial values
of µx are shown in Figure 4. This shows the distribu-
tions over which we compute the exponential average
to measure free energies (Figure 3). For reference, the
free energy difference for each system is denoted by the
dashed black line. As expected, the ensemble of measured
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FIG. 1. Circuits generated and workflow diagram of the algorithm. (a) Quantum circuit diagram for the thermal state
preparation circuit, which relies on QITE. (b) Quantum circuit diagrams for the three circuits that must be generated using
the thermal state preparation circuit including two circuits for measuring the initial and final energies as well as a circuit
to measure the initial product state for the subsequent trajectory. (c) Workflow diagram depicting the necessary circuits to
generate and their order for execution to produce a work distribution for use in the Jarzynski eqaulity.

FIG. 2. Free energy differences for a 3-qubit system for vary-
ing initial strengths of the transverse magnetic field. The blue
circles give the analytically computed values, while the red cir-
cles give the free energy differences computed on a quantum
simulator.

work values from the different trajectories are distributed
around the free energy difference.

FIG. 3. Free energy differences for a 2-qubit system for vary-
ing initial strengths of the transverse magnetic field. The
blue circles give the analytically computed values, while the
red circles give the free energy differences computed on a real
quantum processor.
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FIG. 4. Work distributions for various initial strengths of the transverse magnetic field for the 2-qubit TFIM computed on a
real quantum processor. The black dotted line denotes the analytically computed free energy difference for each system.

V. CONCLUSION

Here we have introduced an algorithm for measuring
free energy differences of quantum systems on quantum
computers. We demonstrated our algorithm on IBM’s
quantum simulator and a real quantum processor for the
transverse field Ising model, showing accurate measure-
ment of free energy differences. The most resource in-
tensive component of our algorithm is the generation of
the initial thermal states, due to its dependence on the
QITE algorithm. We emphasize that other thermal state
preparation algorithms [57] could potentially be substi-

tuted here in the future without changing the nature of
our algorithm. We anticipate this and related [66] al-
gorithms to become increasingly important as a means
to explore the thermodynamics of quantum systems as
quantum hardware becomes more powerful.
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