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ABSTRACT OF THE DISSERTATION

A Search for Punctuated Patterns through Computational Modeling of Asexually

Reproducing Unicellular Populations

by

Mai Tran

Doctor of Philosophy in Geophysics and Space Physics

University of California, Los Angeles, 2023

Professor William I. Newman, Chair

In this dissertation, we investigate whether evolutionary paths for simple biological sys-

tems exhibiting punctuated or intermittent behavior through computational modeling of

asexually reproducing unicellular populations. Punctuated equilibrium is a controversial

theory proposed by Gould and Eldredge in 1972 [1] to explain observations of species experi-

encing long periods of stasis followed by bursts of change in the fossil record. The challenges

in interpreting the fossil record and in the modeling of complex ecosystems has resulted in

limited progress in settling the debate around this conjecture. In our work, we aim to build

computational models of a simple biological system to study the behavior of fitness evolution

at the population scale where fitness refers to an organism’s reproductive success. We are

motivated by the results from the ongoing Long-Term Evolution Experiment (LTEE) [2],

which observes punctuated patterns in the fitness of E. coli populations grown in a labora-

tory setting. We construct two models of organismic evolution whose results are consistent

with the fitness trends observed in the LTEE. First, we develop a Monte Carlo Wright-

Fisher model that we adapt to model the LTEE populations. Our adapted Wright-Fisher

model exhibits punctuated patterns at the bacteria’s generational time scale. Second, we

develop and introduce the smooth-colony dynamics model to study a population of colonies,

which is more naturally realistic than the adapted Wright-Fisher model’s assumptions and
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the LTEE’s laboratory environment. Our main result shows that while this more biologi-

cally realistic model fits the LTEE data, it does not display punctuated patterns in absence

of epistasis, or the interactions of genes. This indicates that punctuated behavior at the

generation time scale may be limited to specific conditions that may not be naturally occur-

ring. Further work aims to expand the complexity of the smooth-colony dynamics model to

provide additional insights into the evolutionary trends of simple biological systems.
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CHAPTER 1

Motivation

The observation of long periods of stasis with intermittent episodes of abrupt changes in the

fossil record is well established in paleontology. The conjecture put forward by Gould and

Eldredge in 1972 [1] proposes that this observation is a feature of the evolutionary process

and not simply ad-hoc conditions that are case specific nor a result of sampling bias. It has

been suggested since Gould and Eldredge’s original 1972 publication that certain conditions

can induce a punctuated behavior in evolution [4], though there has been limited evidence

supporting this hypothesis. There is currently no consensus on the mechanisms resulting in

punctuation nor total refutation of Gould and Eldredge’s conjecture leaving this important

and interesting observation in the fossil record unexplained.

The majority of the mathematical modeling efforts in the literature found, e.g. the Bak-

Sneppen model [5], have focused on the species level, for the understandable reason that

this is likely what the fossil record can capture. However, there are numerous challenges

due to, but not limited to, the length of time a species survives. For example, individual

mammal species exist for about 1 to 2 million years in changing environments, and experience

complex interactions within their ecosystem. In this work, we focus on the mathematical

and computational modeling of a simpler biological system at the level of organisms for the

study of punctuated equilibrium. We utilize real laboratory data by the Lenski group [6]

to constrain our models, which is seldom feasible in species modeling to study punctuated

equilibrium. Although this does not necessarily provide evidence at the species level, which

would be necessary to explain the fossil record, we believe the observation of punctuation at

the organism level in our work, if observed, would demonstrate that identifiable biological

mechanisms can be modeled to replicate the observed behaviors. These insights open a
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potential pathway forward to look at more complex systems in the study of punctuated

equilibrium. Additionally, the models developed and utilized in this dissertation, which are

constrained by real biological data, provide new tools to tease out conditions and mechanisms

for further research.

The objective of this dissertation is to demonstrate that the modeling of fitness evolu-

tionary paths for simple biological systems, where fitness is defined as reproductive success

being represented by a population’s growth rate, can provide insights into population evo-

lutionary trends. We investigate whether punctuated patterns can emerge where asexually

reproducing populations experience long periods of stasis which are interrupted by abrupt

episodes of change. We want to highlight the contribution of our work in deploying two mod-

els for our investigation. We develop a Monte Carlo Wright-Fisher model that we have not

seen utilized in the study of punctuated equilibrium. We construct and introduce the new

smooth-colony dynamics model that combines elements of discrete populations and overlap-

ping generational times. Additionally, we provide an approximation of the Gerrish-Lenski

mathematical model that allows faster computational ability without significant reduction

in accuracy.

In this chapter, we discuss the concept of punctuated equilibrium and provide an outline

of the dissertation. Terms highlighted in bold are defined briefly in the text and accompanied

by more extensive definitions provided in the glossary, or appendix B.

1.1 Punctuated equilibrium

The fossil record provides evidence of evolutionary processes over an extended geological

period of time, albeit a very incomplete picture. Paleontologists have long observed that the

fossil record seems to show that species experience morphological stasis for the majority of

their lifespans, or time from origination to extinction, followed by periods of rapid changes

relative to geological time. An extreme example, evoked by Bergstrom and Dugatkin (2016)

[7], of rapid changes is the Cambrian explosion where a larger number of new body forms
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emerged approximately 543 to 490 million years ago. There have been attempts to explain

these step-like observations in the fossil record through “data collection bias.” Indeed, the

likelihood that any individual organism becomes fossilized is extremely small and is depen-

dent on a numerous factors, including its composition, structure, behavior, and habitat.

Members of long-living large populations have a higher, yet nevertheless low chance of leav-

ing a discernable preserved record. The sedimentary rock cycle adds yet another layer of

complexity, biasing in favor of younger fossils being preserved. Taken together, these factors

lead to a very low sampling rate.

The data from the fossil record are not inconsistent with a step-like, rather than a gradual

progression, of morphological change. In 1972, Gould and Eldredge [1] suggested that

the unchanging intervals seen in the fossil species may not be due to a limitation of the

data-collection methods but instead evidence of a real pattern in macro-evolution. They

coined the term punctuated equilibrium (PE) to describe the conjecture that species

spend most of their life spans without obvious evolutionary change interrupted by shorter

periods of rapid morphological diversification, a result of speciation events, or creation of

species, that occur rapidly relative to geological time. In other words, the history of life could

be defined by species being evolutionarily inactive and relatively stable and then undergoing

bursts of rapid changes or speciation. This contrasts with the view that species accumulate

gradual morphological changes over time that may lead to new species. Figure 1.2 provides

a schematic distinguishing between these two ideas. In this framework, a more well-sampled

fossil record would show continuous changes over time with variable rates. An example is the

changes in shell conicity of the planktonic foraminifer Contusotruncana lineage measured in

the range of about 5 million years by Kucera and Malmgren (1998) [8] which shows gradual

changes over time, see figure 1.1.

Since its introduction, the PE concept has been extensively debated in the evolutionary

biology and paleontology communities. The current evidence suggests that species can ex-

hibit both gradual changes and periods of rapid shifts (Erwin and Anstey 1995 [10]). The

factors that influence this rate are complicated and difficult to disentangle. A punctuated

3



Figure 1.1: The mean shell conicity of the planktonic foraminifer Contusotruncana lineage

measured from 70 million years ago to 65 million years ago shows gradual changes over time.

This figure is extracted from Kucera and Malmgren (1998) [8].
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Figure 1.2: Punctuated equilibrium proposes that species experience little morphological

change for an extended period of time followed by an abrupt speciation event. The concept

of PE thus sharply contrasts with “gradualism” according to which changes are accumulated

moderately over time. As seen on the left schematic demonstrating gradualism, species

experience morphological changes gradually over time. On the right schematic demonstrating

PE, species experience abrupt changes then stay in stasis. We adapt this figure from Benton

and Pearson (2001) [9].
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equilibrium-like trend has also been observed at the genomic, or DNA, level, where bursts

of elevated mutation accumulation rate have been observed (Heasley et al. 2021 [11], Lenski

2017 [12]). How this observation shapes speciation events and the overall macro-evolutionary

trend is not clear. Questions regarding the predominant pattern of evolutionary progress and

under what conditions one might expect to observe one pattern rather than another are yet

to be resolved (Bergstrom and Dugatkin 2016 [7]).

1.2 Long-Term Evolution Experiment (LTEE)

We aim to construct our theoretical model to be simple yet fully driven by our understand-

ing of biology. We are motivated by the work of Richard Lenski and his collaborators on

microorganisms through an ongoing project that he started in 1988 called the Long-Term

Evolution Experiment or LTEE [6]. For over 30 years — and continuing — Lenski and

his colleagues have been growing twelve populations of Escherichia coli (E. coli) cul-

tivated from one ancestral strain under identical laboratory conditions (Lenski 2017 [12]).

The ancestral strain does not have the capacity for horizontal gene transfer, or the non-

reproductive transfer of genetic material from one organism to another (Lenski 2017 [12]).

Thus all genotypic variations that emerge in these populations arise from genetic mutations.

Selection then acts on these mutations depending on their impact on the organisms’ fitness.

In the context of the LTEE, fitness is a measure of a population’s reproductive success, ap-

proximated by its growth rate relative to the ancestral population. A fitness of two means

that a population grows twice as fast as its ancestral population during one growth period of

24 hours. The LTEE workers take fitness measurements of the populations and also freeze

the samples periodically for future analysis. Each population undergoes a 100 fold growth,

or roughly 6.64 generations, within a 24-hour period. They have published the fitness of the

twelve populations through 50,000 generations and performed a range of genomic studies as

technology has progressed (Lenski 2017 [12]). The fitness paths for all twelve populations

display a non-decreasing trend with a declining rate of increase. We are interested in under-

standing these fitness trajectories that follow an aggregate trait, as fitness is determined by
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a number of different traits, providing a convenient starting point for modeling which can

be built upon in future research.

1.3 Outline of dissertation

The observations highlighted above motivate the work outlined here. The focus of this

dissertation is to establish a theoretical mathematical model built on a biological paradigm.

In the simplest possible approach, we wish to explore the issues of evolutionary rate and

pattern in a relevant biological system. Our model is guided by experimental data, allowing

a more reliable interpretation of our results.

Genetic randomness is an essential feature of our model where we explore how a pop-

ulation can take different evolutionary paths in adapting to its environment. Central to

the theory of evolution are the random processes that give rise to genetic variations. These

can be advantageous, disadvantageous, or neutral. Natural selection would then weed out

disadvantageous mutations, although under certain scenarios they may remain in the pop-

ulation. In looking at highly varied species, the associated fitness landscape is highly

multi-dimensional, due to the presence of many different genetic attributes, complicating

the study of related biological behaviors. From thermodynamic principles, we expect that

there will be errors in genetic material transcriptions, replications, etc. during DNA

related processes, due to the randomness present in the associated complex chemical ki-

netics. The different transcription and replication possibilities or routes are determined by

reaction rates which are in turn controlled by chemical kinetics. Populations with different

genotypes, or genetic makeup, undergo competition defined by these chemical reactions.

To model genetic randomness, we employ what is called a mutation rate µ, which

is the probability that an organism experiences a mutation during its reproduction in one

generation. A mutation altering an organism’s genetic material may or may not impact the

fitness of the organism. Mutation is important in providing new genetic material for natural

selection to act upon. However, for this work, we are focusing on beneficial mutations and
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adaptation. We are using the mutation rate definition as the probability of an organism

to obtain a beneficial mutation during one generation both for convenience and it being a

reasonable metric. Although mutations can be neutral, deleterious, or beneficial, for large

asexually reproducing populations, deleterious mutations have a relatively minor effect on

fitness as they are eliminated from the population the same rate as their introduction [13].

Additionally, Wielgoss et al. (2013) [14] measures a relatively small fitness impact from

deleterious mutations in the LTEE populations.

This dissertation is structured as follows. Chapter Two provides an overview of the Long-

Term Evolution Experiment (LTEE) and statistical modeling of its fitness trend. Lenski et

al. (1991) [2] shows step-like trend in fitness measurements of a single LTEE population.

Wiser et al. (2013) [3] provides fitness measurements across the LTEE populations for 50,000

generations that exhibit a diminishing fitness growth rate over time. We discuss the Gerrish-

Lenski model, introduced by Gerrish and Lenski (1998) [15], that is employed by the LTEE’s

experimenters in predicting the fitness trajectory of the LTEE populations. The Gerrish-

Lenski model is the first comprehensive description at attempting to model the genotypic

competition within an asexually reproducing populations. Wiser et al. (2013) [3] adapted

the Gerrish-Lenski model and was able to predict the LTEE fitness data quantitatively well.

Chapter Three covers our reproduction and further computational adaptation of the

Bak-Sneppen model (Bak and Sneppen 1993 [5]). We employ the hierarchical data structure

developed by Newman and Phoenix [16][17] for a class of problems arising in materials science

where there is, in effect, competition between nearest neighbors under stress. This algorithm

provides the most efficient way, theoretically, to perform localized comparison and identify

the weakest elements. This algorithm enhances simulation speed by a factor of N/ logN ,

offering dramatically improved performance by a factor of 105 or greater. Moreover, since

the time of the Bak-Sneppen model [5], computer processor speeds have increased by a factor

of 1,000. The combination of methodological and hardware advancement makes it possible

for us to undertake an ambitious project that can provide a much more realistic model for

genetic changes where we analyze the behavior of a system with genotypes competing with
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nearest neighbors.

In Chapter Four, we adapt the Wright-Fisher model in modeling the LTEE and ana-

lyzing fitness trends in different time scales. The Wright-Fisher model is a commonly used

population genetic model that attempts to characterize genotype frequencies under genetic

drift, mutation, and selection. We find that for simulations of small populations with low

mutation rate leading to few mutations per generation, distinct step-like trends in fitness can

be observed. However, for large populations with the same mutation rate, simulations of the

Wright-Fisher model exhibit a more smooth curve with small “jumps” in fitness that are not

distinct and occur in relatively few generations. Utilizing the parameters proposed by Wiser

et al. (2013) [3], our simulation results of the Wright-Fisher model provide a quantitatively

similar fitness trajectory for the LTEE.

In Chapter Five, we introduce our smooth-colony dynamics model for an asexually re-

producing population under more realistic assumptions. This model is biologically more

relevant with a character similar to the Bak-Sneppen model. We model colonies of organ-

isms residing in a 1-D configuration where they evolve as discrete units. In our base model,

the colonies evolve independently, like the populations in the LTEE, which we refer to as

the non-interacting neighbors model. This is closely-related to the Wright-Fisher model

where each colony is a population in the Wright-Fisher model. In this model, the colonies

have overlapping generations with varying reproduction times. We extend this model into

the interacting neighbors model, where the evolutionary path of each colony is impacted

by their neighbors’. Our results show that the population – the collection of all colonies

– experiences faster fitness improvements in the interacting neighbors model. We initially

observe step-like trend in the early generations, possibly a transient effect due to our model

construction. Unlike the Wright-Fisher model’s results, observations in the longer term, after

several thousands of generations, show exponential growth but no distinct jumps in fitness.

Utilizing the parameters proposed by Wiser et al. (2013) [3], our simulation results of our

smooth-colony dynamics model provide a quantitatively similar fitness trajectory for the

LTEE. The fitness across a large number of colonies appears to eliminate the fitness jumps
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observed in a single population simulation in the Wright-Fisher model. This suggests the

step-like fitness observed in the LTEE data is possibly due to a single population’s data.

All three models, the Wright-Fisher, the non-interacting neighbors and interacting neigh-

bors smooth-colony dynamics models, are able to fit the LTEE data quantitatively well.

However, we observe “jumps” in fitness trajectories, or evolutionary paths, in the Wright-

Fisher model. This is due to a single population simulation. Further research is needed to

distinguish which model is more accurate in capturing the operations of a naturally occurring

asexually reproducing population.

We end with a summary chapter where we highlight our results and the direction of future

research efforts. After exploring a variety of models with varying degrees of sophistication,

we are unable to verify concrete evidence confirming punctuated equilibrium at the scale

of thousands of generations for asexual single organisms. Although we are able to observe

step-like behavior in a single population in our Monte Carlo Wright-Fisher simulations, this

also depends on the size of the population and the resolution of the number of generations.

Averaging over a greater number of simulations reduces this effect. The smooth-colony dy-

namics model accounts for a large number of populations simultaneously and fails to observe

any “punctuated” behavior. Thus, for large populations which operate as a collection of

sub-populations, we are likely to observe smooth changes in the sampling of fitness growth

over time. However, it might be possible to observe step-like behavior in a natural environ-

ment when sampling the fitness growth of a small population with no subdivisions. Further

research is needed to tease out which regime naturally occurring populations operate in, and

the conditions of the data sampled.

To assist the reading of this dissertation, we incorporate several appendixes, namely

appendix A provides a list of acronyms and mathematical symbols; appendix B contains

a glossary of important or relevant terms used in this dissertation that appear in bold

text; and appendix C includes clarification of relevant mathematical concepts and algorithm

procedures referenced in the main text.
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CHAPTER 2

The Long-Term Evolution Experiment

In this chapter, we provide an overview of the on-going Long-Term Evolution Experiment, or

LTEE, conducted by Lenski and his collaborators. The experiment aims to probe the nature

of evolution in a tractable biological system. We highlight the results of particular interest

for this work as they relate to our objective of investigating punctuated equilibrium. We then

discuss the Gerrish-Lenski model of clonal interference in asexually reproducing organisms

and the Wiser et al. (2013) [3]’s adaptation to predict the LTEE’s data trajectory.

2.1 Introduction

Since 1988, Lenski and collaborators have been growing twelve populations of Escherichia

coli (E. coli) cultivated from the same ancestral strain [12]. By keeping the environment

constant – controlling for food source, temperature, and restricting horizontal gene transfer –

the experiment allows differences in these populations to emerge through selection on random

mutations and genetic drifts. Fitness changes are measured periodically as the evolved

population grows alongside the ancestral strain. Fitness is a measurement of reproductive

success. The experimenters estimate this through the relative growth ratio of the evolved

population to the ancestral population, which will be elaborated momentarily. Lenski and

collaborators have since expanded the original scope of the experiment by incorporating gene

sequencing to study the genetic evolution of the populations across time.

The experiment starts by taking twelve sampled populations from one ancestral strain of

E. coli. They are grown in a nutrient-limited medium and propagated daily by transferring

1% of the previous day’s medium into a fresh one. The medium containing the bacteria is
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stored in a flask set in a shaking incubator at a constant temperature and rotation. During

a 24-hour cycle, the bacterial population obtains a stationary phase density, where their

population size remains constant. Thus, the E. coli population grows roughly 100 fold

during each incubation period of a day, resulting in ≈ 6.64 generations of binary fission

(26.64 = 100). A more technical description of the experiment can be found in Lenski et al.

(1991) [2].

Fitness is estimated as the relative growth rate of an evolved population to its ancestral

population in the LTEE. This sometimes is referred to as the relative fitness. We will

simply refer to this as a population’s fitness for the rest of this work. For the first 2,000

generations, evolved populations are grown alongside the ancestral population, with fitness

measurements obtained every 100 generations. This was later extended to 50,000 generations

but for longer measurement intervals of 500 generations and 1,000 generations [3]. The

fitness of population i, usually the derived population, relative to the population j, usually

the ancestral population, is indicated as, Wij. The relative fitness is estimated as the ratio of

the number of doublings, Di and Dj, of the two populations grown together in one 24-hour

growth cycle:

Wj = Di/Dj =
ln[Ni(1)/Ni(0)]/ ln(2)

ln[Nj(1)/Nj(0)]/ ln(2)
(2.1)

where Ni(0) and Ni(1) indicate the initial density and the density after one day, respectively

[2]. Densities are estimated by the counting of colonies. Additionally, at 100-generation in-

tervals, samples are taken from the twelve evolving populations for future analysis, effectively

keeping a snapshot of the evolutionary progress [2].

We recall that mutation rate refers to the probability of an organism in obtaining a mu-

tation during one generation. Mutations are important in providing new genetic material

for natural selection to act upon. Evolution of mutation rates in asexual populations is a

complex process that involves the balancing of deleterious and beneficial mutations’ effects

[18] [19]. During the 50,000 generations, 6 of the 12 populations evolved hypermutability

such that their mutation rate increased from the ancestral mutation rate [12]. Since we are

interested in constructing the simplest of models to study punctuated equilibrium, we are
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keeping this parameter constant in our models. Thus, we are not including those hypermu-

tating populations in forthcoming analyses as they have different fitness trajectories than

the ones that maintain the ancestral mutation rate.

The simplicity of the setup and relatively inexpensive nature of running the experiment

have allowed the researchers to keep the LTEE going for decades. They have utilized the

experiment to approach a variety of evolutionary questions including but not limited to, the

relationship between genotypic and phenotypic evolution in a population, and the patterns

of the twelve populations’ evolutionary paths. We are interested in the evolution of fitness

across time observed within the population. Wiser et al. (2013) have measured relative

fitness for most of the 12 populations through the first 50,000 generations [3]. We will be

using this data set to analyze the evolutionary trajectory and validate our models in later

chapters.

2.2 Fitness trend

The LTEE experimenters have observed that fitness relative to the ancestral strain increases

over time, albeit at a decreasing rate [3]. The trend in fitness growth is particularly important

to us as we would like to model the impact of mutations on fitness over time in an asexually

reproducing population. Lenski et al. (1991) reported a step function-like trend in the mean

fitness increase of the 12 populations in the first 2,000 generations [2]. Figure 2.1a shows

the mean fitness data of one of the 12 populations measured every 100 generations with

a fitting curve using an isotonic regression model with three steps as the final fit to the

trajectory by Lenski and Travisano (1994) [20]. However, due to the discretized nature of

the measurements and a single population’s sample, we cannot definitely conclude that it

exhibits a step-like trend. We have reproduced the same figure using Lenski and Travisano

(1994) [20]’s data without a trend line in figure 2.1b. Importantly, this shows that we can

be misled into saying “punctuation” if we fit straight line segments.

Wiser et al. (2013) [3] periodically measured the fitness of the LTEE populations over
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(a)

(b)

Figure 2.1: (a) Fitness trajectory relative to the ancestral population for one of the 12 pop-

ulations. Error bars are 95% confidence intervals based on 10 replicated assays. The line is

fitted using a step model. This figure is extracted from Lenski (2017) [12]. (b) We reproduce

figure 2.1a without the fitted step model trend line using data from the LTEE’s archived

website [6]. It is significant that given the prevailing uncertainty in measurement as indi-

cated in the error bars that a step-wise progression is not necessarily a good representation

for the raw data.
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50,000 generations and found that the although the fitness continues to increase during

this period, the rate of increase diminishes substantially over time. Figure 2.2 shows the

mean relative fitness of 6 populations that retain their ancestral mutation rate over time

(generations) obtained by the LTEE for 50,000 generations. As mentioned previously, we

are not including the LTEE populations that have developed hypermutability, i.e. elevated

mutation rate relative to the ancestral rate, in our analysis.

Figure 2.2: Mean fitness for the 6 populations that retained their ancestral mutation rate,

error bars are 95% confidence limits. This figure is reproduced using data from Wiser et al.

2013 [3].

We now turn to the issue of the step-like trend observed in the fitness data during the

first 2,000 generations. Lenski et al. (1991) attributes this fitness trend behavior to the

notion that new beneficial mutations take a considerable number of generations, depending

on their effects, to have appreciable impacts on the mean fitness of the population [2]. Their

example works as follows. Let’s look at a simple case where a mutation occurs in a purely

asexual population, i.e. where an offspring is produced by a single parent and no horizontal

gene transfer is present, with N members. Let P (t) be the proportion of the population

having this mutation at time t, starting at some arbitrary time, then P (0) is 1/N when the

mutation emerges in one member of the population. Assuming this mutation is beneficial,
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i.e. it increases fitness of the individual and enables it to reproduce at a faster rate than

other members in the population, and the mutation is not lost due to random drift, then it

spreads through the population as:

dP/dt = rP (1− P ) (2.2)

where r is the selection-rate constant, the increase in reproduction rate characterized by the

difference of the Malthusian parameters between the mutated organism and its ancestor [2].

This is of course, the derivative of the logistic function, see appendix C.1.2. Thus we have:

P (t) =
1

1 + ( 1
P (0)

− 1)e−rt
(2.3)

Consequently, the mean fitness of the population, relative to the ancestral population, can

be captured as a function of time:

W (t) = 1 +
r

m0

P (t) = 1 + sP (t) (2.4)

where m0 is the Malthusian parameter for the ancestor population. Let s be the selection

coefficient, measuring the difference in relative fitness of the mutated genotype and the

ancestral genotype or s = W − 1 where W is the relative fitness of the mutated genotype

using the ancestral genotype as the reference point and it is estimated as W = mmutated

m0
then

s = r
m0

. The derivation of equations (2.2) and (2.4) can be found in appendix C.2.

As shown in figure 2.3, which we reproduce from Lenski et al. (1991) [2], it can take many

generations before the mutations’ effects are reflected in the population’s mean fitness. Note

the selection rate constant used for the plots is per day, thus t in equation 2.4 is measured in

days. We convert it to binary fission generations as the second axis which is more intuitive.

For the LTEE experiment, there is 100-fold growth per day resulting in ≈ 6.64 generations

per day. The increase takes place in relatively few number of generations before reaching a

plateau, where the mutation is fixed in the population. Fixation of a mutation occurs when

it becomes the most common, or wild, type in the population, i.e. the mutation is fixed.

For two genotypes, it is easy to observe that when the genotype with a higher fitness takes

over the population, a new mean fitness is obtained. However, for a population with many
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Figure 2.3: Plot for equation 2.4 with different s values: 0.05, 0.1, and 0.2. We reproduce

this figure from Lenski et al. (1991) [2]. It takes a number of generations after the mutation

is introduced into the population before it makes a measurable impact on the fitness of the

population. Mutations with smaller selection coefficient s take longer than ones with larger

values to be fixed in the population.
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competing genotypes this new jump in fitness may not be observed so readily. We address

this scenario in Chapter Four where we discuss the Wright-Fisher model.

(a) (b)

Figure 2.4: (a) Average cell size over 3,000 generations for one population in the LTEE

experiment [21]. Elena et al. (1996) fits a step function model to the data showing distinct

steps in cell size growth. Error bars indicate 95% confidence intervals based on 10 replicate

assays. (b) Mean relative fitness appears to correlate strongly with average cell size [21].

These figures are extracted from Elena et al. (1996), please refer to their paper [21].

Since the growth in fitness that is observed in figure 2.1a may not necessarily mean a

morphological change, it is worth noting an observation by Elena et al. (1996) where the

authors report parallel behavior in cell size growth over time during first 3,000 generations

of the LTEE [21], figure 2.4a. They also show high correlation with the increasing-fitness

trend where the increase in cell size corresponds to the increase in relative fitness, figure 2.4b.

The authors did not pursue the question of whether cell size is selected for, or a byproduct

of other phenotypes being targeted. For example, bigger cells may be able to commence

growth faster than smaller cells. Another scenario is that faster growing cells tend to be

larger so large cell phenotypes may be correlated with faster growth [21]. This provides a

line of evidence that the fitness trend observed in the LTEE is a reasonable benchmark of

morphological changes, although we must be cautious in our interpretation when using this

data to inform our model.
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2.3 Gerrish-Lenski model

A key feature for genetic evolution in asexual reproducing organism is their limited ability

to combine different beneficial mutations originating from different organisms. In an asexual

population, adaptation can potentially display an abrupt increase in fitness through clonal

interference that occurs where different lineages are in competition, a concept introduced

by Muller (1932) to assert the advantageous of sexual reproduction [22]. Since asexual

populations cannot combine advantageous mutations through sexual reproduction, these

beneficial mutations have to compete to be fixed in a population. As with the LTEE,

horizontal gene transfer, i.e. the exchange of genetic material between bacteria without

sexual reproduction, is absent in this model. Thus, they are likely to be acquired sequentially,

unless in the event that later beneficial mutations occur in the mutated genotype before the

original mutation is fixed in a population, creating a scenario where less beneficial mutations

are hitchhiked through the superior mutations and multiple mutations are fixed at the same

time. This competition between lineages is the effect of clonal interference [22].

The Gerrish-Lenski (1998) [15] model is the first mathematical model attempting to

capture the phenomenon of clonal interference in an asexually reproducing population where

genetic material cannot be exchanged or combined. It has been shown to be a robust

estimation of this process [23]. In effect, the model aims to generalize the simple example

we demonstrated in the section earlier to include additional mutations arising after the first

beneficial mutation occurs. For a stable population of size N and mutation rate µ, the model

assumes that each organism in the population has a likelihood µ of obtaining a beneficial

mutation with some effect s each time it undergoes binary fission, i.e. generation.

Each binary fission an organism undergoes indicates one generation. The measure of

relative improvement in fitness is often called the selection coefficient, denoted as s. This

is commonly defined as w1

w0
= 1+s where w1 and w0 indicate the fitness of the organism after

the mutation and before the mutation respectively. Gerrish-Lenski assumes an exponential

distribution of s with the form αe−αs, where α is some scaling parameter. Once an organism

is mutated, its newly improved genotype begins to increase in frequency. If no additional mu-
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tations occur that have higher selective coefficients, the original mutation fixes and becomes

the only genotype in the population. However, if another mutation occurs with a higher s,

the original mutation may be eliminated before being fixed in the population. This is the

effect of clonal interference. Additionally, the new genotype can randomly or stochastically

fluctuate in frequency when it is still few in number, via the process of genetic drift. It

may also die out due to genetic drift even with a higher fitness genotype. Gerrish-Lenski

assumes these two processes are independent with genetic drift being the dominant force

when the genotype is low in frequency and clonal interference playing a larger role when

the genotype obtains a greater frequency in the population. The probability of a genotype

with a mutational effect s surviving genetic drift is often estimated as ≈ 4s [15]. With these

assumptions and the accompanying model construction, Gerrish-Lenski calculates that the

distribution of successfully fixed selection coefficient, labelled here as sf, for a population of

size N , mutation rate µ, and exponential distribution scaling parameter α is:

p(sf) = K4se−λ(sf,α,µ,N)−αsf (2.5)

where K is a normalizing constant such that
∫∞
0

p(sf) dsf = 1 and

λ(sf, α, µ,N) =
µ

sf
N ln(N)e−αsf4(sf +

1

α
) (2.6)

In other words, p(sf) indicates the probability that sf is produced and fixed in the population

given the parameters above. Then the expected value of sf could be found by integrating

sf p(sf) over all possible values of sf or

E (sf) =

∫ ∞

0

sf p (sf) dsf (2.7)

The Gerrish-Lenski model estimates the expected substitution rate, or number of mutations,

per generation for the population as:

E (substitution rate) = µNα

∫ ∞

0

4sf e
−λ(sf,α,µ,N)−αsf dsf (2.8)

The inverse of this gives the expected number of generations for a mutation to be fixed. Let

E (tfix) be this value, then we have E (tfix) = 1/E (substitution rate). Let W0 and W1 be
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the fitness of the population before and after a mutation is fixed and W1

W0
= 1 + sf. Then

the Gerrish-Lenski model estimates that d ln(W ) = ln(1+E (sf))
E (tfix)

and W (t) = (1+E (sf))
t/E (tfix)

where W (t) is the mean fitness of the population as a function of time (generation). To

sample selection coefficient values from the distribution in equation 2.5, we need to numer-

ically solve the equation, which may be computationally inefficient for some applications.

Thus, there is potential utility to provide a simpler, yet quantitatively similar, probabilis-

tic distribution. We present a further simplification later in Chapter 5 that remedies this

situation.

2.3.1 Adaptation to LTEE

Figure 2.5: Black dots are the mean fitness for the 6 populations that retained their ancestral

mutation rate, error bars are 95% confidence limits. The curve is the predicted trajectory

equation 2.9. We reproduce this figure using data and model from Wiser et al. 2013 [3].

Wiser et al. (2013) [3] adapts the Gerrish-Lenski model to predict the LTEE’s fitness tra-

jectory over time. The authors assume a diminishing improvement from additional mutations

by changing the beneficial mutation distribution as mutations become fixed in the popula-

tion. The parameter α in the exponential distribution of beneficial mutation is updated as

21



αn+1 = αn(1+g∗E (sf, n+1)), where n is the number of mutations fixed in the population and

g is the diminishing constant to be fitted by the experimental data. E (sf, n+1) indicates the

expected value for the n+1th selection coefficient sf in the probability distribution captured

in equation 2.5. Wiser et al. (2013) [3] derived the following equation to predict the fitness

trajectory of the LTEE’s populations:

W (t) ≈
(
2g E (sf, 1) e

g E (sf, 1)
t

E (tfix, 1)
+ 1

)1/2g

(2.9)

where W is the mean fitness, E (sf, 1) is the expected effect of the first beneficial mutation

fixed, and E (tfix, 1) is the expected time, in binary fission generations, it takes for E (sf, 1)

to be fixed in the population of size N [3]. As we have seen in the the previous section,

both E (sf, 1) and E (tfix, 1) depends on α, N , and mutation rate µ. For the LTEE, N is

approximated to be 3.3 × 107. The authors estimate E(sf, 1) and E (tfix, 1) to be ≈ 0.1 and

≈ 300 respectively from the LTEE data [3]. Figure 2.5 contains the same fitness data shown

in figure 2.2 with a trajectory curve predicted equation 2.9.

The adapted Gerrish-Lenski model appears to do well in fitting the LTEE data. However,

since it is approximated over the intervals of time it takes for the fixation of the mutations,

i.e. the mutations make up the most common genotypes in the population, it appears as a

smooth trend line. Additionally, the LTEE data was measured at relatively long intervals

– ranging from 500 generations initially then 2,000 generations later on – thus lacking the

granularity provided by figure 2.1a. We are interested in the utility of a model at the

generational scale to see the trend in fitness. Thus, we turn to the Monte Carlo simulation

of the Wright-Fisher model which will be covered in Chapter 4.
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CHAPTER 3

The Bak-Sneppen model

At the species level, the Bak-Sneppen model introduced in 1993, is perhaps the simplest

mathematical model of evolution that claims to exhibit punctuated equilibrium in biological

evolution [5]. This highly cited work models a system of species arranged in one dimension

with interacting fitness landscapes over time. At equilibrium, the system displays behaviors

the authors argue demonstrate a highly-correlated system. In this chapter, we provide an

overview of the Bak-Sneppen model. We introduce the Newman-Phoenix hierarchical data

structure for efficient repeated selection of complex data. We then show that we can repro-

duction the Bak-Sneppen model’s results using this methodology and provide further analysis

of their results with a dramatically reduced computational cost. We end by contextualizing

this model in relation to our work.

3.1 The Bak-Sneppen model summary

The Bak-Sneppen model constructs a geometry-independent, simplified, one-dimensional

ecosystem and is claimed to simulate the interdependent evolutionary paths of its species.

The model is derived through the lens of self-organized criticality which observes scale-

invariance characteristics in a system which determines the critical threshold [5]. This con-

cept was introduced by Bak et al. (1987) [24] and has been applied to different dynamical

systems including the forest fire and the sandpile models [25]. Since its publication, the

Bak-Sneppen model has been cited close to 2,000 times. This model of a biological system

has demonstrated that complicated system behaviors can emerge even in an oversimplified

model, including the appearance of punctuated equilibrium in species evolution. However,
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this intentional simplicity also greatly limits the ability of the model to be extensively ap-

plied in biology [26]. As a result, it has been predominantly explored in the physical and

mathematical sphere — some examples are Grassberger (1995) [27], Meester and Znamenski

(2004) [28], and Fontes et al. (2020) [29]. Another source for a thorough treatment of this

model and its extension can be found in Sneppen and Zocchi (2005) [30].

The Bak-Sneppen model creates and initializes an ecosystem withN species. Each species

carries a fitness-related quantity, labeled as Bi, that is drawn from a uniform distribution

[0,1). The authors introduced this representation as “barrier heights,” defined as the mea-

surement of the amount of genetic code needed to be changed to move from one local fitness

maxima to a higher local fitness maxima. These barrier heights and fitness are positively

correlated, as species with high fitness also have high barrier values. The N species are ar-

ranged in a sequential circular array with “periodic boundary” conditions - the first barrier,

B1 and the last barrier, BN are nearest neighbors. The subscript i indicates the position of

the species in the array. The system is updated at each discrete time step t, an arbitrary

counter to keep track of the number of cycles in a simulation. At each time step, the lowest

barrier is updated, through genetic mutation or species replacement, with a new barrier value

drawn from uniform [0,1). The two neighboring species are also impacted, not through mu-

tation but by the changes in fitness landscape interactions with the mutated species, and are

updated from the same distribution. The simulation will run until a predetermined number

of time steps are reached. Figure 3.1 shows a schematic of one ecosystem with eight species

and the accompanying updating process.

Initially, the positions of the species selected at each time step appear uncorrelated but

as the average barrier height of the ecosystem increases, near neighbors of mutating species

are more likely to be selected at the next time step to mutate, exhibiting self-organized

behavior [5]. Figure 3.2a is a log-log plot that shows the distribution of distances between

consecutive updates [5]. For example, in some time step t, if Bi is selected for update and in

the next time step t+ 1, Bj is selected, the distance will be the shortest difference between

their locations in the array (|j − i|). Initially, selection of subsequent updates are randomly
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Figure 3.1: This ecosystem has eight independent species (N = 8). Time step is indicated

by t. At t = 0, B4 contains the lowest barrier value, thus it is updated. Its neighbors also

experience a change in barrier values. The new barrier values for these three species are

drawn uniformly over the range between 0 and 1.
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determined. However, as time progresses, it is more likely that nearby neighbors are selected

for update in the next time step. The distribution of these distances becomes stationary,

i.e. they become statistically in equilibrium. The log-log plot exhibits a power law in the

distance distribution. Figure 3.2b shows two distributions. The first, highlighted by the

blue arrow, is the barrier’s distribution at equilibrium. The majority of the barriers have

values above 2/3(≈ 0.67) and are uniformly distributed. The second curve, highlighted by

the red arrow, is the distribution of minimum barriers that are chosen to be mutated at each

time step. Figure 3.2c shows that mutation events are sporadic for a species over time when

inactive periods are interrupted by fragmented spikes of activity. Local activity indicates

the number of selections that occurred in that location vicinity in the array. Count time

keeps track of the number of mutations (selections) that have occurred, or the time steps the

system undergoes. Although these results are quite intriguing, it is unclear that the power

law observed in the Bak Sneppen model occurs in real biological systems.

3.2 Adapting the Newman-Phoenix hierarchical data structure to

reproduce the Bak-Sneppen model

In order to reproduce the Bak-Sneppen model results, we have employed hierarchical op-

timization methodology proposed by Newman and Phoenix [16][17] for a class of problems

arising in materials science where there is, in-effect, competition between nearest neigh-

bors under stress. The Newman-Phoenix hierarchical algorithm, which we will refer to as

Newman-Phoenix onward, optimizes repeated searches over complex data systems, a fea-

ture that is applicable today with data mining and machine learning. For example, deci-

sion trees build hierarchical structures to categorize samples based on their features. Their

methodology identifies and eliminates redundant mathematical operations thereby reducing

N2 arithmetic operations to N log2N , exploiting a hierarchical structure analogous to what

is accomplished by the Fast Fourier Transform (FFT) in signal processing [16]. A relevant

real life example is competition among fibers of composite materials under stress [16]. This
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(a) (b)

(c)

Figure 3.2: At equilibrium state, (a) the log-log plot of the distribution of distances [C(X),

where X is the distance)]between consecutive updates [5]. The straight line indicates a

power law distribution of distances where the majority of the distances are small. For any

species being selected for update, the likelihood of the nearest neighbors being selected next

for update is not random at equilibrium. (b) Distribution of barrier values at equilibrium

highlighted by the blue arrow where B is the barrier and P(B) is the frequency of that barrier

[5]. The majority of the barrier values are above a certain value (≈ 0.67). The dashed line,

highlighted by the red arrow, shows the distribution of the minimum barrier values selected

at each time step. (c) Local activity, selections, of 10 consecutive sites in a system over

time, measured in units of selections in the system [5]. Collectively, these sites experience

selections intermittently with long periods of inactivity. These figures were extracted from

Bak and Sneppen (1993) [5].
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algorithm is currently the most efficient way to perform localized comparisons and iden-

tify the smallest elements. It enhances simulation speed by a factor of N/ logN , offering

dramatically improved performance by a factor of 105 for N ≥ 106 or greater depending

on N , compared to using algorithms to locate the minimum value in an unsorted array at

each time step which has O(N) time complexity. Additionally, computational speed since

the publication of the Bak-Sneppen model has increased by a factor of 1,000. The combi-

nation of methodological and hardware advancement allows us to not only reproduce the

Bak-Sneppen model efficiently but also gives us the ability to expand the simulation param-

eters. This hierarchical data structure and the gain in computational performance will allow

us to perform a larger number of simulations with a greater number of elements for longer

times. The ability to perform a large number of independent simulations tractability with a

large number of elements reduces sampling bias.

The most resource intensive operation in the Bak-Sneppen scheme is locating the mini-

mum barrier value, often requiring traversing the whole array. The Newman-Phoenix hier-

archical data structure reduces the need to traverse the whole array at each time step by

maintaining a perfect binary tree structure with the root node holding the minimum value

(see Figure 3.3). Although a one-time initialization requires O(N), each time step takes

O(log2N) to update the tree and locate the minimum value. A direct outcome of using this

computational methodology is that the Monte Carlo simulations we will perform in Chapter

5 allow us to obtain our model results in a time scale measured in minutes instead of decades

with a sample size hundreds of times larger than that in the LTEE.

Once the species in the array have been assigned their barrier values at the start of the

simulation, the Newman-Phoenix hierarchical data structure is deployed to store the barrier

values. The N species or “nodes” of the ecosystem are organized to form a binary tree with

log2N layers, and if the number of species is not a power of two, we can “pad” the array

with artificial members or nodes that have no influence or introduce any error with values

outside the accepted range to make its length a power of 2. The base layer holds the indices

of each species in array. For each successive layer above that, the nodes hold the indices
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of the smaller barrier values of their immediate children nodes. Hence, the root or lowest

node holds the smallest value of the Bi array (see Figure 3.3). Thus, the initial tree takes∑log2(N)
i=1

N
2i

= N − 1 operations or O(N) where N is the number of species or size of the

array. However, we only have to do this once and locating the minimum barrier value is

one operation, or O(1), since it is simply the root node. Changing the minimum value and

updating the binary tree take O(log2N) as we only have to make one comparison for each

layer with every new single value update in the array. We can see that without this structure,

each update will take O(N) as we need to visit each index to find the new minimum barrier

value. A schematic of this structure is displayed in figure 3.3 with N = 8 and the minimum

value is 0.163 at index 3. A more extensive description of the algorithm’s procedure can

be found in Appendix C.3. Importantly, the algorithmic developments we have made will

provide an improvement in computational speed that will allow us to simulate much more

realistic biological systems with large N and for a longer time.

Using the Newman-Phoenix hierarchical data structure, we have reproduced the Bak-

Sneppen model’s results and our work seems to be in agreement. The figures 3.2a, 3.2b,

and 3.2c extracted from their paper are mirrored by our simulation, see figures 3.4a, 3.4b,

and 3.4c. We set N = 1024 and a range of time steps from 106 to 109 for our simulations.

The graphs from the Bak-Sneppen’s paper have inconsistent parameters with some produced

using N = 4096 and another having N = 512. However, our results seem to be in agreement.

We are unsure how long their simulations ran for to reproduce figure 3.2a. Thus, we ran

our simulations over t > 109 and included the distance distributions at different simulation

points in figure 3.4a. We can see over time, the simulation results are reaching the distance

distribution documented by the original paper of the Bak-Sneppen model [5]. The preceding

validates not only our ability to replicate the Bak-Sneppen results but the potential to do

so orders-of-magnitude more rapidly, thereby permitting us to pursue much more expansive

models that are in close conformity with biological data.
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Figure 3.3: Hierarchical data structure based on Newman and Phoenix (2001, 2009) [16][17]

with N = 8. A binary tree is constructed to store information of an array holding eight

elements with varying values. The first layer compares adjacent elements and hold the index

of the smaller one. The next layer compares the elements of the adjacent indices of the layer

below it and hold the index of the smaller one. This occurs until the root node holds the

index of the smallest element.
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(a) (b)

(c)

Figure 3.4: We reproduce these graphs from Bak and Sneppen (1993) [5] showing the be-

havior of the system as it approaches equilibrium state using results from our simulation.

(a) Distribution of distances between consecutive updates. Note the system runs for t time

steps for each curve. (b) Distribution of barrier values at t = 106. The black line indicates

the distribution of the minimum barriers selected. (c) Local activity, or updates, of 10 con-

secutive sites (242, ..., 251) in a system over time, which is the total number of time steps.

The system runs for t = 106.
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3.3 Analysis

Since the time that the Bak-Sneppen model was published, it has received a lot of attention

in the literature but there seems to be few rigorous analytical results for its statistical obser-

vations [29][27]. The simplicity of the model has allowed great flexibility in adaptation and

invited substantial further mathematical analyses. Of a particular interest is the distribu-

tion of barrier values at equilibrium. There appears to be a critical threshold, above which

the majority of the barrier values lie uniformly. Empirical evidence suggests critically at

pc = 0.667, i.e. 2/3 for the Bak-Sneppen model, where the marginal distribution is uniform

on (pc, 1) as N −→ ∞ [28][5]. In this analysis, we want to dissect this observation further.

Although there is currently no analytical solution to this result, we proceed in analyzing

simpler updating schemes to provide insights to this somewhat surprising result. We look

at two updating schemes of a one-dimensional array, initialized with elements drawn from a

uniform distribution [0,1): a) minimum value update at each time step b) minimum value

and one randomly chosen index are updated at each time step. For both cases, the selected

elements are updated with values from a uniform distribution [0,1).

For the first case where only the minimum value is selected for update at each time step,

we can see that over time this results in a monotonic increase in the critical value of the

array, where all but one element is greater than this value. For each time step, the minimum

value is selected and replaced with a value from a uniform distribution [0,1) . If the new

value is less than the previous value, then this index is again selected for update in the

next time step. This index is continuously selected until the new updated value is greater

than the initial minimum value identified at some time step t. Once this is achieved, a new

critical value is established. Thus we can see over time, the majority — all but one — of the

elements in the array are greater than this critical value.

For the second case, the minimum value and a randomly chosen index are updated with

values drawn from the uniform distribution [0,1). This is an extension of the first case

with the random index update. If we simply perform a random index update at each time

step, and not the minimum value update, we can see that the distribution of the array

32



stays uniform between 0 and 1. Thus, combining these two updating schemes at each time

step intuitively creates a situation where the distribution becomes increasingly narrower

and approaches 1 by the minimum value update, and is pulled back to the uniform [0,1)

distribution by the random index update. The distribution is stationary at equilibrium.

Since at each time-step the minimum barrier value is eliminated, the system evolves to have

a step function distribution with the majority of the values being uniformly distributed above

a certain critical threshold Bc. Thus, the minimum value Bmin selected is always less than

Bc and values above Bc are only selected through the random index. For this distribution

to stay stationary, the number of elements below Bc needs to stay stable. Thus, we can

solve for the critical threshold through the following probability distribution for the number

of additional/loss elements below Bc at each time step. Let X be the random variable that

denotes the number of elements below Bc gained at each time step, we have:

P (X) =


(1−Bc)

2, for X = −1, both new Bi’s are greater than Bc

2Bc(1−Bc), for X = 0, one new Bi is above and one below Bc

B2
c , for X = 1, both new Bi’s are less than Bc

(3.1)

Solving the set of equations above gives a Bc value of 0.5, see Sneppen and Zocchi (2005)

[30]. This is in contrast with the Bak-Sneppen model which has the critical barrier value at

2/3. As a reminder, the Bak-Sneppen updates the minimum barrier value and two nearest,

i.e. non-random, neighbors at each time step. A more thorough mathematical treatment

of this problem can be found in Flyvbjerg et al. (1993) [31]. Simulation has shown that

at equilibrium, the distribution is uniform above 0.5. We can extend this to cases there

multiple random indices are selected for update at each time step. We can see that these

additional random selections will pull the minimum value update even further, resulting in

a barrier threshold Bc that is increasingly approaching 0 as the number of random selections

at each time step increases. The critical threshold can be found using the following equation:

1/(N + 1), where N is the number of random indices. As N −→ ∞, the critical threshold

approaches zero. Distributions at equilibrium, or stationary distributions, where 1, 2, 3, 4,

and 5 random indices are updated in addition to the minimum value update are included in
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figure 3.5. As we can see, the critical threshold decreases as the number of random indices

increases.

We can extrapolate from the analysis of the two cases above to analyze the behavior of

the system in the Bak-Sneppen model. The distinction – and complication – here is the non-

random neighbor update. The neighbors are not chosen independent of the minimum value

update thus the system behaves differently than the cases we have highlighted. Initially, the

updated values are not correlated as the minimum values are small. However, as the number

of updates completed increases and the minimum value selected increases, the neighbors are

more likely to be updated with values smaller than the minimum values, causing them to

be selected at the next time step to be updated. We can again see how the distribution

is pushed upward toward 1 by the minimum value update but pulled downward towards

0 because of the neighbor updates. The impact of the coupled neighbor updates however,

causes this balancing to be less pronounced since the values of the minimum value and the

values of the neighbors are correlated, as opposed to case two that is highlighted earlier.

We can observe this behavior played out in the simulations provided in figure 3.6 for the

one nearest neighbor update and the two nearest neighbor updates. Their distributions at

equilibrium are still uniform from a certain Bc value to 1. The Bc values are much smaller

than in the cases where randomly selected neighbors are updated.

3.4 Summary

In addition to the mathematical analysis, other works have adapted the Bak-Sneppen model

to analyze adjacent systems [32] [29]. For example, Guiol et al. (2010) proposed a stochastic

random walk model of evolution showing similar long term behavior as Bak-Sneppen but

with analytical results [32]. Unlike Bak-Sneppen model, however, the number of species in

Guiol et al. (2010) is not static and the species do not interact, i.e. neighboring species are

not affected as a species is introduced or become extinct [32].

Works like the Guiol et al. (2010)’s model have extended beyond the original work by

34



(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Distributions of barrier values at t = 106, N = 1024. For each figure, the

minimum value and (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5 random indices are selected for

update for each time step.
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(a) (b)

Figure 3.6: For each figure, the minimum value and 1 or two nearest neighbors are chosen

for update. Distributions of barrier values at t = 106, N = 1024 for (a) one nearest neighbor

update and (b) two nearest neighbors update (Bak-Sneppen model).

Bak and Sneppen and provided greater insights into the interesting results obtained by the

original model. However, the extent they can provide insights on punctuated equilibrium

behavior at the species scale remains an open question as argued in Gould 2009 [26]. Thus, we

are interested in looking at constrained biological systems at population and organismic scale

in order to explore biologically relevant issues including the question of evolutionary rate.

Now that we have adapted the Newman-Phoenix hierarchical data structure and provided

further analysis of the Bak-Sneppen model, we move forward in building computational

models grounded on the works of the Long-Term Evolutionary Experiment [6].

36



CHAPTER 4

The Wright-Fisher model

In this chapter, we present an adaptation of the Wright-Fisher model using a Monte Carlo

approach to study the fitness evolutionary path of asexually reproducing organisms at the

unicellular level. We have not seen this model utilized in the literature to study punctuated

equilibrium. This is a biologically simplest and least complicated situation. Using parameters

estimated byWiser et al. (2013) [3] for the Long-Term Evolutionary Experiment (LTEE), our

Wright-Fisher simulations are able predict the fitness trajectory of the LTEE’s populations

well. We observe the clonal interference effects in our results, demonstrating the possibility

for simple models of biological systems to exhibit step-like behavior in their evolutionary

path at the generation time scale.

4.1 The Wright-Fisher model

The Wright-Fisher model, developed implicitly by Ronald Fisher (1923) [33] and later explic-

itly by Sewall Wright (1931) [34], attempts to describe the evolution of genotypic frequency in

a population due to random chance. This forms the basis of modeling genetic drift in a finite

population where there are no presence of beneficial/deleterious mutations thus no selection.

In this model, there is no migration into the population. It assumes non-overlapping, dis-

crete generations where the whole population is replaced at each generation by the offspring

from the previous one with each parent equally likely to reproduce [35] [7]. This is effectively

random sampling with replacement. A schematic of the Wright-Fisher model is shown in

figure 4.1. The Wright-Fisher uses a highly simplified probabilistic expression arising from

combinatorics to convey an idealized expectation for the relative frequency distribution for
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site selections according to the stochastic processes at hand. Starting with some arbitrary

distribution of genotypes in a population, for each generation t, every organism in the popu-

lation is replaced by a progeny of the previous generation. For example, at generation t = 0,

there are two genotypes a and b with equal likelihood of reproduction, each making up 50%

of the total population of size N . Since the progeny are equally likely to be descendant of

any parent organism, in generation t = 1 the organisms of the new population are equally

likely to carry either genotype a or b. But due to stochasticity, the frequency of genotypes

a and b may not stay 50% in t = 1. In fact the probability distribution of genotype a at

t = 1 follows the binomial distribution with the probability mass function (for discrete

distributions) or PMF:

Pr(X = k) =

(
N

k

)
pa

kpb
N−k (4.1)

where pa and pb are frequencies of a and b respectively in the parents’ generation and k is

the number of offspring having genotype a. This PMF gives us the probability of drawing

k offspring with genotype a. For example, the probability of having 50% of the population

carrying genotype a at t = 1 is the same as having k = N/2, or:

Pr(X = N/2) =

(
N

N/2

)
0.5N/20.5N/2 =

(
N

N/2

)
0.5N (4.2)

For very large N, the binomial distribution is approximately normal (Feller 1968 [36]) and:

Pr(X = k) ≈ 1

σ
√
2π

e−
1
2
(x−µ

σ
)2 (4.3)

where µ is the mean and σ is the standard deviation. The mean for the binomial distribution

in this case is simply Npa and standard deviation is
√
Npa(1− pa), Thus:

Pr(X = N/2) ≈ 1√
Npa(1− pa)

√
2π

e
− 1

2
( x−Npa√

Npa(1−pa)
)2 ≈ 1√

0.5Nπ
(4.4)

Since pa = pb in our example, genotype b has the same PMF as genotype a. Note that the

PMF’s of a and b change from one generation to another, depending on the frequencies of a

and b in the previous generation.

The standard Wright-Fisher model can be extended by adding weights to the genotypes

according to their fitness advantage, allowing us to introduce mutation and selection. This
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Figure 4.1: A schematic of the Wright-Fisher model for genetic drift. In this illustration,

there are eight organisms in the population. Each organism has equal likelihood of repro-

ducing in the next generation, indicating they have the same fitness. At generation t = 0,

half of the organisms carries genotype a and the other half carries genotype b. At t = 1, the

frequency of a drops from 50% to 37.5% due to random chance. This stochastic fluctuation

in genotypic frequency is genetic drift [37]. This visual is provided to illustrate the possible

pathways that is explained mathematically in the text.
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forms a simplified basic mathematical model of asexually reproducing organisms. Thus, we

can adapt this model to simulate the fitness evolutionary path of the populations in the

LTEE. Wiser et al. (2013) has also included a simulation of Wright-Fisher to demonstrate

the robustness of their adapted model [3]. This is expected as the original Gerrish-Lenski

model, which Wiser et al. (2013) adapted, has been shown to approximate the Wright-

Fisher simulations well [23]. We have outlined both of these models in Chapter 2. We have

two objectives in utilizing Wright-Fisher for our investigation. First, we want to investigate

whether a finer resolution in single generation scale exhibit distinct jumps in fitness, since the

Gerrish-Lenski model and in effect, the Wiser et al. (2013) [3]’s adaptation, are more coarse-

grained. Second, we want to analyze the possibility of observing the punctuated equilibrium

behavior in an asexually reproducing population under different conditions using the Wright-

Fisher model.

4.2 The Wright-Fisher model with mutation and natural selection

As seen in the description above, in the standard Wright-Fisher model, the genotypic fre-

quency progresses stochastically over time from one generation to the next, forming the

foundation of studying genetic drift. To model the LTEE experiment, we need to introduce

mutations that can affect the likelihood of an organism to reproduce, or its fitness. This

allows us to model mutation and natural selection in an asexually reproducing population

using the Wright-Fisher approach. We use a Monte Carlo model, which is outlined as follows,

to simulate the Wright-Fisher model.

4.2.1 Monte Carlo algorithm outline

In this section, we are outlining the algorithmic construction of the model. We start with

a fixed population of size N , which stays constant from one generation to the next in the

simulation. Each organism i in the population carries fitness wi,t at generation t. At t = 0,

all organisms in the population is initialized with the same fitness of 1, or wi,0 = 1 for
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all i from 1 to N. In this dissertation, we retain the definition of fitness as measured in the

LTEE. Fitness is estimated as relative binary fission rate between one population to another,

usually the ancestral population. Since we are tracking the fitness evolution of individuals

in the Wright-Fisher model, we define individual fitness wi,t as the relative binary fission

rate between the ith organism at generation t and its ancestor at t = 0. When the ancestral

organism had undergone 1 doubling event, organism i has undergone wi,t doubling events

with t being the current generation. The probability of an organism in the next generation

having organism i as a parent, therefore obtaining its genotype and fitness, is wi,t/(W (t)N)

where W (t) is the mean fitness of the current generation t. Thus, an organism with relatively

larger fitness wi,t within a population is more likely to reproduce at generation t. The

population mean fitness W (t)N is calculated as
∑N

i=1 wi,t/N . Since each fitness value is

associated with a particular genotype, the genotype’s impact on an organism’s reproductive

rate is measured using fitness. Thus, in our simulation, we only keep track of the number

of organisms with each particular fitness value to approximate its genotypic frequency. We

are using the multinomial distribution to reduce computational time as implemented by

Park and Krug (2007) [23]. This will allow us to keep track of the number of organisms

carrying a particular fitness value without having to store the values for each organism. For

example, we only need to store one value of na as the number of organisms carrying genotype

a without having to store na organisms’ fitness values separately. Please refer to Park and

Krug (2017)’s supplement for a full treatment of drawing from a multinomial distribution

[23]. Feller (1968) also serves as a classic textbook on this subject [36].

Once the population has been repopulated with offspring from the previous generation,

it then undergoes mutation. Let the mutation rate µ be the probability of an organism

obtaining a beneficial mutation during each generation. Instead of randomly selecting the

organisms to be mutated with probability µ, we draw a random variable Q from a bi-

nominal distribution with success µ as the number of organisms to be mutated. This would

reduce computational resources. We then randomly select Q organisms in the population to

undergo mutation. When an organism mutates, its new fitness is determined by a selection
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coefficient, si,t, and calculated as wi,t(1 + si,t). The selection coefficient si,t is drawn as a

random variable from the exponential distribution αe−αs. This is a standard distribution

used to model beneficial selection coefficient in population genetics [23]. We continue to

repopulate and mutate the organisms until a set simulation time is met. Please refer to

figure 4.2 which we provide as a visualization of this algorithm.

4.2.2 Results

We have simulated the Wright-Fisher model using parameters from Park and Krug (2007)

[23] to validate our code setting α = 50, µ = 10−6, and the number of generations as 20,000.

Park and Krug (2007) simulates their algorithm for population size N ranging from 103 to

109 [23]. The smallest population was run for 108 times or iterations and the largest was

run for 32,000 iterations. Since we simply want to validate our code, we ran 1,000 iterations

for population sizes N = 103, 104, 105, 100 iterations for population sizes N = 106, 107, 108,

and 10 iterations for population size N = 109. The results of the validation check align well

with the original model, allowing us to move forward and add the additional parameters to

model the LTEE, see figure 4.3. The resulting model is outlined in the next section.

In figure 4.3, we show the rate of fitness improvement for each population size. We

include our numerical estimates of the Gerrish-Lenski mathematical model and Park and

Krug (2007) [23]’s estimates. Park and Krug (2007) [23]’s approximations of the Gerrish-

Lenski model are lower than ours due to an adjustment they have proposed in dealing with

the probability of surviving drift. The authors argue that the independence assumption the

Gerrish-Lenski model makes regarding clonal interference and genetic drift is likely to cause

the model to overestimate the survival of the beneficial mutations, thus reducing the rate

of fitness improvement. Instead of utilizing 4s, or some similar linear approximation, as

the survival probability estimation of a mutation with selection coefficient s as in Gerrish-

Lenski, they propose a correction in the form 1 − e−2s [23]. Although this allows their

estimations to be closer to the Wright-Fisher simulation results, we find that by adjusting

the survival probability estimation to be 2s (another commonly used approximation), we can
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Figure 4.2: A schematic of the Wright-Fisher model with mutation and selection. Three

genotypes with fitness wb, wc, and wd, are direct descendants of the original genotype wa.

Assume wa < wc < wb < wd, wa and wc genotypes are out-competed by the other two

genotypes [event I)]. Although wd has a higher fitness than wb, it is lost due to random

chance [event II)]. Genotype wb is fixed in the population in generation 5, or become the

single genotype [event III)]. A new genotype we emerges from wb but before it is fixed in

the population, it is mutated once again to form genotype wf [event IV)]. If genotype wf is

fixed in the population in later generations, the mutation that creates genotype we will also

be fixed (assuming the mutation forming wf does not interfere with the mutation forming

we).
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get relatively close to their adjusted estimation for the simulated population range, as shown

in figure 4.3. Since the updated approximation does not significantly improve the model’s

estimations, we will continue to use the 4s to remain consistent with Gerrish-Lenski’s original

model for further analysis in this chapter and the rest of the dissertation.

Figure 4.3: The Wright-Fisher model simulated with varying population sizes. The Gerrish-

Lenski model using different survival probabilities are also included (Park and Krug’s, 4s,

2s). This graph has been reproduced using the same parameters as Park and Krug (2007)

[23], please refer to their paper for the original figure.

Two examples of our simulations are shown in figure 4.4 with varying population sizes.

As expected, fitness increases exponentially with a natural log plot from figure 4.6 showing

a linear trajectory for the range of population sizes simulated. Fitness increases much faster

with larger population sizes since there are many more mutations per generation that can

be selected for, given the same mutation rate and mutational effect distribution. All our

simulations exhibit fitness jumps though they are more defined in smaller populations for the

number of generations simulated, as seen in figure 4.4a for population size N = 104. In fact,
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depending on the population size N , fitness jumps can be observed given the appropriate

generational time scale. Although the fitness jumps in figure 4.4b for N = 108 are less

pronounced, zooming into the fitness trajectory from generation 5,000 to 5,500 shows more

distinct steps in figure 4.5. This is likely an observation of clonal interference where the

beneficial mutation does not measurably affect the population’s fitness until it has spread

to a significant portion of the population. As shown in figure 4.7, the “jumps” observed in

fitness occur in close conjunction with generations in which the dominant genotypes reach

their peak frequency, which can be 100%. Fitness stays relatively constant until the dominant

genotype reaches a certain frequency to have measurable effect on the population fitness. It

is important to note that the issue of smoothness of the curves depends substantially on

the number of generations involved as well as the number of organisms in a population.

Moreover, the relevance to the fossil record is complicated because of the incompleteness

present over long time scales and the distribution geographically over the surface of the

Earth.

4.3 The Wright-Fisher model with diminishing-returns epistasis

The Wright-Fisher model simulations in figure 4.3 does not account for epistasis, or the

interaction between mutations. Khan et al. (2011) [38] show that there is a diminishing-

returns epistasis in the LTEE populations where as fitness increases in a population, the

marginal improvement from additional mutations decreases. In this section, we account for

this diminishing fitness improvement effect in order to predict the fitness trajectory of the

LTEE populations.

4.3.1 Algorithm outline

In order to decrease the fitness improvement rate over time, we can change the distribution

of the selection coefficient s, which determines the fitness effects of the mutations. We can

reduce the likelihood of obtaining large values of s by increasing the scaling parameter α
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(a)

(b)

Figure 4.4: Two Wright-Fisher simulations running for 20,000 generations with α = 50,

µ = 10−6, and N = 104 in (a) and N = 108 in (b). The fitness growth varies greatly as

population size increases. The exponential growth in fitness can be seen more effectively

in (b) since it’s likely to have experienced substantially more mutations during the same

number of generations as (a). These simulation results simply demonstrate the behavior of

the model for the given parameters, which need to be constrained for the appropriate system.
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Figure 4.5: Fitness trajectory from figure 4.4b for population size N = 108 zooms into

generation 5,000 to 5,500.

Figure 4.6: Natural log fitness trajectories for populations with varying sizes using the

Wright-Fisher model. These simulations are ran for 20,000 generations with scaling param-

eter α = 50 and mutation rate µ = 10−6. All populations’ fitness experience exponential

growth, as indicated by the straight lines in the natural log scale.

47



(a)

(b)

Figure 4.7: We superimpose on figures 4.4a (a) and 4.5 (b) the frequency of the dominant

genotype at each generation as dashed curves (−−). The solid curves are the mean fitness

of the populations. The “jumps” observed in fitness occur in close conjunction with the

generations when the dominant genotypes reach their peak frequency, which can be 100%.
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over time since the mean value of s with the exponential distribution αe−αs is 1/α. Wiser

et al. (2013) proposes increasing α by setting αn+1 = αn(1 + g ∗ E (sf, n+1)) as mentioned in

Chapter 2 with g being fitted from the LTEE data and found to be 6 [3]. This corresponds

to updating α as αi,t = αi,t−1(1 + g ∗ si,t) for each genotype in our Wright-Fisher model.

Using the remaining parameters from Wiser et al. (2013) [3], we set the initial scaling

parameter αi,0 = 85 for all organisms, mutational rate µ = 1.7 × 10−6, and population size

N = 3.3 × 107 (which is the effective population of the experiment). Since the Wiser et al.

(2013) parameters are fitted for natural generations [3], we need to adjust our Wright-Fisher

model for binary fission by applying a factor of ln(2).

4.3.2 Results

The results of our simulations when accounting for epistasis is shown in figure 4.8a. Although

it approximately follows the data trend from the LTEE experiment, utilizing Wiser et al.

(2013) [3]’s parameter estimates appear to underestimate its prediction of the LTEE’s fitness

data. This is expected as we have shown empirically in the previous section that the Gerrish-

Lenski model overestimates the fitness improvement of a Wright-Fisher model. Setting

the population size and the diminishing constant g at the same values as the Wiser et

al. (2013) [3]’s model, we can adjust either µ or the initial scaling factor α for the selection

coefficient distribution to obtain a better fit to the LTEE data. We found the combinations

of µ = 5× 10−6 and αi,0 = 85 or µ = 1.7× 10−6 and αi,0 = 75 appear to simulate the data

well, see figure 4.9. Since the mutation rate for E. coli is normally set to be roughly 10−6,

we think the second combination that keeps the same mutation rate as Wiser et al. (2013)

[3] may be a better estimate for α.

By adding a diminishing constant, the Wright-Fisher model is able to capture the declin-

ing fitness growth rate observed in the LTEE data. As mentioned previously, this diminish-

ing constant has been fitted to the observed data. Without a diminishing constant, fitness

follows an exponential growth in our Wright-Fisher model. As each genotype experiences

additional mutations, the benefits from the new mutations are drawn from exponential dis-
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tributions with a smaller means. This effectively reduces the collective fitness growth rate

of the population over time. As shown, the trajectory of the LTEE fitness data can be fitted

through different combinations of the variable inputs mutation rate µ and initial exponential

distribution scaling parameter αi,0. Population size N can also be adjusted, although it is

constrained by the LTEE so we chose not to vary it in this section.

4.4 Discussion

Wiser et al. (2013) [3]’s fit to the LTEE data exhibits a smooth line while our simulation

results are more analogous to an irregular staircase. This is likely due to the fact that we only

use the mean for six simulations to mimic the six populations in LTEE that did not undergo

hypermutability. Although we expect a larger number of simulations will make our Wright-

Fisher results appear more smooth, a single simulation is likely to exhibit rapid jumps in its

fitness trajectory as we have seen in the case of no epistasis earlier due to clonal interference.

In figure 4.8b, we zoom into a shorter time scale to highlight this behavior. We include

both the mean values of six simulations and one sample simulation in addition to Wiser et

al. (2013) [3]’s result. Due to the coarse-grained approach, their result exhibits a smooth

trajectory of fitness. The Gerrish-Lenski model adapted by Wiser et al. (2013) evaluates the

expected increase in fitness based on the fixation of one beneficial mutation at a time thus it

does not track fitness values at every generation [3]. The fitness trend before fixation time

is approximated in retrospect using the expected fitness increase once the mutation is fixed,

or reaches 100% frequency in the population. The Wright-Fisher model is able to provide

a higher trend resolution since it captures the population’s fitness at each generation. For

a single simulation of Wright-Fisher (4.8b), we can see the jumps in fitness more distinctly.

The jumps get smaller and have longer time intervals in later generations due to a growing

α which reduces the fitness improvement rate. Intuitively, increasing α values decreases the

probability of producing mutations with large beneficial coefficients, leading to the declining

effects of the mutations fixed. Mutations with smaller s values also take a longer time to

circulate and become the standard type in the population.
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(a)

(b)

Figure 4.8: (a) Black circles are data from LTEE of the 6 populations that retained the

ancestral mutation rate. Error bars are 95% confidence intervals. The black curve is the

fitness trajectory predicted by Wiser et al. (2013) [3] and the magenta curve is the fitness

trajectory from the Wright-Fisher simulations with error bars of 95% confidence intervals

based on multiple simulations. (b) Same graph as a) up to 5,000 generations with an addi-

tional sample Wright-Fisher simulation and without error bars.
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(a)

(b)

Figure 4.9: Wright-Fisher simulations with differing parameters. For both graphs, population

size N = 3.3× 107 and diminishing constant g = 6 with (a) mutation rate µ = 5× 10−6 and

scaling parameter αi,0 = 50 and (b) mutation rate µ = 1.7 × 10−6 and scaling parameter

αi,0 = 75. By adjusting the inputs mutation rate µ and/or scaling parameter αi,0, the

Wright-Fisher model can robustly predict the LTEE trajectory.
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Figure 4.10: Trajectories of cell size growth for the twelve populations in the LTEE. Each

curve is the best fit of a hyperbolic model for one population [20]. The cell growth trajectories

of all populations show diminish rate in later generations. This figure is extracted from Lenski

and Travisano 1994, please refer to their paper [20].
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The jumps in fitness shown in figures 4.4 and 4.8b do not strictly demonstrate examples

of punctuated equilibrium since they are not at the species scale, and occur in a relatively

short time frame, both in the number of generations and in normal time. However, they show

that the behavior of step-like changes can indeed occur in a biological system as observed

in the simple laboratory experiment of the LTEE and even simpler mathematical model.

Another possible interpretation of the LTEE data, and the Wright-Fisher simulation in

conjunction, is that they seem to exhibit punctuated equilibrium at a higher scale than

the granular generational level, at thousands of generations. Because of diminishing-returns

epistasis in later fixed mutations, the fitness improvement is markedly smaller in latter

generations. This was the same argument made by Gould (2009) when observing the trend

of the cell size growth of LTEE [26]. Gould (2009) used the cell growth reported by Lenski

and Travisano (1994) as an example of a punctuated pattern observed at a scale below

species level [26][20]. As we have mentioned in Chapter 2, it exhibits a parallel trend to the

fitness trajectory, showing rapid growth in earlier generations followed by little changes in

the later generations (See figure 4.10). Since the E. coli populations in LTEE are cultivated

in a different environment than what they were adapted to prior to the experiment, they may

experience a rapid fitness increase which slows down as they adapt to the new environment.

As the organisms are fully adapted to the environment and/or a balance is reached between

beneficial mutations and deleterious mutations, no further fitness improvement will occur

[3]. Our model and the LTEE data, of course, do not represent any remote interpretation

of the fossil record since they are vastly simplified and at the organismic scale. However, it

still demonstrates how a simple model like the Wright-Fisher can exhibit step-like trends in

the relevant scales.

With one Wright-Fisher simulation, we observe “jumps” in fitness in both exponential

fitness growth and the inclusion of a diminishing returns constant to model the LTEE ob-

servations. However, as shown in our prediction of the LTEE’s fitness trajectory, averaging

over a larger number of simulations reduces this effect. Increasing the number of the Monte

Carlo simulations of the Wright-Fisher could reduce the uncertainties in the simulation re-
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sults. As the LTEE’s fitness data comprises of only twelve populations, and just six retain

the ancestral mutation rate, we anticipate that a much larger sample size, e.g. 1,000 popu-

lations, will likely to eliminate any hint of intermittency. If a collection of populations are

more likely to be naturally occurring, as the homogeneous conditions sustained in the LTEE

and required in the Wright-Fisher model are difficult to be met in nature, this negates the

potential for “punctuation” observed in this system. However, if a single population is likely

to be sampled in naturally occurring conditions, we might be more likely to observe step-like

behavior in the data. For an extreme example, consider an entire continent that is populated

by one species of asexually reproducing organisms. If these organisms operate as discrete

populations, samplings of their fitness growth over time will likely show a smooth trajectory.

However, if they operate as one population, then we potentially could observe punctuated

behavior in the sampling of their fitness growth over time.
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CHAPTER 5

Smooth-colony dynamics

In this chapter, we develop and introduce our smooth-colony dynamics model to study the

evolutionary progression of asexually reproducing populations at the sub-population scale. In

this model, we look to analyze how population structure affects fitness evolution in search of

punctuated equilibrium behavior. We are interested in building upon the principles derived

from adapting the Wright-Fisher model and the conditions of the LTEE. The Wright-Fisher

model is one of the most widely considered models in studying population evolutionary

dynamics [39]. As we have described in the previous chapter, its most basic construction

assumes a homogeneous population with discrete non-overlapping generations, no selection,

no mutation, and no migration. By using an adapted model with selection and mutation

through a Monte Carlo approach, we are able to incorporate the conditions of the LTEE

more closely and this model has performed well in replicating the observed fitness trend.

However, the laboratory environment of the LTEE and the subsequent assumptions built into

the adapted Wright-Fisher model are still quite limited, and unlikely to be found in natural

settings. In this chapter, we look to relax the homogeneity condition while introducing

spatiality and local interactions in an evolving population. This provides a more accurate

model of organisms’ interactions in a natural environment where they are likely to be affected

by local conditions. We focus on the one dimensional case in this chapter and look to extend

the model into two dimensional in our future works.
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5.1 Motivation

In contrast to the Wright-Fisher and Gerrish-Lenski models, we are interested in assessing

the potential impacts of the spatial structure of a population. We use a bacteria colony, or

a group of single cells grown in physical proximity, as the evolving unit that determines the

mean fitness of the population. Bacteria often grow in clumps as the same strain tend to

bind together. Although they are often easily detectable once grown in certain size, bacterial

colonies are not so well-defined as highlighted in a review by Jeanson et al. 2015 [40]. A

bacterial colony is most commonly viewed as a group of organisms that are grown into a

cluster and usually share the same genotype as they are often derived from the same single

parent cell [41]. This also has a physical manifestation where they form a grouping at the

same location when grown on a surface medium in a laboratory, which is the definition we

are employing in this work. A picture of bacteria colonies grown on a plate from the LTEE is

shown in figure 5.1. We treat each cluster of organisms as a single independent entity where

the colonies interact with each other as collective units. We track the evolution of these

colonies in our system and how they impact the evolution of the population. The construc-

tion of our model is influenced by ideas underpinning the smoothed-particle hydrodynamics

(SPH) model that’s been widely used in physics and related fields. SPH is a complex system

model that use distinct particles to simulate behavior in a continuum environment [42] [43].

Similar ideas have been found in the biological literature, although we have not explicitly

incorporated them. For example, there have been numerous works attempting to address the

issues of local interactions and collective motion in sub-population units for various biological

systems [44][45].

The colonies in our simulation are situated next to each other in a line. We aim to

extend this to a two dimensional surface in future work. Interaction between subpopulations

with a linear spatial distribution are not uncommon. Ring species, though documented

for multicellular organisms, is defined to be species connected geographically where each

species is more likely to interact with the species that is closest in proximity [47]. Perhaps

the most cited example is the Ensatina eschscholtzii species of salamanders with seven
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Figure 5.1: Bacteria colonies develop on a plate from the LTEE. They stay physically sta-

tionary and expand in size as more bacteria are grown. Red and white colonies mark strain

Ara- and Ara+ respectively. This image is captured by Jeffrey Barrick [46].

subspecies being distributed around the Central Valley of California in a ring-like shape [48].

Computational and mathematical models at both the organismic and sub-population levels

suggest that the interaction between drift and natural selection can be influenced by local

spatial structure [44][49][45].

5.2 Model

We start with P colonies arranged in one-dimension, each with an accompanying index i

ranging from 1 to P , making up the whole population. Each colony has N organisms and

initially has the same genotype and thereby, the same fitness. Note the population in this

model is made of colonies as opposed to organisms in the Wright-Fisher model in Chapter

4 and the Gerrish-Lenski model. However, as an individual organism multiples, it could

ultimately be regarded as analogous to a colony.

In the new model considered here, our previous use of N in Wright-Fisher model has been
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replaced by P . N now describes the number of organisms in a given colony and P describes

the number of colonies. We set this initial fitness as 1 as the ancestral reference fitness. Each

of these colonies is treated as one homogeneous entity that carries similar assumptions to

the Wright-Fisher model. We assume the time between binary fission for each colony follows

a Rayleigh distribution. Each colony generation time is treated as a discrete event but the

whole population has overlapping generational times, i.e. the colonies do not experience a

generation at the same time. Generation time distributions for individual organisms have

been a focus of study for different bacteria types and both symmetric and asymmetric dis-

tributions have been observed [50][51][52]. Thus time t takes on a continuous character. To

eliminate any ambiguity, we will use τ for the random continuous time variable. A useful

analogy for this is the human gestation period with a mean of 268 days and a standard

deviation of 10 days. We assume a Rayleigh distribution for colony generation time for its

non-negative values and being a common distribution. We have evaluated other distribu-

tions, which is discussed in a later section, and found the Rayleigh distribution to perform

best as an approximation. After a certain number of generations, each colony undergoes a

random improvement in fitness, or a fixation event. The fixation time, or the number of

generations before a fixation event, depends on the size of the colony, the mutation rate, and

the selection coefficient fitness distribution. Once a fixation event occurs, all members in

the colony carry the same genotype with a fitness increase from the last fixation event. The

clonal fitness improvement distribution is derived based on the evolutionary dynamic at the

organism level. Although we are discretizing the fitness improvement into one single event,

population genetic modeling based on clonal interference in asexually reproducing organisms

suggests that beneficial mutations do not meaningfully affect the population’s fitness until

it becomes the dominant genotype [2]. In fact, the growth in the higher fitness genotype’s

frequency can be well approximated as logistic when there are only two genotypes as we

have shown in Chapter 2. When multiple genotypes are allowed, we also observe this jump

in population fitness as seen in the Wright-Fisher simulations in Chapter 4.

When a colony reaches its fixation time, its fitness improves by a value based on a
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distribution modeled for clonal interference. We want to make a distinction here between

a mutation event and a fixation event. A mutation event occurs at the cellular level. Each

time a bacterial cell undergoes binary fission, it can potentially be exposed to a mutation

event. As we have discussed in Chapter 1, we assume a mutation–selection equilibrium

has been reached for deleterious mutations for large populations and/or populations with

high mutation rates thus adaptation rate is determined by beneficial mutations [23] [13]. A

fixation event, which determines the colony fitness improvement event in our model, occurs

when a mutation or multiple mutations become ubiquitous in the population [53]. In our

model, we are interested in the fixation event of a colony. Thus, we will not distinguish

between the number of mutations being fixed but only the accompanying genotype being

dominant in the colony. Although we are treating a fixation event as the point when only

one genotype remains in the colony, in a natural environment, large populations will almost

always be polymorphic since they are likely to generate numerous mutations each generation.

5.2.1 Clonal distribution of selection coefficients

To determine the fitness evolution for each colony, we need a distribution of selection coeffi-

cient at the clonal unit. In the Wright-Fisher model, we use the exponential distribution to

draw the selection coefficient effect for each mutation. Similarly, we need a distribution for

the selection coefficient effect that is fixed in a colony. Intuitively, when an organism in the

Wright-Fisher model experiences a mutation, its fitness improves by an exponential rate of

beneficial effect s. Thus, when a colony in the smooth-colony dynamics model experiences

a fixed mutation, its fitness improves by an exponential rate of beneficial effect sf for the

whole colony. In this chapter, we establish the distribution for the fixed selection coefficient

for a colony.

We assume that within a colony, the asexually reproducing organisms experience muta-

tions and selection with no horizontal gene transfer and its fitness evolutionary trend may be

approximated by the Gerrish-Lenski model. This provides us with a continuous probability

distribution of fixed selection coefficient effects and an expected rate of substitution. As
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outlined in Chapter 2, the Gerrish-Lenski model approximates the distribution of the fixed

selection coefficient sf for a population (colony in this smooth-colony dynamics model) of

size N , mutation rate µ, and exponential distribution scaling parameter α as:

p(sf) = K4sf e
−λ(sf,α,µ,N)−αsf (5.1)

where K is a normalizing constant such that
∫∞
0

p(sf) dsf = 1 and

λ(sf, α, µ,N) =
µ

sf
N ln(N)e−αsf 4(sf +

1

α
) (5.2)

Then the expected value of sf could be found by integrating sf p(sf) over all possible values

of sf or

E(sf) =
∫ ∞

0

sf p(sf)dsf (5.3)

and the expected substitution rate, or number of mutations, per generation for the population

is:

E( substitution rate) = µNα

∫ ∞

0

4sfe
−λ(sf,α,µ,N)−αsfdsf (5.4)

Since we are interested in the fitness evolution of each colony as a unit, we are using

equation 5.1 to computationally sample fixed selection coefficient sf for a colony of size N

and mutation rate µ. We can utilize inverse transform sampling to computationally sample

random values of sf which convert random variables drawn from a uniform distribution

[0, 1) into any distribution. Appendix C.1.1 provides an overview of the inverse transform

sampling method. In order to perform inverse transform sampling computationally, we need

the cumulative distribution function or CDF of the distribution described by equation

5.1, which is the PDF or the probability density function. Let S be a random variable

drawn from p(sf) and FS(sf) be the CDF of p(sf). Then FS(sf) = P (S ≤ sf) where the

right hand side represents the probability of the random variable S is less than sf. Since

P (S ≤ sf) =
∫ sf
0
p(sf) dsf, we have not been able to recover a closed form solution to FS(s).

We can numerically calculate the CDF but we would like to pursue a closed form CDF that

performs similarly to the CDF of equation 5.1. Holding mutation rate µ and colony size N

constant, we plotted equation 5.1 for varying exponential distribution scaling parameter α

values and the accompanying FS(s) in figures 5.2a and 5.2b respectively.
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(a)

(b)

Figure 5.2: Equation 5.1 and its integral plotted for a range of exponential distribution

scaling parameter α values in plot (a) and (b) respectively. We set colony size N = 106 and

mutation rate µ = 10−6.
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The distribution of fixed selection coefficient sf resembles the Rayleigh distribution of

the form sf−d
σ2 e−(sf−d)2/(2σ2) where σ and d are characteristic parameters. In figures 5.3a and

5.3b, we have overlaid the Rayleigh distribution over one of the curves in figure 5.2. The

Rayleigh distribution’s parameters σ and d are fitted so the modes of the two distributions

overlap. As the Rayleigh distribution fits the Gerrish-Lenski model well, we have opted to

utilize its CDF to numerically draw the random variable of fixed selection coefficient for a

colony. This improves computational efficiency without sacrificing much accuracy. Given

colony size N , mutation rate µ, and exponential distribution scaling parameter α, we can fit

for the Rayleigh distribution parameters σ and d. For all our simulations, we hold the colony

size N and the mutation rate µ constant throughout the simulation. By holding colony size

N constant, we are establishing a multicellular unit there each colony’s organisms are free

to interact with each other internally but must interact with the external environment as a

whole entity. This is an attempt to model the interaction between global and local effects.

The size of a unit that can act cohesively is theoretical and may fluctuate in reality but it is

biologically reasonable to model it as some fixed value that can be fitted with real life data.

Evolutionary dynamics of subdivided populations have been studied in a number of different

contexts with varying population structures [45][54][55].

Similar to the Wright-Fisher model, we are not addressing a varying mutation rate µ in

this model and are focusing on the LTEE populations that have maintained an ancestral

mutation rate. LTEE populations can experience different mutation rates over time [56].

Populations can carry the trait for many generations if it’s accompanied by beneficial muta-

tions. However, there is a trade-off between increasing mutation rate and the accumulations

of deleterious mutations [19]. Higher mutation rates allow the populations to generate more

mutations in a shorter period of time enabling faster evolution but at a cost of potentially

introducing more deleterious mutations into the population. If the hypermutability trait is

accompanied by beneficial mutations that outweigh the effects of the deleterious mutations,

then it may be able to stick around. This may change when the push and pull between costs

associated with deleterious mutations become too high to be balanced. For example, as the
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(a)

(b)

Figure 5.3: (a) PDF’s and (b) CDF’s from the Gerrish-Lenski model and the Rayleigh distri-

bution with parameters σ and d fitted for the modes of the two distributions to overlap. This

provides evidence that our empirical selection of a Rayleigh distribution captures features

modeled quantitatively by the Gerrish-Lenski model. We set colony size N = 106, mutation

rate µ = 10−6, and exponential distribution scaling parameter α = 50.
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populations in the LTEE become more adapted to their environment, there is potentially

less room for improvement leading to a decline in fitness growth. In this regime, the hyper-

mutability trait may be weeded out which has been observed in some hypermutating LTEE

populations that later reverted to their original mutation rate [14]. Thus, more thought is

required to tease out the relationship between mutation rate and the distribution of benefi-

cial mutations which is outside the scope of this work. Additionally, changing the mutation

rates would only change the magnitude of the trends observed in our simulations and not

the qualitative trends.

In order to model the LTEE’s fitness observations, we are interested in the scenario where

α varies due to diminishing returns in additionally fixed mutations as we have done with

the Wright-Fisher model in Chapter 4. As α varies, the distribution of the fixed selection

coefficient, equation 5.1, and the expected substitution rate, equation 5.4, will change. This

in turn affects the σ and d parameters in the Rayleigh distribution, the approximation of

equation 5.1 that we are utilizing to draw random variable S. We are interested in character-

izing the relationship between these two parameters and the exponential distribution scaling

parameter α to reduce the computational time needed to numerically calculate them as α

changes. Since the Rayleigh distribution approximates the distribution of the fixed selection

coefficient p(sf) well and its mode is σ, we conject that the parameters vary proportionally to

α while colony size N and mutation rate µ stay constant. Indeed, we find this to be numeri-

cally the case. In fact, we find this to be approximately the case for varying µ as well, when

holding colony size N and exponential distribution scaling parameter α constant. Due to

the ln(N) term, the variables’ relationship with colony size N is less linear while holding the

other two inputs constant. The mode of the distribution p(sf) varies in direct proportional

to α by some constant kp(sf (mode))(µ,N) making the Rayleigh distribution parameters σ and

d varying inversely proportional to α by constants kσ(µ,N) and kd(µ,N) respectively. The

substitution rate has an inverse proportional relationship with α thus making tfix varying

in direct proportional to α by constant 1/ksub rate(µ,N). Please refer to figure 5.4 where

mutation rate µ and colony size N are kept constant while varying α. We used the same
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exponential distribution scaling parameter α values as figure 5.2. We find these trends to

be true for a wide range of mutation rate µ and colony size N values. This in turn allows

us to perform the simulation very rapidly without the need for extensive implicit calcula-

tions. By utilizing the Rayleigh distribution and recognizing the relationship between α and

the distribution of fixed selection coefficient p(sf), we are able to provide a newly enhanced

approximation of the Gerrish-Lenski mathematical model for faster computation without

sacrificing significant accuracy.

5.2.2 Algorithm

A general conception for this algorithm proceeds as follows. For P colonies starting with

the same initial fitness, we track the fitness evolution of each colony. Each colony carries

two timers, one that determines its next binary fission event and the second to determine

its next fixation event. During each selection, the colony with the smallest time to binary

fission undergoes one doubling event. Once a colony’s time to fixation event is reached,

it experiences a fitness improvement event. The simulation is run until a predetermined

number of M selections is reached. A computational description of our algorithm can be

found in Appendix C.4 and a simple visualization can be seen in figure 5.5.

5.2.3 Two model versions: non-interacting neighbors and interacting neighbors

We create two versions of our model: the non-interacting neighbors (NIN) and the inter-

action neighbors (IN). The two versions follow the same algorithm described above with a

difference in how the colonies experience fitness improvement during a fixation event. In the

NIN version, the colonies evolve independently and experience fitness improvement through

mutations that occur in each colony. In the IN version, the colonies’ fitness impact their

neighbors. During a fixation event, a colony can take on its neighbors’ fitness if they are

higher than its own. This allows an interaction between the colonies.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Using the the Gerrish-Lenski model, exponential distribution scaling parameter

α is plotted against: (a) fixed selection coefficient distribution p(sf(mode)) where sf(mode) is the

mode of the distribution, (b) mode of p(sf(mode)), the Rayleigh distribution parameters (c) σ

and (d) d versus α, (e) the substitution rate E(substitution rate) and f) fixed time E(tfix).
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Figure 5.5: A schematic of the smooth-colony dynamics algorithm. Eight colonies start

with the same fitness and time to fixation event but varying time to doubling τi,m’s. At

each selection, the colony with the lowest τi,m value experiences a doubling event which is

reflected in its reduction in the time to the next fixation event. When a colony reaches a

fixation event, its fitness increases and the time to fixation event resets.
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5.2.4 Doubling time ordering

Array τ determines which colony is to undergo doubling at the current selection number m.

As mentioned in the algorithm outline above, at the current time step, the smallest value in

τ reaches its generation time. We are using the Newman-Phoenix hierarchical data structure

that was utilized to reproduce the Bak-Sneppen model. This allows accessing the minimum

value of an array in O(1) time and updating the data structure in O(log2N) time. The

description of the implementation of the Newman-Phoenix hierarchical data structure can

be found in Chapter 3.

Although we have chosen to use the Rayleigh distribution for the initial values of τi,0

and their subsequent additives, the behavior of our simulations is surprisingly robust to

the distribution used. We demonstrate this by comparing the number of selections while

sampling values from the exponential and uniform distributions. The distribution of the

number of selections for the colonies is approximately normal for when fitness stays constant

over time, which indicates that the process of selection is sufficiently random such that all

colonies are equally likely to double over time. In the non-interacting neighbors case (NIN),

the colonies evolve independently. In the interacting neighbors (IN) case, the fitness evolution

of the colonies is impacted by their neighbors. However, when there are no mutations and

no selection, or the fitness stays constant, both cases are effectively the same. We define as a

generation every P time steps since that is on average the number of selections necessary for

all colonies to have an opportunity to double. Figure 5.6 is a normal probability plot of the

number of selections for a number of cases where we utilize different distributions to draw

τi,m. These distributions include uniform, exponential, and a referenced distribution labelled

binomial. We ran these simulations for 100,000 generations. A probability plot helps visualize

and assess whether a certain data set follows some hypothesized distribution, in this case

a normal distribution [57]. A linear fit to these simulation results indicates little deviation

from the normal distribution with varying standard deviations. This indicates the majority

of the colonies experience a similar number of selections. We use a reference distribution,

labelled binomial, for comparison. In this reference case, all colonies are equally likely to be
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Figure 5.6: Normal probability plots for the number of selections using three different dis-

tributions to draw generation times: uniform, Rayleigh, and exponential. The binomial

distribution is the reference case where all colonies are equally likely to be selected at each

selection.
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Figure 5.7: Mean of number selections of all P colonies for 100,000 generations. The mean

of number selections stays the same for all distributions simulated. Note, the lines in the

plot are nearly indistinguishable.

selected at each time step. Thus, the number of selections for all colonies follows a binomial

distribution. The exponential distribution appears to mirror the reference distribution. The

Rayleigh and the uniform distributions have smaller standard deviations than the reference

distribution, indicating that the colonies’ numbers of selections are closely aligned.

Figure 5.7 and figure 5.8 show the mean number of selections for the whole population,

i.e. all colonies, and its variance for 100,000 generations respectively. All distributions

produce a consistent mean number of selections over time, following closely the trajectory

of the reference case. The variance for the reference case grows faster or at the same rate as

the variance of other distributions, indicating that the colonies in all distributions studied

have closely distributed number of selections relative to the reference case. Another useful

statistic to investigate the performance of these distributions is the coefficient of variation

which measures the dispersion of a data distribution. The coefficient of variation is the ratio

between the standard deviation and the mean. Figure 5.9 is a log–log plot for the coefficient

of variation for 100,000 generations for all distributions used. Regardless of distribution used
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for selection, the dispersion of the number of selections for all colonies declines over time and

exhibits a power-law behavior. Since the results for different distribution functions display

similar behavior, this demonstrates the robustness of our model.

Figure 5.8: The variance of the number selections for 100,000 generations.

Figure 5.9: The log–log plots of the coefficient of variation for 100,000 generations.
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5.3 Results

For the results in this section, the parameters are set as follows: number of colonies P =

1,000, colony size N = 1 × 106, mutation rate µ = 1 × 10−6, and exponential distribu-

tion scaling parameter α = 50. With the exception of the number of colonies, the values

for the remaining parameters are reasonable for mathematical modeling of E. coli. The

colony size N can range anywhere from 50 organisms to 109, depending on cell size and

packing density of the colony [58][59][60]. We ran our simulations for M = 5 × 107 selec-

tions, resulting in 50,000 generations. As expected, the fitness in the neighbor-interacting

case grows faster than the non-neighbor-interacting case, see figure 5.10a. We also include

the prediction from the Gerrish-Lenski model using the same parameters for colony size

N , mutation rate µ, and exponential distribution scaling parameter α. All three curves

demonstrate exponential growth, which is expected since fitness increases by a multiplica-

tive function of the fixed selection coefficient. In figure 5.10b, we plot the fitness trajectories

in log scale to show this trend more clearly over time. Using the natural log of mean fit-

ness over time, we can calculate d ln(fmean)
dtgenerations

empirically then subsequently calculate d(fmean)
dtgenerations

since d(fmean)
dtgenerations

= d ln(fmean)
dtgenerations

e
d ln(fmean)
dtgenerations

tgenerations
. For figure 5.10, we calculate d ln(fmean)

dtgenerations
to be

≈0.000365, ≈0.000413 for the NIN and IN cases respectively. Compare this to the Gerrish-

Lenski’s model, which utilizes only the expected values, it is found to be ≈0.000379. This

is reflected in figures 5.10a and 5.10b where we can see that the NIN curve grows slower

than both the Gerrish-Lenski curve and the IN curve, though not by much. We suspect

the stochastic nature of the NIN case slows down its fitness growth trend compared to the

Gerrish-Lenski curve. For the IN case, the interacting feature allows the population to

improve in fitness quicker than the Gerrish-Lenski model, even when utilizing their approx-

imation for clonal selection coefficient distribution.

Figure 5.11 shows the fitness values of the P colonies after M selections for both IN and

NIN models. The distribution for the natural log of fitness in the NIN case appears random.

The fitness distribution for the interacting neighbors case shows patterns of interactions

resembling diffusion through the colonies. The probability plot suggests that they both
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(a)

(b)

Figure 5.10: (a) Fitness (b) Natural log fitness for IN and NIN cases for 50,000 generations.

We also include the Gerrish-Lenski prediction. We set colony size N = 106, mutation rate

µ = 10−6, and exponential distribution scaling parameter α = 50.
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follow a normal distribution with the NIN case being a better fit, see figure 5.12.

(a) (b)

(c) (d)

Figure 5.11: Fitness distributions for IN and NIN cases after 50,000 generations. (a) Fitness

(IN) (b) Natural log fitness (IN) (c) Fitness (NIN) (d) Natural log fitness (NIN). We set

colony size N = 106, mutation rate µ = 10−6, and exponential distribution scaling parameter

α = 50.

Figure 5.13 displays the distribution of the number of selections for P colonies in each

case after undergoing M selections. The histogram for the NIN case can be closely approxi-

mated with a normal distribution whereas the IN case has a more narrow and right skewed

distribution. The variance in the NIN case is larger than the IN. This is reasonable as the in-
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Figure 5.12: Normal probability plot for fitness distributions for IN and NIN cases after

50,000 generations. We set colony size N = 106, mutation rate µ = 10−6, and exponential

distribution scaling parameter α = 50.
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teracting neighbor features is keeping localized colonies related in characteristics. The mean

number of selections is higher in the IN case as one would expect as the fitness among the

colony grows faster. Figure 5.14 shows the distribution of number of fixations for P colonies.

Variance in the NIN case is again larger than the IN case. However, the mean number of

fixations in the IN case is slightly less than the NIN case. This is expected since the colony

that takes on the fitness of its neighbors also takes on its number of selections and number

of mutations, thus disconnecting the two variables. For example, if we assume colony i takes

on the fitness value, the number of selections, and the number of fixations of colony i+1’s at

selection number m when its number of selections equals the number of mutations multiplied

by fixation time. However, when colony i takes on colony i + 1’s values, the new number

of selections is slightly more than the number of fixations multiplied by fixation time since

colony i + 1 is waiting to reach its next fixation event. Colony i now has the number of

fixations multiplied by the fixation time plus some remainder as its number of selections. It

then experiences a reset of its fixation time.

5.3.1 Sensitivity to simulation parameters

To assess the sensitivity of our simulation parameters, we vary each parameter number of

colonies P , mutation rate µ, colony size N , and exponential distribution scaling parameter

α independently while holding the other three constant. The standardized values for this

analysis are number of colonies P = 1,000, mutation rate µ = 10−6, colony size N = 106, and

exponential distribution scaling parameter α = 50. When we vary any parameter, we set the

other three parameters to the standardized values. The number of colonies is varied from 0 to

10,000. The mean fitness trend starts to converge, with increasing variance, once the number

of colonies P reaches 100 and beyond, see figure 5.15. For colony size N and mutation rate

µ, an increase in the number of organisms in a colony or the mutation rate results in a faster

growth rate of mean fitness, see figures 5.16 and 5.17. This is expected as a larger colony

size N or mutation rate µ provides more mutations per generation in each colony for natural

selection. Reduced exponential distribution scaling parameter α values also result in faster
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(a)

(b)

Figure 5.13: (a) Normal probability plot for the number of selections and (b) the accompa-

nying histograms for both IN and NIN cases. We set colony size N = 106, mutation rate

µ = 10−6, and exponential distribution scaling parameter α = 50.
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(a)

(b)

Figure 5.14: (a) Normal probability plot for the number of fixations and (b) the accompa-

nying histograms for both IN and NIN cases. We set colony size N = 106, mutation rate

µ = 10−6, and exponential distribution scaling parameter α = 50.
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mean fitness growth since the mutational effects are larger on average when α is small, see

figure 5.18. In all cases, the behavior of the mean fitness trends are qualitatively similar,

displaying exponential mean fitness growth with varying degrees. Moreover, the IN model

experiences a higher mean fitness growth than the NIN model under all conditions tested.

5.3.2 LTEE: diminishing returns

As mentioned previously, the LTEE’s fitness data for 50,000 generations display diminishing

improvement in fitness over time. We are using Wiser et al. (2013) [3]’s estimation of

N = 3.3× 107 and µ = 1.7× 10−6 and the initial exponential distribution scaling parameter

αi,0 = 85 values. Adopting their diminishing constant g = 6, we update αi,m = αi,m(1+gsi,m)

for colony i if selection m marks a fixation event. Since the colonies in our NIN model do not

interact and they are treated as homogeneous populations, they are appropriate to model the

LTEE experiment. We set the number of colonies P as 1,000. The result of our simulations

follows the mean fitness prediction curve established in Wiser et al. (2013) [3] albeit at a

slower rate, refer to figure 5.19 which shows the trend of fitness over 50,000 generations. Since

we are using selection instead of generation time, we approximate that every P selections

mark one generation where all colonies have had an opportunity to be selected to undergo

one generation.

We perform the same simulation for the case where the colonies interact and found the

trend to be qualitatively similar as the NIN case. We use the same parameters: number of

colonies P = 1,000, colony size N = 3.3 × 107, mutation rat µ = 1.7 × 10−6, and initial

exponential distribution scaling parameter αi,0 = 85 with g = 6. The values of mean fitness

for the IN case are slightly higher than the NIN case but lower than predicted quantities by

Wiser et al. (2013) [3] at all generations, though they all follow the raw LTEE data well. The

distributions of the fitness values for both cases after 50,000 generations are approximately

normal, see figure 5.22. Figures 5.21a and 5.21b show the raw fitness distributions for the IN

and the NIN cases respectively after 50,000 generations. The fitness distribution in the NIN

case appears random while the fitness distribution in the IN case exhibits clumped peaks,
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(a)

(b)

Figure 5.15: Mean natural log fitness for 50,000 generations with P = [1,10,102, 103, 104]

for (a) IN case and (b) NIN case.
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(a)

(b)

Figure 5.16: Mean natural log fitness for 50,000 generations with colony sizeN = [104,105,106,

107, 108, 109] for (a) IN case and (b) NIN case.
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(a)

(b)

Figure 5.17: Mean natural log fitness for 50,000 generations with mutation rate µ =

[10−9,10−8,10−7, 10−6, 10−5, 10−4] for (a) IN case and (b) NIN case.
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(a)

(b)

Figure 5.18: Mean natural log fitness for 50,000 generations with exponential distribution

scaling parameter α = [30, 50, 100, 200, 400, 800] for (a) IN case and (b) NIN case.
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Figure 5.19: Fitness trajectory for mean fitness of 1,000 colonies in IN and NIN models.

They both grow slightly slower than Wiser et al. (2013) [3] ’s prediction but appear to

follow the raw LTEE data trend well, which is shown as black dots.
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demonstrating the effect of the interactive neighbors. The distributions for the number of

selections are also approximately normal for both cases as well, with the IN case having

a higher mean, see figure 5.20a. There were less than 25 mutations in both cases, see

figure 5.20c. With a large initial exponential distribution scaling parameter αi,0 that also

increases over time, it takes many generations for a mutation to be fixed in a colony in later

generations and the effect of the fixed mutations also declines. Consequently, we see that

the rate of fitness improvement decreases over time. The fitness jumps observed in both the

NIN and IN cases during the early generations are likely artifacts from our algorithm given

that the colonies only experience a fitness increase in discrete measures. In other words,

the simulation requires a period of relaxation time to reach equilibrium, at which point the

fitness curves appear smooth. We suspect that Wiser et al. (2013) [3]’s prediction is slighter

higher than the IN case because the interacting neighbors force the colonies to experience

diminishing returns in fitness more quickly. We speculate the scattering in the LTEE data

points is due to a finite number of samples.

5.4 Discussion

For both NIN and IN models, varying parameters colony size N , mutation rate µ, and

exponential distribution scaling parameter αi,m appear to only change the rate of fitness

increase and not the behavior of the mean fitness trajectory which follows an exponential

curve. NIN experiences slower fitness growth rate than the Gerrish-Lenski model while

the IN model has a faster fitness growth rate than both NIN and Gerrish-Lenski. When the

diminishing constant g is greater than 0, the initial exponential distribution scaling parameter

αi,0 decreases over time and fitness improvement rate also declines although fitness continues

to increase. Both models are able to predict the trend in fitness well for the LTEE data with

IN growing slightly faster than the NIN model, although the former model is not applicable

in studying the LTEE populations since they do not interact. Our models do not display

substantially different results than the Wiser et al. (2013) [3].

The behavior of fitness dynamics over time in our models do not indicate punctuated
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(a) (b)

(c)

Figure 5.20: (a) Normal probability plots and (b) histograms for the number of selections

that colonies experienced after 50,000 generations. (c) Histograms for the number of fixations

that colonies accumulated after 50,000 generations. We set number of colonies P = 1,000.

The remaining inputs colony size N = 3.3 × 107, mutation rate µ = 1.7 × 10−6, and initial

exponential distribution scaling parameter αi,0 = 85 with g = 6 are Wiser et al. (2013) [3]’s

parameter approximations for LTEE.
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(a)

(b)

Figure 5.21: Fitness distribution for (a) IN case and (b) NIN case after 50,000 generations.
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Figure 5.22: Normal probability plot for fitness distributions for IN and NIN cases modeling

LTEE after 50,000 generations. The mean fitness in IN is systematically greater than NIN

because the fitness of each colony is affected by its neighbors where a more fit neighbor will

induce the colony to gain in fitness faster.
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equilibrium behavior. In the case where there is no diminishing returns, the fitness trajectory

grows exponentially into infinity given the parameters we have considered. When epistasis

is present as in the case of modeling the LTEE, one possible interpretation as we have

discussed in Chapter 4 in regards of the Wright-Fisher model is this declining fitness rate

itself demonstrates punctuated behavior as argued by Gould (2009) regarding the LTEE’s

cell size data [26]. Although that cannot be excluded, it is inconclusive, and we think further

extensions of our model are needed to provide stronger evidence. Two venues we look to

build on our model are adapting it into 2-D and 3-D environments and adding additional

traits beyond fitness.

In the previous chapter, we observe “jumps” in fitness in the Wright-Fisher model for one

population. When considering a large number of colonies as we have done in the smooth-

colony dynamics model, where each colony behaves as one population in the Wright-Fisher

model, this observation is eliminated in the long run. Further increase in the number of

Monte Carlo simulations of our smooth-colony dynamics model of both (IN) and (NIN) cases

could reduce the uncertainties in the simulation results. Our model captures the structure

of colonies grown on surfaces which can be hundreds on a plate [61]. Since a collection of

colonies is more likely to mimic a natural occurring system, this negates the potential for

observing punctuated patterns in evolution for similar biological structure.
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CHAPTER 6

Summary and future work

In this dissertation, we have investigated the possible emergence of punctuated patterns

through mathematical modelling of simple biological systems. We looked at mathematical

and computational modelling using three different units: species, colonies, and organisms to

assess the hierarchical level necessary to observe punctuated patterns if they exist. We want

to highlight the contribution of our work in deploying two models for our investigation. We

developed a Monte Carlo Wright-Fisher model that we have not seen utilized in the study of

punctuated equilibrium. We constructed and introduced the new smooth-colony dynamics

model that combines elements of discrete populations and overlapping generational times.

Additionally, we provided an approximation of the Gerrish-Lenski mathematical model that

allows for faster computation.

Punctuated equilibrium has been proposed to explain observations in the paleontological

record wherein species stay in stasis for the majority of their lifetimes with sporadic bursts

of change that mark speciation events [1]. Although the Bak-Sneppen model, proposed by

Bak and Sneppen (1993) [5], shows the behavior of burst of activities follows by stasis at

the species level, no relevant biological system has been identified to provide evidence to its

applicability [26]. At the population level, we extend the Wright-Fisher model and develop

the smooth-colony dynamics model (with two variations) based on the LTEE data in order

to understand the simplest biological system at the generational scale. We find that although

these models may provide some insights into the evolutionary dynamics, they are limited

in their ability to resolve the question of punctuated patterns in a population due to their

conflicting behavior. All three models are able to fit the LTEE data quantitatively well.

However, the Wright-Fisher shows step-like behavior while the two versions of the smooth-
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colony dynamics model do not. We suggest that theWright-Fisher results are more applicable

in the laboratory setting while the smooth-colony dynamics model captures evolutionary

dynamics of bacteria in a more natural environment. Another possibility is the discretization

of generations in the Wright-Fisher may induce more step-like behavior. Further work is

required to resolve the question of which regime populations of asexual single organisms

operate under. We aim to extend this work in the future by building the smooth-colony

dynamics model into a 3-D model and accounting for additional traits that will allow it to

be more biologically complex.

At the species level, we adapt the highly-efficient Newman-Phoenix hierarchical data

structure to the Bak-Sneppen model. We provide an overview and further mathematical

analysis of their results. This model observes punctuated behavior at the species level where

the species experiences fitness transitions intermittently with periods of inactivity interrupted

by relatively rapid periods of changes. However, this model lacks any relevant data to support

its claims. Thus, their results are limited for providing insight to the question of punctuated

behavior observed in the fossil record [26].

The resolution of observations at the species level is often limited due to data sampling

issues. Patterns at the species level are also complicated and impacted by a wide range

of variables that operate on varying timescales. Thus, we pursue a simplified system that

evolves in a shorter timescale within which data are accessible to constrain our model. The

Long-Term Evolution Experiment (LTEE) on E. coli by Lenski and his colleagues serves as

our motivation to study models in the organismic and clonal levels of asexually reproducing

single cells. Although Lenski and Travisano (1994) suggests there are distinct jumps in

fitness in the first 2,000 generations [20], we find this description inconclusive based on the

discretized data. Another suggestion of punctuated patterns highlighted by Gould (2009)

is the the diminishing growth rate in cellular size after the initial few thousand generations

[26]. Again, we find this interpretation not conclusive since the populations are continuously

experiencing changes genetically and morphologically, albeit at a slower rate.

We employ the Wright-Fisher model using a Monte Carlo approach to model the LTEE
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fitness data of 50,000 generations. The Wright-Fisher assumes homogeneous interaction in

a population of size N and non-overlapping generations. We extend this model to include

mutation and natural selection by introducing a mutation rate µ per generation and a dis-

tribution of mutational effects. We use a Monte Carlo approach to simulate our adapted

Wright-Fisher model. Using Wiser et al. (2013) [3]’s estimations for our N and µ parameters

and a commonly used exponential distribution for modeling bacteria’s beneficial mutational

effects, our Wright-Fisher model is able to reproduce the LTEE’s data trend close in quan-

titative agreement over many thousand generations. We do observe jumps in fitness in the

simulation results of our model. This is due clonal interference where beneficial mutations

are fixed in a population sequentially since one advantageous genotype cannot exchange ge-

netic material with another advantageous genotype [13]. The new beneficial genotype needs

to reach a relatively high frequency for the fitness improvement to be observed. E. coli in fa-

vorable laboratory conditions can undergo binary fission every 20 minutes. In nature, many

bacteria species have generation times ranging from under 30 minutes to over 100 hours [62].

Although generation times for bacteria are extremely short relative to geological time, these

results demonstrate that punctuated patterns can be observed at the population level within

the generational scale.

We next use a colony unit to model evolutionary dynamics of an asexually reproducing

population in our smooth-colony dynamics model. By dividing the population into colonies,

we assume homogeneous interactions in the sub-population and local interactions between

the sub-populations as single units. This assumption is more realistic than the Wright-

Fisher model’s for naturally occurring populations. We estimate the mutational effects at

the clonal level using the Gerrish-Lenski mathematical model of clonal interference [15]. We

build two versions of this model, one without interacting neighbors and one with. In the

first version without interacting neighbors, each colony evolves independently. In the second

case, each colony’s fitness is impacted by its neighbors wherein the less fit colony adopts the

higher fitness of its neighbor’s. Both of our smooth-colony dynamics models also robustly

fit the LTEE data quantitatively. However, the population mean fitness in the interacting
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neighbors model grows faster than the non-interacting neighbors model. We cannot resolve

the generational jumps observed in the Wright-Fisher model as our explicit assumption treats

each fitness improvement event as discrete. Thus, the jumps in fitness observed in early

generations in both models are likely artifacts from our modeling treatment. However, the

trend for population fitness becomes smoother over time as colonies’ fixation times overlap

in our simulations. In these two models, we do not observe punctuated behavior under any

combination of parameters used for our simulations in absence of epistasis. Given that the

fitness growth is exponential, except when explicitly adding a diminishing growth term, it

is unlikely this model will yield any behavior deviating from this growth behavior in a one

trait model.

Figure 6.1: A graphical representation of fitness landscape with the horizontal axes repre-

senting the genotypic space and the vertical axis representing the organism’s fitness. The

dotted white paths show two potential evolutionary pathways. Note the limitation of this

visualization for high dimensional system with more than two traits. This was taken from

De Visser and Krug (2014) [63].

Although we have observed punctuated patterns using the Wright-Fisher model, the more

naturally realistic smooth-colony dynamics model fails to detect this trend. For our future

work, we will look to extend our smooth-colony dynamics model to 2-D and 3-D environment

and include different traits that are less aggregated than the fitness measurement. We

speculate that the observation of punctuated patterns, or episodic change, will more likely
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be exhibited in a scenario where multiple traits evolve as opposed to single trait evolution.

In this scenario, we will assume two cases where these traits evolve independently, i.e. the

evolution of one trait does not correlate in the change in another, and dependently. To

visualize this relationship between genotypic makeup and fitness outcome, Sewall Wright

developed the fitness landscape in 1932 [64], see figure 6.1 for a representation. Giorgio

Parisi has recently received the 2021 Nobel Prize in Physics for his work in complexity

theory that also extends to fitness landscapes, visualized through “corrugated landscapes”

with valleys and mountains, exhibiting the relation between genetic makeup and fitness

distribution (Giorgio Parisi – Nobel Prize lecture [65]). The trade-offs between different traits

in a high dimensional fitness landscape may become more important than the evolution of

any single trait. In terms of the fitness landscape’s maxima and minima, when we go from one

dimension to two or three, we can have isolated maxima and minima where more activity is

generated in one trait at one time and in another at a different time. Although our simplified

single-trait model demonstrates that a population residing in a natural environment is not

likely to exhibit punctuated patterns, the modeling of evolution involving multiple traits

can potentially show more complex behavior. This is one outcome we may observe in the

extension of our work.
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APPENDIX A

Acronyms and Mathematical symbols

All Chapters

α scaling parameter for the exponential distribution

N population size for the Wright-Fisher model and colony size for the

smooth-colony dynamics model

µ beneficial mutation rate

t generation number

s selection coefficient per beneficial mutation

wi,t fitness for i’th organism at generation t in the Wright-Fisher model

W (t) population mean fitness as a function of generation t

PE punctuated equilibrium

Chapter 5

sf fixed selection coefficient per colony or group of organisms

m selection number in the smooth-colony dynamics model

M total number of selections in the smooth-colony dynamics model

P number of colonies in the smooth-colony dynamics model
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τi,m a continuous random variable that indicates time to next doubling for i’th

colony during selection m in the smooth-colony dynamics model

d shift parameter in the Rayleigh distribution

σ scaling parameter in the Rayleigh distribution

IN interacting neighbors

NIN non-interacting neighbors
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APPENDIX B

Glossary

• colony: although bacterial colonies are not well defined [40], in this dissertation we

define it as a group of cells having the same ancestral organism. They grow in one

place physically, usually on a surface.

• complexity: systems with many interdependent or interacting components whose

behavior is highly sensitive to their initial conditions.

• cumulative distribution function (CDF): a function that when evaluated at x

gives the probability that a random variable can take on value less than or equal to x.

• diminishing-returns epistasis: diminishing improvement from additional mutations

due to negative interaction between mutations.

• epistasis: the interaction of genes where the effects of the same mutation can vary

depending on the genotype it occurs in [66].

• Escherichia coli (E. coli): a type of bacteria that has been used as a model or-

ganism in studying prokaryotic cells. They are practical to be handled in a laboratory

setting and have rapid growth, thus making them ideally suitable for biological inves-

tigations.

• fitness: the expected number of offspring an individual will produce. For binary

fission, the LTEE estimates this value by counting the number of times a population

doubles relative to the ancestral population.
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• fitness landscape: the mapping of an organism’s genotype and its reproductive suc-

cess, or fitness, which can display peaks and valleys. The horizontal axes represent the

space of possible genotypes and the height represents the fitness of the organism.

• fixation: when a mutated genotype becomes the only genotype in the population

• gene: a unit of heredity that determines a physical characteristic of an organism.

There are multiple definitions of genes and the employment of each depends on the

topic of study. For example, morphology focuses on the study of physical appearances

of an organism and may treat a feature like beak size as a targeted gene. We will use

the definition that a gene is a sequence of genetic nucleotides in DNA that encodes for

the production of a particular protein.

• genome: complete set of genetic material in an organism.

• genotype: the complete genetic makeup of an organism.

• horizontal gene transfer: the non-reproductive transfer of genetic material from

one organism to another.

• hypermutability: an increase in the mutation rate relative to the ancestral mutation

rate

• morphological change: changes to the outward appearance of an organism.

• mutation: changes that affect an organism’s genetic material. In cellular organism,

that usually refers to DNA and RNA.

• mutation rate: the probability that an organism experiences a mutation during its

reproduction in one generation.

• nucleotide: a building block of nucleic acid (DNA and RNA) consisting of a sugar

molecule, a phosphate group, and a nitrogen-containing base. The primary bases are

adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U). DNA uses the
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first four and RNA replaces thymine with uracil. A is normally paired with T — or U

in RNA — and C is normally paired with G.

• point mutation: the smallest form of genetic mutation where a single nucleobase pair

is altered.

• probability density function (PDF): a function that maps the likelihood that a

random variable will take on a value.

• probability mass function (PMF): same as PDF but for discrete values.

• punctuated equilibrium: a theory proposed by Niles Eldredge and Stephen Gould

that species experience bursts of morphological change in a short period of time then

stay in stasis, with little to no change, for the majority of their existence.

• replication: [DNA replication] the process of making two identical copies of DNA

from the original DNA molecule. This is critical for cell division. A mutation can occur

during this process which can introduce new variants in the population, which can be

advantageous, disadvantageous, or neutral. Mutations that occur during somatic cell

(regular body cell) division do not get passed down to the next generation. Mutations

that occur in germ cells can be passed down.

• ring species: an arrangement of spatially connected populations where neighboring

populations, geographically close, are able to interbreed but at least two populations,

occupying the boundary of the series, are too distant to interbreed.

• selection coefficient: the difference in relative fitness between two genotypes. In the

context of our model, it’s the advantage in fitness improvement of the mutation.

• self-organized criticality: the behavior of large dynamical systems that tends to-

wards an organization of scale-invariant characteristic, either temporally or spatialy,

without the need to tune the related parameters to precise values.
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• speciation: formation of a new species when a population of organisms distinct itself

from an existing species by developing different characteristics. A species is sometime

defined as a group of similar organisms that can exchange genes. There are different

definitions of species in the biology community which can often complicate the study

of speciation.

• trait: characteristic of an organism that is controlled by its genetic makeup and may

be influenced by the environment. The definition is further refined based on the topic

of study. Traits can be controlled by one or more genes. Some examples are eye color,

tree height, bird vocalization, etc.

• transcription: the process of copying a segment of DNA into RNA which may contain

genetic sequence to make proteins. A mistake can occur during this process which can

potentially cause a gene to be incorrectly expressed. For example, adenine (A) may be

transcribed as guanine (G) instead of uracil (U).

• wild type: Although this is generally used to describe traits and or specific genes [67],

in this work, we will refer to the wild type genotype as the most common genotype in

the population, i.e. in the wild. Mutations can change this genotype into a mutant

genotype.
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APPENDIX C

Additional mathematical issues

C.1 Mathematical concepts

In this section, we are providing a brief outline of some mathematical concepts that are

applied in the dissertation. This is intended as an overview, and a comprehensive treatment

of these topics can be found in the appropriate mathematical and/or computer science text-

books. We also provide a more extensive description of the Newman-Phoenix hierarchical

data structure and the smooth-colony dynamics model’s algorithm.

C.1.1 Inverse transform sampling

Inverse transform sampling is a method to draw random numbers from any probability

distribution. We utilize this method to draw random numbers for both the Monte Carlo

Wright-Fisher model in Chapter 4 and both versions of the the smooth-colony dynamics

model in Chapter 5. Please refer to Donald Knuth’s classic book Art of computer program-

ming, volume 2: Seminumerical algorithms (2014) as a reference [68].

Let F (x) denotes some cumulative distribution function (CDF) and F−1(x) be its inverse.

We can define a random variable X such that X = F−1(U) where U is uniformly distributed

between the interval [0, 1). Then X is distributed according to the CDF F (x). We are

not providing a proof here but an example. In Chapter Four, we want to draw random

variables that follow the Rayleigh distribution with a CDF of the form 1 − e−x2/2σ2
for

some constant σ > 0 and for 0 ≤ x < ∞. Let F (x) = 1 − e−x2/2σ2
and y = F (x), then

x = F−1(y) =
√
−2σ2 ln(1− y). Then random variable X =

√
−2σ2 ln(1− U), where U ∼
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uniform(0, 1). Note (1−U) is also uniform thus we can replace it by U . Computationally, we

can draw a psuedo-random number U that’s uniformly distributed from (0, 1) then compute

X =
√

−2σ2 ln(U).

C.1.2 Logistic function

The logistic function shows initial exponential growth which slows down as the population

reaches a saturation point. This is relevant for the discussion of clonal interference in Chapter

2. The logistic function is covered by many textbooks including James Steward’s Calculus:

early transcendentals (2008) edition [69] and William I. Newman’s Mathematical methods

for geophysics and space physics (2016) [70]. The logistic function is derived from a simple

differential equation of the form:

dN(t)

dt
= rN(1− N(t)

K
) (C.1)

where K is some constant greater than N(0) and r is some rate that determines if N(t) is

increasing or decreasing. The solution to the differential equation above is:

N(t) =
K

1 + (K/N(0)− 1)e−rt
(C.2)

K marks the saturation point of the equation, such that as N(t) approaches K, its growth

(a) (b)

Figure C.1: (a) Logistic function with r > 0. (b) Logistic function with r < 0.
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(decline) rate reduces. For r > 0, the hallmark logistic curve is an S-shape with N(t) initially

experiencing exponential growth follows by diminishing growth. For r < 0, N(t)’s declining

trend follows a similar pattern but in reverse. Figures C.1a and C.1b provide two examples

of the logistic function.

C.1.3 Multinomial distribution

In this section, we discuss the multinomial distribution which is utilized in the adapted

Wright-Fisher model in Chapter 4. The multinomial distribution is a generalized version of

the binomial distribution where there are multiple outcomes instead of two. The following

description has been adapted from Park and Krug 2007, please refer to the supplement

of their paper for a more thorough treatment [23]. Feller’s An Introduction to Probability

Theory and Its Applications (1968) also covers this topic [36]. Let N be the number of times

an experiment is performed and K be the number of possible outcomes each experiment can

have. Let ni denote the number of times outcome i is observed and pi is the probability

a given experiment results in outcome i, where i ∈ [1, K]. Then we have the following

multinomial distribution:

P (n1, n2, ...nK) = N !
K∏
i=1

pni
i

ni!
(C.3)

where
∑K

i=1 ni = N .

C.2 Clonal interference

In this section, we derive the equations dP/dt = rP (1− P ) and W (t) = 1 + sP (t). which is

relevant for the discussion of clonal interference in Chapter 2.

Let the initial genotype be a and the mutated genotype be A. We start the clock when

the mutated genotype first emerges thus the initial number of A copies is 1 and thus the

number of a copies is N − 1. Let Pa(t) and PA(t) be the numbers of a individuals and A

individuals, respectively and P (t) be total population at time t. Let ma and mA be the

Malthusian parameters for each sub-population. Thus we have:
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PA(t) = (1)emAt

Pa(t) = (N − 1)emat

P = Pa(t) + PA(t)

Let pa(t) and pA(t) be the percentage of a and A copies in the total population. Although

we are allowing for both sub-populations to grow indefinitely, we can curtail the size of the

population to any value given pa(t) and pA(t), which can be calculated as:

pA(t) =
PA

PA+Pa
= emAt

emAt+(N−1)emat

pa(t) = 1− pA(t) =
(N−1)emat

emAt+(N−1)emat

Then:

dpA
dt

= mAemAt

emAt+(N−1)emat − emAt
[
mAemAt+ma(N−1)emat

(emAt+(N−1)emat)2

]
dpA
dt

= mApA(t)− pA(t)[mApA(t) +ma(1− pA(t))]

dpA
dt

= pA(t)[mA −mApA(t)−ma +mapA(t)]

dpA
dt

= pA(t)[(mA −ma)− pA(t)(mA −ma)]

dpA
dt

= (mA −ma)pA(t)[1− pA(t)]

Let mA −ma be r, we recover equation (2.2): dpA/dt = rpA(1 − pA). Since relative fitness

is defined as WAa = mA/ma with a be the ancestral genotype, we have the mean fitness of

the population as:

W (t) = ma

ma
pa(t) +

mA

ma
pA(t) = (1− pA(t)) +WAapA(t)

W (t) = 1 + pA(t)(WAa − 1) = 1 + sAapA(t)

where sAa is the selection coefficient of the mutated genotype, recovering equation (2.4).
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C.3 The Newman-Phoenix hierarchical data structure

In this section, we outline the Newman-Phoenix hierarchical data storage that is relevant to

our smooth-colony dynamics model and in reproducing the Bak-Sneppen model.

Given an array of N elements, we first deal with the case where log2N is an integer. The

first array (denote array 0), contains the indices of the given data with N elements, or simply

{1, 2, ...N}. The next array, array 1, contains indices of the smaller elements after comparing

pairs of consecutive elements with each element being compared once (i.e. compare element

1 with element 2, element 3 with element 4, etc. from layer 0). For example, if we compare

the values the indices in element 1 and element 2 of layer 0 point to, the index of the smaller

value is stored in element 1 of array 1. Thus, array 1 has N/2 elements. We do the same for

array 2 by comparing the values the elements in array 1 point to. Thus, the last array, array

log2N , has one element, holding the index of the smallest value of the given data. There are

log2N arrays in addition to array 0. We deal with the case where log2N is not an integer

later on.

We now store the data in the set up we just discussed. Let the given array be called A.

The method in storing A with N elements, where log2N is an integer, is as follows:

1. Create array 0 with indices of the values in A resulting in layer 0 = {1, 2, ..., N}

2. Create log2N arrays with array k having N/2k elements, where k = {1, 2, ..., log2N}

3. For element i in array k:

• Compare the values the indices in elements 2i− 1 and 2i in array k − 1 point to

in A, store the index of the smaller value in element i of array k.

4. Repeat step 3 for all elements of all log2N arrays.

We are now left with log2N arrays with the last array containing the index of the smallest

value in A. This storing algorithm takes
∑log2 N

i=1
N
2i

= N−1 operations or O(N). However, we

only have to do this once and locating the minimum value is O(1). Changing the minimum
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value and update the storing configuration takes O(log2N) as we only have to make one

comparison for each array with every new single value update in A.

For cases where log2N is not an integer, we first pad array A as follows:

1. Let k be the smallest integer greater than log2N

2. Create array A∗ with 2k elements, where the first N elements contains A and the

remaining 2k−N are values outside of range. For example, in the Bak-Sneppen model,

the barriers range from 0 to 1 so we chose to pad the new array with value 10.

Now we will store the data for array A∗ the same as in the algorithm above.

C.4 The smooth-colony dynamics algorithm

In this section, we outline the algorithm used to simulate our model. A general conception

for this algorithm proceeds as follows. For P colonies starting with the same initial fitness,

we track the fitness evolution of each colony. Each colony carries two timers, one that

determines its next binary fission event and a second that determines its next fixation event.

During each selection, the colony with the smallest time to binary fission undergoes one

doubling event. Once a colony’s time to fixation event is reached, it experiences a fitness

improvement event through a mutation fixation. The simulation is run until a predetermined

number of selections is reached. Below is an computational description of our algorithm.

Given mutation rate µ and colony sizeN , we numerically obtain 1/ksub rate(µ,N), kσ(µ, P ),

and kd(µ, P ). Starting with P colonies arranged in one-dimension, each assigned an index i

ranging from 1 to P , we create the following arrays:

• Array F with Fi,m elements where i ranges from 1 to P , and m indicates the current

selection number ranging from 1 to M . Each element Fi,m holds the current fitness

value for colony i.

• Array τ with τi,m elements where i ranges from 1 to P and m indicates the selection
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number ranging from 1 to M . Each element τi,m holds the generation time for colony

i when the colony will next experience a generation. This time is arbitrary in order to

determine which colony is next to experience a generation and not related to physical

time. We use the Rayleigh distribution to draw random τi,0 variables. This can be

accomplished computationally using inverse transform sampling. Please see the earlier

section C.1.1 on inverse transform sampling.

• Array T with Ti,m elements where i ranges from 1 to P , and m indicates the current

selection number ranging from 1 to M . Each element Ti,m is the number of generations

until colony i’s next fixation event. We use equation 2.8 from the Gerrish-Lenski

model for the estimation of Ti,m, which depends on the size of the colony, the beneficial

mutation rate for the organisms, and the scaling parameter for the distribution of

the beneficial mutations. Since the substitution rate, equation 2.8, indicates the rate

mutations are fixed in a colony, its inverse provides the expected number of generations

for one mutation to be fixed.

• Array A with Ai,m elements where i ranges from 1 to P , and m indicates the current

selection number ranging from 1 to M . Each element Ai,m is the current exponential

distribution scaling parameter for colony i.

• Array D with Di,m elements where i ranges from 1 to P , and m indicates the current

selection number ranging from 1 to M . Each element Di,m keeps track of the number

of times colony i is selected for doubling.

• Array G with Gi,m elements where i ranges from 1 to P , and m indicates the current

selection number ranging from 1 to M . Each element Gi,m keeps track of the number

of fixations colony i has accrued.

Initialize the arrays as outlined below:

• Set Fi,0 = 1, Di,0 = 0, Gi,0 = 0 for i from 1 to P .
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• Set τi,0 =
√

−2 ∗ ln(ui,0) for i from 1 to P where ui,0 is a random variable drawn from

the uniform distribution [0, 1).

• Set Ai,0 = α0, for i from 1 to P where α0 is a simulation input.

• Set Ti,0 = (1/ksub rate(µ,N))αi,0, for i from 1 to P , where Ti,0 is the number of gen-

erations until colony i experiences a fitness improvement. Each element Ti,0 and the

subsequent resets of Ti,m are fixation times.

For M selections, during each selection m, we perform the following operations:

• Locate the colony with the smallest generation time. Let this colony’s index be imin.

This colony undergoes one generation during this selection. Set Dimin,m = Dimin,m−1+1.

• Set Timin,m = Timin,m−1 − 1. If Timin,m > 0, continue to the next step. If Timin,m ≤ 0,

colony experiences a fixation event, set Gimin,m = Gimin,m−1 + 1. Here we have two

different variations of our algorithm. The first version is the non-interacting neighbors

scheme (NIN) and the second version is the interaction neighbors scheme (IN) with

the following treatment of fitness improvement:

– NIN: Fimin,m = Fimin,m−1(1 + sif(min,m))

– IN: Fimin,m = max(Fimin−1,m, Fimin,m−1(1 + sf(imin,m)), Fimin+1,m)

where sf(imin,m) =
√

−2σ2
imin,m

ln(pimin,m) + dimin,m and pimin,m is a randomly drawn

value from the uniform distribution [0,1). The other two variables are the Rayleigh

distribution parameters dimin,m = kd(µ,N)αimin,m, and σimin,m = kσ(µ,N)αimin,m. Reset

the fixation time Timin,m = (1/ksub rate(µ,N)) αimin,m.

• Set τimin,m =

√
−2∗ln(uimin,m)

ln(Fimin,m)+2
+ τimin,m−1 where uimin,m is a random variable drawn from

the uniform distribution [0,1). Scaling τimin,m with its fitness value Fimin,m effectively

allows colonies with higher fitness to have relatively shorter generation times. We are

using the natural log of Fimin,m instead of Fimin,m to prevent ∆τimin,m from diminishing

too quickly as Fimin,m grows large since it experiences exponential growth. This time
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update is valid up to a certain point until the term ln(Fimin,m) gets sufficiently large.

However, it is amply sufficient for the time scale we are assessing biologically in this

chapter.

The steps above are repeated until M selections is reached.
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