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Abstract

Mortality Crises as Experienced by their Survivors:

Computational Approaches to the Study of Bereavement

by

Mallika Amruta Snyder

Doctor of Philosophy in Demography

University of California, Berkeley

Professor Kenneth Wachter, Co-Chair
Professor Joshua Goldstein, Co-Chair

Although the study of mortality is central to demography, comparatively little is known about
its lived experience: how population-level mortality translates to individual experiences of
loss within families and communities. Given the significance of bereavement for the health
and socioeconomic outcomes of survivors, better understanding the impacts of mortality
crises on family networks is crucial for predicting their longer-term consequences. The data
required to study kin loss, however, is seldom available, leading many demographers to rely
on computational approaches such as microsimulation to estimate the impact of these events.

This dissertation presents microsimulation-based approaches to examining the impact of a
mortality crisis, in this case COVID-19, on kin networks in the short and long term. The
first study presents estimates of monthly excess kin loss by age and type of kin relation in
31 countries during the period of March 2020 to June 2021. These estimates demonstrate
a generational pattern of kin loss reflecting COVID-19 age-specific excess mortality risk,
and highlight the significant effect of excess mortality on family bereavement. The second
study extends this estimation approach to 120 countries over the 2020-2021 period, docu-
menting high rates of excess kin loss in many low-and-middle-income countries higher than
or comparable to those observed in high-income countries. It also considers the extent to
which differences in country estimates were shaped by both excess mortality and pre-existing
kinship structure. The third study projects how “kinship memory”, the estimated share of
national populations related to victims of COVID-19 excess mortality, may change over the
next century in 120 countries around the world, and considers what this may mean for how
this crisis is remembered in the future. These three studies combined highlight the signifi-
cant burden of COVID-19 excess mortality in terms of bereavement experienced by surviving
family members, and demonstrate the importance of computational approaches in helping
better understand the experiences of populations for which limited data exists.
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Chapter 1

Introduction

Measuring the Lived Experience of Mortality

For centuries, demographers have sought to develop and improve upon methods of measuring
the population processes at work around them. Censuses and household surveys have seen
significant changes to enumeration and sampling strategies, advanced statistical methods
have been employed to measure and forecast vital rates in cases where data is absent or
incomplete, and mathematical models have been used to fill in gaps in measurement ap-
proaches and understand the relationships between the components of demographic change.
These, and many other developments in the field, have helped to provide a rich founda-
tion for current efforts to understand mortality, fertility, and migration in a world that has
recently seen a dramatic mortality shock in the form of the COVID-19 pandemic, but in
which information on the extent of this shock is scarcely available, except through statistical
models, for the vast majority of countries around the world.

What is more difficult to study, using existing approaches, is what these population processes
mean and have meant in the past for those living through them—how changes in vital rates
and population size are felt at the individual level. When emigration increases, how many
neighbors does a person see pack up and leave the country? When fertility increases, how
many more children are attending a child’s school? And during a mortality crisis, how many
people in an individual’s social network will die as a result? The scale of this impact, and
when and how it is experienced in an individual’s life, will determine how they respond to
and perceive this change. The effects of any change are likely to be unequally distributed—
some groups may see hardly any impact, while others may be severely affected—but, on
aggregate, this may shape how countries and societies react to demographic events, now and
in the future.

A particularly salient and challenging aspect of this issue is the impact of a mortality crisis
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CHAPTER 1. INTRODUCTION

on family networks. The consequences of losing a relative can be devastating to a person’s
mental and physical health, family relationships, and socioeconomic conditions. And yet
comparatively little is known about how changes in mortality translate into individual expe-
riences of loss. Aside from countries with population registers, where deaths can be linked
to family members, or household surveys covering certain sub-populations, mortality data is
not available at the family level. Without this information, it is difficult to put into context
what a mortality crisis means for those who survive it, and how it may shape them in the
future. At a policy level, accounting for both victims of a mortality crisis and its impacted
survivors may alter cost-benefit calculations for mortality reduction efforts, and further em-
phasize their importance. It may also help governments and communities identify the scale
and distribution of loss experienced, and to mobilize and direct support towards individuals
who have lost a loved one. Such considerations have proved important in the context of the
COVID-19 pandemic, which, in its mortality impacts, has had catastrophic implications for
the health, social support systems, and subsequent well-being of many people around the
world.

This need to account for bereaved survivors, combined with a lack of readily available data
on these populations, has led over the years to multiple conceptual and technical advances
in approaches to estimating kin loss and its impacts. Early research on this subject included
Le Bras’s macrosimulation-based estimates of ages of death for ancestors (parents, grand-
parents, and great-grandparents), with discussion of how this might impact inheritances in
France and Venezuela (Le Bras, 1973), and Uhlenberg’s conceptual model to consider how
changing demographic conditions might influence the availability of relatives, and the tim-
ing of the experience of their loss (Uhlenberg, 1980). Since then, there have been numerous
studies of how kinship resources may change for older adults (Wachter, 1997; Verdery & Mar-
golis, 2017), for women caring for both elderly and young dependents (Menken, 1985), and
for the elderly of Thailand (Wachter et al., 2002) and young children of Zimbabwe (Zagheni,
2011) in response to the HIV/AIDS epidemic. From a technical perspective, this has in-
cluded the development of new indicators to measure kin loss, such as a simple and intuitive
“bereavement multiplier”, highlighting the number of individuals who would mourn a single
COVID-19 victim (Verdery et al., 2020), as well innovations to study the impacts of crises in
populations with uncertain and limited data on vital rates (Zagheni, 2011), and to consider
the impact on estimates of factors such as within-family mortality correlations (Wachter et
al., 2002). The papers in this dissertation seek to build on these and other studies in this
rich tradition of research.

In doing so, I rely on demographic microsimulation, one of the most popular tools for esti-
mating kin network dynamics associated with demographic change. In the next section, I
discuss the history of the development of this technique, and its applications to studies like
those contained in this dissertation. 1

1The next two sections are indebted to work by Emilio Zagheni on the history of demographic microsim-
ulation (Zagheni, 2015) and insights from Kenneth Wachter.
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CHAPTER 1. INTRODUCTION

A Short History of Demographic Microsimulation

Many “macro” population-level demographic processes can be summarized in relatively
straightforward models or equations, often based on their underlying biological processes;
the Lotka-Euler renewal equation provides such an example. The individual-level “micro”
outcomes that determine these population processes and estimates, however, are more chal-
lenging to model in the absence of empirical data, and substantial micro-level heterogeneity
can be obscured by population aggregates. In this context, demographic microsimulation
offers a valuable way of generating synthetic microdata, by the creation of a population of
stochastically generated fictional individuals whose life course events and family networks
approximate in aggregate the macro-level population processes of the population they are
meant to represent. In doing so, microsimulation can address several issues related to mod-
eling population heterogeneity: allowing for some individuals or population sub-groups to
experience different vital rates than others, capturing the effects of random variability in kin
network sizes, and better accounting for non-linearities in population dynamics, such as part-
nership formation in two-sex populations. These and other advantages of microsimulation
will be discussed in the following sections.

The concept of demographic microsimulation has been considered since at least the 1950s
(Orcutt, 1957), and methods for generating this data have developed in step with improve-
ments in computational power over the following decades. SOCSIM, one of the earliest and
most popular demographic microsimulators today, exemplifies these improvements in com-
putational power and methods: originally written in FORTRAN (Hammel et al., 1976) and
now in C (Mason, 2016), with an R package under development (Theile & Alburez-Gutierrez,
2022); and having been enriched by the addition of numerous additional features, such as
a fertility multiplier, designed to better capture population heterogeneity. Originally devel-
oped at Trinity College, Cambridge, and UC Berkeley in the 1970s by Peter Laslett, Eugene
Hammel and Kenneth Wachter to understand the role of demographic factors in the forma-
tion of multigenerational household structures in premodern England (Wachter et al., 1978),
SOCSIM has since been used in numerous studies of kin networks and availability of kinship
resources. This has included research on kinship resources for the elderly in the United
States (Wachter, 1997; Verdery & Margolis, 2017); for the elderly in Thailand (Wachter et
al., 2002, 2003) and orphans in Zimbabwe (Zagheni, 2011) in the context of the HIV/AIDS
epidemic; and for individuals of various ages experiencing the loss of a relative to COVID-19
(Verdery et al., 2020; Snyder et al., 2022).

Since empirical data on kin networks is often unavailable or incomplete, SOCSIM has proved
particularly valuable in generating this data, including in examining the characteristics of
populations unrepresented in historical data (Hammel & Wachter, 1996). The question
of how to address limited availability of another type of data—vital rates needed by the
simulations as input—was also a central issue in SOCSIM’s development, and remains so
today: balancing a need to reflect real-world populations accurately by incorporating as many
significant features as possible, while considering that rates for specific sub-populations may
not be available (Wachter & Hammel, 1986). Nevertheless, in its ability to present, through
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CHAPTER 1. INTRODUCTION

its stochastic output and features accounting for population heterogeneity, an understanding
of how chosen rates and assumptions factor into dynamic models of kinship (Wachter, 1987),
SOCSIM has helped to capture important aspects of kinship networks for which alternative
data sources may not be available.

This dissertation focuses on SOCSIM, but it is important to note the development of alternate
microsimulation programs that have proved useful in other studies. This includes CAMSIM,
developed in the 1970s and 1980s after SOCSIM by Peter Laslett, James Smith and Jim
Oeppen, as a modified version of SOCSIM. While SOCSIM is a closed-population simulator,
in that individuals only enter the simulation through birth, and only exit it through death,
CAMSIM is an open-population simulation, in which individuals can be randomly gener-
ated in response to marriage market matching (Zhao, 2006). MOMSIM, another program
developed by Steven Ruggles, separately simulates family groups based on a single female
ancestor, before combining them to form a population (Ruggles, 1987). Other microsimu-
lation approaches have been used to examine constraints on childbearing in terms of family
caregiving responsibilities (Menken, 1985) and identifying the most recent common ances-
tor of modern humans (Rohde et al., 2004). Also relevant in this context are agent-based
computational models, which, like microsimulation, involve individual heterogeneous agents
acting based on pre-specified rules; an example is the “Wedding Ring” model (Billari et al.,
2007), which provides a realistic distribution of marriage by age based on simple rules of
partner availability and the share of individuals already married.

After discussing the history of the method, it is worth describing briefly what a simulation in
SOCSIM, the tool used in this dissertation, entails (Zagheni, 2015; Mason, 2016). SOCSIM
requires an initial population file with kin relationships between individuals, which in some
cases can be obtained by sampling from a household survey (Wachter et al., 2002) or census
(Verdery & Margolis, 2017). In other cases, however, when a linked initial population is
not available, SOCSIM itself can be used to obtain a starting population, by running the
simulation for a long period of time prior to its “official” start to obtain a stable population
with kinship links (Wachter et al., 1978). This can be accomplished by using a single block
of the monthly rates that SOCSIM requires, in addition to an unlinked starting population
(Alburez-Gutierrez, Mason, & Zagheni, 2021; Snyder et al., 2022). These rates, which can
vary by pre-specified population subgroups, must include fertility and mortality rates; many
versions include marriage rates as well. In the absence of marital-specific fertility rates,
some recent research, including the papers in this dissertation, has chosen to model partner
matching in terms of making the match occur at the time of the birth of the mother’s
first child, the timing of which is based on age-specific fertility rates, and the choice of male
partner based on a target distribution of age differences between partners (Alburez-Gutierrez,
Mason, & Zagheni, 2021; Snyder et al., 2022). Despite its limitations, this approach has
proved valuable in contexts where data on marriage-specific fertility may not be available.

Based on these rates and their demographic characteristics, the individuals in SOCSIM
simulations are scheduled to experience certain events (childbirth, marriage, divorce, death)
based on stochastically generated piecewise exponential waiting times and a competing risk
model. The timing of these events is recorded for each individual, along with pointers that
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CHAPTER 1. INTRODUCTION

can connect kin (for example, a child’s parents are recorded, as is a mother’s last-born
child). This can be used to construct demographic histories for these individuals, along with
a population genealogy that can be then examined to study micro-level processes such as
family formation and kin loss over time. Such output is used in each of the papers presented
in this dissertation.

Why Use Demographic Microsimulation?

It is important to note at this point that demographic microsimulation is not the only tool
that can be used to study kinship processes. At the same time as SOCSIM was being
developed, Leo Goodman, Nathan Keyfitz, and Thomas Pullum published their influential
work on estimating kin using formal demographic methods (Goodman et al., 1974). The
Goodman-Keyfitz-Pullum (GKP) equation approach uses multiple integration of fertility
rates and survival probabilities to calculate the probability that a particular woman has
a living female biological relative. Originally intended for stable single-sex populations, it
has been applied to non-stable settings (Alburez-Gutierrez, 2022), and can be augmented
to yield tabulations of kin of both sexes, although it is commonly used only in single-sex
settings. Following this tradition, Hal Caswell’s matrix approach to kinship measurement
has emerged recently as a complement to the original multiple integration approach, allowing
for non-stable dynamics and linear projection-matrix-based tabulations of male and female
kin counts (Caswell, 2019; Caswell & Song, 2021; Caswell, 2022).

Like demographic microsimulation, formal approaches have the advantage of requiring rela-
tively few inputs, typically only mortality and fertility rates; since programs like SOCSIM
also require a number of parameters such as the mean age difference between spouses that
normally have default values but may need to be specified for a given population, formal
approaches may in some cases be less demanding in terms of inputs. They are also well-
suited to generating simple summary quantities, such as the number of living relatives or the
probability of living kin, that can be used to compare the experiences of individuals living
in varied demographic regimes. A major challenge with demographic microsimulation is the
computational resources, including time spent calibrating a model, required to ensure that
simulation output is realistic and effectively captures the population under study. While re-
cent developments, such as the R package version of SOCSIM (Theile & Alburez-Gutierrez,
2022), may reduce some of these barriers to use, formal models of kinship may more readily
generate summary quantities, without many of these computational challenges, and within
a framework that may permit some mathematical decomposition of processes underlying
kin availability (Williams & Alburez-Gutierrez, 2021; Keyfitz & Caswell, 2005). Despite
these advantages, formal approaches, whether based on matrices or multiple integration,
also involve significant drawbacks.
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CHAPTER 1. INTRODUCTION

Lateral Kin

One of the most notable challenges in this regard relates to lateral kin, such as sisters.
Direct progenitors and descendants can be easily identified, in the GKP approach, using
some version of the generating equation: granddaughters are the daughters of a woman’s
daughters, for example, and can be calculated with the help of an additional integral. Lateral
kin are more complicated, however, since not only is it necessary to consider separately
lateral kin born before or after a reference individual (e.g. older and younger sisters), but
the expected number of these relatives for a particular individual depends on the distribution
of family sizes in a population, information that is not always readily available. This can
be obscured by the average family size: for example, two populations, one with one girl per
family and the other with half of families having two girls and half having none, will both
have one as the average number of daughters. However, in the first population, the average
number of sisters for a girl will be zero, while in the second population, this number will be
one.

Goodman, Keyfitz, and Pullum acknowledge this issue in an addendum to their original
article (Goodman et al., 1975), considering the extent to which the expected number of sisters
can be adjusted by knowledge of its variance. The mathematical solution used, however, to
assume a Poisson distribution of family sizes where the mean is equal to the variance, does
not necessarily resemble real population distributions of family sizes. In Caswell’s matrix
approach, there is no attempt in current formulations to account for the variance of family
sizes in lateral kin. Such heterogenity is challenging to account for in matrix formulations
without significant increases in dimensionality to account for all possible family sizes and the
use of rates for specific sub-populations that may not be available. A further complication
arises when considering that fertility levels are to some extent heritable, further adding to
the dimensions required to address this issue with matrix methods.

With these challenges in mind, SOCSIM contains multiple features that, by accounting for
heterogeneity of fertility, are better able to capture variance in the distribution of lateral kin.
The first is a fertility multiplier, which assigns each woman a random number by which her
monthly hazard of giving birth is proportionally adjusted over her entire life (Mason, 2016);
the distribution of these multipliers mimics empirical data on family sizes. Depending on the
settings chosen, these multipliers can be partly heritable by a woman’s daughters. The second
relevant feature in this respect is the potential to vary fertility rates by parity; in situations
where data is available, this provides an opportunity to better capture fertility heterogeneity.
Finally, SOCSIM also allows for vital rates to vary by population sub-group. Based on the
availability of data, the studies in this dissertation include a non-heritable fertility multiplier,
allowing them to account, at least partially, for variance in the distribution of family sizes.
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CHAPTER 1. INTRODUCTION

Affinal Kin

Affinal kin, such as spouses or cousins, also present another significant issue for formal
approaches. Both the original GKP formulation and Caswell’s matrix approach focus only
on biological kin; extending these models to consider spouses would require a large increase
in dimensionality to account for different combinations of partner ages. In this context, it
may be worth noting that two-sex kinship models for biological kin are already relatively
challenging for formal methods; given the mathematical complexity of accounting for a
two-sex population, Goodman, Keyfitz, and Pullum propose applying simple multipliers to
female-only estimates (Goodman et al., 1974), an approach that is not able to replicate the
dynamics of real-world two sex populations. Similarly, while Caswell (2022) proposes a linear
projection matrix-based approach incorporating separate male and fertility and survival
matrices, this approach will not capture non-linear characteristics of two-sex population
dynamics.

Although microsimulation may not still be able to fully account for non-linear dynamics,
it is able to capture with relative ease some important features, such as the formation of
partnerships between individuals based on expected age differences between spouses. Critical
to SOCSIM’s success in this area is its closed-population structure, which ensures that after
a partner is selected for a given individual, the partner also has a kin network of their own
that will facilitate a realistic distribution of affinal kin for the individual in question. Also
valuable is the flexibility of approaches with which it can assign a spouse to this individual,
either through marriage rates at various ages (Zagheni, 2011; Verdery & Margolis, 2017) or,
as in the papers in this dissertation, through assigning a partner at the time of the birth
of a woman’s first child (Alburez-Gutierrez, Mason, & Zagheni, 2021; Snyder et al., 2022).
Depending on specifications selected, SOCSIM will also aim to match a target distribution of
age differences between spouses. These features and their implications for the interpretation
of affinal kin counts are discussed further in subsequent chapters of this dissertation.

Stochastic Variability

A final important aspect of kinship dynamics to consider in this regard is stochastic vari-
ability; as a result of random chance, some kin networks may end up much larger or smaller
than others. This is especially noticeable in small populations, but remains an issue even in
larger ones when considering specific sub-populations based on an age-sex combination. The
GKP equations are deterministic (Goodman et al., 1974); similarly, a stochastic extension to
Caswell’s matrix approach has not yet been implemented (Caswell & Song, 2021), although
previous work by Pollard on matrix variances and higher moments for stochastic population
models would be relevant in this context (Pollard, 1966). However, failing to consider the
impact of this random variability may produce significant statistical error, as discussed by
Wachter in an examination of issues in relying on stable population theory to generate counts
of sisters (Wachter, 1980). Understanding sources of this random variability and its extent
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is thus critical to estimating kinship networks and their dynamics.

As a stochastic simulator, SOCSIM is especially well-positioned to address this issue. Simply
replicating simulation runs can provide a measure of simulation uncertainty (although this
will not capture uncertainty related to the inputs themselves). It is also possible to more
carefully account for variability in inputs, through techniques such as Bayesian melding
(Poole & Raftery, 2000), applied in Zagheni (2011) to calibrating SOCSIM microsimulations
with uncertain vital rates. Although more research is needed into optimal approaches to
microsimulation calibration, SOCSIM can represent a particularly effective and parsimo-
nious approach to capturing the random variability in population dynamics necessary for
estimating kin counts.

Mortality Crises as Experienced by their Survivors

It is now clear from the preceding sections that demographic microsimulation can provide a
valuable means of quantifying individual-level experiences of demographic change, including
kin loss associated with mortality crises. Before turning to three examples of such estimates
in the next three chapters of this dissertation, it is important to take a moment to consider
in more detail what these measures of kin loss are likely to mean for individuals reflected in
these statistics.

As death is a fundamental demographic process, so too is bereavement and the loss of kin;
nevertheless, its effects on affected individuals may be profound. Losing a relative may result
not only in severe, often long-lasting (Raker et al., 2020), psychological and physical distress,
but also in a loss of social and economic resources and support. Many studies have focused on
spousal loss (Stroebe et al., 2007; Elwert & Christakis, 2008a,b), but others have considered
the impacts of the loss of a child (Li et al., 2003; Qin & Mortensen, 2003; Doku et al., 2020),
sibling (Fletcher et al., 2013), parent (Bergman et al., 2017), or grandparent (Stokes et al.,
2019), some considering the impacts of various types of losses in comparison (Patterson et
al., 2020). What emerges from this diverse range of studies is an elevated risk of mortality
for bereaved individuals (Elwert & Christakis, 2008a,b), along with increases in depressive
symptoms and depression (Tseng et al., 2017; Wang et al., 2021), risk of dementia (Liu et
al., 2021; Umberson et al., 2020), and other illness (Stroebe et al., 2007). This is combined
with potential negative impacts on educational attainment (Patterson et al., 2020), family
relationships (Kim et al., 2021), and other socioeconomic outcomes (Fletcher et al., 2013).
Concerns about support for bereaved individuals are especially salient in light of a mortality
crisis, where social support systems may be further disrupted, further compounding the
effects of kin loss. This has been illustrated in the context of the HIV/AIDS epidemic
in Africa (Zagheni, 2011), where diminished availability of extended family members for
HIV/AIDS orphans has involved increased reliance on grandparents and adolescents and led
to the establishment of more child-headed households (Foster, 2000; Foster et al., 1996).
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The COVID-19 pandemic, which, especially in early mortality waves, saw significant dis-
ruptions to mourning rituals such as funerals and resulted in large-scale losses, illustrates
clearly the potential extent of such impacts. Research has shown that bereavement due to
COVID-19, which in the traumatic circumstances often associated with it epitomizes a “bad
death” (Carr et al., 2020), is linked to rates of prolonged grief disorder comparable to that
experienced in response to an unnatural death (Eisma et al., 2021, 2020). The risk of self-
reported depression and loneliness is also higher for those bereaved during the COVID-19
pandemic than during the pre-pandemic period (Wang, Smith-Greenaway, et al., 2022). In
accelerating existing risks of age-specific mortality, COVID-19 has increased the likelihood
that younger individuals will experience the loss of older relatives, such as grandparents and
parents, and that older individuals may experience the loss of a sibling or spouse (Snyder
et al., 2022; Verdery et al., 2020). The loss of a parent or spouse has well-documented neg-
ative effects on well-being, and has, accordingly, received considerable attention in light of
COVID-19 (Kidman et al., 2021; Hillis et al., 2021; Wang, Smith-Greenaway, et al., 2022).
However, the losses of siblings for older individuals and grandparents for younger individ-
uals are also likely to have significant effects: sibling relationships have been shown to be
an important mitigating factor for loneliness in adulthood (Stocker et al., 2020). Similarly,
grandparents, especially grandmothers, provide critical social support and nurturing for chil-
dren (Hayslip Jr. & Fruhauf, 2019; Sear & Mace, 2008; Song & Mare, 2019), and their loss
is a risk factor for adolescent experiences of depression and exposure to maternal depression
(Livings et al., 2022). Each individual kin death is likely to be experienced differently, based
on the characteristics of the individual involved, but it is clear that these losses will shape
those bereaved for years to come.

Such concerns are key to interpreting and placing in context the estimates of COVID-19-
associated kin loss contained in this dissertation. For each point increase in population-wide
rates of kin loss above expected levels, a significant number of individuals who might not
have been bereaved at this time are now experiencing its effects. This experience is further
exacerbated by the isolation, losses of social support, and other challenges associated with
this mortality crisis. It is critical to remember these individuals, and their deceased relatives,
in considering the impact of the pandemic on populations around the world.

The rest of this dissertation proceeds as follows. In the second chapter, I present published
estimates of excess kin loss associated with COVID-19 excess mortality (Snyder et al., 2022),
coauthored with Diego Alburez-Gutierrez (Max Planck Institute for Demographic Research),
Iván Williams (University of Buenos Aires), and Emilio Zagheni (MPIDR). In a set of SOC-
SIM demographic microsimulations for 31 countries that had varied experiences of COVID-19
excess mortality, we estimate monthly rates of excess kin loss for individuals who survived
the period from March 2020 to June 2021. The estimates presented highlight the dramatic
effects of COVID-19 excess mortality on family networks, with some countries seeing over a
doubling of rates of kin loss for certain demographic groups in high mortality periods, and
document a generational pattern of kin loss, where younger individuals were most at risk
of losing a grandparent, while older individuals were most at risk of losing a sibling. This
study’s focus on rates of kin loss experienced by survivors of various ages complements other
approaches designed to estimate numbers of kin lost as a result of the pandemic (Verdery et
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al., 2020; Hillis et al., 2021). The demographic microsimulation approaches laid out in this
section provide a foundation for the subsequent chapters of this dissertation.

In the third chapter, I examine more closely the demographic factors that have shaped the
estimates of kin loss presented in Snyder et al. (2022) and other studies. Despite the sig-
nificant toll of COVID-19 excess mortality in low-and-middle-income countries (LMICs),
estimates of associated kin loss have been limited so far in these contexts to orphanhood
and losses of caregiving grandparents experienced by children (Hillis et al., 2021). As seen
in high-income countries, however, multiple age groups are vulnerable to different types of
kin loss as a result of COVID-19 excess mortality (Snyder et al., 2022). Moreover, indi-
viduals with larger kin networks in higher-fertility LMICs may have been more vulnerable
to certain types of kin loss. In this chapter, I employ a set of demographic microsimula-
tions in SOCSIM to estimate kin loss across 120 countries, and develop a kinship structure
standardization approach to better understand the relative contributions of excess mortality
and kinship structure to these estimates. This provides greater insight into differences in
country experiences of COVID-19, as well as the way in which kinship structure mediates
the relationship between mortality change and kin loss.

Finally, the fourth chapter, co-authored with Diego Alburez-Gutierrez (MPIDR), Emilio Za-
gheni (MPIDR), and Ashton Verdery (Penn State), takes a long-term view of the impacts
of a mortality crisis on kinship networks, considering what the survival of relatives bereaved
by COVID-19 suggests about how the pandemic may be remembered in the coming decades.
Building on recent studies that have formalized the concept of demographic memory, the
share of a population who were living and aware of an event when it occurred (Denton &
Spencer, 2021), or related to a victim of a mortality crisis (Alburez-Gutierrez, 2022), this
chapter uses demographic microsimulation for 120 countries to project the share of the pop-
ulation related to a victim of COVID-19 excess mortality over the next century. It also
considers how this measure, termed “kinship memory”, is likely to change over the coming
century, and how demographic factors such as the population growth rate and kin network
sizes shape these estimates. As questions remain as to how this pandemic, which has rep-
resented a significant excess mortality shock in many countries, may influence subsequent
policy and attitudes in the coming decades, estimating the population share of this group
with significant lived experience of COVID-19 mortality is important for better understand-
ing this issue. The results of this chapter document the importance of the age structure
of a mortality crisis in shaping which bereaved relatives will be alive to remember it, and
highlight an as-yet unstudied aspect of the pandemic’s impact on kin networks around the
world.
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Chapter 2

Estimates from 31 countries show the
significant impact of COVID-19
excess mortality on the incidence of
family bereavement1

As excess mortality associated with the COVID-19 pandemic is better estimated and under-
stood (Goldstein & Lee, 2020; Németh et al., 2021), less is known about how this is reflected
in kin loss by survivors of the pandemic. The scale of pandemic-associated bereavement is
significant. Each US COVID-19 death leaves nine close kin bereaved(Verdery et al., 2020),
including 0.078 children aged 0 to 17 y experiencing parental bereavement (Kidman et al.,
2021), and the pandemic has resulted in over 1 million new orphans under age 18 y glob-
ally as of May 2021 (Hillis et al., 2021). This will have important population health and
welfare implications given the known negative consequences of kin loss, including declines in
physical and mental health and the loss of social and economic support(Raker et al., 2020;
Patterson et al., 2020; Wang et al., 2021). What remains to be better understood, however,
is how these increases in population-wide bereavement shape individual-level risks of losing
relatives—by how much does the incidence of kin loss increase in periods of high excess
mortality, and which demographic groups are likely to be affected? Answering this question
is key for better understanding the lived experience of pandemic excess mortality for those
who survive it.

In this study, we complement estimates of numbers of bereaved individuals associated with
COVID-19 mortality by extending a set of existing demographic microsimulations (Alburez-
Gutierrez, Mason, & Zagheni, 2021) to consider how pandemic-associated excess mortality
affected the number of individuals experiencing losses in their close family networks, across

1This chapter was previously published as: Snyder, M., Alburez-Gutierrez, D., Williams, I., and Zagheni,
E. (2022, June). Estimates from 31 countries show the significant impact of COVID-19 excess mortality on
the incidence of family bereavement. Proceedings of the National Academy of Sciences, 119 (26), e2202686119.
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CHAPTER 2. ESTIMATES OF EXCESS KIN LOSS FROM 31 COUNTRIES

31 countries, each month between March 2020 and June 2021. Our estimates, which demon-
strate a generational pattern of kin loss, show consistent increases across countries in the
numbers of younger individuals losing a grandparent, and of older individuals losing a sibling.
Moreover, our results highlight the role of heterogeneity in excess mortality and population
and kinship structure in shaping levels of family bereavement. 2

2.1 Results

To estimate our outcome measure, termed “excess bereavement,” we consider individuals
who survive to at least July 2021. Some of these individuals experienced the loss of a
certain type of biological relative between March 2020 and June 2021, but would not have
in the absence of COVID-19 mortality. Our approach focuses on the average additional
losses associated with a COVID-19 excess mortality scenario over those associated with a
scenario in which only seasonally adjusted mortality in line with previous years had occurred
(a counterfactual baseline scenario). We divide the number who lost kin in each month by
the total population of survivors (irrespective of their kin availability) and use it to calculate
the absolute difference in the number of individuals who experience loss per 100,000 in a
given month and age group (EBx,t) across the two scenarios. In the case of lower mortality
than expected, EBx,t may be negative. This measure, which is comparable across different
countries and types of kin, is expressed in Eq. (2.1), where N is the number of individuals
of either sex in age group x (as of February 2020) who survive to July 2021, with subscripts
b, for bereaved, denoting the number who lose kin in a particular month t between March
2020 and June 2021, and 0 denoting the counterfactual case,

EBx,t = (
Nb,x,t

Nx

− Nb,x,t,0

Nx,0

)× 100, 000 (2.1)

In Fig. 2.1, we plot values of EBx,t for a set of countries with varied mortality experiences
associated with COVID-19. As expected, the concentration of COVID-19 excess mortality
among older individuals is reflected in accompanying increases in numbers of younger indi-
viduals aged 15 to 44 y losing a grandparent, and in numbers of older individuals aged 65 y
and above losing a sibling. We report results aggregated across sexes, as values of EBx,t do
not differ significantly by sex. Country-specific trends in COVID-19 mortality, such as mor-
tality “waves,” are mirrored in trends in excess bereavement. Notable in Fig. 2.1 are short
periods of negative excess bereavement following spikes in excess mortality. This suggests
that these spikes may have reflected an acceleration of kin mortality, with deaths occurring
sooner than otherwise expected.

2We thank Carl Mason, Kenneth Wachter, Tim Riffe, Ugofilippo Basellini, and two anonymous reviewers,
as well as participants in the CenSoc Working Group, the Wittgenstein Centre Conference 2020, the Pop-
ulation Association of America Annual Meeting 2021, and the International Population Conference 2021.
We gratefully acknowledge support from NIH Training Grant (2T32HD007275). The content is solely the
responsibility of the authors and does not necessarily represent the official views of NIH.
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Figure 2.1: Estimates of monthly excess bereavement (EBx,t ) and counterfactual bereave-
ment, in multiple countries, by age of the bereaved individual and type of biological kin.
Note the different scales on the y axis across panels. Results are shown where more than 1%
of the group had a living relative of the type considered in February 2020.

Comparing Sweden, which saw high excess mortality early in the pandemic, and Norway,
which saw lower mortality than might have been expected, reveals the role of excess mor-
tality in shaping experiences of countries with otherwise very similar age–sex and kinship
structures. Sweden saw significant increases in kin loss during the period, while Norway
saw very low or negative changes in the number of individuals experiencing bereavement.
The similarity in counterfactual rates of loss across not only Sweden and Norway but all
countries considered in Fig. 2.1 further indicates the importance of excess mortality even
when considering countries with more varied demographic structures.

Kin loss would have been high for some groups even in the absence of COVID-19 mortality.
For example, 711 (SEM of 19 across 100 paired simulations) per 100,000 UK individuals aged
30 to 44 y would have experienced the loss of a grandparent in March 2020 under a baseline
scenario. However, very high excess mortality associated with the pandemic resulted in kin
loss more than double the baseline levels. For example, by April 2020, over 845 (SEM 31) per
100,000 more individuals in this same group lost a grandparent, 1.2 times higher than the
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expected baseline of 703 (SEM 21) per 100,000. A comparably large increase in bereavement
for older individuals was also observed, with 511 (SEM 15) per 100,000 or 1.15 times more
individuals in Poland aged 65+ y losing a sibling in November 2020 than the expected 443
(SEM 8) per 100,000. The scale of loss associated with the pandemic is brought out even
more clearly in Fig. 2.2, which multiplies EBx,t values from Fig. 2.1 by country populations
in 2020 to highlight the large total number of individuals as of July 2021 who may have lost
relatives as a result of COVID-19 excess mortality.

2.2 Discussion

With estimates showing, in some cases, a doubling of kin loss risks over expected levels,
our results help put into context the staggering toll of excess mortality and bereavement
associated with COVID-19 and highlight which groups are most likely to be affected. They
also highlight the importance of excess mortality in shaping country experiences: The coun-
tries in our sample would have had similar population-adjusted projections of kin loss in the
absence of COVID-19, but they diverged considerably based on COVID-19 excess mortality.

This similarity of counterfactual kin loss reflects other similarities between countries in our
sample, which are high-income countries for which excess mortality data are readily available.
We might see different impacts of similar levels of excess mortality for younger populations
with more-varied kinship structures, such as in countries in the Global South. Excess bereave-
ment is not simply a rescaled value of excess mortality. It results from complex interactions
between fertility and survival functions over time. Further work is needed to understand
how excess mortality and demographic structure shape country-level excess bereavement.

We present a lower-bound estimate, as the pandemic continues to take its toll. Furthermore,
the quantities we estimate are averages at the country level; levels of excess bereavement are
likely to be considerably higher in hard-hit subnational populations, and among individuals
with larger or high-risk families. Our estimates do not account for within-country hetero-
geneity or clustering of excess mortality within groups or families. However, as with other
large-scale public health crises, COVID-19 excess mortality tends to be clustered within pop-
ulation subgroups (Vahabi et al., 2021). This means that those who experience the death
of a member of their extended family are more likely to face additional loss in their kin
network. Future work to assess the extent of clustering of bereavement would be important
to inform policies supporting vulnerable individuals.

Our study underlines recent calls for more support to be given to individuals bereaved from
COVID-19 (Verdery et al., 2020; Hillis et al., 2021), whether from their communities or
governments. This is particularly urgent if, as recent evidence suggests, grief from COVID-
19–associated bereavement is especially detrimental for survivors (Eisma et al., 2020). Our
results also identify groups who may lose significant members of their support network as a
result of pandemic mortality, such as older individuals who lose a sibling. These losses will
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Figure 2.2: Number of additional survivors (in thousands) who lost a given relative type.
The figure multiplies EBx values from Fig. 2.1 by 2020 population estimates from the 2019
Revision of the United Nations World Population Prospects to find the total number of
surviving individuals bereaved as a result of COVID-19 excess mortality, as of July 2021;
EBx values are bounded at zero to reflect deaths associated with the pandemic. Note the
different scales across panels. Results are shown where more than 1% of the group had a
living relative of the type considered in February 2020.
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reverberate in kin networks for generations to come. More research is needed on the impacts
of excess bereavement on survivors, not just in the context of COVID-19, but for mortality
crises, past and present, around the world.

2.3 Materials and Methods

Our analysis uses SOCSIM, a stochastic microsimulation platform that generates population-
level genealogies using vital demographic rates as input (Hammel et al., 1976; Wachter, 1997;
Verdery et al., 2020). Our simulations use, as input, vital rates for the 1950–2035 period from
the 2019 Revision of the United Nations World Population Prospects (medium scenario). To
identify the effects of COVID-19 mortality on kinship structures, we run 200 microsimulations
for each country, half representing a COVID-19 mortality case and the other half representing
a counterfactual scenario without excess mortality, with adjustments made using the Human
Mortality Database’s Short-term Mortality Fluctuations dataset (Németh et al., 2021).3

Some caveats should be noted. We assume zero international migration, and do not include
marriage rates; the latter means we consider only biological kin (see SI Appendix for more
details). We also assume demographic stability before 1950 in our simulations: This is a
necessary assumption, since reliable historical demographic data are not available for all
countries studied. In SI Appendix, we apply formal demographic methods to historical
Swedish data and show that the pre-1950 demographic stability assumption is unlikely to
significantly affect the number of expected kin after 2015 for the types of kin considered in
this paper.

As an additional robustness check, we compared our estimates of COVID-19–associated
parental bereavement experienced by children to those in other published estimates (Hillis
et al., 2021; Kidman et al., 2021), and found similarities in magnitude, despite differences in
the age groups considered and methods employed.

2.4 Supplementary Information Appendix: Extended

Methods

2.4.1 Adjusting Simulation Inputs for Excess Mortality

In order to obtain simulation inputs, we first convert UNWPP 5-year mortality rates into
monthly values assuming uniform mortality across the interval, except for the period from

3Dataset and replication files have been deposited in Open Science Framework (https://osf.io/jn2h9/
?view only=ce87de3c2310424da30bb3a520c4f0ce).
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March 2020-June 2021. For this period, we employ weekly age and sex-disaggregated mor-
tality data from the Human Mortality Database’s Short-term Mortality Fluctuations dataset
(STMF), to adjust the monthly rates in line with two possible mortality scenarios: a COVID-
19 case using rates from the 2020-2021 period, and a counterfactual case using an average
of the 2016-2019 monthly rates.

Since SOCSIM employs monthly vital rates, we first convert HMD STMF weekly data to
monthly data by dividing each week’s total by 7 and assigning each day thus generated to a
month according to the ISO8601 standard, which is used by almost all of the countries in the
STMF. We use this method to generate monthly exposures (from the STMF data) and death
totals for 2016-2021. An average of 2016-2019 values forms our baseline of “expected” 2020-
2021 mortality, and we use this to also calculate an annual average expected mortality rate
by averaging across all monthly mortality rates. We then use this as the denominator of the
ratio used in calculating the adjustment factors used in the two scenarios: in the COVID-19
case, the numerator is 2020-2021 monthly mortality rates, and in the counterfactual case, the
numerator is the baseline 2016-2019 rate. Since the original rates to be adjusted are annual
averages which do not account for seasonality, this approach allows for us to consider by how
much mortality would have been expected to change in the months from March 2020-June
2021 in the absence of COVID-19 excess mortality, and by how much it increased above
annual expected values during the period as a result of COVID-19 excess mortality.

2.4.2 Additional Details on Fertility, Marriage, and Kinship in
Our SOCSIM Microsimulations

Our approach follows closely that used by Alburez-Gutierrez et al. (2021) (Alburez-Gutierrez,
Mason, & Zagheni, 2021), which adopts a SOCSIM setup without marriage rates in which
births are based on female fertility, with male partners selected at the time of childbirth
from all unpartnered living males in the population. This selection is based on minimizing
differences between the observed and the pre-specified target distribution of the difference
in ages between partners. This ensures a reasonable age distribution for fathers in our sim-
ulations. There is potential for bias associated with not capturing the full range of age
differences possible in cases such as childbirth outside of marriage or remarriage; however,
we consider such potential bias to be likely relatively small, at least when attempting to
achieve a reasonable approximation of kinship networks for the purposes of our study and
in the countries considered. Fertility heterogeneity is accounted for with the use of a beta-
distributed random fertility multiplier assigned to each female in the population; this allows
for greater variability in the number of siblings present than might otherwise be observed
(Mason, 2016). As mentioned in the main text, we do not account for other sources of
heterogeneity, such as frailty, given data limitations. This may lead to a more homogeneous
distribution of excess bereavement experienced across the population than might occur in
the case of mortality clustering, or when considering other possible sources of heterogeneity
(Ruggles, 1993). These potential sources of bias should be noted when interpreting these
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results.

In the absence of marriage rates, the kin identified are biologically related to each other. Our
definition of siblings, for example, includes half-siblings who share one biological parent, but
does not include step-siblings without biological ties. In our simulations, half-siblings can
result from childbirth in couples where one partner was previously widowed and re-entered
the queue to form a partnership. As we do not explicitly model union dissolution via di-
vorce, and the models are calibrated to match female fertility rates, our simulation outputs
would include all siblings (half or full) who share the same mother, but may underesti-
mate half-siblings who share the same father, leading to conservative estimates of number of
half-siblings. Grandparents refer only to the biological mother and father of an individual’s
biological parents. Since studies on family networks typically focus on households, rather
than kin networks independent of co-residence, ascertaining the share of sibships and other
kin relations explored in the countries studied that are biological is challenging. However,
in terms of household configurations, which may represent particularly salient kinship ties
for the individuals involved, biological sibships involving full and half sibling relationships
account for the vast majority of sibling compositions, with only around 1 percent of chil-
dren in the United States in 2009 living only with one or more non-biological step-siblings
(Manning et al., 2014). This suggests that our approach should account for a considerable
fraction of close kin networks for the individuals studied.

2.4.3 Sample of Countries Considered

After running the simulations, as a robustness check we use simulation outputs to calcu-
late excess mortality for the period by age group and compare this to equivalent estimates
based on the STMF. In line with our input mortality adjustment factors, we calculate ex-
cess mortality as the average ratio across simulations of COVID-19 to counterfactual 65+
age-specific mortality rates for the March 2020-June 2021 period. There is a high correlation
between input and output (simulated) excess mortality rates of .98 across the 31 countries
considered, and there is at most a 3 percent difference between input and output estimates,
despite differences in simulation sizes (simulated country populations range from around
12,000 to 120,000 in the middle of the period considered, with simulation size proportional,
with some adjustments, to country population size) and in the exposures used in calculating
both types of rates. This suggests that our simulations suitably account for excess mor-
tality related to the pandemic in these countries. The sample of countries for which we
provide estimates in the replication files are: Austria, Belgium, Bulgaria, Chile, Croatia,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Israel, Latvia, Lithuania, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portu-
gal, Republic of Korea, Slovakia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom
(obtained by combining mortality data from England and Wales, Scotland, and Northern
Ireland), and the United States of America.
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2.4.4 Investigating the pre-1950 Demographic Stability Assump-
tion

In this section, we consider the implications of assuming demographic stability before 1950.
In particular, we examine the degree to which extrapolating the particular demographic
characteristics of the 1950-1954 period into the past (including the baby boom) can bias the
initial kinship structures for the countries we study.

One way to consider the impact of assuming demographic stability prior to 1950 on living
kin is to think in terms of a particular kin relation, especially in terms of ancestors who
experienced vital rates prior to the ego’s birth. In the case of mothers, the probability
that an ego aged a in year y, from cohort c = y − a, had a living mother My

1 (a), can be
approximated based on Keyfitz & Caswell (2005) with:

My
1 (a) ≈ p[c−kc](kc, a), (2.2)

where p[c−kc](kc, a) is the mother´s probability of surviving a years from age ky−a (the mean
age of childbearing when ego was born), given cohort mortality risk for a person born in
[c− kc].

Let us consider an ego born before 1950 who survives to subsequent years. This ego could
be aged a = 30 in y = 1960, c = 1930, living 20 years prior to 1950 and 10 after. Formula
2.2 can be factorized with the year 1950 as pivot:

M1960
1 (30) ≈ p[1930−k1930](k1930, 20) ∗ p[1930−k1930](k1930 + 20, 10) (2.3)

If rates (mortality and fertility) are assumed constant before 1950 (and female population
structure by age too, which is relevant to the mean k), we should have a slightly different
probability M1960∗

1 (30), given that all the rates before 1950 now are related to that last
observed year:

M1960∗
1 (30) ≈ p1950(k1950, 20) ∗ p[1930−k1950](k1950 + 20, 10) (2.4)

We can identify two main effects that drive the difference between M1960∗
1 (30) and M1960

1 (30),
given a direction of change for each one. Let us assume constant aging and a mortality
decline. Before 1950 mothers would experience 1950 period rates instead of cohort ones,
increasing mother’s survival during ego’s life. The second main effect goes in the opposite
direction, given that the relation of maternal ages is k1930 < k1950, survival chances decrease
because of age (risk period starting in age k1950 instead of k1930) and a cohort effect (mortality
schedule from [1930−k1950] cohort instead [1930−k1930]). The net result will depend on the
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curvature of lx, its change with time, and the slope of k with time, not directly estimable
without observed data or a parametric assumption on components. A similar approach can
be made for older ancestors. For direct descendants both factors would also include cohort
fertility rates.

This last case applies when ego is born before 1950 and is alive after. If she is born in 1950
or later, y1 ≥ 1950, then this effect on living mothers would disappear. It also disappears for
grandmothers if ego is born on y2 ≥ 1950 + k1950, and for great-grandmothers if ego is born
in y3 ≥ 1950 + k1950 + k1950+k1950 , and so on. Of course, if ego is born after 1950, all living
descendants would not be affected by the change. In general terms, the bias in constant
rates before 1950 in living ancestors older than mothers (when i > 1), will disappear for
Mi if ego is born at yi+1 ≥ yi − kyi−k1950

4. In a stable population context, when there is a
sudden change in rates (here in 1950), changing the regime itself, this series could be useful
to ensure that ancestors until i degree belong to the new and latest regime.

We carried out separate analyses to understand the effect of assuming demographic stability
before 1950 for a specific population. For a numeric example we applied kin estimation for
an ego aged 30 (an age where it is not unlikely to have a surviving grandmother in low
mortality countries, and also a living child (Alburez-Gutierrez, Mason, & Zagheni, 2021))
using vital rates from Sweden and locating ego in successive years from 1950 to 2015.

We ran two sets of analyses: ‘historical’ analyses used the estimated historical rates for the
1751-1950 period and ‘stable’ analyses assumed that the 1950 demographic rates applied
throughout the 1751-1950 period. Age-specific mortality rates (starting from 1751) come
from the Human Mortality Database and fertility rates (starting from 1891) come from the
Human Fertility Database. In all cases, we assumed demographic stability for fertility in the
1751-1891 period. We combined these data with official demographic projections of fertility
and mortality provided by Statistics Sweden. Sweden is the ideal case for this analysis given
its long time series of high quality demographic rates. Crucially, Sweden also experienced a
moderate increase in fertility after WWII (Van Bavel & Reher, 2013). As such, the Swedish
case would allow us to explore whether our stability assumption extrapolates the conditions
of the post-WWII baby-boom into the past.

The results suggest that there is a general convergence in all the relatives types included in
the study. The fact that older ancestors had later converged is consistent with the mentioned
series yi. In general terms the differences are null for all type of kin in year 2015 (last year
of evaluation), when in 1950 we could see bigger differences, like 50% in cousins 9% in
older sisters, -50% in grand-mothers and -80% in grand-daughters ([historical

stable
− 1] ∗ 100). In

conclusion, at least in the Swedish case, no significant bias is expected in kin counts after
2015 because of assuming fixed rates before 1950.

4The assumption of a concentrated fertility schedule around k is necessary.
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2.4.5 Validating our Simulations with Formal Methods

To ensure that the simulated populations capture the kinship structure implied by the input
demographic rates, we estimate a set of independent matrix kinship models with the same
input data. We use an implementation of matrix kinship models (Caswell, 2019) extended
for populations with time-variant demographic rates, as implemented in the DemoKin R
package (https://github.com/IvanWilli/DemoKin), to show that the estimates are consistent
with the simulated kinship structures.

We report a comparison of estimates for living kin for a women in Sweden in July 2020
(the first wave of excess mortality), based on both microsimulation and formal methods.
While the kin relations presented in the main text are for male and female kin, here we
present only female kin in a single-sex population model so as to achieve comparability with
the formal approach we present. The results suggest that there is considerable similarity
between methods in terms of the results obtained, providing an important robustness check
for our microsimulation-based results.

Kin counts are generally similar across the two methods. There are no significant differences
for mothers, except for individuals aged 65+, for whom SOCSIM estimates .07 living mothers
and the GKP approach estimates .02 mothers in both the COVID-19 and counterfactual
scenarios. In general, for a given method, population-level kin counts are fairly similar
across the two scenarios, reflecting the relative brevity of the mortality shock considered
as well as the large number of individuals included in the simulations. Differences in the
number of living grandmothers are all under 0.15, with the largest discrepancies in the 30-44
age interval, followed by the 15-29 age interval. This is likely associated with the increased
rarity of having a living grandmother at older ages, leading to more statistical variability in
the SOCSIM estimates (although even older individuals might be so unlikely to have a living
grandmother as to make estimates of kin availability and associated differences relatively
small). The expected number of daughters is higher in GKP-based estimates for most age
groups by about 0.1 to 0.18. Consistent with our expectations, we tend to find the largest
discrepancies for the relative types that are less common overall. Our simulations have a
limited size (for example, across simulation runs, there were around 6,300 women aged 30-44
in Sweden who survived the COVID-19 mortality period from March 2020 to June 2021)
and, as a result, there is bound to be more uncertainty around the prevalence of relatively
rare kin ties.

2.4.6 Comparison to Other Published Estimates

As an additional robustness check, we compared our results to those from Hillis et al. (2021)’s
modeled estimates of parental bereavement for children in which Hillis et al. (2021)’s es-
timates were calculated using excess mortality, and from Kidman et al. (2021)’s estimates
for the United States. In general, our estimates are slightly lower, reflecting the lower age

21



CHAPTER 2. ESTIMATES OF EXCESS KIN LOSS FROM 31 COUNTRIES

group endpoint (14 versus 17); most parentally bereaved children would likely be in the
older portion of the age group. Hillis et al.’s estimate of 8,495 parentally bereaved children
aged 0-17 in England and Wales alone by the end of April 2021 resembles our estimate of
7,567 children aged 0-14 for the United Kingdom as a whole for the same period, despite
differences in the groups considered (Hillis et al., 2021). Similarly, we estimate 2,298 or-
phans aged 0-14 in France, compared to the Hillis et al. (2021) estimate of 4,064 orphans
aged 0-17. Some countries show greater variability: our results for Spain are higher than
those estimated by Hillis et al. (2021) (3,905 orphans aged 0-14 versus 2,309 aged 0-17),
likely reflecting differences in modeling strategies used. Existing published estimates for the
United States vary considerably: Kidman et al. (2021) estimate 43,000 orphans aged 0-17
up to the end of January 2021 using excess mortality (Kidman et al., 2021), while Hillis et
al. (2021) estimate 104,884 for the same group up to the end of April 2021. Our results,
when calculated up to the end of January 2021 (to match the time period Kidman et al.
(2021) considered) are close to those of Kidman et al. (2021): We estimate a value of 36,716,
which, given the shorter age interval of 0-14, is slightly lower, as we expected.
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2.5 Addendum by Mallika Snyder, May 2023

Since this paper was published, some of my further research has highlighted a few minor issues
with the input rates used for the simulations in this paper. To the best of my knowledge,
no issues identified should have a noticeable effect on the results reported. I assume full
responsibility for these errors, and discuss their implications here for any readers who may
be interested in replicating the results of this paper.

First, in the calculation of the adjusted input mortality rates for the March 2020—June 2021
period, there was an incorrectly specified age interval n of 5 instead of 4 for the mortality
rates for the 1-4 year age interval, meaning that the monthly child mortality estimates for
this period are scaled upwards by an additional factor of around 20%. This calculation was
applied across all countries, as well as across the observed COVID-19 and counterfactual
simulations, so it is unlikely to have a significant effect on cross-country comparisons or
estimates of excess bereavement, which are derived from a comparison between COVID-19
and counterfactual simulations.

Second, the use of mortality and fertility rates from the United Nations World Population
Prospects 2019 revision was incorrectly based on the assumption that the 5-year intervals
presented are from January to December, rather than July to June. This is likely to have
the greatest effect on estimates of excess bereavement for March to June 2020, since these
calculations used rates that were intended to only apply from July 2020 onwards. Considering
that most countries in this sample would have been projected to see declining mortality
and fertility between 2015-2020 and 2020-2025, this could lead to slightly underestimated
mortality and fertility. This error applied across all countries, as well as across the observed
COVID-19 and counterfactual simulations, so it is unlikely to have a significant effect on
estimates of excess bereavement, or cross-country comparisons.

Finally, the code for input age-specific fertility rates mistakenly assumed that rates as written
were inclusive of the upper end of the age intervals. However, based on SOCSIM documenta-
tion (Mason, 2016), the rates as written would have ran as 15-18 inclusive, with other fertility
rates shifted downwards by one year, so that the rates for ages 20-24 were applied to ages
19-23, and so on. Given that SOCSIM additionally adjusts for birth intervals based on input
fertility rates, this is unlikely to significantly affect fertility in simulation output, with some
births still expected to occur to women aged 49, despite the input rates as written ending
before the start of age 49. Like with the previously identified issues, this error applied across
all countries, as well as across the observed COVID-19 and counterfactual simulations.

These issues do not apply to chapters 2 and 3, which used input rates based on the UNWPP
2022 revision, which contains single-year January—December lifetables and age-specific fer-
tility rates.
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Chapter 3

The Demographic Determinants of
Cross-Country Variation in
COVID-19-related Kin Loss

3.1 Introduction

The dramatic mortality toll of the COVID-19 pandemic has led to large increases in kin loss
around the world (Verdery et al., 2020; Hillis et al., 2022; Snyder et al., 2022), with signif-
icant negative health consequences for many of those bereaved (Eisma et al., 2021; Wang,
Paulson, et al., 2022). Little is still known, however, about how the pandemic may have
increased exposure to kin loss in low-and-middle-income countries, some of which have seen
the highest levels of excess mortality in the world (The Economist & Solstad, 2022; Msemburi
et al., 2023). Most estimates of COVID-19-associated kin loss have focused on high-income
countries, with the exception of estimates of orphanhood and caregiver loss among young
children (Hillis et al., 2021; Unwin et al., 2022; Hillis et al., 2022). By developing a set of
comprehensive microsimulation-based estimates of COVID-19-related excess kin loss in 120
countries, this paper attempts to help address this significant gap in our understanding of
the pandemic’s impact on families around the world.

In addition to presenting these estimates, this paper also seeks to better understand the
relative contributions of two key demographic factors that may shape cross-country rates of
excess kin loss: excess mortality and pre-existing kinship structure. While it would be ex-
pected that higher-excess-mortality countries would see higher rates of excess kin loss, it has
not yet been considered to what extent these cross-country differences could be influenced
by pre-existing kinship structure. A country’s history of mortality and fertility shape the
likelihood that a person alive today might have a living relative, with mortality having a
larger impact on the availability of ancestors, such as parents and grandparents, and fertility
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tending to shape the availability of relatives like siblings, cousins, and aunts (Sembiring,
1978; Keyfitz & Caswell, 2005). Simply comparing cross-country estimates from varied con-
texts may fail to fully capture the impact of kinship structure in shaping the vulnerability
of a population to kin loss. With this in mind, I develop in this paper an approach to un-
derstanding the contributions of these two factors, drawing on the demographic technique
of direct standardization by considering the effects on kin loss derived from substituting an
alternative counterfactual “standardized” kinship structure. This flexible approach, which
could be applied to other mortality crises, provides insight into the relative impacts of his-
torical demographic conditions (in the form of kinship structure) and present-day mortality
(in the form of excess mortality) for the countries studied in this paper.

The dual objectives of this paper thus aim to help advance our understanding of the impact
of COVID-19 on family networks. Hard-hit low-and-middle income countries (LMICs) may
have had very different experiences of loss than hard-hit high-income countries (HICs), with
some evidence suggesting a flatter age pattern of excess mortality, with elevated mortality
risks even at younger ages (Demombynes et al., 2022); higher fertility leading to larger kin
networks and potentially greater exposure to loss; and higher pre-existing mortality leading
to the reduced availability of ancestors, and reduced exposure to their loss. Without country
estimates for a wide range of countries, and a model to estimate the potential impacts of
demographic factors, it is difficult to know how LMICs might have been affected by this
mortality crisis. As noted by Keyfitz and Caswell (2005), formal demographic specifications
of kin availability, the complement of kin loss, reveal that these estimates depend on birth
and death rates, but do not indicate the way in which a change in inputs affects outputs
(Keyfitz & Caswell, 2005). While previous work using formal demographic methods has
attempted to develop model-based intuition for the relationship between mortality change
and kin loss (Williams & Alburez-Gutierrez, 2021; Keyfitz & Caswell, 2005), this type of
analysis has not been attempted in a two-sex non-stable population for other kin relation-
ships, likely as a result of mathematical complexity. The mortality shocks considered have
also been permanent, rather than temporary, limiting the applicability of this approach.
Microsimulation, by which a two-sex non-stable population may be more easily modeled,
and in which kin relationships may be identified more readily, offers a possible alternative:
with known inputs and outputs, and the potential to generate outputs for a wide range of
settings, these estimates can serve as a valuable testing ground for modeling the effects of
demographic processes.

In this paper, I extend the microsimulation setup used in Snyder et al. (2022) to 120 countries
in the 2020-2021 period. In doing so, I rely for input data on annual lifetables from the 2022
revision of the United Nations World Population Prospects (United Nations, Department of
Economic and Social Affairs, Population Division, 2022), which account for estimated excess
mortality during this period, based partly on estimates from the World Health Organization
(WHO) (Msemburi et al., 2023). Despite the limitations of relying on model-based estimates
rather than raw data, the availability of these estimates for all countries facilitates interna-
tional comparison in a case where data is otherwise unavailable. My results highlight the
significant burden of excess kin loss experienced by surviving individuals in many LMICs,
and the importance of kinship structure in shaping country experiences.
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3.2 Measuring Kinship Networks and their Character-

istics

To be at risk of experiencing kin loss, an individual must have living kin in the first place.
Recognition of the importance of having available kin has led to numerous studies of kinship
resources. These studies have sought to measure the size of networks and rates of kin
availability, or its complement, kinlessness.

3.2.1 Insights from Formal Demography

Information contained in life table and fertility schedules can be used to estimate expected
population change, as in the Euler-Lotka equation, and, by extension, changes in sub-
populations with a kin relationship to a particular individual. Numerous mathematical and
formal demographers have employed this information to estimate kinship resources, includ-
ing Lotka’s estimates of orphanhood (Lotka, 1931) and Brass’s estimates of child survival for
mothers (Brass, 1953). The most well-known mathematical treatment of this approach, the
Goodman-Keyfitz-Pullum kinship equations (Goodman et al., 1974), provide a framework
for quantifying kin availability using the multiple integration of vital rates. These equations
are presented in terms of female kin in a stable population, but can be applied to others.
This approach has been generalized to non-stable settings in an examination of trends in
women’s experience of child death over the life course (Alburez-Gutierrez, Kolk, & Zagheni,
2021).

As Keyfitz and Caswell note (Keyfitz & Caswell, 2005), the use of mortality and fertility rates
as inputs into equations that provide kin counts and probabilities as output should seem
to readily provide an indication of the impact of demographic change on kin availability;
however, in practice, it is difficult to discern, from merely looking at the equations, the
impact that a change in an input rate might have. One method of assessing the relative
importance of these rates is to compare permutations of fertility and mortality rates. While
the authors do not apply this approach to all kin types, their results imply that mortality
rates may be especially important in shaping availability of ancestors, while fertility rates
are more important in terms of the availability of cousins, a finding previously confirmed
through statistical simulations (Sembiring, 1978).

Mathematical decomposition of these equations may also provide insight into this relation-
ship. Of particular interest for this paper is an approximation presented by Keyfitz and
Caswell of the impact of a uniform change in mortality on M1(a), the likelihood that a
woman of a certain age a has a living mother. When the mortality increase k is uniform
over age, M1(a), which can be written as follows,

M1(a) =

∫ β

α

l(x+ a)

l(x)
e−rxl(x)m(x)dx
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can be written in terms of an approximation using the mean age of childbearing κ. With
this approximation, M1(a) is primarily determined by the fraction l(κ+a)

l(κ)
, which declines in

the ratio e−ka. Thus, the change in the probability that a woman has a living mother can
be written as follows, when k is small enough that e−ka ≈ (1− ka),

∆M1(a) = −kaM1(a) (3.1)

Equation (3.1), which can also be applied to other types of female ancestors, demonstrates
that for the conditions described, the change in kin availability, i.e. kin loss, that results
from a mortality increase, is proportional to the mortality increase itself and the original
availability of that kin relation. This can thought of as the product of excess mortality
and kinship structure, with a serving as a proportionality term. Although the conditions
under which this equality will hold are restrictive, equation (3.1) highlights the importance
of excess mortality and kinship structure in determining age-specific rates of kin loss. I will
similarly focus on these key explanatory variables in the subsequent analysis.

3.2.2 An Alternative Approach: Demographic Microsimulation

Despite the potential for use of these mathematical approaches in non-stable settings, these
calculations become more mathematically challenging when considering kin relationships
other than the mother-child relationship, and when assuming time-varying rates; they have
also not yet been applied to a two-sex population. A recent matrix-based approach proposed
by Caswell (Caswell, 2019), and further extended to cover time-varying rates and provide
linear two-sex kin tabulations (Caswell & Song, 2021; Caswell, 2022), has been used to
overcome some of these limitations by providing greater insight into the age distribution of
kin. Multiple challenges remain with both approaches, however, including their inability to
reflect stochasticity and random variability in kin counts, which may succeed in reproducing
population averages but may not fully account for variance.

Demographic microsimulation, a popular approach for estimating kinship resources, presents
an alternative to mathematical techniques that addresses some of their challenges, while re-
lying on other assumptions of its own. One of the most widely used platforms, the stochastic
demographic microsimulator SOCSIM (Hammel et al., 1976), has undergone numerous revi-
sions since its origins at UC Berkeley in the 1970s. These additions have included features
such as a heterogenous fertility multiplier, an important inclusion for addressing concerns
about homogeneity from other kinship modeling techniques (Ruggles, 1993). Like mathemat-
ical kinship models, SOCSIM requires age-structured mortality and fertility rates; however,
instead of generating averages and distributions, SOCSIM generates a population of indi-
viduals and their accompanying genealogies. This approach thus provides an efficient and
flexible means for identifying the extended kin networks of individuals, including for identi-
fied sub-populations using the groups feature. SOCSIM has been used for numerous studies
of kinship resources, including for the elderly of the United States (Wachter, 1997; Verdery
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& Margolis, 2017), as well as the elderly of Thailand (Wachter et al., 2002) and orphans in
Zimbabwe (Zagheni, 2011) in the context of the HIV/AIDS epidemic.

An added advantage of demographic microsimulation is that it captures not only kin avail-
ability, but the age structure of a kinship network: the distribution of kin of various ages for
an individual of a particular age. Some formal demographic models, such as the Goodman-
Keyfitz-Pullum equations, do not provide information on the age distribution of available
kin, an issue addressed in Caswell’s matrix approach. Quantifying the age structure of kin-
ship networks is important for understanding the potential for inter-generational interaction,
and the nature of the associated kinship resources. In the context of this paper, it is also
crucial for predicting their vulnerability to an age-specific mortality shock. Some intuition
as to the nature of these age structures is provided by a country’s demographic characteris-
tics; for example, the mean age at childbearing can be used to estimate the relative ages of
grandparents. However, the interaction of various demographic factors, as discussed above,
warrants a more systematic examination of the impact of different mortality and fertility
patterns on kinship networks and their characteristics at the cross-country level. The next
section describes the microsimulation setup used in this paper to examine these issues.

3.3 Microsimulation Setup

The microsimulation approach used in this paper draws upon a set of SOCSIM simulations
that have been used to study kin loss associated with COVID-19 excess mortality (Snyder et
al., 2022), and which were built on a simulation setup first developed to study kinship-based
caregiving requirements for individuals “sandwiched” between young and aging dependents
(Alburez-Gutierrez, Mason, & Zagheni, 2021). The simulations use as inputs the annual
blocks of vital rates from the 2022 revision of the United Nations World Population Prospects
(UNWPP), using the medium fertility scenario, and with rates converted to the monthly
format that SOCSIM requires by assuming constant mortality over the year. The effect of
excess mortality is identified by averaging over 20 simulations per country to account for
simulation stochasticity, in which half of the simulations represent an “observed” baseline
case, where 2020 and 2021 excess mortality occurred (represented by the UNWPP estimates
for 2020 and 2021, which are based partly on theWHO estimates) and the other half represent
an “expected” counterfactual case where COVID-19 excess mortality did not take place
(obtained from the expected linear trend in mortality rates, based on the 2015-2019 UNWPP
estimates). Important to note in this context is that all estimates and rates considered are
age-specific; while some countries may have seen higher crude estimates of kin loss or excess
mortality due to their population structure, this is not discussed in this paper.
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3.3.1 Estimating Excess Mortality

Excess mortality is considered the “gold standard” in measuring the impact of a mortality
crisis (Beaney et al., 2020), given its potential to capture direct effects of crisis mortality
as well as indirect impacts on health systems and other causes of death. However, the
approaches used to calculate a baseline for excess mortality vary considerably (Németh et
al., 2021), ranging from multi-year averages (Beaney et al., 2020), linear trends (Karlinsky
& Kobak, 2021), and more elaborate statistical models (Basellini et al., 2021; Verbeeck et
al., 2021). Such estimates are highly sensitive to the choice of baseline (Nepomuceno et al.,
2022), which in turn is based on considerations such as whether to account for seasonality,
secular trends in mortality associated with population structure, and the effects of single-year
mortality shocks. While SOCSIM rates are applied in single-month blocks, the lifetables used
here are for an entire year, obscuring any seasonal variation; although it could be possible to
account for seasonal variation in some countries, the lack of high-frequency mortality data
in many countries makes such an adjustment challenging. Accordingly, the excess mortality
baselines considered will not adjust for seasonality, instead focusing on estimating expected
changes in annual lifetable age-specific mortality rates, which are then used to calculate the
monthly mortality probabilities used by SOCSIM.

In this context, the multi-year linear trend has emerged as a popular choice for its simplicity
and potential for capturing the effects of changes in population structure and other factors
(Karlinsky & Kobak, 2021); multi-year averages may fail to capture the effect of these trends.
Linear interpolation, another common technique, poses certain challenges in the context
of the UNWPP lifetables, since the forecasted length of the impact of COVID-19 excess
mortality varies by country characteristics. However, since the latest year by which country
mortality conditions are expected to return to normal is 2025, it is possible to interpolate
rates between 2019 and 2025. Although this length of time may be unnecessary for some
lower-mortality countries, the alternative of interpolating too few years in countries where
an excess mortality shock is still likely to continue into 2022 or 2023 is likely to result in
more significant bias.

A comparison of 2021 excess mortality estimates derived from these various methods is
presented for two sample countries, South Africa and the United States, in Figure 3.1.
Unlike subsequent excess mortality estimates used in this paper, these are calculated directly
from UNWPP lifetables, not from simulation output; as in later analysis, however, they are
calculated from predicted mx values, not their logarithmic values. As can be seen, the
differences between methods are minimal until around age 90, after which in the United
States the estimated linear trend is significantly lower than the multi-year average, resulting
in much higher estimates of excess mortality when using the linear trend as baseline. On the
other hand, South Africa saw less variation across measures for all age groups, suggesting
that the linear trend may not be statistically significant in that case.

Given the uncertainty around projected trajectories of pandemic mortality, and the necessity
of accounting for cases where the multi-year average may significantly under or over-estimate
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Figure 3.1: Age-specific UNWPP male excess mortality rates for 2021, South Africa and the
United States of America
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excess mortality, I use the 2015-2019 linear trend as a baseline in this paper. Important
to note in this context is that, since the UNWPP lifetables did not use the WHO excess
mortality estimates for all countries, rankings of countries in terms of excess mortality will
not replicate the WHO estimates, and will likely vary from other models such as those from
the Institute for Health Metrics and Evaluation (IHME) (Wang, Paulson, et al., 2022) or
The Economist (The Economist & Solstad, 2022). Moreover, many of these models tend to
report either crude excess mortality rates or excess deaths, which reflect both the age-specific
excess mortality rates that are given here, as well as population age-sex structure.

The challenges of calculating excess mortality for all countries have been well-documented:
Acosta (2022), in a discussion of the WHO estimates, notes that only 37 percent of countries
had complete all-cause mortality data for 2020 and 2021, and 43 percent lacked any data
at all. Moreover, these estimates did not adjust for averted or displaced mortality, instead
quantifying all changes in mortality during the period (Acosta, 2022). This lack of input
data reflect the fact that limited civil and vital registration systems in many LMICs mean
that the majority of deaths, and a large fraction of births, go unrecorded, an issue referred
to as the “scandal of invisibility” (Setel et al., 2007; Mikkelsen et al., 2015). Although this
paper attempts to use some of the best available data to address this issue, the lack of high-
quality input data for many countries means that these modeled estimates will likely fail to
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fully capture the impact of the pandemic on their populations. With this necessary caveat
in mind, I turn to other aspects of the simulation setup that are relevant to how SOCSIM
constructs populations and kinship networks.

3.3.2 Simulation Specifications and the Formation of Kinship Net-
works

In recognition of the challenges of obtaining historical census data for many countries, the
simulations use as a starting population a stable population structure derived from the
application of rates from the UNWPP 1950 rates for 200 years prior to the start of the sim-
ulations in 1950, in line with recent work using a similar stable starting structure (Snyder
et al., 2022). As discussed previously, these estimates will not fully account for heterogene-
ity across individuals and groups, especially clustering of age-specific COVID-19 mortality
within vulnerable families and population subgroups. Nor do they account for migration,
as a result of data and modeling limitations; however, fertility and mortality of migrants is
accounted for in UNWPP lifetables, making this unlikely to significantly bias the estimates
involved.

Attention must be paid to the potential impact that this lack of within-family mortality
clustering may have on simulation output.1 If high levels of mortality clustering are expected,
then comparatively few families would account for the majority of excess deaths, meaning
that population-wide rates of excess loss would be much lower than estimated without within-
family correlations. This could result from either similar health behaviors, such as being
vaccinated against COVID-19; similar levels of frailty between family members, with some
families much more susceptible to dying of the disease than others; or the fact that, in the
case of a contagious disease and co-resident household members, one relative catching the
disease may make it more likely that others will. Research so far has suggested that, although
the household secondary attack rate for COVID-19 has increased with more transmissible
variants (up to around 40% for Omicron), vaccination may have an important preventive
effect (Madewell et al., 2022); this implies that the likelihood of other relatives catching the
disease from an infected relative may be more limited in countries with high vaccination
rates. However, the high levels of clustering of COVID-19 mortality within vulnerable sub-
populations, such as Black and Hispanic individuals in the United States (Aburto et al.,
2022), suggest that there may be important differences in health behavior and frailty across
families. Thus, it is likely that these estimates may overestimate population-level rates of
excess kin loss within countries with high levels of mortality clustering. Further analysis,
potentially with family-specific frailty multipliers, along with mortality correlations of the
type used in previous research on HIV/AIDS (Wachter et al., 2002), would be needed to
better understand the impact that this issue may have on these estimates.

Simulation initial population sizes are calibrated, following Alburez-Gutierrez et al. (2021),

1This discussion is indebted to helpful insights from Ronald Lee.
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based on population growth rates and a target population in order to prevent simulations
from reaching sizes that may lead the program to stall. Since the simulations only run up to
2025, however, the initial population sizes are larger than those used in Alburez-Gutierrez
et al. (2021); using the largest simulated population size possible is important for reducing
uncertainty in simulation output. In 2020, simulated mid-year population sizes range from
around 30,000 to 100,000.

Given potentially higher uncertainty around modeled vital rates in very small countries, I
consider in this paper a sample of 120 countries based on those with mid-year populations
larger than or equal to 5 million in 2020 as per UNWPP estimates.2 Given revisions to
the WHO estimates of excess mortality for Germany and Sweden (Van Noorden, 2022), I
do not discuss these countries in the main text, although their estimates are included in
multi-country figures and regional aggregates.

Special attention must be paid to the way in which this microsimulation approach assigns
individuals to one another to form “spousal” partnerships. While SOCSIM offers multiple
means of carrying out this process (Mason, 2016), this paper does not use marriage rates, as
in previous studies with this microsimulation setup (Alburez-Gutierrez, Mason, & Zagheni,
2021; Snyder et al., 2022). Instead, the simulations assign a male partner from all living
unpartnered males in the population to an unpartnered woman at the time of the birth of
her first child. In line with SOCSIM’s one-queue system, the choice of this male partner seeks
to reduce as much as possible the gap between the realized distribution of age differences
between partners and a pre-set “target” distribution of age differences (Mason, 2016). The
SOCSIM default, used here as in previous research (Alburez-Gutierrez, Mason, & Zagheni,
2021), is a mean of 2 and a standard deviation of 3 years difference in ages between females
and their male partners. Analysis of simulation output from the simulations in this paper
finds that the realized distribution of age differences between partners accrued by the end of
the simulation in 2025 closely mirrors the target distribution, with almost perfect overlap.

The uniform application of this distribution to all countries in the simulation is a simplifica-
tion that may affect the eventual results. Average age differences between partners can vary
considerably between countries and sub-national groups, ranging from close to nine years in
some African countries to around 2 years in North America (Ausubel et al., 2022). However,

2The full list of countries included is: Afghanistan, Algeria, Angola, Argentina, Australia, Austria, Azer-
baijan, Bangladesh, Belarus, Belgium, Benin, Bolivia, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia,
Cameroon, Canada, Central African Republic, Chad, Chile, China, China (Hong Kong SAR), Colombia,
Congo, Costa Rica, Côte d’Ivoire, Cuba, Czech Republic, Democratic Republic of the Congo, Denmark,
Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany, Ghana, Greece,
Guatemala, Guinea, Haiti, Honduras, Hungary, India, Indonesia, Iran, Iraq, Israel, Italy, Japan, Jordan,
Kazakhstan, Kenya, Kyrgyzstan, Laos, Lebanon, Liberia, Libya, Madagascar, Malawi, Malaysia, Mali, Mex-
ico, Morocco, Mozambique, Myanmar, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway,
Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Republic of Korea, Romania,
Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra Leone, Singapore, Slovakia, Somalia, South Africa,
South Sudan, Spain, Sri Lanka, State of Palestine, Sudan, Sweden, Switzerland, Syrian Arab Republic,
Tajikistan, Thailand, Togo, Tunisia, Turkey, Uganda, United Kingdom, Ukraine, United Arab Emirates,
United Republic of Tanzania, USA, Uzbekistan, Vietnam, Yemen, Zambia, and Zimbabwe.
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limited data availability for this measure, and issues with modeling large mean age differences
in SOCSIM, which would require many individuals to remain unpartnered (Mason, 2016),
make it challenging to replicate these conditions effectively. Instead, this paper applies the
SOCSIM default to all countries, with the understanding that this may bias downward the
ages of male partners, which may also lead to higher availability of fathers, grandfathers,
and husbands.

The extent to which this may affect male kin availability is explored in Figure 3.2, which
considers the impact of using target mean differences in ages that more closely reflect empir-
ical values (less data is available on standard deviations, so the SOCSIM default of 3 years
is used throughout). This comparison is performed for South Africa, using an alternative
mean difference of 3.8 years, and India, using a difference of 5.6 years; these values are close
to those suggested by recent data (Ausubel et al., 2022). These empirical values represent
an almost two or three-fold increase in the mean age difference over the SOCSIM default,
suggesting that they are likely to capture a substantial portion of the impact of a change in
this parameter.

Figure 3.2: Comparison of male kin availability for female reference individuals in December
2019 based on empirical and default spousal age differences, India and South Africa
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Figure 3.2 shows that, for female survivors of the pandemic excess mortality period, there
is relatively little difference in the share of individuals with a surviving male grandparent,
parent, or spouse in December 2019, regardless of the mean partner age difference chosen;
these results also hold for male pandemic survivors. In the panels for India, which show
estimates based on an empirical mean that is almost three times as large as the default
value, the only noticeable difference is for the availability of grandfathers (at most a 15
percentage point difference, seen for the 15-29 age group), and to a lesser extent fathers.
While an even larger empirical mean, as would be warranted for countries such as Nigeria,
might lead to lower male kin availability, these results suggest that this is unlikely to have a
large impact on results for most kin relationships studied.

A related issue important to explore in this context is that, since marriages in these sim-
ulations are based entirely on the birth of a first child, the distribution of age differences
between partners also has a direct impact on the age distribution of male fertility. Less data
is typically available for the study of male fertility, but, in some countries, its distribution
is very different from female fertility. In Senegal, for example, the mean age at fatherhood
is 14 years higher than the mean age at childbearing, while in France, the difference is only
three years (Schoumaker, 2019).

Since partnership in this context is based on the first birth, it is instructive to compare
the male age at first birth from simulation output to empirical quantities. In the United
States, the male mean age at first birth, according to the 2006-2010 National Survey of
Family Growth, was 25 years for men aged 15-44 (Martinez et al., 2012); in simulation
output, it is around 26 years for the period. In Norway, the male mean age at first birth for
all births has increased from around 28 years in 1961 to 32 years in 2020, a trend that is
mirrored in simulation output showing these estimates at 27 and 30 years (Statistics Norway,
2022). While the gap between simulation output and empirical values is likely to be larger
in countries with a higher mean difference in age between partners, this relative similarity
in these two cases suggests these simulations are likely to capture to a reasonable extent the
age distribution of male fertility.

This model of union formation based on female fertility is advantageous in that the simula-
tions do not require data on marriage rates or marital versus non-marital fertility; such data
would be challenging to obtain for such a wide range of countries. Interpreting these results,
however, requires some attention to the potential challenges associated with this approach.
Since spouses in these simulations are assigned only through female fertility, the simulations
do not include childless unions or explicitly model divorce. A related issue is that the birth
of children born after a first child will be based on age-specific fertility rates, which may
affect realized parity distributions. With this in mind, this paper will present estimates for
spouses, but with the important caveat that this does not include the full range of possible
unions. In some countries, the share of childless unions can be relatively high, requiring
caution in interpreting these estimates.

This model of union formation and dissolution also has implications for how kin are defined in
this paper (Snyder et al., 2022). Lateral kin here are biologically related, with grandparents
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consisting only of the parents of a child’s parents, and siblings consisting of individuals who
share at least one biological parent. In the absence of a model of divorce, half-sibships can be
formed by children being being born to a second union emerging after the death of a previous
partner. For the most part, accounting for biological sibships is likely to capture the vast
majority of sibships, especially in terms of individuals who are likely to be co-resident with
each other. This is brought out in research showing that, in 2009, only 1 percent of US
children were living in households where the only co-resident siblings were one or more non-
biological step-siblings (Manning et al., 2014). These estimates will not, however, account
for all forms of kinship that may be important to an individual, as they do not consider wider
reckonings of kin ties, which are important in some countries, polygamy, or other forms of
kin support such as adoption or fostering.

After a population genealogy has been generated in SOCSIM, the next step of the analysis
is to select individuals of interest, who in this case are those who survive until the start of
2022, modeled in this paper as the end of COVID-19 excess mortality. After this selection,
it is possible to identify their kin networks and measure loss experienced in these networks
during the period of excess mortality. This next section discusses excess bereavement, the
measure of loss used in this paper.

3.4 Measuring Kin Loss: Excess Bereavement

The key measure of kin loss considered in this paper, excess bereavement (Snyder et al., 2022),
represents the absolute difference in the population-level rate per 100,000 of losing a relative
for an individual in a particular age group, regardless of their kin availability, where the
difference is calculated between an observed scenario with COVID-19 excess mortality and a
baseline scenario with mortality expected in the absence of COVID-19 (Equation (3.2). An
advantage of this measure is that, since it accounts for kin availability by age, it is comparable
across countries, age groups, and types of kin relation. It also closely resembles the measures
of kin loss that can be derived from the Goodman-Keyfitz-Pullum kinship equations; excess
maternal bereavement for a woman aged a is equivalent to ∆M1(a) presented previously
in (3.1). This allows for intuitive comparisons between the two approaches, even if direct
comparisons are more challenging without accounting for the assumptions required by either
method. Excess bereavement can be summarized in the following equation, where Nx refers
to the number of individuals surviving to at least January 2022 in age group x, the subscript
b indicates individuals who lose a relative in time period t, and the subscript 0 denotes the
counterfactual case:

Excess bereavement = (
Nb,x,t

Nx

− Nb,0,x,t

N0,x

)× 100, 000 (3.2)

Considering just the subset of surviving individuals with at least one living relative of a
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particular type in December 2019 prior to the beginning of COVID-19 excess mortality in
these simulations, Nw,x , the previous equation can be written as:

Excess bereavement = (
Nb,x,t

Nw,x

Nw,x

Nx

− Nb,0,x,t

Nw,0,x

Nw,0,x

N0,x

)× 100, 000 (3.3)

Since kin availability prior to the start of the period of excess mortality should be very similar
across observed and counterfactual scenarios, and the composition of survivors should be
relatively similar, given the significant size of the surviving population, Nw,x

Nx
and Nw,0,x

N0,x
can

be considered as equivalent. 3 The equation can now be written as follows:

Excess bereavement = (
Nb,x,t

Nw,x

− Nb,0,x,t

Nw,0,x

)
Nw,x

Nx

× 100, 000 (3.4)

The first term represents the excess rate of kin loss for those with a living relative prior to
the start of excess mortality, while the second represents kin availability, or the share of indi-
viduals who had a living relative of the type considered in the first place. A re-examination
of Equation 3.1 from Keyfitz and Caswell highlights that ∆M1(a) also is proportional to
these two factors, since the rate of excess kin loss for those with kin is equivalent to the ex-
cess mortality rates experienced by these relatives. However, while the Keyfitz and Caswell
equation is based on a set of specific assumptions and a single-sex population, the approach
presented in Equation (3.4) is applicable to a two-sex, non-stable population and to different
types of kin. This mathematical decomposition of the factors shaping excess bereavement is
the basis for the analysis in the following sections.

3.4.1 Key Dimensions of Excess Bereavement: Age, Sex, and Kin
Relationship

The first objective of this paper is to calculate estimates of kin loss for individuals of different
ages and sexes around the world. With this goal in mind, I present in Figure 3.3 regional
averages of excess bereavement for the 120 countries included in the paper, with UNWPP
2019 mid-year populations as weights. 4 I use the United Nations regional definitions, except

3Subsequent analysis based on a Student’s t-test on microsimulation output to compare the means of kin
availability in the two scenarios finds no statistically significant difference between them, suggesting that
this assumption holds.

4Representing simulation uncertainty is a concern in this study, since the width of the confidence interval
derived from simulations is inversely proportional to their size. Given that the size of these simulations is
directly related to country growth rates, this may result in higher uncertainty for higher-growth LMICs. Con-
sistent with previous work using this simulation setup (Snyder et al., 2022), I thus do not report confidence
intervals, while recognizing the importance of developing alternative approaches to measuring uncertainty
in this context.
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for the Americas, where I combine data from the Latin America and Caribbean and Northern
America regions into a single region. Consistent with previous research, across all regions,
older individuals were particularly at risk of losing a sibling, while younger individuals were
most at risk of losing a grandparent (Snyder et al., 2022). In general, excess rates of spousal
or child loss were significantly lower than grandparental or sibling loss. The large difference
in magnitude between rates of sibling and spousal loss at older ages likely relate to the
limitations of this paper’s treatment of marriage formation. Interestingly, although there
is substantial variation in age patterns and levels of kin loss across types of kin, there is
relatively limited variation across regions, with only a few regional differences of note at this
stage: higher sibling loss for the Americas, and lower grandparental loss for Africa. 5

An important point to consider is that magnitude of these rates does not necessarily reflect
the severity of the consequences of experiencing such a loss, which may be partly related to
its impact on the number of kin available to provide support, as well as the amount of time
that an individual might have been expected to share with a relative in the absence of excess
mortality. Neither of these factors are captured in the definition of excess bereavement,
although an extension of these methods, with insight from the relevant sociological and
psychological literature, could provide an indication of what these estimates may mean in
terms of impacts on social support systems and the wellbeing of survivors. For example,
the loss of a parent may have significant implications for a young child, including elevated
mortality risk (Rostila & Saarela, 2011), reduced educational attainment (Patterson et al.,
2020), and increased risk of later-life cognitive impairment (Liu et al., 2021), especially
considering the many years that they might have been otherwise expected to be able to
have their parent in their life. This is reflected in the existing literature on estimating the
impact of COVID-19 mortality on family networks, which has tended to focus on the deaths
of parents and other caregivers as experienced by young children (Kidman et al., 2021; Hillis
et al., 2021, 2022), even though excess risks to children aged 0-14 of experiencing the loss of
parent are lower than the risks of parental loss for older individuals.

As in previous work (Snyder et al., 2022), age groups of reference individuals considered
in Figure 3.3 are more disaggregated at younger ages, reflecting the age distribution of
COVID-19 excess mortality. However, for certain kin relationships, such as siblings, spouses,
and children, risks of excess kin loss increase sharply with age, and represent a significant
vulnerability in terms of social support available to older pandemic survivors. With this
in mind, Figure 3.4 presents a more granular age grouping for these kin relationships, with
the 65 and over age group divided into groups for 65-79 and 80 and older. For some kin
relationships such as siblings and to a lesser extent spouses, there appears to be a slightly
lower rate of excess kin loss for individuals aged 80 and above, compared to those aged 65-79.
However, this is not seen for children, where excess rates of kin loss increase continuously with
age. This suggests that there may be some interaction in this case between kin availability
and excess mortality, where individuals aged 80 and above would be less likely to have a
living sibling in December 2019.

5Oceania in this paper only includes three countries, Australia, Papua New Guinea, and New Zealand,
so its estimates are likely to be subject to considerable uncertainty.
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Figure 3.3: Excess bereavement (per 100,000 surviving individuals) by region and kin rela-
tion, 2020-2021
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Figure 3.4: Excess bereavement (per 100,000 surviving individuals) by region for selected
older age groups and types of kin, 2020-2021
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Another important dimension to consider in this regard is the sex of an individual’s relative.
While COVID-19 excess mortality risk increases markedly with age (Goldstein & Lee, 2020),
males have also tended to see higher mortality risk (Nielsen et al., 2021). This in turn is likely
to shape the sex distribution of the population of survivors and, to a greater extent, the sex
distribution of kin lost. This is brought out in Figure 3.5, which presents rates of excess kin
loss for female reference individuals by the sex of the relative lost (I do not present estimates
by sex of the reference individual, as these show much less variation, or estimates for spouses,
which in this model would only be male). These estimates are presented for Russia, which
has one of the largest gaps in life expectancy by sex in the world (Oksuzyan et al., 2014),
and might accordingly have been expected to see significant differences in excess mortality
as well. As can be seen in Figure 3.5, the sex of the relative in question can have a noticeable
effect on estimates of kin loss by age. For example, sibling loss of brothers is higher than
that for sisters at most ages, as is the loss of sons in comparison to that of daughters. For
ancestors, loss for female relatives (mothers and grandmothers) peaks at an older age group
than does loss for male relatives, likely reflecting higher male excess mortality at younger
ages. While subsequent results will be presented aggregated across sexes, this dimension of
variation should be considered when identifying groups that may have become increasingly
vulnerable to kin loss as a result of differential excess mortality by sex.

Figure 3.5: Excess bereavement (per 100,000 surviving female individuals) for Russia by sex
of kin, 2020-2021
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This definition of excess bereavement focuses on the experience of the loss of one or more
relatives; however, it is also possible to redefine this measure in terms of the number of
relatives lost. While the former is more comparable across kin relationships, given that some
biological kin relationships are constrained to a certain number (such as four grandparents)
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while others such as siblings are not, the latter captures more clearly the effects of fertility
on family sizes, especially as relates to the number of siblings and children. However, in this
paper, the two measures are almost perfectly correlated. This is partly a result of the kin
relationships studied, some of which are biologically constrained in terms of their number,
as well as the magnitude of the mortality shock. The similarity between these estimates
likely also relates to simulation setup: although COVID-19 excess mortality has represented
a significant increase in mortality conditions in many countries, the absence of a model
of correlated within-family mortality in these simulations makes it less likely that a single
individual might experience the loss of multiple relatives of a particular type. Accordingly,
subsequent analysis focuses on excess bereavement.

3.4.2 Excess and Baseline Estimates

So far, the estimates presented have focused on excess kin loss over baseline levels that might
have been expected in the absence of COVID-19 excess mortality. However, it is important
to consider how this varied from baseline levels, including across countries with different
levels of baseline bereavement determined by their demographic histories. In Figure 3.6, I
map for all countries estimates of baseline bereavement, as well as the relative increase in kin
loss above baseline levels, defined as the ratio of excess to baseline bereavement, that these
excess bereavement estimates would imply. Instead of showing these estimates for all ages
and types of kin, however, I focus instead on age groups that previous estimates for Figure
3.3 would suggest to be especially hard-hit in terms of rates of excess kin loss. This focus
on the hardest-hit groups is important for distinguishing relative changes potentially driven
by stochasticity and small population sizes from those likely driven by excess mortality.
Although the hardest-hit group may vary slightly between regions, the general age-specific
patterns hold; in these estimates, I will focus on grandparental loss for individuals aged 15-29;
parental loss for individuals aged 30-44; and sibling, spousal, and child loss for individuals
aged 65 and above.

The right-hand panels of Figure 3.6 contextualize the levels of excess bereavement seen in
Figure 3.3, showing that, not only are these estimates relatively large in absolute terms,
they highlight significant increases above baseline levels expected in the absence of COVID-
19 excess mortality. This figure also captures significant within-region and cross-regional
heterogeneity not captured in the population-weighted estimates in Figure 3.3, with countries
such as Peru, Bolivia, Russia, India, and South Africa seeing high levels of excess kin loss.
On the other hand, there is fairly little variation in these relative levels across types of
kin, except for slightly lower values of relative change for grandparents. Limited variation
along this dimension reflects the fact that, in focusing on the hardest-hit age groups, these
estimates are based on the loss of individuals at greatest risk of dying due to COVID-
19 excess mortality. Given some expected distribution of baseline loss, the relative excess
increase in loss implied by a corresponding increase in excess mortality is likely to be fairly
similar across different types of kin.
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As can be seen in the left-hand panels of Figure 3.6, however, the denominator of this
measure of relative change—baseline bereavement—also varied significantly across countries.
Unlike in previous research on high-income countries (Snyder et al., 2022), the countries in
this paper had markedly demographic histories prior to COVID-19 mortality, which could
influence both expected and excess levels of kin loss. For example, many African countries
were expected to have lower levels of grandparental loss for individuals aged 15-29, even in
the absence of COVID-19, along with higher levels of parental loss for those aged 30-44 and
child loss for those aged 65 and above. The levels of expected loss and extent of variation
also differ based on the type of kin considered, with levels of grandparental and sibling loss
being much higher than levels for other types of kin, and greater variability being observed
for sibling loss in country estimates. This variation is shaped both by differences in age-
specific excess mortality as well as the demographic histories of these countries, which may
affect kinship structures. The extent to which these factors contribute to estimates of excess
bereavement is explored in the next section.

3.5 Understanding the Demographic Determinants of

Cross-Country Variation

3.5.1 Demographic History and Excess Mortality

We know from Equation (3.4) that the excess rate of kin loss depends on both the rate of
kin loss for those with a living relative at the start of the period, as well as the availability of
those relatives. The first of those factors is closely related to excess mortality—for individuals
who survived the period of excess mortality and had a living relative prior to its start, the
key factor determining whether they might experience the death of that relative was the
excess mortality regime to which that relative was subject. This is borne out in analysis
of average correlations between excess mortality and excess kin loss for those with a living
relative in December 2019, especially for kin relationships with a sufficient spread of age
groups in the data: 0.9 for siblings in 2020-2021 across all countries (for both sexes of kin
and reference individuals combined), around 0.74 for parents, and 0.69 for children. Lower
average correlations for spouses and grandparents of 0.45 likely reflect, in the case of spouses,
previously discussed limitations of the marriage matching approach used in this paper, and
in the case of grandparents, limited spread of age groups for kin and reference individuals.
Although these are not perfect correlations, likely reflecting uncertainty associated with
output in a stochastic simulator, the fact that many are fairly high suggests that excess
mortality rates are a significant determinant of rates of excess kin loss for those with kin.

This high correlation between excess mortality and excess kin loss for those with kin suggests
that, by matching the average age of individual’s relatives to an age-specific excess mortality
rate, the effect of excess mortality on excess kin loss can be identified, especially for types of
kin with sufficient spread of age groups in the data. As can be seen in the first two panels
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of Figure 3.7, which plots for all countries the logarithmic transformations of kin excess
mortality against excess bereavement for parental loss (ages 30-44) and sibling loss (ages 65
and over), the relationship shows a positive correlation: as the excess mortality experienced
by relatives increases, so too does the likelihood that an individual might lose a relative.

However, this is not a perfect correlation, suggesting that the analysis has yet to account
for kinship structure, defined in this context as kin availability. From formal methods and
previous simulation-based studies (Keyfitz & Caswell, 2005; Sembiring, 1978), it is known
that the availability of ancestors closely relates to mortality conditions, while fertility is
related to the availability of siblings (Sembiring, 1978). Thus, I examine the effects of two
proxy measures for demographic history: period life expectancy at age 15, which is likely to
reflect mortality conditions for ancestors, and which is measured in year 2019 according to
UNWPP data6; and the total fertility rate for 1950, which is likely to reflect the historical
fertility conditions that might shape availability of siblings for individuals aged 65 and above.
As can be seen from these panels, there is little clear relationship between these factors and
excess bereavement, although there appears to be a slight positive correlation between the
TFR in 1950 and sibling loss which may be driven by regional clustering of both measures;
and what appears to be a very slight negative correlation between excess bereavement and
life expectancy at age 15 in 2019. This suggests that the effects of kinship structure are likely
to be much more slight, in comparison to the effects of excess mortality. It also suggests
that, in order to examine the effects of kinship structure and demographic history, another
approach may be required.

3.5.2 Standardizing Kinship Structure

I turn at this point to an approach commonly used by demographers to compare populations
with variation in both rates and population structures: standardization. Instead of popula-
tion age structure, however, the focus here in on differences in kinship structure as measured
in terms of kin availability by age. Although there may yet be considerable within-region
heterogeneity between countries, some regions of the world have had historically higher fer-
tility or mortality than others, which in turn may have shaped their kin availability. This is
brought out in Figure 3.8, which plots kin availability by age across regions, with regional es-
timates obtained as a weighted average with UNWPP 2019 mid-year populations as weights.
In these estimates, Africa and Europe both emerge as outliers: Europe for low levels of
sibling and child availability; Africa for low levels of parental and grandparental availability,
and high levels of sibling, spousal, and child availability. These differences reflect important
aspects of the demographic histories of these regions. Africa has higher fertility than many
other regions, implying increased availability of spouses (since spousal matching depends in
these simulations on fertility rates), children, and siblings (especially at younger ages, where
mortality is unlikely to play as large a role). However, it also has had historically higher

6The preferable choice would be cohort life expectancy at age 15 for the cohort of 1950, but this is not
yet available.
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mortality in the period considered, meaning that fewer older individuals would have a parent
or grandparent still alive. The reverse can be said for Europe, which has had historically
low mortality and fertility in the period considered. Although which region has the highest
value of kin availability depends on the age considered (for example, sibling availability at
age 65 and above is highest for the Americas), these estimates show that kinship structure
is likely vary significantly between regions, and that these differences are likely to serve as a
useful proxy for a region’s demographic history.

These regional estimates of kin availability can be thought of as regional “standard” kin-
ship structures. Since excess bereavement can be mathematically decomposed into its two
components, by substituting a standardized kinship structure for empirically observed kin
availability, directly standardized rates of excess bereavement can be calculated. In Fig-
ure 3.9, I examine to what extent changing the kinship structure of a given country to the
maximum level of kinship availability across regional standards might have on excess be-
reavement estimates for the hardest-hit age groups. Plotted in each panel is the absolute
and relative change in the ratio of excess to baseline bereavement that occurs after changing
kinship standards (see the right-hand panels of Figure 3.6 for the original ratios), with the
height of the bars determined by the number of countries that saw this level of change and
the fill of the bars determined by the regions of the countries involved. This measure aims
to capture how much a given change in kinship standard might affect country estimates of
excess bereavement in relation to baseline levels.

What do we learn from Figure 3.9? First, that a change in kin availability can have a
relatively large impact on estimates of kin loss for a particular country, both in absolute and
relative terms. In absolute terms, it can imply an increase of up to around 10 percentage
points above baseline levels (for example, if a hypothetical country had an initial relative
difference between excess and baseline levels of 20% that increased to 30%, i.e. from 120 to
130 percent of baseline levels). In relative terms, this can imply high percentage changes,
often in the 20-50% range, above the previous ratio of excess to baseline loss (these estimates
were bounded at 100 to account for some countries with especially high estimates, which are
likely to relate to small denominators). At the same time, however, the distribution of
country estimates show that, for almost a third to a fourth of countries in any given graph
(and even more in some cases), the estimated change is close to zero. This reflects the
similarities between regional estimates of kin availability for certain ages, as well as the fact
that some of these countries will have kin availability close to the regional standard, even if
they are associated with a different region.

Examining which regions would see the greatest shifts highlights the extent of differences
between regional kinship standards. For example, an increase in grandparental and parental
availability to European levels would have resulted in large increases in excess bereavement
in African countries, reflecting the large discrepancies between these two regions in terms of
ancestor availability. Meanwhile, Europe would have seen the largest gains in sibling, spousal,
and child loss in response to increasing kin availability in line with the American standard for
siblings or the African standards for children and spouses. These changes can be observed in
both absolute and relative terms, highlighting the extent to which a relatively extreme change
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in kin availability—to the maximum value possible across regions—might affect estimates
of excess loss. That some regions see such noticeable shifts in response to changes in kin
availability reveals the extent to which a simple cross-country comparison might fail to
capture the severity of their experiences of COVID-19 excess mortality. For example, if
African countries had had the ancestor availability of European countries, their estimates of
excess bereavement for parents and grandparents would have been significantly higher. This
suggests that rates of ancestor loss for those with these types of kin were especially high for
African countries, highlighting the significant effects that COVID-19 excess mortality had
on kin networks in these countries.

While these calculations are strictly counterfactual—kinship availability is a product of prior
mortality and fertility, so a different kinship structure implies a very different population
altogether—they present a means of understanding, in an intuitive fashion, the extent to
which variation in excess bereavement across countries stemmed from pre-existing demo-
graphic conditions. As seen in Figure 3.9, changing standards did in many cases result in
changes in estimated excess kin loss. However, in others, there was little variation even after
adjusting for kin availability, suggesting that this is highly dependent on the kin relationship
and country considered. This suggests that, of the two factors, excess mortality (or kin loss
for those with kin) is a much more important determinant of cross-country variation than
kinship structure. This is not surprising, given the significant excess mortality seen in many
countries, as well as the fact that this relatively restrictive definition of kinship structure
(percentage with a living relative) does not capture fully differences in the size of kinship
networks, which are likely to vary more dramatically between countries. Incorporating the
size of kinship networks, or the number of kin available at the start of the excess mortality
period, into a future alternate definition of excess loss may help to capture these differences
more effectively.

3.6 Conclusion

Two main findings emerge from these results. The first is that many LMICs saw high rates
of excess kin loss, in many cases higher than or comparable to rates seen in high-income
countries. Moreover, the generational patterns of loss resembled to a great extent those seen
in high-income countries, with some slight variation based on the age structure of excess
mortality. This reflects the available evidence and models on the pattern of age-specific
COVID-19 excess mortality, which suggest accelerating mortality risk with age (Goldstein
& Lee, 2020), despite some evidence of variation in the slope of age-specific excess mortality
across countries (Demombynes et al., 2022). As further evidence emerges as to the impact of
COVID-19 on kin mortality through sources such as household surveys of excess mortality, it
will be increasingly possible to validate these synthetic estimates against empirical data, as
well as against other modeled estimates that may be developed. The high rates of excess kin
loss observed in these estimates, however, serve as an important reminder of the pandemic’s
dramatic toll on kin networks around the world, and complement existing estimates that
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have primarily focused on high-income countries.

The second is that, based on their pre-existing kinship structures, which in turn had been
shaped by prior demographic history, countries were more or less vulnerable to COVID-19
excess kin loss as a result of the excess mortality that they experienced. Whether individuals
lost a relative was shaped, in part, on whether they had a relative to lose in the first place.
Although country excess mortality remained a major determinant of excess kin loss, kinship
structure played an important role in mediating its effects.

This study has many limitations. Aside from the microsimulation simplifications and as-
sumptions discussed previously, it is important to note that, while these estimates provide
insight into the quantitative effects of crisis mortality on kinship networks, they reveal less
about the qualitative aspects of these effects, and what these losses might mean to survivors
around the world. Kinship may be reckoned differently, and rates of interaction and contact
may vary across countries. This approach, which focuses on biological kin, does not account
for these important differences. Further work will be needed to consider how cultural defi-
nitions of kinship influence subsequent estimates of the pandemic’s impact on families and
communities.

The standardization approach presented is also less likely to be effective when comparing
populations that saw very different age-specific patterns of mortality. While this does not
pose significant challenges in the COVID-19 case, this could prove more difficult when com-
paring the effects of mortality crises with very different levels of mortality or age structures,
since standardized output might vary too greatly to be easily compared.

Nevertheless, the flexible framework provided by this approach, which provides a complement
to methods from formal demography, presents promise in estimating excess kin loss and
understanding the reasons for variation in the experiences of different populations. Despite
COVID-19’s comparative recency, far less is known about the impact of crises such as the
1918 influenza pandemic on kinship networks, and how this might have varied around the
world. Similarly, only limited evidence on COVID-19 related kin loss exists for subnational
populations. This paper presents a broadly applicable method for examining the impact of
these and other mortality crises, and understanding the demographic determinants of their
effects on kinship networks in populations for which data may not otherwise be available.
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Figure 3.7: Comparisons between parental and sibling excess bereavement estimates and
selected demographic factors in all countries
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Figure 3.8: Kin availability in December 2019 by age, country, and kin relation for surviving
individuals
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Figure 3.9: Additional absolute and relative change over baseline levels after applying kinship
standard, 2020-2021, all countries
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Figure 3.9: Additional absolute and relative change over baseline levels after applying kinship
standard, 2020-2021, all countries (continued)

(b) Parents of survivors aged 30-44

0

20

40

60

80

−20 −10 0 10
Additional Change Over Baseline

N
um

be
r 

of
 C

ou
nt

rie
s

Maximum Standard: Europe
Absolute Change

0

20

40

60

80

−100 −50 0 50 100
Additional % Change Over Baseline

N
um

be
r 

of
 C

ou
nt

rie
s

Maximum Standard: Europe
Relative Change

Region Africa Americas Asia Europe Oceania

52



CHAPTER 3. DEMOGRAPHIC DETERMINANTS OF CROSS-COUNTRY VARIATION

Figure 3.9: Additional absolute and relative change over baseline levels after applying kinship
standard, 2020-2021, all countries (continued)

(c) Siblings of survivors aged 65 and over
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Figure 3.9: Additional absolute and relative change over baseline levels after applying kinship
standard, 2020-2021, all countries (continued)

(d) Spouses of survivors aged 65 and over

0

20

40

60

80

−20 −10 0 10
Additional Change Over Baseline

N
um

be
r 

of
 C

ou
nt

rie
s

Maximum Standard: Africa
Absolute Change

0

20

40

60

80

−100 −50 0 50 100
Additional % Change Over Baseline

N
um

be
r 

of
 C

ou
nt

rie
s

Maximum Standard: Africa
Relative Change

Region Africa Americas Asia Europe Oceania

54



CHAPTER 3. DEMOGRAPHIC DETERMINANTS OF CROSS-COUNTRY VARIATION

Figure 3.9: Additional absolute and relative change over baseline levels after applying kinship
standard, 2020-2021, all countries (continued)

(e) Children of survivors aged 65 and over
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Chapter 4

Who Will Remember COVID-19?
Kinship Memory after a Global
Pandemic1

4.1 Introduction

Three years after the start of the COVID-19 pandemic, the population who lived through the
early years of this crisis, and thus has direct lived experience of their impact on population
mortality and well-being, is as large as it ever will be. This is a simple result of demographic
processes—the size of the population of “rememberers”, individuals who live through an
event, can only decrease with time (Denton & Spencer, 2021). In most countries, this
will imply a shrinking share of the population who witnessed the pandemic, a measure
recently conceptualized by Denton and Spencer (2021) as “demographic memory” of an
event. What implications might this decline in demographic memory hold for how COVID-
19 is remembered, and how these memories affect policy and popular responses to future
crises? In this paper, we examine whether demographic memory operating through kinship
networks, which we term “kinship memory”, may help to stave off this decline in overall
demographic memory through the continued survival of individuals who lost a relative to
pandemic excess mortality. This type of memory is likely to be especially salient for those
who contribute to it, given that it represents a connection to a relative whose death may
have been associated with uniquely traumatic circumstances and negative consequences for
surviving kin (Eisma et al., 2021). As a result, better understanding the extent of kinship
memory and the demographic forces shaping changes in its magnitude over time is a vital
part of understanding the role that memories of COVID-19 may play in the experiences of
bereaved relatives, the overall population, and governments of countries around the world.

1This chapter has been co-authored with Diego Alburez-Gutierrez (MPIDR), Emilio Zagheni (MPIDR),
and Ashton Verdery (Penn State).
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Why demographic and kinship memory matter can be perhaps best understood through
considering the case of the 1918 influenza pandemic. At the start of the COVID-19 pan-
demic, renewed attention was focused on past mortality crises, including the 1918 influenza
pandemic, widely considered to have been largely absent from the public memory for almost
a century (Erll, 2020a; Youde, 2017). In a book titled America’s Forgotten Pandemic: The
Influenza of 1918, Crosby (2003) writes: “The important and almost incomprehensible fact
about Spanish influenza is that it killed millions upon millions of people in a year or less.
Nothing else—no infection, no war, no famine—has ever killed so many in as short a period.
And yet it has never inspired awe, not in 1918 and not since...”[p.311] (Crosby, 2003) The
same passage goes on to highlight how despite early calls for greater investment in public
health research and institutions, the extent of health policy change in the wake of the 1918
influenza pandemic was limited and involved little additional mobilization of funds.

Despite this lack of media or public attention to the 1918 influenza pandemic, it nevertheless
had a noticeable impact on individuals’ lives, whether through death or bereavement, or
changes in life circumstances or plans. This is brought out in personal correspondence and
reminiscences (Crosby, 2003), which have been the subject of recent efforts to memorialize the
1918 pandemic (Centers for Disease Control and Prevention, 2018). Research has highlighted
its long-term negative effects on social trust in individuals who lived through the pandemic
and their descendants (Aassve et al., 2021), as well on later-life health and mortality of
young children(Myrskylä et al., 2013), including those in utero at the time of the pandemic
(Almond, 2006). And yet on a Gallup.com poll, cited in Denton and Spencer (2021), which
was conducted in 1999 asking individuals to rank what they felt were the most important
events of the twentieth century, the 1918 influenza pandemic did not appear in the initial
lists generated from participants, or on the final list of 18 events sent to the wider sample
(Newport et al., 1999).

The way in which one of the deadliest mortality crises in global history, whose effects are
seen clearly in a time series of historical period life expectancy (Noymer & Garenne, 2000),
still found itself virtually forgotten in public discourse, highlights the fragility of memory,
even of highly consequential events. It also suggests that there are many types of memory
of a crisis, some more public-focused, such as historical (Badie et al., 2011) or collective
memory (Erll, 2020b; Roediger & De Soto, 2016), and others more personal, such as the
memory of a deceased relative or one’s own fortunate escape from a potentially fatal disease.
Furthermore, it suggests that the extent of one type of memory may not necessarily predict
the extent of another nor their trajectories over time, nor how memory may translate into
policy action.

This example would seem to imply that the COVID-19 pandemic should be forgotten just
as quickly: after all, estimates of its global excess mortality toll are considerably lower than
some of the estimates of the number who died due to the 1918 influenza pandemic, which
some have argued should be close to 50 to 100 million (Johnson & Mueller, 2002). However,
the age structure of excess mortality for the two pandemics is very different, which may
have important implications for bereavement. Crosby (2003) raises the question of whether
the 1918 influenza pandemic was scarcely remembered in the public consciousness because
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very few famous people died of it, as very individuals of prominence were likely to be young
enough to be at the greatest risk of mortality (Crosby, 2003). From our perspective of kinship
memory, the age pattern of 1918 influenza mortality would suggest that those bereaved would
be primarily parents and young children, with very few grandchildren. For COVID-19, the
age pattern of bereavement is much older (Snyder et al., 2022), meaning more bereaved
grandchildren, although fewer bereaved parents. Although the children and grandchildren
of COVID-19 victims may be older than those bereaved by the 1918 influenza pandemic,
the presence of so many bereaved grandchildren suggests a longer period of kinship memory.
The way in which this may affect our estimates in the case of COVID-19 is discussed at
length in this paper.

There are also other reasons to think that processes related to memory of COVID-19 may
be different from those in the case of the 1918 influenza pandemic. One source of poten-
tial difference is how these diseases outbreaks may been perceived, stemming partly from
their epidemiological context. Part of this relates to the idea of epidemiological transition
(Omran, 2005), with the 1918 influenza pandemic occurring at a time when infectious dis-
ease outbreaks, though decreasing in frequency, were still relatively common, and COVID-19
emerging around a century later, when much of the world would have thought of large-scale
infectious disease mortality as a largely historical concern. On a related note, unlike the
1918 pandemic influenza strain, which has not yet caused another outbreak of similar sig-
nificance, COVID-19 is an endemic health threat that continues to cause deaths around the
world; while many countries did see bounce-backs in terms of life expectancy losses early in
the pandemic, others had not by 2021, making it likely that some countries will take longer
to recover (Schöley et al., 2022).

Not only were the epidemiological contexts of these two events very different, so too were
their impacts on daily life, and the extent to which such impacts would have been reflected
in media reports and public discourse at the time. Memory of an event need not only stem
from its mortality toll: disruptions to daily life could also play a significant role in shaping
whether memories are retained. The 1918 influenza pandemic occurred during World War
I, at a time when concerns about public morale led to widespread censorship in countries at
war, with many local authorities refusing to publish data on the death toll, and newspapers
providing information on public health measures, but little information on the mortality
impacts of the disease (Martini et al., 2019). Even as some local authorities enacted mod-
erately successful public health measures, and individuals reduced their rates of contact
with others (Bootsma & Ferguson, 2007), restricted information may have prevented the
public from understanding the true salience of the events through which they were living.
While similar political considerations may have played a role in some countries with regard
to COVID-19, data, though sometimes limited, was much more freely available in many
countries (Németh et al., 2021; Riffe et al., 2021), and the disruptions to daily life, such as
shelter-in-place measures, more apparent in contrast to the relatively “normal” conditions
prior to the pandemic’s emergence.

This difference in availability of information also highlights a key difference in the potential
for memorialization of these two crises. In contrast to the limited flow of information possible
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during the 1918 influenza pandemic, COVID-19 is the “the first worldwide digitally witnessed
pandemic”, with potential for digital media to play a valuable role in memorialization, even
as public memorials have yet to be built in many countries (Ofri, 2022). Due to the ease
of global digital connectivity, this can enable local memorialization efforts to resonate with
global audiences (Adam, 2023), and for individuals to identify closely with global, rather
than merely national, events in connection with the pandemic (Öner et al., 2023). This may
in turn shape how COVID-19 is memorialized and remembered.

On the other hand, however, there is evidence to suggest that, in the words of one media
commentary, “the pandemic seems slated to fade from our collective memory”(Barkan, 2023).
Country pandemic control policies are now relatively stable, leading sources that previously
tracked changes in stringency to no longer report this data for most of the world (Oxford
COVID-19 Government Response Tracker (OxCGRT) Team, 2022). Many countries have
now significantly reduced or ceased efforts to mitigate the spread of infection, despite ongoing
mortality. This focus on a “new normal”, combined with limited public memorialization,
suggests that the early crisis phase of the pandemic in 2020-2021 may yet find itself largely
forgotten. In this context, the presence in the population of a group of people who are least
likely to forget its impact may serve as a valuable repository of memory that may otherwise
be limited in terms of government-led memorializing or policy response. Understanding the
relative size of this group over time may thus provide context, in line with what Denton and
Spencer suggest in their study of demographic memory(Denton & Spencer, 2021), for public
and societal views of this and future pandemics.

What do we know of those bereaved by the COVID-19 pandemic, and how this experience
may have shaped them? Losing a relative can have negative impacts on health (Raker et al.,
2020; Stroebe et al., 2007), longevity (Elwert & Christakis, 2008a,b), and socioeconomic con-
ditions (Fletcher et al., 2013; Patterson et al., 2020), and research suggests that these effects
were exacerbated by the traumatic conditions of COVID-19 (Wang, Smith-Greenaway, et
al., 2022; Eisma et al., 2021, 2020). As might be expected, the voices of those bereaved have
sometimes played a significant role in media coverage of this crisis, with United Kingdom
news reports early in the pandemic quoting surviving relatives’ calls for adherence to govern-
ment infection control policies (Sowden et al., 2021). How the experience of loss may have
more systematically impacted surviving kin’s attitudes and behaviors with respect to the
pandemic remains to be seen. One early study in the United States highlighted significant
increases in the odds of vaccine refusal for individuals who had not experienced a COVID-19
death in their families, suggesting the importance of personal proximity to COVID-19 mor-
tality (Khubchandani et al., 2021). Another study, however, found inconsistent effects, some
negative, on support for pandemic control policies (Janning et al., 2021). This suggests that
this group, as might be expected, is likely fairly heterogeneous in its views; and even greater
heterogeneity is likely to exist in other countries, for whom more even limited evidence on
this issue exists. Nevertheless, the severe negative impacts of COVID-19 bereavement that
many experienced suggest that memory of the pandemic is likely to remain especially salient
for this group.

In this paper, we use demographic microsimulation to predict the extent and trajectory of
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kinship memory in 120 countries around the world from 2025 to 2100. Our findings show
that the continued survival of a large proportion of grandchildren will contribute to greater
stability of kinship memory, with around 1 percent of the 2100 population of most regions
related to a victim. However, the extent of this stability is limited by the relatively older
age structure of COVID-19 excess mortality, which shapes the predicted ages of bereaved
kin and the extent of their projected survival. Our results complement previous research on
these topics that has been conducted on either hypothetical populations amenable to stable
population modeling (Denton & Spencer, 2021) or in a single sub-population exposed to an
event (Alburez-Gutierrez, 2022). In doing so, our work highlights the role of demographic
structure of both the group of bereaved relatives and the overall population in shaping
memory of a crisis.

The rest of the paper proceeds as follows. We discuss literature and formal models related
to the concept of demographic memory in the next section, ‘Demographic and Kinship
Memory’, before presenting estimates in the section titled, ‘Projecting Kinship Memory of
COVID-19 using Demographic Microsimulation’. We discuss our findings and conclusions in
the Conclusion.

4.2 Demographic and Kinship Memory

4.2.1 Background

The idea that a population consists of groups of individuals with variation in lived experience
based on their place in historical time dates back to Ryder’s theory of cohort effects and
demographic metabolism, which examines how distinct generations replace each other and
contribute to social change (Ryder, 1965; Lutz, 2013). One of the factors that defines a cohort
is the events that it experiences: Ryder writes that the “dramatic impact” of “traumatic
events such as war and revolution” may transform a cohort into “an entelechy with an explicit
mission, a virtual community of thought and action”. Such commonalities in attitudes and
behaviors are by no means expected to be universal, especially in the face of other historical
processes. Nevertheless, Ryder’s theory establishes a clear link between the lived experiences
of a demographic group and its behaviors and attitudes.

Recent research has sought to quantify the size of these cohorts with particular lived expe-
riences relative to the size of the population as a whole under the concept of demographic
memory (Denton & Spencer, 2021). Denton and Spencer (2021) model the survival of a
stable population of “rememberers” alive and aware of an event when it occurred. Their
model distinguishes between local and universal events, based on how widespread their geo-
graphical relevance might be, and considers how the population of witnesses or rememberers
might vary as a result of the age at which a witness might be expected to remember an
event. A key insight is that, while the growth rate of a population shapes the initial size
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of a population of rememberers, it does not have any effect on their number after the event
occurs—demographic memory here is conceptualized in terms of a gradual replacement of
a cohort of rememberers by non-rememberers, with accounting for the possibility that in-
migration by other rememberers may slow this decline.

Having lived through and been aware of an event when it occurred reflects one kind of
memory, while having a personal connection to the event in question represents another.
In a study of kinship networks of genocide victims in Guatemala, Alburez-Gutierrez (2022)
introduces and examines a kinship-based approach to demographic memory as the share of a
population related to a genocide victim. Although the population of kin alive at the time of
an individual’s will only decrease in subsequent years, the addition of new members in future
generations or by marriage, in line with the process of demographic subsidy (Caswell, 2019),
contributes to continued growth and stability in the population related to a victim (Alburez-
Gutierrez, 2022). While Denton and Spencer (2021)’s population of rememberers can only
grow through in-migration of individuals familiar with an event, demographic subsidy ensures
that the temporal duration of demographic memory based on kinship will be considerably
longer. In this paper, we use the term “kinship memory” to refer more specifically to the
demographic memory that operates through kinship networks, and apply measures of kinship
memory similar to those used by Alburez-Gutierrez (2022).

4.2.2 Measuring Kinship Memory

There are multiple ways to conceptualize kinship memory; in this paper, we follow closely
the population share approach used in previous research by focusing on the measure KM t,
the proportion of the overall country population related to a victim of a mortality crisis in
year t (Denton & Spencer, 2021; Alburez-Gutierrez, 2022). An individual’s death leaves a
large number of survivors bereaved, from close relatives, to more distant relatives, to friends
and acquaintances, with potentially different consequences based on the degree of closeness
between the survivor and the deceased. This analysis focuses only on close relatives, but
it should be understood that this is but a small fraction of the network of individuals who
may find themselves affected by the death of someone that they knew in connection with a
mortality crisis.

In our definition of kinship memory, the numerator, consisting of the number of relatives of
the deceased alive in a particular year t, accounts for two types of relatives: Kw,t, kin who
were born before or during the mortality crisis and thus can be thought to have “witnessed”
their relative’s death, and Ks,t, kin who were born after the crisis and who can be thought
of as “subsidizing” an individual’s kin network and contributing to its continued growth
after the individual’s death (Caswell, 2019). Many kin relationships for which we consider
kinship memory will not incorporate this second term; since we focus primarily on close kin
relationships in our paper, only estimates for grandchildren will include Ks,t, and so account
for the possibility of individuals being added to the population after the mortality crisis.
The numerator consisting of bereaved kin of a given type can be written as follows:
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Bereaved Kint,kin = Kw,t +Ks,t (4.1)

Consistent with the population share approach, our denominator consists of all individuals
alive in the population in a given year Pt, including bereaved relatives. For a given kin
relationship, kinship memory can thus be expressed as in the following equation:

KM t,kin =
Kw,t +Ks,t

Pt

(4.2)

This equation highlights some of the factors that may shape kinship memory of a crisis. As a
fraction, KMt depends on the relative magnitudes of the numbers of kin and the population
size, as well as the rates at which they change over time. Kw,t can only decrease, while both
Pt and Ks,t may increase, decrease, or remain unchanged, based on age-specific mortality
and fertility rates. While individuals in Ks,t will be born during this period, and thus
will experience younger-age demographic rates, the overall population Pt will have an age-
sex structure determined by the country’s demographic history, with vital rates assigned
accordingly. This shapes the way in which these two populations will change over the
subsequent time period, and how these changes may compare: while Ks,t will be much
smaller than Pt, it may be much younger, which may affect its eventual relative size and
growth with respect to the overall population.

By allowing for the population of individuals related to a victim of a mortality crisis to
grow over time, Ks,t contributes to the temporal stability of kinship memory. An example
of such stability is highlighted in Alburez-Gutierrez (2022), where the population related
to a genocide victim remained stable over several decades, as grandchildren and other more
distant relatives were added to kin networks (Alburez-Gutierrez, 2022). An important caveat
is that the type of memory associated with these more distant kin relationships may be
different and potentially less salient than those for closer relationships, such as children or
siblings; the impact of kin loss can vary depending on the type of kin relationship (Patterson
et al., 2020), and memory is likely to do so as well. This is likely to be especially true for
individuals in this subsidy term, who never met the relative who was lost to the mortality
crisis: their memory of that relative is likely to be very different from that of those whose
lives overlapped in some way with their deceased relative.

Different though this memory may be, it is likely that the absence of a relative, even one an
individual never knew, could have significant implications for their lives. This is certainly
the case for grandchildren, the kin subsidy population considered in this paper. Research
has emphasized the importance of grandparents in providing caregiving support to their
grandchildren, with a special emphasis on the positive impact of grandmothers, especially
maternal grandmothers, on child survival, a phenomenon known as the “grandmother effect”.
(Sear &Mace, 2008; Hayslip Jr. & Fruhauf, 2019; Hawkes, 2004). While there is little research
about the effects of not having a grandparent, these significant positive effects associated
with having a relative of this kind suggest that such an absence could be detrimental. Related
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insights can be found in the literature on bereavement: while the emotional implications of
such an absence, as opposed to a loss, are likely to be different, the socioeconomic impacts
may be somewhat similar. In this context, a study by Patterson et al. (2020) found that,
for White grandchildren in the United States, a grandparent’s death may be associated
with slight increases in educational attainment, a finding that is hypothesized to relate to
inheritance and the transfer of resources. However, this is not the case for all racial groups,
with no beneficial association for Black grandchildren. There is also a negative association
between experiencing a grandmother’s death and educational attainment (Patterson et al.,
2020). This set of findings suggests that these absences could have potential negative effects
on the well-being of the grandchildren included in the Ks,t term in this paper, which could
in turn lead these absences to be more noticed and remembered.

Availability of other relatives is likely to play a role in how this absence in the kinship net-
work is perceived by those who are born after the loss has occurred. With mortality declines
brought about by the Demographic Transition, the availability of grandparents has increased
(Murphy, 2010; Uhlenberg, 2004, 1980), reflecting the importance of mortality rates in shap-
ing the availability of ancestors (Sembiring, 1978). It is an open question as to whether,
against this backdrop of an increasing likelihood of having multiple grandparents alive well
into young adulthood or later, a crisis-related absence of a grandparent may seem more or
less conspicuous. Will an absence seem less acute if there are other grandparents still alive,
or will it seem more shocking to have lost a grandparent earlier than expected, especially
to a traumatic mortality crisis? Further research will be needed to better understand how
these factors may affect this population’s experiences of this un-witnessed, but potentially
significant loss.

4.3 Projecting COVID-19-related Kinship Memory with

Demographic Microsimulation

4.3.1 Microsimulation Setup

In order to estimate and project kinship memory of COVID-19, we employ demographic mi-
crosimulation using the SOCSIM platform. SOCSIM, a stochastic microsimulation platform
originally developed at the University of California, Berkeley in the 1970s, is one of the most
popular demographic tools for studying dynamics in kinship resources in a variety of contexts
(Wachter, 1997; Wachter et al., 2003; Zagheni, 2011; Verdery & Margolis, 2017). Requiring
monthly vital rates and an initial population, it generates synthetic population genealogies
which can be used to carry out kin censuses of individuals of interest. In this paper, the kin
census focuses on spouses and close lateral consanguineous kin: parents, siblings, children,
and grandchildren. To account for stochasticity, these estimates are averaged across 25 sim-
ulation runs for each country and United Nations projected fertility scenario. The size of
our sample of 120 countries is based on the list of countries with populations greater than
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or equal to 5 million people in 2020, as per the United Nations World Population Prospects
2022 (UNWPP); this cutoff is based on potentially greater uncertainty of vital rates for very
small populations. 2 Given the large number of countries studied in this paper, we use inter-
nationally comparable fertility and mortality rates derived from the UNWPP, and a stable
starting population based on running the UNWPP rates for 1950 for 200 years prior to the
start of the simulation, extending other work by the authors (Alburez-Gutierrez, Mason, &
Zagheni, 2021; Snyder et al., 2022).

It is important to note the effects that this stable starting population may have on kin
availability in our results. In order to be able to run simulations for all countries, a simplified
starting population is needed, since census data prior to 1950, or data of any kind that
includes kinship structures, which would be the preferred choices, are not available for most
countries. Previous analysis on the effects of this stability assumption has highlighted that it
does not bias kinship structures for cohorts born in or after 1970 (Alburez-Gutierrez, Mason,
& Zagheni, 2021). Many of the individuals most at risk of COVID-19 excess mortality,
however, are likely to have been born before 1970. In our simulations, this means that some
these individuals may see higher sibling counts than might be otherwise expected, as a result
of an extrapolation backwards in time of Baby Boom-era fertility rates. Some differences
may also be expected in terms of the availability of their parents and grandparents, given
lower mortality rates and a lower mean age at childbearing than might been expected in
the early 1900s. However, this is unlikely to affect the availability of their children and
grandchildren, who, for these older cohorts, are more likely to be alive than their siblings or
parents at the time of our kin census in 2025.

In this paper, we identify these individuals of interest with the help of the groups feature
in SOCSIM, where different groups of individuals can experience different vital rates. The
individuals who die of COVID-19 excess mortality in our simulations form a second group,
entry to which is determined by monthly age and sex-specific excess mortality rates. Mean-
while, individuals who do not enter this group experience mortality rates in line with what
would have been expected in the absence of excess mortality. These group transition and
expected mortality rates are derived from the UNWPP lifetables, which, in the 2022 re-
vision, included an accounting for excess mortality in all countries; since excess mortality
data is not available for most countries, many of these estimates relied on estimates from

2The full list of countries is as follows: Afghanistan, Algeria, Angola, Argentina, Australia, Austria, Azer-
baijan, Bangladesh, Belarus, Belgium, Benin, Bolivia, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia,
Cameroon, Canada, Central African Republic, Chad, Chile, China, China (Hong Kong SAR), Colombia,
Congo, Costa Rica, Côte d’Ivoire, Cuba, Czech Republic, Democratic Republic of the Congo, Denmark,
Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany, Ghana, Greece,
Guatemala, Guinea, Haiti, Honduras, Hungary, India, Indonesia, Iran, Iraq, Israel, Italy, Japan, Jordan,
Kazakhstan, Kenya, Kyrgyzstan, Laos, Lebanon, Liberia, Libya, Madagascar, Malawi, Malaysia, Mali, Mex-
ico, Morocco, Mozambique, Myanmar, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway,
Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Republic of Korea, Romania,
Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra Leone, Singapore, Slovakia, Somalia, South Africa,
South Sudan, Spain, Sri Lanka, State of Palestine, Sudan, Sweden, Switzerland, Syrian Arab Republic,
Tajikistan, Thailand, Togo, Tunisia, Turkey, Uganda, United Kingdom, Ukraine, United Arab Emirates,
United Republic of Tanzania, USA, Uzbekistan, Vietnam, Yemen, Zambia, and Zimbabwe.
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the World Health Organization (Msemburi et al., 2023). While challenges with these mod-
eled estimates, which included revisions to estimates for Germany and Sweden, have been
well-documented (Van Noorden, 2022; Acosta, 2022), they represent one of the few sources
of internationally comparable data on excess mortality; similarly the UNWPP lifetables are
one of the only sources likely to capture to some extent these effects on the mortality pro-
files of all countries. While COVID-19 case data is also available (Riffe et al., 2021), this is
unlikely to capture the full impact of pandemic mortality (Beaney et al., 2020; Karlinsky &
Kobak, 2021), due to differences in testing rates, health systems impacts of the pandemic,
and death classification approaches between countries. These considerations motivate our
use of COVID-19 excess mortality estimates, even if such an approach may not, given data
limitations, fully capture the effect of the pandemic on mortality in all countries.

Different baselines and approaches can be used to calculate excess mortality, with the choice
of a baseline making a significant difference to estimates (Nepomuceno et al., 2022); other
work by the authors has used different methods for this calculation, including a multi-
year average (Snyder et al., 2022) and a multi-year linear trend (Chapter 2). Unlike the
previously cited work, this paper focuses to a much greater extent on future projections of
mortality, so it is important that our excess mortality baseline account for future trends
as well. This consideration makes a linear interpolation from the pre-COVID-19 period to
the post-COVID-19 period a suitable choice for this analysis; we then calculate the excess
mortality rates that are used for group transition probabilities from the difference between
the observed and expected rates. An important point is that, given differences in baselines
and data used, our estimates of excess mortality are not likely to fully match up with other
published estimates (Msemburi et al., 2023; The Economist & Solstad, 2022; Wang, Paulson,
et al., 2022). However, they are likely to capture relative differences in magnitude between
countries, and to identify countries that saw exceptionally high or low excess mortality.

Attention is needed as to how the time period of this interpolation is calculated for the
UNWPP lifetables, since, depending on the vaccination coverage and mortality impacts on
the country in question, COVID-19 excess mortality was either projected to end in 2022 or
in a subsequent year, with excess mortality only ending in 2025 in particularly hard-hit and
low-vaccine-coverage countries (United Nations, Department of Economic and Social Affairs,
Population Division, 2022). While it is not possible, from the available documentation, to
identify exactly which assumptions were used for which country, this suggests that, if a single
interval should be chosen for all countries, it should be 2020-2024 rather than 2020-2021; in
our implementation, we use the data series from 2015-2025 for this interpolation, in order to
reduce the effect of historical mortality shocks. Our choice of 2020-2024 is motivated the fact
that if we only interpolate the years 2020 and 2021 for countries where excess mortality was
projected to end much later than 2022, we will overestimate expected mortality for these
countries, and thus under-estimate excess mortality in 2020 and 2021, while completely
omitting excess mortality in the 2022-2024 period. However, for countries where excess
mortality was expected to end by around 2022, an interpolation to 2025 is unlikely to result
in significant departures from excess mortality estimates for the 2020-2021 period. This is
brought out in Figure 4.1, which examines male age-specific excess mortality rates for ages
65 and older, as calculated from UNWPP lifetable data as a difference between observed and
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Figure 4.1: Comparison of excess mortality rates derived from different linear interpolation
intervals, South Africa and the USA
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expected mx values. South Africa, which saw significant excess mortality in 2021 and had
relatively low vaccination rates by mid-May 2022, would see much lower estimated excess
mortality for 2020 and 2021 if we interpolated only the years 2020-2021. Meanwhile, the
United States would see relatively minor differences, and comparatively very low excess
mortality in 2022-2024, suggesting that adding a few years of “extra” excess mortality for
countries where the pandemic had already likely ended, according to UNWPP assumptions,
is unlikely to significantly bias our results.

The large sample of countries studied also necessitates other simplifications, which are im-
portant to consider in the interpretation of our results. One of these is the way in which
spousal partnerships are formed; rather than being based on marriage rates by age, our im-
plementation uses female age-specific fertility rates to determine the timing of partnerships,
with a spousal relationship being created at the time of the birth of a woman’s first child.
The male partner chosen in this case is selected from all living unpartnered males in the
simulation, with the aim of minimizing the difference between the distribution of spousal
age differences thus obtained in the overall population and a target distribution. In this
case, we use the SOCSIM default of a mean age difference between spouses of 2 years, with
a standard deviation of 3 years (Mason, 2016). While many countries, especially LMICs, see
higher age differences between partners (Ausubel et al., 2022), lack of data and issues with
simulated matching with large mean age differences (Mason, 2016) lead us to choose to use
the SOCSIM default, as in previous work by authors (Snyder et al., 2022; Alburez-Gutierrez,
Mason, & Zagheni, 2021). This may lead to individuals having higher numbers of living male
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lateral kin (especially fathers and grandfathers) than might otherwise be expected; however,
in related work by one of the authors (Chapter 2), the effects of this simplification are shown
to to be relatively slight, at least for countries with moderately high mean age differences
between spouses, such as India (5.6 years) and South Africa (3.8 years). This simplification
is also likely to have implications for the age distribution of fertility in terms of the male
mean age at first birth; data on this measure is not available for many countries, making
assessing this issue more challenging. However, Chapter 2 does show that this is unlikely to
be a concern for lower-fertility countries such as the United States and Norway.

This simplified model of marriage and partnership has important implications for how kin
relationships are interpreted in this paper, an issue that is also explored in Chapters 1 and 2.
The most significant point to note in this regard is that spouses in these models are connected
only through the birth of a first child, so the partnerships identified will include only those
involving children. This is likely to be an issue in low-fertility countries, and estimates for
spouses should be considered with particular caution in these contexts. Another issue is that
kin identified are related to one another biologically; thus, our analysis includes half-siblings
who share one biological parent, but not step-siblings. An individual’s children refer only
to their biological children, not any step-children that they may have through their spouse.
While this is likely to capture many salient kin relationships, it is also likely to omit some
relationships that may be important, especially in countries with limited kin availability,
more extensive reckonings of kin networks, polygamy, or reliance on support systems such
as fostering.

As in other research using a similar setup (Snyder et al., 2022; Alburez-Gutierrez, Mason, &
Zagheni, 2021), these simulations do not account for international migration. This simplifi-
cation is likely to affect population growth rates of high-migration countries, such as Canada,
Australia, or the United Arab Emirates. While this is less likely to pose issues for studies
focused on within-kin network changes like in Chapter 1 and 2, this is of some concern for
this analysis, given that calculations include total population in the denominator. Analysis
of the differences in annual population growth rates derived from our simulations show that
they have a correlation of .92 with UNWPP population growth rates and .98 with UNWPP
rates of natural change (note that the growth rates in simulation output were calculated
based on mid-year population estimates, while UNWPP rates were calculated based on Jan-
uary population estimates). The higher correlation with rates of natural change would be
expected, given that we do not account for migration. 42 countries see, on average, a 0.5 per-
cent difference in population growth rates from UNWPP predictions in our simulations, and
7 countries see a greater than 1 percent difference. These differences suggest that this lack
of migration may have an impact on our estimates for certain countries, an issue discussed
at greater length in later sections of the paper.

After this discussion of the simulation setup and its potential limitations, we turn to the
results of our simulations. Kinship memory as conceptualized in this paper is based on
the relative sizes of the numerator, kin bereaved by a mortality crisis, and denominator, the
total surviving population, over time. Discussing each component in turn is helpful for better
understanding our estimates of kinship memory, which are presented in the final section.
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4.3.2 Relative Size of the Bereaved Population

4.3.3 Initial Population Size

Given that most of the types of kin that we consider will not see more individuals added
to the population after the crisis, the initial bereaved population Kw,t also represents, in all
types of kin except grandchildren, the peak size of the numerator of our kinship memory
calculation. Thus, its relative size in comparison to the denominator (total population alive
in a given year) is key to determining the peak of kinship memory, especially in the early
years after a crisis where it might be expected that these losses, and memories of the crisis,
might be especially salient for both the bereaved and the overall population.

As might be expected, the relative size of the initial bereaved population is directly related
to the extent of excess mortality experienced. This is brought out in Figure 4.2, which plots
for each country, based on simulation output for the UNWPP medium fertility scenario, the
share of the bereaved population who were alive at the time of their relative’s death during
the crisis and are projected to be still alive in 2025, compared to the share of the 2019
mid-year population who died as a result of pandemic excess mortality. While subsequent
estimates will look at different kin relationships separately, Figure 4.2 considers individuals
who lost a relative of any type considered in the paper. This is plotted both on a regular
(left panel) and a log scale (right panel) for all of the 120 countries included in the paper.

As previously discussed in Chapters 1 and 2, the sizes of country simulations are inversely
related to the uncertainty associated with country estimates in these results. This implies
that some country results may be more uncertain from a statistical perspective than others.
This is captured by the shading on the points in Figure 4.2, which correspond to the coef-
ficient of variation seen in estimates of crude excess mortality for each country, with higher
coefficients of variation seeing lighter shading. This uncertainty partly explains differences
between our crude excess mortality estimates and those from other sources, and also puts
in context subsequent estimates that will be presented in the paper. Subsequent graphs will
not report confidence intervals, given that, in this paper, these are related to simulation
sizes and do not capture other aspects of uncertainty. However, the potential variation in
uncertainty seen here, which will mean that high population-growth countries which require
smaller simulations will thus see wider confidence intervals around estimates, should be taken
into account when examining later estimates.

Figure 4.2 shows that not only does the expected direct relationship between excess mortality
and the prevalence of associated bereavement hold for the countries studied, there appears
to be a diverging trend between countries in Europe and in other regions, with European
countries seeing a lower prevalence of bereavement in 2025 even with higher excess mortality.
This is reflected on both regular and log scales, with the roughly parallel trends on the right
log-scale panel suggesting a different relationship for Europe than for Asia, Africa, or the
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Figure 4.2: Excess mortality (2020-2024) vs. the prevalence of bereavement (2025), UNWPP
medium fertility scenario
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Americas.3

The divergence in the relationship between excess mortality and bereavement reflects a
second factor that determines the size of the bereaved population: kinship structure. A
population with large kinship networks may see a large number of people bereaved, even
with relatively few deaths, while a population with a large number of deaths but relatively
small kin networks may still see fewer people bereaved than might be otherwise expected.
Accounting for kinship structure, defined in this context as the number of relatives who
will mourn a single death, thus helps us understand a key determinant of the prevalence of
bereavement.

Based on a country’s prior mortality and fertility, and the age structure of excess mortality,
an individual who dies of COVID-19 will have a certain number of surviving relatives. In
the United States, this number was estimated as nine close kin in work by one of the authors
(Verdery et al., 2020), in a study which first formulated this concept under the term “be-
reavement multiplier”. By calculating a version of these bereavement multipliers, using the
types of kin studied in our paper, we can develop a rough approximation of how the kinship
structure of those who die of COVID-19 excess mortality varies across countries, and what
this could mean in terms of the numbers of individuals bereaved by the pandemic in each
country. An important caveat is that, in the absence of a model of within-family mortality
clustering, we would not expect that numbers of kin should vary dramatically between indi-
viduals who die of excess mortality, so our simulations are likely to underestimate variation
between individuals.

In Figure 4.3, we present bereavement multipliers of the average number of kin alive at
the time of an individual’s death of COVID-19 excess mortality, calculated under the UN-
WPP medium fertility scenario for all countries in our simulations, with results for selected
countries—the United States, Russia, Brazil, India, South Africa, and Italy—highlighted.
In the first sub-figure, we present results aggregated across all types of kin, with other sub-
figures showing estimates for parents, siblings, spouses, children, and grandchildren. These
estimates show the average number of kin alive at the time of an individual’s death, not in
2025 (as will be reported in subsequent estimates). While this means that some of these
individuals will not be alive in 2025, this is unlikely to significantly affect these estimates.
Moreover, considering individuals still alive at the time of their relative’s death in this con-
text helps provide a sense of its real-time impact, while accounting for the possibility that
some countries would be expected to see a longer period of pandemic excess mortality than
others.

This definition also enables comparison with the estimates in Verdery et al. (2020) for
the United States. Our estimates are likely to vary somewhat from those in Verdery et
al. (2020), given that this paper uses a different marriage matching model and different

3In this paper, Oceania is only represented by three countries, Australia, New Zealand, and Papua New
Guinea. As a result, estimates for this region are likely to be less prominent in cross-country comparison in
this paper, with regional aggregates subject to greater uncertainty.
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rates; here, we see that the average number of bereaved kin of all types is slightly lower (7.7
for the overall population, compared to the Verdery et al. (2020) estimate of 8.91 for the
combined White and Black population). Considering individual types of kin, we estimate
twice as many parents (0.4 instead of 0.2), around the same number of siblings (2 versus
2.04), more spouses (0.7 instead of 0.46), around the same number of children (2.1 instead of
2.15), and fewer grandchildren (3.2 instead of 4.01). Part of this discrepancy likely relates to
uncertainty in our estimates (there are very few parents still alive, for example). Simulation
setup differences could also play a role, especially with regard to the excess mortality rates
used: Verdery et al. (2020)’s input infection fatality rates were based on early-pandemic
estimates from Wuhan, China, but subsequent months saw, at least in the United States,
the mortality pattern shifting slightly towards younger ages (Elo et al., 2022). The slightly
younger population of victims of COVID-19 excess mortality in this paper, in comparison
with Verdery et al. (2020), would imply the availability of more parents, more spouses, and
fewer grandchildren, consistent with what we observe here. Overall, these similarities with
published estimates suggest that these numbers are likely to be of a reasonable order of
magnitude for the other countries studied.

The multipliers presented in Figure 4.3 provide an intuitive way of understanding how a
population’s prior history of mortality and fertility shape its kinship networks in the context
of COVID-19 (note the different scales between sub-figures, highlighting relative magnitudes
of kin availability between types of kin). In general, with a few exceptions, lower-mortality
high-income countries tend to see a higher number of parents and spouses, while higher-
fertility low-and-middle-income countries tend to see larger numbers of siblings, children,
and grandchildren. This is consistent with insights from formal demography suggesting that
the availability of living ancestors is primarily related to mortality conditions, while fertility
plays a larger role in the availability of kin such as siblings, aunts, and cousins (Keyfitz &
Caswell, 2005; Sembiring, 1978). These differences help explain why, even with comparatively
lower crude excess mortality, many African countries saw such higher rates of bereavement
in 2025, as per Figure 4.2. They also provides insight into how these estimates may change
over time: since children and grandchildren are likely to be much younger than parents,
siblings, or spouses, this suggests that we might expect a longer duration of kinship memory
through these kin relationships for LMICs.

Another important factor to consider in this context is that the age structure of COVID-19
excess mortality may have varied across these populations. While COVID-19 excess mortality
has shown an acceleration of mortality risks at older ages (Goldstein & Lee, 2020), data from
a number of low-and-middle-income countries (LMICs) suggests that there may have been
higher excess mortality at younger ages than might have been expected, leading to a flatter
mortality risk-by-age curve (Demombynes et al., 2022). This is reflected in Figure 4.4, which
shows the average age at death for individuals who die of COVID-19 excess mortality by
country in our simulations. While these results are subject to considerable uncertainty, not
least due to data quality issues in many LMICs that may affect estimates of excess mortality,
they help explain some of the cross-country patterns observed in Figure 4.3, including some of
the exceptions to the general patterns noted previously. For example, high-excess mortality
Brazil saw a young mean age at death in our estimates, while low-excess mortality Australia
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saw a very high mean age. This explains the low availability of spouses in our earlier
estimates for Australia compared to other developed countries, and the high availability of
parents in Brazil. These estimates are likely partly shaped by simulation uncertainty, but
provide valuable context for understanding the cross-country estimates observed in Figure
4.3: older individuals would be expected to have fewer surviving parents, spouses, or siblings,
but more children and grandchildren.

Post-Crisis Additions to the Bereaved Population

This multiplier framework also provides an intuitive way of understanding the size of Ks,t,
the population of kin (grandchildren in this case) who will be born after their relative’s death.
Figure 4.5, which plots for each country the average number of grandchildren born after an
individual’s death from COVID-19 excess mortality, under the UNWPP medium fertility
scenario, demonstrates that, for most countries, this population is likely to be much smaller
than population of “witnesses” alive when the death occurred. Only in several sub-Saharan
African countries is the average number of additional grandchildren born likely to exceed
2 (in Nigeria, shown in Figure 4.5, the number is 4.2). For most countries in Europe, the
Americas, or Asia, the number is close to or under 1.

These cross-country and cross-regional differences likely relate to fertility rates, as well as
the age structure of excess mortality. If mean ages at excess mortality were younger in sub-
Saharan Africa than in Europe, as suggested by Figure 4.4, this would mean that children
of COVID-19 excess mortality victims would be likely younger and more likely to not have
completed their fertility at the time of their parent’s death. Overall, however, these estimates
suggest that, for most regions, the initial bereaved population will play a much larger role
in kinship memory of the crisis than kin born after their relative’s death has occurred.

4.3.4 Kin Survival and Population Growth: Changes in Kinship
Memory over Time

As previously discussed, the age structure of COVID-19 excess mortality, and a population’s
demographic history, shape the composition of the bereaved population. Similar factors
shape its survival over time, which will help in determining how kinship memory of a crisis
changes in the decades after it has occurred.

In Figure 4.6, we plot by region surviving kin as a share of the peak number of bereaved
kin in each year from 2025 to 2100, using the UNWPP medium fertility scenario. Regional
and global averages are calculated as a weighted average, with 2019 UNWPP populations as
weights, of estimates from all countries that are included in our simulations, using regional
definitions based on those from the United Nations, except for the Americas, which is pre-
sented as a single region combining the Latin America and Caribbean and Northern America
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regions. Unlike the bereavement multiplier estimates, these results focus on the entire popu-
lation of bereaved individuals, not the average number of bereaved kin for each death. Given
the stochastic nature of our simulations, these populations may see the kin networks of some
individuals better-represented than others, although kin networks, which include correlations
between the fertility of mothers and daughters but not clustered within-family mortality, are
likely to vary less between individuals than might be expected in empirical data.

Conversely, some bereaved relatives may have lost more than one relative, whether of the
same or a different type—for example, someone may have lost a parent as well as a sibling,
or have lost both parents. Our approach to this issue is to avoid duplication within kin
relationships, but not across types of kin. This means that, if an individual lost two parents,
they would only be recorded once in the population of individuals who lost a parent, but
if they lost both a parent and a child, they would be recorded in both populations. This
helps account for the fact that losing different types of relatives may have different impacts
on individuals’ support networks (Patterson et al., 2020). The estimates for all types of kin
combined will provide the total un-duplicated population of bereaved kin, so these numbers
are likely to be slightly smaller than the sum of the populations associated with each kin
relationship.

For most of the kin relationships presented in Figure 4.6, the peak number of kin alive is
reached in 2025 itself, since there is no subsidy population. The rapidity of declines in the
survival of these types of kin is directly related to their age. By 2050, fewer than 25 percent
of bereaved parents would be expected to be alive. Meanwhile, this share is reached by
around 2060 for spouses and siblings, with some variation by region, and the mid-2070s for
children.

The survival of grandchildren, however, is not expected to fall below 25 percent at any point
during the period. This reflects their relatively young age, as well the fact that the peak
number of grandchildren is expected to be reached only in the 2040s. Similarly, the measure
for all kin combined (which is heavily dominated by the population of grandchildren, as seen
in Figure 4.3) would see a peak around the mid 2030s in Africa and a peak of around 2025
in other regions, with a decline below 25 percent around 2080. As can be seen in Figure 4.6,
there is generally much greater variation in kin survival between types of kin relationship
than between regions. However, this particular difference suggests that the larger number of
grandchildren being added to the African population of bereaved kin, as well as the younger
age structure of excess mortality, may contribute to this slower decline in kin survival.

These different rates of survival for types of kin imply a changing composition of our numer-
ator for kinship memory over time. Even at the time of a COVID-19 victim’s death, many
of their surviving relatives would be expected to be from younger generations, such as their
children or grandchildren. However, by the end of the century, the population of bereaved kin
would be almost entirely grandchildren, some of whom would have never met their deceased
grandparent, with many kin from some of the closest kin relationships (such as parents,
spouses, and children) having already died. As discussed previously, this could impact the
salience that these deaths would have for those still alive, as well as their consequences for
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those bereaved.

As the population of bereaved individuals changes over time, so too does the overall pop-
ulation. The rates of change of these two populations are likely to be different. While
populations of bereaved kin will mostly decrease, and with particular rapidity as grandchil-
dren reach older ages as well, the overall population can grow, decline, or remain constant.
This is reflected in Figure 4.7, which plots regional differences in the time path of the an-
nual growth rate of the population of all bereaved kin alive (including both witness and
subsidy kin) against the population growth rate for the overall population, using the UN-
WPP medium fertility scenario. Given greater uncertainty around estimates for very small
populations, the time path for each region ends in the year in which fewer than 25 percent
of all bereaved kin, as compared to their peak population value, would be still alive.

Figure 4.7 highlights regional differences in both kin survival and population growth that
are likely to affect the evolution of kinship memory over this period. While, as previously
discussed, the population growth rates from our simulations are lower than UNWPP pre-
dictions, this relationship holds in additional calculations even if population growth rates
are shifted upwards, given correlations between simulation growth rates and UNWPP rates.
Most regions in Figure 4.7 would expect to see low, or negative, rates of population growth in
this period. However, these rates are expected to decline to a much greater extent in Africa
than in other regions, given their much higher starting point. This means that, even as the
kin population declines at a similar rate as in other regions, this will be spread out over
a period of much higher and much more slowly-declining growth. This can be contrasted
with Europe, in which population growth rates are expected to decline and then rebound
slightly due to a return to replacement-level fertility in line with UNWPP predictions. This
difference in growth rate trajectories suggests that we may expect that population growth
may play a greater role in the erosion of kinship memory in Africa than in other regions.

Since the choice of UNWPP fertility scenario would affect both population growth, as well
as the rate of addition of grandchildren to the bereaved population, we test the impact of
this choice in Figure 4.8, which plots the time path for Figure 4.7 for Africa by UNWPP
fertility scenario; since Africa is expected to see higher growth than other regions, the choice
of fertility scenario is likely to have the most significant implications for our results. From
Figure 4.8 we see that the choice of fertility scenario has its greatest effect on the simulation
population growth rate expected at the end of the century, with a higher growth rate in the
high-fertility scenario above 0.5 percent. Meanwhile, this is expected to have comparably
little effect on the growth rate of the population of bereaved kin, which would see a similar
endpoint of almost negative 6 percent growth close to 2100 in any of the fertility scenarios.
This reflects the fact that, for most relatives considered, the UNWPP fertility scenario only
affects the population denominator of kinship memory, not the numerator of bereaved kin,
since all kin of this type would have been born prior to the start of fertility rates assumed
by the scenario in question. Only for grandchildren are projections of fertility rates likely
to affect the numerator, and even in this case, the relatively older age profile of COVID-19
victims means that their children are likely to have been close to completing their fertility.
This greater impact on the population growth rate, as compared to rates of kin survival, is
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reflected in Figure 4.8.

4.3.5 Estimates of Kinship Memory

The previous sections have examined the components of kinship memory, as captured by
Equation (4.2). We have seen that, for the most part, the share of the population related
to a COVID-19 excess mortality victim is expected to be at its highest levels directly after
the crisis has occurred, and that this level is a function both of excess mortality as well as
pre-existing kinship networks. We also have seen that we would expect a much more rapid
decline in populations of bereaved older kin, such as parents and siblings, with some level of
kin subsidy from the birth of grandchildren that varies by region. How these rates of change
interact with population growth rates—for example, many African countries would see both
high levels of population growth and higher levels of kin subsidy—will shape the evolution
of kinship memory over the next century.

These various factors are reflected in our estimates of kinship memory, which are discussed
in this section. In Figure 4.9, we present our main results: global and regional estimates of
kinship memory, by type of kin in Figure 4.9a and by region in Figure 4.9b, with both sets
of estimates based on the UNWPP medium fertility scenario. This focus on the medium
fertility scenario is motivated by the lack of variation in regional estimates based on UNWPP
fertility scenarios seen in Figure 4.10, which plots trends in kinship memory for all types
of kin combined by region and fertility scenario. While Figure 4.9a has different scales for
each panel, to better display trends in each of these types of kinship memory, the relative
sizes of these measures are captured in Figure 4.9b, which highlights the large share that
grandchildren form of the bereaved population in all regions over this century, followed by
children and to a lesser extent siblings, with parents and spouses forming very small shares
of the bereaved population.

Before turning to a closer examination of cross-regional and cross-country magnitudes and
trends, it is important to consider the extent to which these estimates might be affected by
the lower population growth rates seen our simulations as compared to UNWPP estimates. In
Figure 4.11, we plot both the absolute and relative differences between regional estimates of
kinship memory based on simulation output versus after adjusting population denominators
to have UNWPP growth rates (note that UNWPP growth rates are calculated as being from
January to January, while the populations used in our estimates are calculated mid-year).
Since we expect that higher population growth rates would result in lower kinship memory,
these differences should be negative when our simulation-based estimates are used as the
reference. As we see in Figure 4.11, these differences increase in relative magnitude over
time, from around 10% in 2025 to around 30% in many regions by the end of the period;
as might be expected, the difference is especially pronounced for Africa, which will have the
highest growth rates over this period (Oceania’s estimates are very low, meaning that small
differences in absolute magnitude could lead to large relative differences). Even though these
relative differences increase over time, however, we see in the left panel that the absolute
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magnitude of this difference peaks towards the middle of the period, with a peak of around
0.5 percentage points difference for Africa and the Americas. These results suggest that while
our simulated growth rates may tend to overestimate kinship memory, these differences are
likely to be relatively slight for much of the projection window, with the largest relative
differences at a time when kinship memory is fairly low in all regions.

One of the key insights from Figure 4.9 is the relative similarity between regions in terms of
the magnitude and trajectory of kinship memory. An exception is Oceania, which, in terms
of the countries studied in this paper, saw mostly very low excess mortality and would be
expected to have much lower kinship memory as a result. In other regions, by the end of
the period the share of the population related to a victim of COVID-19 excess mortality
would be estimated to be around 1 percent, from a peak in 2025 of around 4 percent.
Some regions would see different rates of change in certain types of kinship memory than
others—for example, Africa would see a much higher peak of the share of the population
who are bereaved grandchildren, but also a more precipitous decline. This follows closely our
estimates and predictions in the previous sections: while higher-fertility African countries
would be expected to see larger populations of bereaved kin, even with lower crude excess
mortality, faster population growth would be expected to erode more quickly the share that
these bereaved relatives form in the overall population.

Examining these estimates at the country level, in a series of annual snapshots for the years
2025, 2050, 2075, and 2100 in Figure 4.12, reveals considerable cross-country heterogeneity
not captured in population-weighted regional averages. For example, South Africa would
be expected to see much higher levels of kinship memory than many other countries in
Africa, with a starting point of 11.37 percent of the population in 2025, over six times the
estimate for more-populous Nigeria (1.78 percent). Similarly, Russia would see much higher
levels than other European countries, with its 6.16 percent in 2025 being over five times the
level seen in France (1.18). While kinship memory is expected to decline significantly in
all countries over the coming century, many of these countries with initially high levels will
continue to see higher levels than other countries in the region even at the end of the period.
However, this relationship may differ slightly between regions based on predicted population
growth trajectories. This is brought out in Figure 4.13, which plots levels of kinship memory
in 2025 against levels for 2100 in all countries: while there is a positive relationship between
estimates for the beginning and end of the period, African countries would typically see
lower levels of kinship memory than predicted by their initial levels, suggesting a more rapid
erosion of kinship memory brought about by higher population growth.

Although some of our estimates have examined all types of kin together, it is important to
note that there is likely to be considerable variability in how a relative’s loss is remembered,
based on the type of relative and the age of the surviving individual at the time of their
relative’s death. The age structure of kin who witnessed their relative’s death and who are
still alive in 2100 will be very different from the same age structure in 2025. This is brought
out in Figure 4.14, which plots the temporal and age distribution of kinship memory based
on the witness population. By 2100, almost the entire population of surviving kin will be
individuals who were younger than 15 years of age at the time of their relative’s death
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from COVID-19 excess mortality, or were not yet born (not shown this graph, but seen in
other estimates of the subsidy population of kin). This may in turn influence the salience
that this memory has for them, much later on in their lives, and whether they are likely to
remember it, or if they will be primarily relying for their memories on descriptions passed
down to them from previous generations who were older at the time of the crisis. Previous
studies of demographic and kinship memory have highlighted the potential impact of this
age of awareness and the potential for decay of memory (Denton & Spencer, 2021; Alburez-
Gutierrez, 2022). How these factors may affect memory of COVID-19 is an open question,
and one that will need to be revisited in future decades, as the dynamics of memory, in a time
of widespread digital coverage but limited public memorialization, become more apparent.

4.4 Conclusion

What do these results tell us? 1 percent of most regions of the world in 2100 is a small number
in terms of population share, but large in terms of the number of individuals (around 100
million of an around 10 billion global population) it implies (United Nations, Department of
Economic and Social Affairs, Population Division, 2022); it is also worth noting that kinship
memory will be expected to be around above 2 or 3 percent for much of the century, dropping
only to 1 percent around 2080. These numbers, though somewhat small, are nevertheless
much larger than comparable estimates that might be derived from natural disasters, for
example, which are estimated from some sources to have had a global death toll of fewer
than 30,000 deaths in 2020 and 2021 combined (Ritchie et al., 2022). In comparison, the
COVID-19 pandemic is estimated to have resulted in around 15 million excess deaths in the
same period (Msemburi et al., 2023), with a correspondingly large number of individuals
bereaved. It is worth noting in this context that these estimates do not take into account
international migration, so the true impacts, when transnational kinship networks are taken
into account, may be still higher. Although it remains unclear how, and whether, the views
of these bereaved relatives have been shaped by the tragedy that they have experienced, and
the extent to which their views may be represented in popular discourse or public policy, the
size of this group suggests that this may be an important area for future research.

While we have focused primarily on bereaved relatives as a potential repository of memory,
these estimates can also be used to identify the scale of individuals in need of support. A
relatively modest share of a large population can imply a large number of individuals suffering
the adverse consequences of losing a relative, or the consequences of never having had that
relative in the first place. This issue is explored in this paper with regard to grandchildren,
but may also have implications for other types of kin. These estimates thus complement
other studies that have highlighted the burden of COVID-19 bereavement, and the need for
greater government support for affected individuals (Verdery et al., 2020; Kidman et al.,
2021; Hillis et al., 2022; Snyder et al., 2022).

These estimates also highlight the importance of the demographic structure of a crisis in
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shaping who is alive to remember it. In this context, the much greater temporal stabil-
ity of kinship memory that Alburez-Gutierrez found for a genocide affected-population in
Guatemala reflects the age structure of that crisis, with individuals of all ages suffering
relatively similar levels of excess mortality, as well as the greater number of types of kin
considered (Alburez-Gutierrez, 2022). This is not the case for COVID-19, for which kinship
memory is expected to decline steadily over this next century. Nor would it likely have been
the case for the 1918 influenza pandemic, in which the younger age of the victims might
have implied both longer kinship memory based on surviving children and grandchildren,
or a more rapid decline due to fewer numbers of children, and thus fewer grandchildren
having been born. The composition of bereaved relatives determines in each of these cases
the trajectory of kin survival as compared to population growth. How these differences in
kin composition shape the overall valence of kinship memory—given that, as discussed pre-
viously, the impact of losing a relative may be different depending on the type of relative
lost—is another important avenue for future research.

These many as-yet unanswered questions will have a bearing on the interpretation of these
estimates. However, it is our hope that by presenting these estimates, and considering how
they may shape memory of COVID-19 in the century to come, this paper may serve as an
encouragement to future research to better understand the long reach that COVID-19 and
other mortality crises may have on kin networks and support systems around the world.
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Figure 4.3: Average number of kin bereaved by each death due to COVID-19 excess mortality,
UNWPP medium fertility scenario
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Figure 4.3: Average number of kin bereaved by each death due to COVID-19 excess mortality,
UNWPP medium fertility scenario (continued)
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Figure 4.3: Average number of kin bereaved by each death due to COVID-19 excess mortality,
UNWPP medium fertility scenario (continued)
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Figure 4.4: Mean age at death for COVID-19 excess mortality in simulation output, UNWPP
medium fertility scenario
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Figure 4.5: Average number of grandchildren born after an individual’s death due to COVID-
19 excess mortality, UNWPP medium fertility scenario
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Figure 4.6: Surviving kin as a share of the peak number of kin, UNWPP medium fertility
scenario
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Figure 4.7: Comparison between the rate of change in the total bereaved population and the
population growth rate, UNWPP medium fertility scenario
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Figure 4.8: Comparison between the rate of change in the total bereaved population and
population growth rate in Africa by UNWPP fertility scenario
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Figure 4.9: Kinship memory, UNWPP medium fertility scenario

(a) By type of kin

Bereaved Children Bereaved Grandchildren All Bereaved Relatives

Bereaved Parents Bereaved Siblings Bereaved Spouses

2040 2060 2080 2100 2040 2060 2080 2100 2040 2060 2080 2100

0.00

0.05

0.10

0.15

0.20

0

1

2

3

4

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5

2.0

2.5

0.00

0.05

0.10

0.0

0.3

0.6

0.9

Year

K
in

sh
ip

 M
em

or
y 

(%
)

Region
Africa

Americas

Asia

Europe

Oceania

World

86



CHAPTER 4. WHO WILL REMEMBER COVID-19?

Figure 4.9: Kinship memory, UNWPP medium fertility scenario (continued)
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Figure 4.10: Kinship memory for all kin combined by UNWPP fertility scenario
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Figure 4.11: Absolute and relative differences in estimates of kinship memory for all types
of kin combined between simulation output and estimates adjusted to reflect UNWPP pop-
ulation growth rates in the UNWPP medium fertility scenario
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Figure 4.13: Kinship memory for all types of kin combined in 2025 vs. 2100, UNWPP
medium fertility scenario
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CHAPTER 4. WHO WILL REMEMBER COVID-19?

Figure 4.14: Kinship memory for all types of kin combined based on witnesses by age of kin
at the time of their relative’s death, UNWPP medium fertility scenario
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