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Community-acquired Staphylococcus aureus 
skin and soft tissue infection risk assessment 
using hotspot analysis and risk maps: the case 
of California emergency departments
Brittany L. Morgan Bustamante1,2*, Laura Fejerman1, Larissa May3 and Beatriz Martínez‑López2 

Abstract 

Background Community‑acquired Staphylococcus aureus (CA‑Sa) skin and soft tissue infections (SSTIs) are historically 
associated with densely populated urban areas experiencing high poverty rates, intravenous drug use, and home‑
lessness. However, the epidemiology of CA‑Sa SSTIs in the United States has been poorly understood since the pla‑
teau of the Community‑acquired Methicillin‑resistant Staphylococcus aureus epidemic in 2010. This study examines 
the spatial variation of CA‑Sa SSTIs in a large, geographically heterogeneous population and identifies neighborhood 
characteristics associated with increased infection risk.

Methods Using a unique neighborhood boundary, California Medical Service Study Areas, a hotspot analysis, 
and estimates of neighborhood infection risk ratios were conducted for all CA‑Sa SSTIs presented in non‑Federal 
California emergency departments between 2016 and 2019. A Bayesian Poisson regression model evaluated the asso‑
ciation between neighborhood‑level infection risk and population structure, neighborhood poverty rates, and being 
a healthcare shortage area.

Results Emergency departments in more rural and mountainous parts of California experienced a higher burden 
of CA‑Sa SSTIs between 2016 and 2019. Neighborhoods with high infection rates were more likely to have a high 
percentage of adults living below the federal poverty level and be a designated healthcare shortage area. Measures 
of population structure were not associated with infection risk in California neighborhoods.

Conclusions Our results highlight a potential change in the epidemiology of CA‑Sa SSTIs in California emergency 
departments. Future studies should investigate the CA‑Sa burden in other geographies to identify whether this shift 
in epidemiology holds across other states and populations. Further, a more thorough evaluation of potential mecha‑
nisms for the clustering of infections seen across California neighborhoods is needed.

Keywords CA‑MRSA, CA‑MSSA, Staphylococcus aureus, Skin and soft tissue Infections, Geographic disparities, Spatial 
analysis, Place‑based determinants, Hotspot analysis, Medical service study areas
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Background
Staphylococcus aureus is an opportunistic commen-
sal bacterium that is the most common cause of skin 
and soft-tissue infections (SSTIs) in the United States 
[1, 2]. S. aureus has been endemic in the US healthcare 
setting for several decades and was once considered an 
isolated issue for hospitals [3]. However, starting in the 
mid-1990s, Methicillin-resistant Staphylococcus aureus 
(MRSA) began increasing in communities across the 
US [4]. This new strain, deemed community-acquired 
or community-associated MRSA (CA-MRSA), spread 
rapidly among patients with and without previous expo-
sure to the healthcare environment [5]. By 2007, most 
major cities in the US had reported CA-MRSA cases [5]. 
CA-MRSA is now more predominant than healthcare-
acquired MRSA [2] and has been an issue in densely 
populated urban areas with higher rates of homeless-
ness, incarceration, intravenous drug use, and household 
crowding [1, 6–8]. CA-MRSA SSTIs are rarely fatal, but 
treatment failure ranges between 15 and 38% [9], result-
ing in complications such as hospitalization, surgery, 
bloodstream infections or bacteremia, and substantial 
patient morbidity [10]. Further, CA-MRSA SSTIs are a 
significant financial burden on healthcare systems [11].

Previous research shows that CA-MRSA infections 
vary geographically [12–15] and by neighborhood soci-
oeconomic (SES) indicators [7, 16]. When comparing 
MRSA rates across global regions, the lowest prevalence 
has historically been in Scandinavia and Canada, and the 
highest prevalence has historically been in the United 
States, Latin America, Hong Kong, and Japan [17]. In 
the US, most studies evaluating the prevalence and epi-
demiology of CA-MRSA have been limited to cities or 
metropolitan areas [1, 4, 18–24]. In Atlanta, Georgia, a 
study on children identified higher rates of CA-MRSA 
in neighborhoods with a higher proportion of Black 
residents, household crowding, and children under four 
years of age [13]. In New York City, urban regions with 
higher CA-MRSA prevalence also had lower SES, more 
overcrowding, and high HIV prevalence [7, 25]. Studies 
conducted on only a micro- (single city) or macro-level 
(across countries) scale makes comparing disease bur-
den between geographies or generalizing the results 
challenging.

For many years, CA-MRSA was a primary concern 
among clinicians and researchers. However, the propor-
tion of community-acquired S. aureus (CA-Sa) SSTIs 
caused by CA-MRSA has decreased over the last dec-
ade in North America, Latin America, Europe, and 
Japan—while rates of community-acquired Methicillin-
susceptible S. aureus (CA-MSSA) have increased [26]. 
CA-MSSA and CA-MRSA SSTI risk factors are simi-
lar, and outcomes differ slightly. CA-MSSA SSTIs have 

higher hospitalization rates [27], but there do not appear 
to be differences in the need for surgical drainage [27], 
treatment failure [27], mortality [27], or abscess size 
[28]. Since CA-MRSA mainly drove the increase in SSTIs 
observed in the US between 1997 and 2007, and the CA-
MRSA epidemic plateaued in 2010, the epidemiology of 
SSTIs has been poorly understood since then [29]. To our 
knowledge, the most recent epidemiological assessment 
of SSTIs in a US outpatient setting is from 2015 [30] and 
2016 for recurrent SSTIs [31], warranting an updated 
understanding of the current burden of CA-Sa SSTIs.

This paper addressed this epidemiological gap by esti-
mating CA-Sa SSTI risk in an underutilized geographic 
analysis unit, California’s Medical Service Study Areas 
(MSSAs). MSSAs are the defined geographic analysis 
unit for California’s Department of Healthcare Access 
and Information (HCAI) and are California’s accepted 
Rational Service Area for medical service [32]. MSSAs 
incorporate total population, socioeconomic, and demo-
graphic data provided by the US Census combined 
with healthcare services and availability to define area 
boundaries that maximize homogeneity in the social and 
structural environment. MSSAs represent where individ-
uals within the area reasonably seek healthcare services, 
accounting for commuting patterns and physical barri-
ers like highways, mountains, and bodies of water [33]. 
MSSAs comprise one or more complete census tracts – 
small, relatively permanent statistical subdivisions of a 
county or statistically equivalent entity [34] – and do not 
cross county lines. They offer spatial resolution at a finer 
scale than the county, and while not as granular as census 
tract, the boundaries of MSSAs are less arbitrary.

This study aimed to characterize the spatial variation in 
CA-Sa SSTI rates across a large, heterogeneous popula-
tion and to estimate the infection risk ratio (IRR) in Cali-
fornia MSSAs. To the best of our knowledge, MSSA is a 
novel neighborhood definition for identifying infection 
clusters, modeling small-area IRRs, spatial variation, and 
incidence of CA-Sa SSTIs in California. Combined, this 
serves as an update to our understanding of the epidemi-
ology of infection and identifies areas of high infection 
burden that can be informative to public health practi-
tioners and policymakers.

Methods
Data used
Patient health data was gathered from nonpublic emer-
gency department (ED) discharge data from HCAI 
between 2016 and 2019 [35]. HCAI collects yearly patient 
demographic data, clinical visit details, and payer and 
facility information from every non-federal hospital 
licensed to provide emergency medical services in Cali-
fornia. This data constitutes a comprehensive record 
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of ED visits to non-federal general acute care hospitals 
across the state. In California, ED use has increased con-
siderably since the expansion of Medicaid in 2014 [36]. 
In 2005, there were approximately 10 million visits to 
the ED. ED visits increased by more than 40% within 
ten years to 14.5 million. When adjusted for population 
growth during the same period, the increase is still size-
able at 31% [36]. The increased usage and reliance on 
EDs in California, combined with the large percentage 
of reported CA-Sa SSTIs being treated in EDs [37], make 
the HCAI data a promising dataset for measuring popu-
lation-level incidence of CA-Sa SSTIs.

The geographic unit for this analysis was California 
MSSA, which we used to define an individual’s neighbor-
hood. However, patient residential location data from 
HCAI is available only at the ZIP code level, adminis-
trative boundaries the US Postal Service developed to 
deliver mail. ZIP codes are not recommended as the geo-
graphic analysis unit for research because they are not 
representative of human behavior, nor do they coincide 
with municipality boundaries, and, when used in data 
analysis, they can mask insights [32]. Using ZIP codes as 
a unit of analysis in public health studies has been criti-
cized [38], and improving the ability to crosswalk ZIP 
codes to more meaningful boundaries has recently been 
a focus for the US Department of Housing and Urban 
Development [39, 40]. We crosswalked—translating val-
ues from one schema to another—ZIP codes to MSSAs 
using the yearly US Postal Service ZIP code to census 
tract crosswalk files from the US Department of Hous-
ing and Urban Development. These files are derived from 
the quarterly vacancy data from the United States Postal 
Service [41].

ZIP code to census tract & MSSA
Crosswalking ZIP codes directly to MSSA requires cre-
ating population-weighted centroids for each ZIP code 
area and overlapping those with each MSSA [32]. How-
ever, population-weighted centroids use single points to 
represent polygons and allocate entire ZIP codes to the 
MSSA that contains the majority of the population. This 
method works well for most ZIP codes in California since 
over 80% are entirely or mostly (> 90% of their area) con-
tained within a single MSSA [32]. However, for the 19% 
of ZIP codes that cross an MSSA boundary, using an allo-
cation method based on the residential population den-
sity of the census tracts falling within a ZIP code allowed 
us to consider the spatial distribution of a population. It 
also allowed us to account for the unequal distribution 
across space if we needed to allocate one ZIP code to 
multiple MSSAs.

 Patients with missing ZIP codes or ZIP codes out-
side California were removed. Patients were randomly 

assigned a census tract within their ZIP code so that the 
proportion of study patients in each census tract within 
a ZIP code equaled the reported proportions by the US 
Department of Housing and Urban Development [41]. 
That is, the probability of being assigned a census tract 
corresponded to the percent of residential addresses in 
each census tract with which the ZIP code overlapped. 
Then, census tracts were combined, and the data was 
aggregated to the appropriate MSSA. Since individu-
als were assigned a census tract that overlapped with 
their documented ZIP code, proportionate to residen-
tial density, and several census tracts make up an MSSA, 
individuals who may have been assigned a census tract 
adjacent to the one in which they live would have still 
been assigned to the appropriate MSSA in the second 
step of the crosswalk. To evaluate how sensitive the geo-
graphic patterns of CA-Sa SSTIs were to how patients 
were allocated, we visually compared choropleth maps 
using a jenks classifier [42] with ZIP code tabulation areas 
(ZCTA) (Fig.  1a), the randomly assigned census tracts 
(Fig. 1b), and the crosswalked MSSAs as the geographic 
unit (Fig. 1c).

Identifying CA‑Sa cases
S. aureus is the predominant cause of subcutaneous 
abscesses and the second most common infection-caus-
ing microbe in cellulitis cases, Streptococcus pyogenes 
being the first [43]. Misdiagnosis of these entities is com-
mon, as are coding errors between the two [44]. Further, 
before implementing the International Classification of 
Diseases, Tenth Revision (ICD-10) codes, abscess diag-
noses were combined with cellulitis as a single diagnostic 
code. For these reasons, CA-Sa SSTI cases were defined 
as those treated in the ED during the study period with a 
principal diagnosis (ICD-10) of impetigo (L01), cutane-
ous abscess, furuncle and carbuncle (L02), cellulitis and 
acute lymphangitis (L03), erysipelas (A46), other local 
infections of skin and subcutaneous tissue (L08.89), and 
other specified disease of hair and hair follicles (L73.8). 
We used these codes as a proxy for CA-Sa SSTI since 
CA-Sa is more likely to cause these types of infections, 
and these codes were most often used in previous studies 
of CA-Sa SSTIs [1, 45, 46].

Encounters indicative of a repeat visit for the same 
infection (occurring within ten days after the first 
encounter) were identified using record linkage num-
ber matching and excluded. Ten days was chosen as the 
cutoff because randomized control trials have used this 
period to define the clinical cure of SSTI following anti-
biotic treatment [47]. Record linkage numbers are derived 
from social security numbers. Individuals without a social 
security number will not have a record linkage num-
ber in the dataset. For the individuals without a record 
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linkage number (n = 90,228; <1% of the total sample), we 
matched repeat visits on patient ZIP code, sex, age at ser-
vice, racial/ethnic group, and payer information. Repeat 
encounters were evaluated across all EDs; an encoun-
ter did not have to occur at the same facility as the first 
encounter to be excluded.

Standardized Infection Ratio (SIR) mapping
The spatial distribution of CA-Sa SSTI rates per 10,000 
residents in each neighborhood was visually evalu-
ated using choropleth maps. To create SIR maps, the 
age-stratified expected number of CA-Sa cases in each 
California neighborhood was calculated, and SIRs were 
developed according to Eq.  1. Expected cases were cal-
culated by using the age-stratified infection rates from 
the entire California population and applying those rates 
to the population age distribution of the neighborhood 
(i.e., multiplying the overall age-stratified incidence rate 
in California with the number of individuals in each age 
stratum living in each neighborhood) using the SpatialEpi 
package in R [48]. The SIRs were mapped in a chorop-
leth map to visualize the observed and expected infection 
counts; SIR = 1 indicates observed cases are the same as 
expected; SIR > 1 indicates observed cases are higher than 
expected; and SIR < 1 indicates observed cases are lower 
than expected.

(1)SIRi =
Yi

Ei

Equation 1: Standardized Infection Ratio equation (SIR)
Yiis the number of observed cases in neighborhood i; Eiis 
the number of expected cases in that same neighborhood.

Hotspot analysis
Due to the polygon nature of the data, queen’s adjacency 
was used to define neighbor connectivity. Queen adja-
cency defines neighbors as any areas sharing a line seg-
ment (border) or a point (a vertex). One neighborhood, 
a small island off the west coast of Los Angeles with no 
neighbors, was removed from the analysis. Neighbor 
weights were calculated using row standardization [48]. 
Apparent clustering identified in the choropleth map 
was explored using a Moran scatterplot, which plots the 
standardized infection rates on the x-axis and the stand-
ardized average infection rate of one’s neighbors (known 
as the spatial lag) on the y-axis [49].

A global measure of spatial autocorrelation (Moran’s 
I) was calculated to quantify an objective measure of the 
degree to which similar infection rates cluster. Monte-
Carlo simulations of Moran’s I statistic with 1,000 runs 
were used to confirm results from the measure of global 
spatial autocorrelation. Three versions of Local Indi-
cators of Spatial Autocorrelation were calculated to 
identify where clusters are located. The Z-scores from 
Getis-Ord Gi, Gi*, and Local Moran’s I were mapped 
and visually compared to gain insight into the location 
of areas with comparatively high or low associations with 
neighboring values (i.e., hot or cold spots). Local spatial 

Fig. 1 Geographic distribution of CA‑Sa SSTI rates presenting in emergency departments in California between 2016‑2019. Panels are as follows: 
a infection rates per 10,000 residents using the originally reported patient ZIP code (proxied by ZIP code tabulation area) as the geographic 
analysis unit (n = 1,769); b infection rates per 10,000 residents using randomly assigned census tracts based on residential density within patient 
ZIP codes as the geographic analysis unit (n=7,984); and c infection rates per 10,000 residents using the crosswalked Medical Service Study Area 
as the geographic analysis unit (n=542). Geographies where the estimated population was less than 20 residents have been suppressed. All 
variables were classified using natural breaks
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autocorrelation analyses were conducted in R with the 
package spdep [49]. The classification of neighborhoods 
identified as significant in the local spatial autocorrela-
tion analysis was based on the Local Moran’s I p-value 
and designated as a high-high cluster, low-low cluster, 
and high-low or low-high spatial outlier. These categories 
identifying the directionality of clusters and outliers were 
mapped and visually inspected.

Spatial regression and risk map
A model-based approach was used to evaluate the pres-
ence of spatial autocorrelation, smooth over extreme 
values, and better estimate IRR in small areas by borrow-
ing information from geographic neighbors. The model-
based approach was also used to evaluate the potential 
associative factors population structure, area-level pov-
erty rates, and healthcare service accessibility. Population 
structure is a logical starting place when evaluating spa-
tial variation in disease outcomes, as it often represents 
background factors associated with differences in health 
between populations [50]. Area-level poverty and health-
care accessibility were evaluated due to documented 
associations with CA-Sa and poorer health outcomes 
more broadly [7, 16, 51, 52]. Population structure was 
characterized by the percentage of working-age (18–64 
years) individuals, the percentage of individuals identi-
fying as a race/ethnicity other than non-Hispanic white, 
and an urban/rural indicator. Area-level poverty was 
characterized as the percentage of adults in the neighbor-
hood living below 100% of the federal poverty level (FPL). 
Healthcare service accessibility was proxied by a binary 
variable indicating whether a neighborhood was a pri-
mary healthcare shortage area (HCSA). These variables 
were informed by the US Census and are included in the 
HCAI publicly available MSSA dataset [53].

Using R-INLA, we built a Besag-York-Mollie model 
using a Poisson distribution to estimate the IRR, θi , in 
neighborhoods i = 1, . . . , n (Eq.  2) [54]. The default log-
gamma prior with parameters (1, 0.00005) was used, and 
the model was scaled, making the generalized variance 
equal to one. Scaling is recommended for Intrinsic Gauss-
ian Markov random field models, which have a scaled 
precision matrix reflecting the neighborhood structure 
of the model. Scaling assigns the same fixed hyperprior to 
the precision parameters of all Intrinsic Gaussian Markov 
random fields in the model, making the precision param-
eter of models with different conditional autoregressive 
priors comparable [55, 56]. The resulting IRRs and lower/
upper limits of the 95% credible intervals (CrI) were 
mapped.

(2)Yi|θi ∼ Poisson(Ei × θi) log (θi) = β0×β1∗Age+β2∗ REi+β3∗Rurali+β4∗ Povertyi+β5∗ HCSAi∗+ui+vi

Equation 2: R‑INLA model for neighborhood Infection risk 
ratio calculation

• Yi : number of observed cases in neighborhood i.
• Ei : number of expected cases in neighborhood i (off-

set).
• θi : infection risk ratio in neighborhood i.
• β0 : intercept
• β1 : coefficient for the percent of individuals working 

age (18–64 years) in neighborhood i.
• β2 : coefficient for the percent of adults identifying 

as a race/ethnicity other than non-Hispanic white in 
neighborhood i.

• β3 : coefficient for a binary indicator of neighbor-
hood i being rural.

• β4 : coefficient for the percent of adults living below 
the federal poverty level in neighborhood i.

• β5 : coefficient for a binary indicator of neighbor-
hood i being an HCSA.

• ui : structured spatial effect to account for the spa-
tial dependence between neighborhoods (i.e., neigh-
borhoods sharing a boundary can influence the risk 
amongst themselves)

• vi : unstructured spatial effect to account for potential 
independence among the neighborhoods (i.e., neigh-
borhoods that share a boundary may not influence 
the risk amongst themselves)

We rescaled the percent variables (working age, race/
ethnicity other than non-Hispanic white, and poverty) 
to represent a 10% change by dividing the original per-
centage by 10. To evaluate the influence of the default 
log-gamma prior, we defined four different priors for the 
standard deviation: a half-normal, a half-Cauchy, a half-
t, and an improper flat prior [57]. We also evaluated the 
Penalized Complexity prior, which penalizes departure 
from the base model [58]. The R code accompanying this 
analysis can be found in the Supplementary material.

Results
A total of 977,968 encounters (2.46% of the total sam-
ple) were removed from the study because the individual 
resided outside California or had a missing ZIP code. 
ICD-10 codes indicative of a principal diagnosis of CA-Sa 
SSTI were identified in 844,692 case-patient visits. The 
majority of these were coded as ‘cellulitis and acute lym-
phangitis’ (63%). Most case patients had public insurance 
(68%), and most self-identified as male (55%). A complete 
demographic overview of case patients compared to the 
total sample is presented in Table 1.
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Infection rates consistently appeared highest in more 
rural, northwest parts of California in maps using the 
patient’s ZCTA (Fig. 1a), their randomly assigned cen-
sus tract (Fig. 1b), and their crosswalked neighborhood 
(MSSA) (Fig.  1c). A map of the SIRs across neighbor-
hoods confirmed this visual observation (Fig. 2a). High 
SIRs were seen in rural, mountainous areas of the state. 
Pockets of high rates were also dispersed around the 
southeast part of the state. Across the neighborhoods, 
working-age adults accounted for 12-78.7% of the total 
population. The highest percentages of working-age 
adults were in neighborhoods in and around major 
California cities (Fig. 2b). The highest concentration of 
individuals identifying as a race/ethnicity other than 
non-Hispanic white was found in California’s Central 

Valley and neighborhoods in the southern part of the 
state. Most residents of northern California neighbor-
hoods identified as non-Hispanic white (Fig. 2c). While 
only 41% of neighborhoods (n = 222) were classified as 
rural or frontier, this equated to most of California’s 
land area and overlapped with high SIR areas (Fig. 2d). 
Several neighborhoods with high SIRs also had a high 
percentage of adults living below the FPL (Fig.  2e). 
Neighborhoods that were HCSAs were concentrated 
in parts of northern, central, and southeastern Califor-
nia (Fig.  2f ). Slightly less than half (n = 227; 41.9%) of 
all neighborhoods in the state were HCSAs. However, 
those areas visually overlap with high SIR areas.

Table 1 Demographics of individuals in California emergency department with principal diagnosis code of CA‑Sa, 2016–2019 
(n = 844,692 cases; n = 38,090,296 total sample)

Cases Total Sample

Variable n % n %

Sex

 Male 465,350 55% 16,323,176 42.9%

 Female 379,303 45% 21,765,363 57.1%

 Missing 39 < 1% 1,757 < 1%

Insurance

 Public 575,449 68% 24,616,861 64.6%

 Private 191,367 23% 10,606,963 27.8%

 Uninsured 77,537 9% 2,809,905 7.4%

 Missing 339 < 1% 56,567 < 1%

Age

 Median 45 years 44 years

 18–34 277,296 33% 12,941,938 34%

 35–64 440,765 52% 17,289,610 45.4%

 65+ 126,631 15% 7,858,748 21.6%

Race/Ethnicity

 NH‑White 390,419 46.2% 15,130,737 39.7%

 NH‑Black 87,431 10.4% 4,426,486 11.6%

 NH‑Asian 32,737 3.9% 2,324,293 6.1%

 NH‑Islander 24,349 2.9% 1,237,952 3.3%

 NH‑AIAN 5,195 < 1% 177,545 < 1%

 Hispanic 286,243 33.9% 13,867,895 36.4%

 Unknown 8,838 1.1% 436,942 1.1%

 NH‑Other 9,480 1.1% 488,446 1.3%

Principal Diagnosis

 Cellulitis and acute lymphangitis 543,162 62.6%

 Erysipelas 1,090 < 1%

 Cutaneous abscess, furuncle and carbuncle 307,219 35.4%

 Impetigo 10,911 1.3%

 Other local infections of skin and subcutaneous tissue 3,717 < 1%

 Other specified disease of hair and hair follicles 2,178 < 1%



Page 7 of 12Morgan Bustamante et al. BMC Public Health          (2024) 24:123  

Hotspot analysis
Several neighborhoods in the northwest part of the 
state had high SIRs. Notably, Lucerne/Nice/Upper Lake 
neighborhood (SIR = 4.56) and Dunsmuir neighborhood 
(SIR = 4.35). Moran’s I for global spatial autocorrelation 
was statistically significant (Moran’s I: 0.497, p < 0.01). 
Tests for local spatial autocorrelation indicated signifi-
cant clustering in the northwest and southeastern parts 
of the state, with a few clusters of low infection rates scat-
tered throughout the rest of California (Fig.  3). There 
were some outliers of neighborhoods with low infection 
rates surrounded by high-rate areas (noted by light blue 
in Fig. 3). However, there were no outlier neighborhoods 
with high infection rates surrounded by low infection 

rate areas. A complete list of clusters and outliers can be 
found in Table A1.

Spatial regression and risk map
 The model-based approach exploring the geographic dis-
tribution for IRR estimates while controlling for popula-
tion structure, the percent of adults living below the FPL, 
and whether the neighborhood was an HCSA supported 
the findings from the hotspot analysis. Areas with higher 
risk appeared in the northern, particularly the northwest-
ern, and some eastern parts of the state. Table A2 lists the 
ten neighborhoods with the highest and lowest IRR for 
CA-Sa SSTIs, and Fig. 4 shows the geographic distribu-
tion of IRRs.

Fig. 2 Distribution of SIRs for CA‑Sa SSTIs and potential associative factors in California neighborhoods, 2016‑2019 (n = 542). Panels are as follows: 
a Age‑Standardized Infection Ratio (SIR) for CA‑Sa SSTI; b Percentage of working age (aged 18‑64) adults; c Percentage of adults (aged 18 and over) 
identifying as a race/ethnicity other than non‑Hispanic white; d Rural areas; e Percentage of adults living below the federal poverty level; f 
Healthcare shortage areas (HCSA). All variables were classified using natural breaks
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The posterior summary statistics from the R-INLA 
model are shown in Table  2. Population structure was 
only borderline significantly associated with CA-Sa SSTI. 
Neighborhoods with a higher percentage of working-age 
adults had slightly lower infection rates (IRR: 0.92; 95% 
CrI: 0.87, 0.97). Likewise, lower rates were associated 
with neighborhoods having a higher percentage of indi-
viduals identifying as a race/ethnicity other than non-
Hispanic white (IRR: 0.95; 95% CrI: 0.93, 0.97). Whether 
a neighborhood was rural was not significantly associated 
with infection rates. A significant and positive association 
was observed between the percentage of adults living in 
poverty and neighborhood-level IRR of CA-Sa SSTI. The 
estimated IRR for a 10% increase in the percentage of 
adults living in poverty, holding the other variables in the 
model constant, was 1.31 (95% CrI: 1.24, 1.39). Neighbor-
hoods that were HCSAs had an infection rate 1.15 times 
greater (95% CrI: 1.08, 1.24) than non-HCSA neighbor-
hoods. These results and their summary statistics were 
unchanged in the sensitivity analyses.

Discussion
In this study, we investigated the presence of geographic 
disparities in CA-Sa SSTI rates in California neighbor-
hoods from a statewide, longitudinal database of ED 
electronic health records. To the best of our knowledge, 
this is one of the first studies to generate a risk map for 
CA-Sa SSTIs across California EDs. Our results suggest 
significant spatial variation in infection rates across Cali-
fornia neighborhoods. Clusters of high IRRs were identi-
fied among neighborhoods in more rural, northern parts 
of California, a major departure from previous studies 
documenting high CA-Sa infection rates mainly in urban 
areas [5–7, 12, 15, 25, 45, 59–61].

We found weak associations between population struc-
ture and infection rates. While other geographies or 
populations may be more influenced by population struc-
ture, our results indicate that other factors likely explain 

Fig. 4 IRRs of CA‑Sa SSTI in California neighborhoods 
between 2016‑2019, after controlling for covariates (n = 541). 
Covariates include percentage of working age (aged 18‑64) adults, 
percentage of adults (aged 18 and over) identifying as a race/
ethnicity other than non‑Hispanic white, rurality, percentage of adults 
living below the federal poverty level, and healthcare shortage areas

Table 2 Results from Bayesian spatial regression model of CA‑Sa 
SSTI risk in California neighborhoods (n = 541)

 Posterior estimates (infection risk ratio (IRR), 95% credible interval (CrI)) of the 
covariate coefficients; working age is 18–64 years; NH is non-Hispanic

IRR 95% CrI

Variable

 Percent of working age adults 0.92 (0.87, 0.97)

 Percent identifying as race/ethnicity 
other than NH‑white

0.95 (0.93, 0.97)

 Rural MSSA 0.92 (0.85, 1.01)

 Percent Adult Poverty 1.31 (1.24, 1.39)

 Healthcare shortage area 1.15 (1.08, 1.24)

Fig. 3 Hotspots of CA‑Sa SSTI rates between 2016–2019 in California 
neighborhoods (n = 541)
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community-level rates of CA-Sa SSTIs in California. At the 
neighborhood level, studies have documented persistent 
links between area-level poverty rates and a higher bur-
den of CA-Sa infections [61–63]. HCSAs are defined by 
reduced primary health care access, an important compo-
nent of infectious disease dynamics [52]. Disease patterns 
identified in choropleth maps overlapped with the geo-
graphic distribution of the percentage of adult poverty and 
HCSAs, indicating possible associations. Results from our 
Bayesian regression with R-INLA support positive associa-
tions between area-level poverty rates, HCSAs, and CA-Sa 
SSTI rates. While exploring potential mechanisms explain-
ing these associations was beyond the scope of this study, 
a previous analysis of this data identified environmental 
degradation as a possible mechanism explaining the asso-
ciation between area-level poverty and CA-Sa infection 
[64]. Further, disparities in healthcare access may result in 
observed geographic disparities through individual-level 
factors such as health insurance coverage and type or area-
level factors such as spatial accessibility [65].

Strengths of this study include using MSSAs to define 
neighborhoods maximizes homogeneity in the social 
and structural environment. Census tracts composing 
MSSAs have similar racial/ethnic compositions, poverty 
rates, age distribution, insurance status, and population 
densities. As California’s designated rational service areas 
for healthcare services, MSSAs are more amendable and 
translatable boundaries for health and policy interven-
tions. Using HCAI ED data provided a comprehensive 
view of all CA-Sa SSTIs in California EDs. Finally, to the 
best of our knowledge, this study provides a more recent, 
comprehensive, and updated overview of CA-Sa SSTI 
rates than in the current published literature.

This study has several limitations, including associa-
tive modeling of areal data, which is subject to ecological 
bias and modifiable areal unit problems. While ecologi-
cal biases do not affect cluster detection or prediction 
of CA-Sa SSTI incidence rates, findings from our asso-
ciative model are subject to ecological fallacy [66]. Fur-
ther, we do not have laboratory confirmation of CA-Sa in 
the cases identified. Instead, we are using ICD codes for 
SSTIs most likely caused by CA-Sa, which are limited in 
the amount and quality of information collected at admis-
sion and also subject to potential coder errors [67]. Our 
results may reflect the geographic distribution of SSTIs 
more broadly than CA-Sa SSTIs. Future studies should 
conduct similar analyses among culture-confirmed cases. 
However, in the United States, only about 38% of SSTI 
patients are cultured [68], so a thorough understanding 
of the epidemiology for CA-Sa SSTIs will require synthe-
sizing information from both study designs.

Our hotspot analyses identified areas of high infec-
tion clustering in the more rural, northern parts of the 

state and a few southeastern neighborhoods. However, 
in our model-based IRR estimations, the southeastern 
areas had only a slightly higher IRR than the surround-
ing neighborhoods. The clustering of these areas may 
have been influenced by the size and location of the 
polygons, low population densities, having few geo-
graphic neighbors, and possibly by edge effects as they 
reside along the California border [69]. Additionally, 
using MSSAs as our neighborhood definition may limit 
direct comparability to other CA-Sa study geographies. 
However, MSSAs are comprised of census tracts and 
do not cross county lines and can be compared quali-
tatively to other CA-Sa studies using census tracts or 
counties as the geographic analysis unit. Finally, our 
research only evaluates individuals seeking healthcare 
in the ED, which may only capture severe or advanced 
cases or be more reflective of populations who utilize 
ED care frequently, such as those with low income, cer-
tain racial/ethnic minorities, and individuals without 
access to primary care [36]. Future research should use 
datasets from other outpatient settings to examine how 
CA-Sa infections are distributed across California and 
compare findings.

Conclusion
Our study is consistent with previous findings showing 
geographic differences in CA-Sa SSTI rates [12, 13, 17]. 
It builds on this knowledge by evaluating the geographic 
distribution of infections in a larger, more heterogene-
ous geographic area and using a unique neighborhood 
definition, California MSSA. Evidence suggests that geo-
graphic areas at increased risk for CA-Sa SSTIs may have 
shifted from cities and urban areas at the height of the 
CA-MRSA pandemic to more rural locations. Specifi-
cally, several neighborhoods in northern California had a 
disproportionately high IRR, which was associated with 
but only partially explained by area-level poverty rates or 
healthcare access.

CA-Sa is rarely life-threatening. However, the increas-
ing resistance of S. aureus bacteria to antibiotics is part 
of a larger issue that greatly concerns healthcare and 
public health professionals [70]. Additionally, CA-Sa 
SSTIs can become chronic infections for populations 
with limited resources, significantly impacting qual-
ity of life [9–11]. Our unique neighborhood definition 
allowed us to quantify disease incidence in these at-risk 
populations as California HCAI uses MSSAs to identify 
areas of unmet healthcare needs and inform the alloca-
tion of public health funds [32]. The parts of California 
with high infection rates in this study also have a high 
percentage of the population living below the FPL, an 
association well documented in the literature and indic-
ative of a potential poverty trap [62, 71, 72].
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While our analysis was not meant to explore causative 
factors, the associations identified between healthcare 
shortage areas, high poverty rates, and infection sug-
gest these neighborhoods could benefit from increased 
resources. Prioritizing issues like improved healthcare 
access, and more thorough investigations into the influ-
ence of modifiable determinants that could be driving 
these geographic disparities – like sanitation and hygiene 
infrastructure, risks from injection drug use, and envi-
ronmental degradation – are needed to identify and 
mitigate potential inequities in infection burden [63, 64]. 
Future studies should also investigate the CA-Sa burden 
in other geographically varied populations to identify 
whether this shift in epidemiology holds across other 
states and populations.

Abbreviations
CA‑MRSA  Community‑acquired Methicillin‑resistant Staphylococcus aureus
CA‑Sa  Community‑acquired Staphylococcus aureus
CA‑MSSA  Community‑acquired Methicillin‑susceptible Staphylococcus aureus
SSTI  Skin and soft‑tissue infection
SES  Socioeconomic status
MSSA  Medical service study area
HCAI  California’s Department of Healthcare Access and Information
ED  Emergency department
ICD  International Classification of Disease
SIR  Standardized Infection Ratio
IRR  Infection risk ratio
FPL  Federal poverty level
HCSA  Healthcare shortage area
CrI  Credible interval

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12889‑ 023‑ 17336‑6.

Additional file 1: Table A1. List of California Medical Service Study Areas 
(MSSA) that have high‑high rates of CA‑MRSA clustering (HH), low‑low 
rates of CA‑MRSA clustering (LL), and low‑high rates of CA‑MRSA cluster‑
ing (LH), 2016‑2019. Table A2. Ten California MSSAs with the highest and 
lowest risk ratio for CA‑MRSA between 2016‑2019. A3. Analysis code ‑ 
R‑Markdown html file.

Acknowledgements
None.

Authors’ contributions
BLMB led conceptualization of the project, analysis and interpretation the 
data, and was the lead contributor in writing the manuscript. LF, LM, and BM‑L 
were BLMB’s dissertation committee members and provided guidance during 
all stages of project. All authors read, provided feedback, and approved the 
final manuscript.

Funding
This work was part of BLMBs dissertation, which was funded by the University 
of California, Davis DataLab’s Translational Health Science Fellowship grant and 
the University of California, Davis Graduate Studies Floyd and Mary Schwall 
Fellowship for Medical Research.

Availability of data and materials
The data supporting this study’s findings are available from California’s Depart‑
ment of Healthcare Access and Information. However, restrictions apply to the 
availability of these data, which were used under license for the current study 

due to their containing protected health information, and so are not publicly 
available. Data are, however, available from the authors upon reasonable 
request and with permission from the California Department of Healthcare 
Access and Information. The authors have made the accompanying R code 
available.

Declarations

Ethics approval and consent to participate
This study was approved by the California Committee for the Protection of 
Human Subjects and considered exempt by the University of California, Davis 
Institutional Review Board. The California Committee for the Protection of 
Human Subjects waived the requirement for investigators to obtain informed 
consent for the subjects in this study.

Competing interests
The authors declare no competing interests.

Author details
1 Public Health Sciences, School of Medicine, University of California, Davis, 
Davis, CA, USA. 2 Center for Animal Disease Modeling and Surveillance, Depart‑
ment of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, 
University of California, Davis, Davis, CA, USA. 3 Emergency Medicine, School 
of Medicine, University of California, Davis, Davis, CA, USA. 

Received: 2 August 2023   Accepted: 25 November 2023

References
 1. Ray GT, Suaya JA, Baxter R. Incidence, microbiology, and patient charac‑

teristics of skin and soft‑tissue Infections in a U.S. population: a retrospec‑
tive population‑based study. BMC Infect Dis. 2013;13(1): 252.

 2. Calfee DP. Trends in Community Versus Health Care‑Acquired Methi‑
cillin‑Resistant Staphylococcus aureus Infections. Curr Infect Dis Rep. 
2017;19(12):48.

 3. Brumfitt W, Hamilton‑Miller J. Methicillin‑Resistant Staphylococcus 
aureus. N Engl J Med. 1989;320(18):1188–96.

 4. David MZ, Glikman D, Crawford SE, Peng J, King KJ, Hostetler MA, et al. 
What is community‑associated methicillin‑resistant Staphylococcus. 
Aureus? J Infect Dis. 2008;197(9):1235–43.

 5. David MZ, Daum RS. Community‑associated methicillin‑resistant 
Staphylococcus aureus: epidemiology and clinical consequences of an 
emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–87.

 6. Landers TF, Harris RE, Wittum TE, Stevenson KB. Colonization with Staphy‑
lococcus aureus and Methicillin‑Resistant S. aureus among a Sample of 
Homeless Individuals, Ohio. Infect Control Hosp Epidemiol off J Soc Hosp 
Epidemiol Am. 2009;30(8):801–3.

 7. Bratu S, Landman D, Gupta J, Trehan M, Panwar M, Quale J. A population‑
based study examining the emergence of community‑associated 
methicillin‑resistant Staphylococcus aureus USA300 in New York City. 
Ann Clin Microbiol Antimicrob. 2006;5: 29.

 8. David MZ, Daum RS, Bayer AS, Chambers HF, Fowler VG, Miller LG, et al. 
Staphylococcus aureus bacteremia at 5 US academic medical centers, 
2008–2011: significant geographic variation in community‑onset Infec‑
tions. Clin Infect Dis off Publ Infect Dis Soc Am. 2014;59(6):798–807.

 9. Poulakou G, Lagou S, Tsiodras S. What’s new in the epidemiology of skin 
and soft tissue Infections in 2018? Curr Opin Infect Dis. 2019;32(2):77–86.

 10. Miller LG, Eisenberg DF, Liu H, Chang CL, Wang Y, Luthra R, et al. Incidence 
of skin and soft tissue Infections in ambulatory and inpatient settings, 
2005–2010. BMC Infect Dis. 2015;15:362.

 11. Lee BY, Singh A, David MZ, Bartsch SM, Slayton RB, Huang SS, et al. The 
economic burden of community‑associated methicillin‑resistant Staphy‑
lococcus aureus (CA‑MRSA). Clin Microbiol Infect. 2013;19(6):528–36.

 12. Ali F, Immergluck LC, Leong T, Waller L, Malhotra K, Jerris RC, et al. A 
Spatial Analysis of Health Disparities Associated with Antibiotic Resistant 
Infections in children living in Atlanta (2002–2010). eGEMs. 2019;7(1):50.

 13. Immergluck LC, Leong T, Malhotra K, Parker TC, Ali F, Jerris RC, et al. 
Geographic surveillance of community associated MRSA Infections 

https://doi.org/10.1186/s12889-023-17336-6
https://doi.org/10.1186/s12889-023-17336-6


Page 11 of 12Morgan Bustamante et al. BMC Public Health          (2024) 24:123  

in children using electronic health record data. BMC Infect Dis. 
2019;19(1):170.

 14. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como‑Sabetti K, Jernigan 
JA, et al. Methicillin‑resistant Staphylococcus aureus Disease in three 
communities. N Engl J Med. 2005;352(14):1436–44.

 15. Rossini CJ, Moriarty KP, Tashjian DB, Garb JL, Wait RB. Geographic distribu‑
tion of community‑acquired methicillin‑resistant Staphylococcus aureus 
soft tissue Infections. J Pediatr Surg. 2011;46(6):1089–92.

 16. McMullen KM, Warren DK, Woeltje KF. The changing susceptibilities of 
methicillin‑resistant Staphylococcus aureus at a midwestern hospital: 
the emergence of community‑associated MRSA. Am J Infect Control. 
2009;37(6):454–7.

 17. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, et al. 
Survey of Infections due to Staphylococcus species: frequency of 
occurrence and antimicrobial susceptibility of isolates collected in the 
United States, Canada, Latin America, Europe, and the Western Pacific 
region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. 
Clin Infect Dis off Publ Infect Dis Soc Am. 2001;32(Suppl 2):114–32.

 18. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, 
Carey RB, et al. Methicillin‑resistant S. aureus Infections among patients 
in the emergency department. N Engl J Med. 2006;355(7):666–74.

 19. Jacobus CH, Lindsell CJ, Leach SD, Fermann GJ, Kressel AB, Rue LE. 
Prevalence and demographics of methicillin resistant Staphylococcus 
aureus in culturable skin and soft tissue Infections in an urban emer‑
gency department. BMC Emerg Med. 2007;7: 19.

 20. Talbot TR, Nania JJ, Wright PW, Jones I, Aronsky D. Evaluation of the 
microbiology of soft‑tissue abscesses in the era of community‑asso‑
ciated strains of methicillin‑resistant Staphylococcus aureus: an argu‑
ment for empirical contact precautions. Infect Control Hosp Epidemiol. 
2007;28(6):730–2.

 21. Magilner D, Byerly MM, Cline DM. The prevalence of community‑
acquired methicillin‑resistant Staphylococcus aureus (CA‑MRSA) in 
skin abscesses presenting to the pediatric emergency department. N C 
Med J. 2008;69(5):351–4.

 22. Kairam N, Silverman ME, Salo DF, Baorto E, Lee B, Amato CS. Cuta‑
neous methicillin‑resistant Staphylococcus aureus in a suburban 
community hospital pediatric emergency department. J Emerg Med. 
2011;41(5):460–5.

 23. O’Malley M, Fowler J, Ilyas AM. Community‑acquired methicillin‑
resistant Staphylococcus aureus Infections of the hand: prevalence and 
timeliness of treatment. J Hand Surg. 2009;34(3):504–8.

 24. Dufresne GW, Wells RD, Pfaff JA. The retrospective prevalence of 
community‑acquired methicillin‑resistant Staphylococcus aureus in 
soft tissue abscesses at two military level I trauma centers. Mil Med. 
2008;173(10):945–8.

 25. Farr AM, Marx MA, Weiss D, Nash D. Association of neighborhood‑level 
factors with hospitalization for community‑associated methicillin‑
resistant Staphylococcus aureus, New York City, 2006: a multilevel 
observational study. BMC Infect Dis. 2013;13: 84.

 26. Linz MS, Mattappallil A, Finkel D, Parker D. Clinical Impact of Staphy‑
lococcus aureus Skin and Soft Tissue Infections. Antibiotics. 2023 Mar 
;12(3). Available from: https:// www. ncbi. nlm. nih. gov/ pmc/ artic les/ 
PMC10 044708/. Cited 2023 Nov 8.

 27. López Furst MJ, de Vedia L, Fernández S, Gardella N, Ganaha MC, Prieto 
S, et al. Prospective Multicenter Study of Community‑Associated skin 
and skin structure Infections due to Methicillin‑Resistant Staphylococ‑
cus aureus in Buenos Aires, Argentina. PLoS ONE. 2013;8(11): e78303.

 28. Macmorran E, Harch S, Athan E, Lane S, Tong S, Crawford L, et al. The 
rise of methicillin resistant Staphylococcus aureus: now the dominant 
cause of skin and soft tissue Infection in Central Australia. Epidemiol 
Infect. 2017;145(13):2817.

 29. Dukic VM, Lauderdale DS, Wilder J, Daum RS, David MZ. Epidemics of 
Community‑Associated Methicillin‑Resistant Staphylococcus aureus in 
the United States: a Meta‑analysis. PLoS ONE. 2013;8(1): e52722.

 30. Fritz SA, Camins BC, Eisenstein KA, Fritz JM, Epplin EK, Burnham CA, 
et al. Effectiveness of measures to eradicate Staphylococcus aureus 
Carriage in patients with Community‑Associated skin and soft tissue 
Infections: a Randomized Trial. Infect Control Hosp Epidemiol off J Soc 
Hosp Epidemiol Am. 2011;32(9):872–80.

 31. Vella V, Galgani I, Polito L, Arora AK, Creech CB, David MZ, et al. 
Staphylococcus aureus skin and soft tissue Infection recurrence rates 

in outpatients: a retrospective database study at 3 US Medical Centers. 
Clin Infect Dis off Publ Infect Dis Soc Am. 2020;73(5):e1045–1053.

 32. Byrne M, Christman S. From ZIP Codes to a Framework for Health Care Data. 
In San Diego, CA; 2006 . Available from: https:// proce edings. esri. com/ libra 
ry/ userc onf/ proc06/ papers/ papers/ pap_ 1648. pdf. Cited 2021 Oct 23.

 33. California Health & Human Services Agency. CDPH Data. 2019 . Medical 
Service Study Areas 2010. Available from: https:// data‑ cdphd ata. opend 
ata. arcgis. com/ maps/ CDPHD ATA:: medic al‑ servi ce‑ study‑ areas‑ 2010/ 
about. Cited 2022 Oct 4.

 34. United States Census Bureau. Census.gov. 2022 . Glossary. Available from: 
https:// www. census. gov/ progr ams‑ surve ys/ geogr aphy/ about/ gloss ary. 
html. Cited 2023 Sep 22.

 35. California Department of Healthcare Access and Information. HCAI. 2023. 
Emergency Department Encounters. Available from: https:// hcai. ca. gov/ 
data‑ and‑ repor ts/ healt hcare‑ utili zation/ emerg ency‑ depar tment/. Cited 
2022 Oct 10.

 36. McConville S, Danielson C, Hsia R. Emergency Department Use in Cali‑
fornia: Demographics, Trends, and the Impact of the ACA. Public Policy 
Institute of California; 2019. Available from: https:// www. ppic. org/ publi 
cation/ emerg ency‑ depar tment‑ use‑ in‑ calif ornia‑ demog raphi cs‑ trends‑ 
and‑ the‑ impact‑ ofthe‑ aca/. Cited 2023 Oct 4.

 37. Ramakrishnan K, Salinas RC, Higuita NIA. Skin and soft tissue Infections. 
Am Fam Physician. 2015;92(6):474–83.

 38. Sadler RC, Misalignment Between ZIP. Codes and Municipal boundaries: a 
problem for Public Health. Cityscape Wash DC. 2019;21(3):335–40.

 39. Din A, Wilson R, Crosswalking ZIP, Codes to Census Geographies. Geo‑
processing the U.S. Department of Housing & Urban Development’s ZIP 
code crosswalk files. Cityscape J Policy Dev Res. 2020;22(1):293–314.

 40. Wilson R, Din A. Understanding and enhancing the U.S. Department of 
Housing and Urban Development’s ZIP code crosswalk files. Cityscape J 
Policy Dev Res. 2018;20(2):277–94.

 41. Office of Policy Development and Research. HUD User. 2022. HUD USPS 
ZIP Code Crosswalk Files. Available from: https:// www. hudus er. gov/ 
portal/ datas ets/ usps_ cross walk. html. Cited 2022 Oct 4.

 42. Hahn N. tmap. In: Making Maps with R. 2020 . Available from: https:// 
bookd own. org/ nicoh ahn/ making_ maps_ with_ r5/ docs/ tmap. html. Cited 
2023 Jul 26.

 43. Long B, Gottlieb M. Diagnosis and management of Cellulitis and Abscess 
in the Emergency Department setting: an evidence‑based review. J 
Emerg Med. 2022;62(1):16–27.

 44. Spelman D, Baddour L. Cellulitis and skin abscess: Epidemiology, 
microbiology, clinical manifestations, and diagnosis. UpToDate; 2022 Oct. 
Available from: https:// www. uptod ate. com/ conte nts/ cellu litis‑ and‑ skin‑ 
absce ss‑ epide miolo gy‑ micro biolo gy‑ clini cal‑ manif estat ions‑ and‑ diagn 
osis? topic Ref= 4025& source= see_ link

 45. May L, Klein EY, Martinez EM, Mojica N, Miller LG. Incidence and factors 
associated with emergency department visits for recurrent skin and soft 
tissue Infections in patients in California, 2005–2011. Epidemiol Infect. 
2017;145(4):746–54.

 46. Storandt MH, Walden CD, Sahmoun AE, Beal JR. Trends and risk factors 
in the antibiotic management of skin and soft tissue Infections in the 
United States. J Dermatol Treat. 2022;33(3):1576–80.

 47. Daum RS, Miller LG, Immergluck L, Fritz S, Creech CB, Young D, et al. A 
placebo‑controlled trial of antibiotics for smaller skin abscesses. N Engl J 
Med. 2017;376(26):2545–55.

 48. Kim AY, Wakefield J. R Data and Methods for Spatial Epidemiology: the 
SpatialEpi Package. Seattle, WA; 2010. Available from: https:// facul ty. washi 
ngton. edu/ jonno/ SISMI Dmate rial/ Spati alEpi Vigne tte. pdf.

 49. Bivand R. Package “spdep”. 2023. (Spatial Dependence: Weighting 
Schemes, Statistics). Available from: https:// cran.r‑ proje ct. org/ web/ packa 
ges/ spdep/ spdep. pdf.

 50. Persson G. Chapter 2: demography and public health. Scand J Public 
Health. 2006;34(67suppl):19–25.

 51. Young DM, Harris HW, Charlebois ED, Chambers H, Campbell A, Perdreau‑
Remington F, et al. An epidemic of methicillin‑resistant Staphylococcus 
aureus soft tissue Infections among medically underserved patients. Arch 
Surg Chic Ill 1960. 2004;139(9):947–51 (discussion 951–953).

 52. Hierink F, Okiro EA, Flahault A, Ray N. The winding road to health: a 
systematic scoping review on the effect of geographical accessibility to 
health care on infectious Diseases in low‑ and middle‑income countries. 
PLoS ONE. 2021;16(1): e0244921.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044708/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044708/
https://proceedings.esri.com/library/userconf/proc06/papers/papers/pap_1648.pdf
https://proceedings.esri.com/library/userconf/proc06/papers/papers/pap_1648.pdf
https://data-cdphdata.opendata.arcgis.com/maps/CDPHDATA::medical-service-study-areas-2010/about
https://data-cdphdata.opendata.arcgis.com/maps/CDPHDATA::medical-service-study-areas-2010/about
https://data-cdphdata.opendata.arcgis.com/maps/CDPHDATA::medical-service-study-areas-2010/about
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://hcai.ca.gov/data-and-reports/healthcare-utilization/emergency-department/
https://hcai.ca.gov/data-and-reports/healthcare-utilization/emergency-department/
https://www.ppic.org/publication/emergency-department-use-in-california-demographics-trends-and-the-impact-ofthe-aca/
https://www.ppic.org/publication/emergency-department-use-in-california-demographics-trends-and-the-impact-ofthe-aca/
https://www.ppic.org/publication/emergency-department-use-in-california-demographics-trends-and-the-impact-ofthe-aca/
https://www.huduser.gov/portal/datasets/usps_crosswalk.html
https://www.huduser.gov/portal/datasets/usps_crosswalk.html
https://bookdown.org/nicohahn/making_maps_with_r5/docs/tmap.html
https://bookdown.org/nicohahn/making_maps_with_r5/docs/tmap.html
https://www.uptodate.com/contents/cellulitis-and-skin-abscess-epidemiology-microbiology-clinical-manifestations-and-diagnosis?topicRef=4025&source=see_link
https://www.uptodate.com/contents/cellulitis-and-skin-abscess-epidemiology-microbiology-clinical-manifestations-and-diagnosis?topicRef=4025&source=see_link
https://www.uptodate.com/contents/cellulitis-and-skin-abscess-epidemiology-microbiology-clinical-manifestations-and-diagnosis?topicRef=4025&source=see_link
https://faculty.washington.edu/jonno/SISMIDmaterial/SpatialEpiVignette.pdf
https://faculty.washington.edu/jonno/SISMIDmaterial/SpatialEpiVignette.pdf
https://cran.r-project.org/web/packages/spdep/spdep.pdf
https://cran.r-project.org/web/packages/spdep/spdep.pdf


Page 12 of 12Morgan Bustamante et al. BMC Public Health          (2024) 24:123 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 53. California Department of Healthcare Access and Information. MSSA Detail. 
California Health and Human Services Open Data Portal; 2023 . Available 
from: https:// data. chhs. ca. gov/ datas et/ mssa‑ detail. Cited 2023 Apr 27.

 54. Rue H, R‑INLA. 2023 . Available from: https:// github. com/ hrue/r‑ inla. 
[Cited 2023 Feb 9].

 55. Sørbye SH, Rue H. Scaling intrinsic Gaussian Markov random field priors 
in spatial modelling. Spat Stat. 2014;8:39–51.

 56. Freni‑Sterrantino A, Ventrucci M, Rue H. A note on intrinsic conditional 
autoregressive models for disconnected graphs. Spat Spatio‑Temporal 
Epidemiol. 2018;26:25–34.

 57. Gómez‑Rubio V. Chapter 5 Priors in R‑INLA | Bayesian inference with INLA. 
Available from: http:// becar iopre cario. bitbu cket. io/ inla‑ gitbo ok/ index. 
html. [Cited 2022 Sep 30].

 58. Simpson D, Rue H, Riebler A, Martins TG, Sørbye SH. Penalising Model 
Component Complexity: a principled, practical Approach to constructing 
priors. Stat Sci. 2017;32(1):1–28.

 59. Hemmige V, Arias CA, Pasalar S, Giordano TP. Skin and soft tissue Infection 
in people living with Human Immunodeficiency Virus in a large, Urban, 
Public Healthcare System in Houston, Texas, 2009–2014. Clin Infect Dis off 
Publ Infect Dis Soc Am. 2020;70(9):1985–92.

 60. Hota B, Ellenbogen C, Hayden MK, Aroutcheva A, Rice TW, Weinstein 
RA. Community‑associated methicillin‑resistant Staphylococcus 
aureus skin and soft tissue Infections at a public hospital: do public 
housing and incarceration amplify transmission? Arch Intern Med. 
2007;167(10):1026–33.

 61. See I, Wesson P, Gualandi N, Dumyati G, Harrison LH, Lesher L, et al. 
Socioeconomic factors explain racial disparities in Invasive Community‑
Associated Methicillin‑Resistant Staphylococcus aureus Disease Rates. 
Clin Infect Dis. 2017;64(5):597–604.

 62. Alividza V, Mariano V, Ahmad R, Charani E, Rawson TM, Holmes AH, et al. 
Investigating the impact of poverty on colonization and Infection with 
drug‑resistant organisms in humans: a systematic review. Infect Dis 
Poverty. 2018;7:76.

 63. King T, Schindler R, Chavda S, Conly J. Dimensions of poverty as risk 
factors for antimicrobial resistant organisms in Canada: a structured nar‑
rative review. Antimicrob Resist Infect Control. 2022;11(1):18.

 64. Morgan Bustamante BL, May L, Fejerman L, Martínez‑López B. A bayes‑
ian multilevel analysis exploring population‑level effects mediating 
the relationship between area‑level poverty and community‑acquired 
Methicillin‑resistant Staphylococcus aureus (CA‑MRSA) Infection across 
California communities. Health Place. 2023;83: 103094.

 65. Riley WJ. Health disparities: gaps in Access, Quality and Affordability of 
Medical Care. Trans Am Clin Climatol Assoc. 2012;123:167–74.

 66. Spatial Aggregation and the Ecological Fallacy. Chapman HallCRC Handb 
Mod Stat. Methods. 2010;2010:541–58.

 67. O’Malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM. Measuring 
diagnoses: ICD Code Accuracy. Health Serv Res. 2005;40(5 Pt 2):1620–39.

 68. Linder KE, Nicolau DP, Nailor MD. Epidemiology, treatment, and econom‑
ics of patients presenting to the emergency department for skin and soft 
tissue Infections. Hosp Pract. 2017;45(1):9–15.

 69. Yamada I. Edge Effects. In: Kitchin R, Thrift N, editors. International Ency‑
clopedia of Human Geography. Oxford: Elsevier; 2009 . p. 381–8. Available 
from: https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ B9780 08044 
91040 04235. [Cited 2022 Dec 20].

 70. Littmann J, Viens AM, Silva DS. The Super‑Wicked Problem of Antimicrobial 
Resistance. In: Jamrozik E, Selgelid M, editors. Ethics and Drug Resistance: 
Collective Responsibility for Global Public Health [Internet]. Cham: Springer 
International Publishing; 2020. p. 421–43. (Public Health Ethics Analysis). 
https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 27874‑8_ 26. Cited 2023 Apr 17.

 71. Ngonghala CN, Pluciński MM, Murray MB, Farmer PE, Barrett CB, Keenan 
DC, et al. Poverty, Disease, and the Ecology of Complex systems. PLOS 
Biol. 2014;12(4): e1001827.

 72. Pluciński MM, Ngonghala CN, Getz WM, Bonds MH. Clusters of poverty 
and Disease emerge from feedbacks on an epidemiological network. J R 
Soc Interface. 2013;10(80):20120656.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://data.chhs.ca.gov/dataset/mssa-detail
https://github.com/hrue/r-inla
http://becarioprecario.bitbucket.io/inla-gitbook/index.html
http://becarioprecario.bitbucket.io/inla-gitbook/index.html
https://www.sciencedirect.com/science/article/pii/B9780080449104004235
https://www.sciencedirect.com/science/article/pii/B9780080449104004235
https://doi.org/10.1007/978-3-030-27874-8_26

	Community-acquired Staphylococcus aureus skin and soft tissue infection risk assessment using hotspot analysis and risk maps: the case of California emergency departments
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Data used
	ZIP code to census tract & MSSA
	Identifying CA-Sa cases
	Standardized Infection Ratio (SIR) mapping
	Equation 1: Standardized Infection Ratio equation (SIR)

	Hotspot analysis
	Spatial regression and risk map
	Equation 2: R-INLA model for neighborhood Infection risk ratio calculation


	Results
	Hotspot analysis
	Spatial regression and risk map

	Discussion
	Conclusion
	Anchor 22
	Acknowledgements
	References




