UC Irvine

UC Irvine Previously Published Works

Title

Determination of the S-Wave $\pi-\pi$ Amplitude near the ϱ Peak from the Reaction $\pi-+p \rightarrow \pi++\pi-$ +n

Permalink

https://escholarship.org/uc/item/3dd9n6p2

Journal

Physical Review, 155(5)
ISSN
0031-899X

Authors

Bander, Myron
Shaw, Gordon L

Publication Date

1967-03-25

DOI

10.1103/physrev.155.1675

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Determination of the S-Wave $\pi-\pi$ Amplitude near the ρ Peak from the Reaction $\pi^{-}+p \rightarrow \pi^{+}+\pi^{-}+n^{*}$

Myron Bander and Gordon L. Shaw
University of California, Irvine, California
(Received 2 November 1966)

Abstract

A fit to recent extensive data for the reaction $\pi^{-}+p \rightarrow \pi^{+}+\pi^{-}+n$ at incident π^{-}momentum $\sim 4 \mathrm{BeV} / c$ and final two-pion center-of-mass energy $m_{\pi \pi} \sim m_{\rho}$ was made. The peripheral model with absorption was used in the fit. The asymmetry in the final two-pion distribution θ_{π} gives a quantitative determination of the $\pi-\pi, S$-wave, $I=0$ scattering amplitude. A constant phase shift of $\sim+60^{\circ}$ gives as good a fit the to data as a resonance ϵ^{0} (at 730 MeV with a width of 90 MeV), proposed by Durand and Chiu. A negative phase shift of $\sim-60^{\circ}$ is ruled out by examining the distribution in θ_{π} as a function of $m_{\pi \pi}$.

I. INTRODUCTION

IT is known ${ }^{1}$ that the angular distribution in θ_{π} for the final two pions in the reaction ${ }^{2}$

$$
\begin{equation*}
\pi^{-}+p \rightarrow \pi^{+}+\pi^{-}+n \tag{1}
\end{equation*}
$$

near the final two-pion center-of-mass energy $m_{\pi \pi} \sim m_{\rho}$ requires a large S-wave phase shift ${ }^{3} \delta_{0}$ interfering with the $l=1$ production. ${ }^{4}$ Furthermore, the θ_{π} distribution

[^0]of the final pions in the reaction ${ }^{5}$
\[

$$
\begin{equation*}
\pi^{ \pm}+p \rightarrow \pi^{ \pm}+\pi^{0}+p \tag{2}
\end{equation*}
$$

\]

near $m_{\pi \pi} \sim m_{\rho}$ yields a small negative value for the $I=2$, S-wave phase shift. Thus, reactions (1) and (2) indicate the presence of a large $\pi-\pi$ phase shift $\delta_{0}{ }^{0}$ near the ρ region.

The peripheral production model with absorptive corrections gives a good fit ${ }^{6-8}$ to reaction (2), not only for the cross section as a function of the momentum

[^1]transfer (to the nucleon) t, but to the measured ${ }^{9-11}$ angular distributions in θ_{π} (the polar scattering angle in the two-pion center-of-mass system) and ϕ_{π} (the Treiman-Yang azimuthal angle). Thus, a similar, detailed calculation of (1) should give quantitative values for $\delta_{0}{ }^{0}$. Such a calculation was performed by Durand and Chiu, ${ }^{12}$ who found that the data averaged in $m_{\pi \pi}$ over the ρ peak required an $I=0, S$-wave resonance (ϵ^{0}) located at 730 MeV with a width of 90 MeV .

More extensive data ${ }^{13}$ are now available, so that we have repeated the calculation of Durand and Chiu in greater detail. We find that not only their resonant solution ϵ^{0}, but also a constant $\delta_{0}{ }^{0}$ of $\sim \pm 60^{\circ}$, give equally good fits to the data. ${ }^{9-11,13}$ Furthermore, when the distributions ${ }^{13}$ in θ_{π} and ϕ_{π} are fitted as a function of $m_{\pi \pi}$, instead of averaging over the peak, the negative value (or equivalently $\delta_{0}{ }^{0} \sim 120^{\circ}$) for $\delta_{0}{ }^{0}$ is ruled out. ${ }^{14}$ (A large negative value for $\delta_{0}{ }^{0}$, as is pointed out by Chew, ${ }^{15}$ would have been quite significant with regard to the vacuum Regge trajectory.)

In conclusion, we find that reaction (1) does not require the S-wave resonance ϵ^{0} proposed by Durand and Chiu. In addition, the slowly varying value of $\sim+60^{\circ}$ in the region $650-850 \mathrm{MeV}$ appears to fit smoothly with most of the lower-energy determinations of $\delta_{0}{ }^{0}$.

II. CALCULATIONS AND CONCLUSIONS

We consider the reaction (1) to proceed via the one-pion-exchange diagram shown in Fig. 1 for the production of an S-wave $\pi^{+}-\pi^{-}$pair and the neutral ρ. Let the $\pi-\pi$ scattering amplitudes which are functions of the invariant $s=m_{\pi \pi}^{2}$ be $^{3} A_{0}(s)$ and $A_{1}(s)$. Then the amplitudes for diagrams in Fig. 1 in the peripheral model with absorptive corrections have the form $A_{0}\left\langle\lambda \mid \lambda^{\prime}\right\rangle$ and $A_{1}\left\langle\lambda \mid \lambda^{\prime} \mu\right\rangle Y_{1}{ }^{\mu}\left(\theta_{\pi}, \phi_{\pi}\right)$, where the matrix elements $\left\langle\lambda \mid \lambda^{\prime}\right\rangle$ and $\left\langle\lambda \mid \lambda^{\prime} \mu\right\rangle$ are a function of s, the momentum transfer t, and the incident-pion momentum k. Thus, the cross section for (1) is

$$
\begin{align*}
\sigma= & \sum_{\lambda, \lambda^{\prime}}\left\{\left|A_{0}(s)\right|^{2}\left|\left\langle\lambda \mid \lambda^{\prime}\right\rangle\right|^{2}\right. \\
& +2 \operatorname{Re}\left[A_{0}(s) A_{1}^{*}(s) \sum_{\mu}\left\langle\lambda \mid \lambda^{\prime}\right\rangle\left\langle\lambda \mid \lambda^{\prime} \mu\right\rangle^{*} Y_{1}^{\mu}\left(\theta_{\pi}, \phi_{\pi}\right)\right] \\
& \left.+\sum_{\mu, \nu}\left\langle\lambda \mid \lambda^{\prime} \mu\right\rangle\left\langle\lambda \mid \lambda^{\prime} \nu\right\rangle^{*} Y_{1^{\mu}}\left(\theta_{\pi}, \phi_{\pi}\right) * Y_{1^{\nu}}\left(\theta_{\pi}, \phi_{\pi}\right)\left|A_{1}(s)\right|^{2}\right\} \\
& \quad \times d t d s d \cos \theta_{\pi} d \phi_{\pi} . \tag{3}
\end{align*}
$$

[^2]We used the method of Ref. 8 to calculate the amplitudes $\left\langle\lambda \mid \lambda^{\prime}\right\rangle$ and $\left\langle\lambda \mid \lambda^{\prime} \mu\right\rangle$. The assumption of total absorption in the relative $l=0$ state of the final two pions and the nucleon was seen to give the best fit to the charged ρ production (2). ${ }^{16}$ It is expected that the process in Fig. 1(a) will not be as sensitive to the details of the absorption because of its simpler helicity structure. Thus, we used the same absorption parameters for the diagrams in Fig. 1 as for reaction (2). ${ }^{8}$
The $l=1, \pi-\pi$ amplitude A_{1} was taken as

$$
\begin{equation*}
A_{1}(s)=\frac{1}{\sqrt{2}}\left[\frac{m_{\rho}^{2}-s}{\left(s-4 m_{\pi}^{2}\right) \gamma_{\rho}}-i\left(\frac{s-4 m_{\pi}^{2}}{s}\right)^{1 / 2}\right]^{-1} \tag{4}
\end{equation*}
$$

with $m_{\rho}=760 \mathrm{MeV}$ and γ_{ρ} corresponding to the width $\Gamma_{\rho}=100 \mathrm{MeV}$. We included a (small) $I=2$ amplitude as well as the (large) $I=0$ amplitude ${ }^{3}$ in A_{0} :

$$
\begin{align*}
& \begin{array}{l}
(4 \pi)^{1 / 2} A_{0}=\frac{1}{\sqrt{3}}\left[\alpha_{0}^{0}(s)-i\left(\frac{s-4 m_{\pi}^{2}}{s}\right)^{1 / 2}\right]^{-1} \\
\\
\quad+\frac{1}{\sqrt{ } 6}\left[\alpha_{0}^{2}(s)-i\left(\frac{s-4 m_{\pi}^{2}}{s}\right)^{1 / 2}\right]^{-1}
\end{array}
\end{align*}
$$

$$
\begin{equation*}
\alpha_{0}^{I}(s)=\left(\frac{s-4 m_{\pi}^{2}}{s}\right)^{1 / 2} \cot \delta_{0} I \tag{6}
\end{equation*}
$$

$\alpha_{0}{ }^{2}(s)$ was taken to be a large negative constant $\alpha_{0}{ }^{2}$ corresponding to $\left|\delta_{0}{ }^{2}\right| \lesssim 15^{\circ} .5,17$ We considered two forms for $\delta_{0}{ }^{0}$:

$$
\begin{equation*}
\alpha_{0}{ }^{0}(s)=\alpha_{0}{ }^{0} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{0}^{0}(s)=\left(m_{0}^{2}-s\right) / \gamma \tag{8}
\end{equation*}
$$

The effects in the present problem of including S wave $\pi-\pi$ production can be observed only in the θ_{π} and ϕ_{π} distributions. If these distributions are averaged in $m_{\pi \pi}$ over the ρ peak, we find three types of solutions which give equally good fits to the data: (i) the resonant solution ϵ^{0} found by Durand and Chiu; (ii) a large

Fig. 1. One-pion exchange diagrams for the reaction (1). λ and λ^{\prime} are the helicity states of the proton and neutron, respectively. Diagram (a) corresponds to the production of an S-wave $\pi-\pi$ pair. Diagram (b) corresponds to the production of the ρ resonance in a helicity state
μ.
${ }^{16}$ We note that total absorption in the final ρN state is not necassary if the ρN elastic scattering amplitude is strongly helicity dependent. See M. Bander and G. Shaw, Bull. Am. Phys. Soc. 11, 23 (1966).
${ }^{17}$ The factor $\left[\left(s-4 m_{\pi}^{2}\right) / s\right]^{1 / 2}$ is essentially a constant in the energy region we are concerned with, so that $\alpha=$ constant is approximately the same as $\delta=$ constant.

Fig. 2. Plots of the forward-backward asymmetry $(F-B) /$ $(F+B)$ as a function of $m_{\pi \pi}$. The experimental data $\left(|t|<10 m_{\pi}^{2}\right)$ are those of Birgelet al. (Ref. 13). The theoretical curves calculated using the peripheral model with absorption correspond to the S-wave parameters: (a) an $I=0$ resonance at 730 MeV with a width of 100 MeV , no $I=2$ amplitude included; (b) $\alpha_{0}{ }^{0}=0.4$ (i.e., $\delta_{0}{ }^{\circ} \approx 66^{\circ}$) and no $I=2$; (c) $\alpha_{0}{ }^{0}=0.4$ and $\alpha_{0}{ }^{2}=-3.0$ (i.e., $\delta_{0}{ }^{2}$ $\approx-17^{\circ}$); (d) $\alpha_{0}{ }^{0}=-0.4$ and no $I=2$.
positive constant $\delta_{0}{ }^{0}$; (iii) a large negative constant $\delta_{0}{ }^{0}$. Our fits to the data of Birge et al. ${ }^{13}$ as a function of $m_{\pi \pi}$ are shown in Figs. 2-4. ${ }^{18}$ Although the S-wave contribution is important in fitting the ϕ_{π} distribution, we note in Fig. 4 that it cannot be used to distinguish

Fig. 3. Plots of the ϕ_{π} distribution for three bins in $m_{\pi \pi}$. The data are those of Ref. 13. The calculated (smooth) curve corresponds to the S-wave parameters (b) described in Fig. 2.

[^3]

Fig. 4. Plots of ϕ_{π} in the bin $650<m_{\pi \pi}<735$ for the solutions (a)-(d) described in Fig. 2.
between the types of solutions. On the other hand, the forward-backward asymmetry

$$
\frac{\sigma\left(\theta_{\pi}<\pi / 2\right)-\sigma\left(\theta_{\pi}>\pi / 2\right)}{\sigma\left(\theta_{\pi}<\pi / 2\right)+\sigma\left(\theta_{\pi}>\pi / 2\right)}=\frac{F-B}{F+B}
$$

as a function of $m_{\pi \pi}$, shown in Fig. 2, seems to rule out the negative phase-shift solution (d). ${ }^{19}$ [Note that as the (negative) $I=2$ phase shift $\delta_{0}{ }^{2}$ is made larger in magnitude, the fit with a negative $\delta_{0}{ }^{0}$ gets worse.]

Thus, a detailed fit to the data for reaction (1) yields two solutions for $\delta_{0}{ }^{0}$ in the energy range $650 \leqslant m_{\pi \pi}$ $\lesssim 850$: the narrow resonance ϵ^{0} found by Durand and Chiu, and a constant positive value of $\sim 60^{\circ}$. We feel that the latter, "simpler," solution is more likely to be correct. This solution seems to fit smoothly with most of determinations of $\delta_{0}{ }^{0}$ at smaller $m_{\pi} \pi .^{20}$

ACKNOWLEDGMENTS

We would like to thank Dr. Z. G. T. Guiragossian for helpful discussions and for making the data of Ref. 13 available to us prior to publication. We would like to thank the Physics Department at Stanford University and the Stanford Linear Accelerator Center, where part of this work was done.

[^4]
[^0]: * Work supported in part by the National Science Foundation. ${ }^{1}$ See, e.g., G. Shaw and D. Wong, Phys. Rev. 129, 1379 (1963); M. Islam and R. Piñon, Phys. Rev. Letters 12, 310 (1964).
 ${ }^{2}$ In this paper, we will be discussing data for incident π laboratory momentum $\sim 4 \mathrm{BeV} / c$.
 ${ }^{3}$ A subscript will be used on the amplitudes and phase shifts to denote the l value, and a superscript to denote the isotopic spin.
 ${ }^{4}$ At these values for $m_{\pi \pi}, d$ waves are neglected (but f^{0} production probably becomes important at somewhat higher $m_{\pi \pi}$).

[^1]: ${ }^{5}$ Saclay-Orsay-Bari-Bologna Collaboration, Nuovo Cimento 25, 365 (1962).
 ${ }^{6}$ K. Gottfried and J. Jackson, Nuovo Cimento 34, 735 (1964).
 ${ }^{7}$ L. Durand and Y. Chiu, Phys. Rev. 137, B1530 (1965).
 ${ }^{8}$ M. Bander and G. Shaw, Phys. Rev. 139, B956 (1965).

[^2]: ${ }^{9}$ Z. Guiragossian, Phys. Rev. Letters 11, 85 (1963).
 ${ }^{10}$ V. Hagopian, W. Selove, J. Alitti, J. Baton, and M. NevenRene, Phys. Rev. 145, 1129 (1966).
 ${ }^{11}$ Aachen-Birminghan-Bonn-Hamburg-London (I.C.)-München Collaboration, Phys. Rev. 138, B897 (1965).
 ${ }^{12}$ L. Durand and Y. Chiu, Phys. Rev. Letters 14, 329, 680(E) (1965).
 ${ }^{13}$ R. Birge, R. Ely, T. Schumann, Z. Guiragossian, and M. Whitehead, in Proceedings of the 12th Annual International Conference on High-Energy Physics, Dubna, 1964 (Atomizdat, Moscow, 1965), p. 153; Z. Guiragossian (private communication).
 ${ }^{14}$ The distribution in θ_{π} is more sensitive to the S-wave $\pi-\pi$ parameters than is the distribution in ϕ_{π}.
 ${ }^{15}$ G. Chew, Phys. Rev. 140, B1427 (1965).

[^3]: ${ }^{18}$ In addition to the results presented, we calculate the ful θ_{π}, ϕ_{π} distributions.

[^4]: ${ }^{19}$ Note that all the theoretical determinations of $(F-B) /$ $(F+B)$ are lower than the data. However, because of the "background," the slope of this quantity is probably better determined experimentally than is the absolute normalization.
 ${ }^{20}$ See, e.g., L. Brown and P. Singer, Phys. Rev. 133, B812 (1964); C. Lovelace, R. Heinz, and A. Donnachie, Phys. Letters 22, 332 (1966) ; Y. Fujii, University of Tokyo (unpublished). For a full list of references, see P. Singer, Finnish Summer School, 1966 (to be published).

