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Contract, Renegotiation, and Hold Up: Results on

the Technology of Trade and Investment

Kristy Buzard and Joel Watson∗

June 19, 2010

Abstract

This paper examines a class of contractual relationships with specific investment, a

non-durable trading opportunity, and renegotiation. Trade actions are modeled as indi-

vidual and trade-action-based option contracts (“non-forcing contracts”) are explored.

The paper identifies an important distinction, between divided and unified investment

and trade actions, that plays a key role in determining whether efficient investment

and trade can be achieved. By using non-forcing contracts, the party without the trade

action can be made residual claimant with regard to the investment action, which im-

plies that an efficient outcome can be achieved in the divided case but not typically

in the unified case. More generally, the paper shows that, with ex post renegotiation,

constraining parties to use “forcing contracts” implies a strict reduction in the set of

implementable value functions. Tools are developed for calculating the “punishment

values” that determine the sets of implementable post-investment value functions.

The hold-up problem arises in situations in which contracting parties can renegotiate

their contract between the time they make unverifiable relation-specific investments and

the time at which they can trade.1 The severity of the hold-up problem depends critically

on the productive technology and on the timing of renegotiation opportunities. This paper

contributes to the literature by examining how the nature of the “trade action” in a contrac-

tual relationship influences the prospects for achieving an efficient outcome. We introduce

a new distinction—whether the party who invests also is the one who consummates trade—

that plays an important role in determining the outcome of the contractual relationship.

So that we can describe our modeling exercise more precisely, consider an example in

which contracting parties “Al” and “Zoe” interact as follows. First Al and Zoe meet and

write a contract that has an externally enforced element. Then one of them makes a private

investment choice, which influences the state of the relationship. The state is commonly

observed by the contracting parties but is not verifiable to the external enforcer. Al and

∗UC San Diego; http://econ.ucsd.edu/∼jwatson/. The authors thank colleagues at UCSD and Yale, espe-

cially Nageeb Ali, Joel Sobel, and Ben Polak, for comments. Part of the analysis reported here was completed

while Watson was a visitor at the Cowles Foundation, Yale.
1Che and Sákovics (2008) provide a short overview of the hold-up problem, which was first described by

Klein, Crawford and Alchian (1978), and Williamson (1975,1977). Analysis was provided by Grout (1984),

Grossman and Hart (1986), and Hart and Moore (1988).
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Zoe then send individual public messages to the external enforcer. After this, they have an

opportunity to renegotiate their contract; this is called “ex-post” renegotiation because it

occurs after messages. Finally, the parties have a one-shot opportunity to trade and they

also obtain external enforcement. Trade is verifiable to the external enforcer.

Because the investment is unverifiable, the investor cannot be directly rewarded for

choosing the efficient investment level. Instead, investment incentives hinge on how the

terms of trade can be made sensitive to the investment choice. Typically a conflict arises

between the parties’ joint interests prior to investment and their joint interests following

investment and messages. In particular, it may be useful for investment incentives to specify

an inefficient trade action ex post in some off-equilibrium-path contingencies. But parties

then would have the joint incentive to renegotiate and divide the surplus according to their

bargaining power (hold up). Because parties rationally anticipate the renegotiation, the

incentives to invest are distorted.

The description above obviously leaves the mechanics of trade and enforcement am-

biguous. In reality, the parties have individual actions that determine whether and how

trade is consummated. Let us suppose that Al selects the individual trade action, which we

call a. This could be a choice of whether to deliver or to install an intermediate good, for

example. We then have an individual-action model, whereby Al chooses a and the external

enforcer compels a transfer t as a function of a and the messages that the parties sent ear-

lier. In contrast, a public-action model (or external-action model) combines the trade action

and the monetary transfer into a single public action (a, t) that is assumed to be taken by

the external enforcer. With this modeling approach, the contract specifies how the public

action is conditioned on the parties’ messages.

Although the public-action model may typically be a bit unrealistic, it is simple and

lends itself to elegant mechanism-design analysis (for example, as in Maskin and Moore

1999 and Segal and Whinston 2002). On the other hand, Watson (2007) demonstrates that

analysis of the individual-action model can be straightforward as well. He also shows that

the public-action model is equivalent to examining individual trade actions but constraining

attention to “forcing contracts” in which the external enforcer induces a particular trade

action as a function of messages sent by the parties (so the trade action is constant in the

state). Watson (2007) provides an example in which the restriction to forcing contracts has

strict (negative) efficiency consequences.

We provide a more thorough analysis for a large class of contractual relationships. We

show that the properties of Watson’s (2007) example are robust. Furthermore, we prove

the existence of non-forcing contracts that make Al’s payoff constant in the state, gross of

any investment costs. In fact, we show that a straightforward “dual option” contract (in

which only Zoe sends a message) suffices. This implies that Zoe can be made the “residual

claimant” in the relationship.

We thus have strong conclusions about how the technologies of trade and investment

interact to determine whether the efficient outcome can be achieved. If Zoe is the party who

makes the investment choice — we call this the divided case, because here the investment

and trade actions are chosen by different parties — then there is a contract that induces
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efficient investment and trade. On the other hand, in the unified case in which Al makes

the investment choice and also has the trade action, the efficient outcome is generally not

attainable because there typically do not exist contracts that make Al the residual claimant.

Our results underscore the usefulness of modeling trade actions as individual. This is

particularly salient for the setting of cross/cooperative investment (Che and Hausch 1999),

where the investment by one party increases the benefit to the other party of subsequent

trade. The literature has regarded cross investment settings as especially prone to the hold-

up problem (and inefficient outcomes as a result). By introducing the distinction between

unified and divided investment and trade actions, we thus give a basis for deeper analysis.

We find that the hold-up problem can be solved in the case of cross investment and divided

actions, whereas hold-up is more problematic in the case of cross investment and unified

actions.

Our analysis utilizes mechanism-design techniques. With both the individual-action

and public-action modeling approaches, analysis of the contractual problem centers on cal-

culating the set of implementable value functions from just after the state is realized (before

messages are sent). Formally, an implementable value function is the state-contingent con-

tinuation value that results in equilibrium for a given contract. Let V EPF be the set of

implementable value functions under ex-post renegotiation when one constrains attention

to forcing contracts (the public-action model), and let V EP be the corresponding set without

the constraint to forcing contracts (the individual-action model). We also examine the case

of interim renegotiation, where the parties can renegotiate only before sending messages,

and let V I be the set of implementable value functions for this case. By their definitions,

these three sets satisfy V EPF ⊆ V EP ⊆ V I. In Watson’s example, the inclusion relations

are strict so that V EPF �= V EP �= V I.

We provide simple tools to calculate the “punishment values” that determine the imple-

mentable sets for the class of relationships we analyze here. Our first theorem establishes

that V EP contains functions that hold fixed the value of the player with the trade action, and

thus they give the other player the full value of the relationship minus this constant. This

result is the basis for our insights on the relation between the investment and trade tech-

nologies. The result relies on an assumption that investment does not confer a direct gain

for some minimal trade action; this assumption is satisfied by the most prominent models

in the hold-up literature.

Our second theorem establishes that, for a wide class of contractual relationships, the

inequalities V EPF �= V EP �= V I always hold. In particular, in the important setting of ex

post renegotiation described above, limiting attention to forcing contracts (studying V EPF

rather than V EP) reduces the range of state-contingent continuation values, making it more

difficult to give the investing party the incentive to invest at the beginning of the relation-

ship.2

2This does not mean that a more efficient outcome can always be achieved when actions are modeled as

individual, because efficiency depends on what region of the implementable-value set is relevant for giving

appropriate investment incentives. That is, in some examples we have V EP �= V EPF but these sets coincide

where it matters to induce optimal investment.
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In the class of trade technologies that we study here, a single player (player 1, Al

above) has the trade action. The key economic assumption behind our second result is

that player 1’s utility is supermodular as a function of the state and trade action. That

is, this player’s marginal value of the trade action is monotone in the state. Our results

generalize to settings in which both players have trade actions. Our other assumptions are

weak technical conditions that guarantee well-defined maxima, non-trivial settings, and the

like. We argue that these conditions are likely to hold in a wide range of applications and

that they are consistent with what is typically assumed in the literature.

The rest of the paper proceeds as follows. In the next section we provide the details

of the model. Section 2 previews the main results by means of an example. Section 3

contains our first result, on making player 2 the residual claimant. Section 4 provides an

overview of the basic tools for general analysis, which mostly restates material in Watson

(2007). Section 5 contains our result on the difference in implementable sets based on

variations regarding when renegotiation can occur and whether one restricts attention to

forcing contracts. The Conclusion contains more discussion about the hold-up problem

and cross investment, including notes on the case of durable trading opportunities. Some

of the technical material and proofs are contained in the appendices.

1 The Theoretical Framework
We look at the same class of contracting problems and use the same notation as in Watson

(2007), except that we add a bit of structure on the trade technology to focus our analysis.

In particular, we examine the case in which a single player has a trade action. Throughout

the paper, we use the convention of labeling the player with the trade action as “player 1”

and we call the other “player 2.” These two players are the parties engaged in a contrac-

tual relationship with a non-durable trading opportunity and external enforcement. Their

relationship has the following payoff-relevant components, occurring in the order shown:

The state of the relationship θ. The state represents unverifiable events that are assumed

to happen early in the relationship. The state may be determined by individual in-

vestment decisions and/or by random occurrences, depending on the setting. When

the state is realized, it becomes commonly known by the players; however, it cannot

be verified to the external enforcer. Let Θ denote the set of possible states.

The trade action a. This is an individual action chosen by player 1 that determines whether

and how the relationship is consummated. The trade action is commonly observed

by the players and is verifiable to the external enforcer. Let A be the set of feasible

trade actions.

The monetary transfers t = (t1, t2). Here ti denotes the amount given to player i, for i =
1, 2, where a negative value represents an amount taken from this player. Transfers
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Players establish a contract.

Unverifiable events determine the state, .�

[Possible renegotiation of the contract.]

Players send verifiable messages, m.

[Possible renegotiation of the contract.]

External enforcer compels a transfer, .t

Date 1

2

3

4

5

6

7

Players choose verifiable trade actions, .a

8

[Possible renegotiation of the contract.]

Trade and
enforcement

phase

Figure 1: Time line of the contractual relationship.

are compelled by the external enforcer, who is not a strategic player but, rather, who

behaves as directed by the contract of players 1 and 2.3 Assume t1 + t2 ≤ 0.

We assume that the players’ payoffs are additive in money and are thus defined by a

function u :A×Θ → R
2. In state θ, with trade action a and transfer t, the payoff vector is

u(a, θ)+ t. Define U(a, θ) ≡ u1(a, θ)+u2(a, θ), which is the joint value of the contractual

relationship in state θ if trade action a is selected. We assume that, in each state θ, the joint

value has a unique maximizer a∗(θ). We let γ(θ) denote the maximal joint payoff in state

θ, so we have

γ(θ) ≡ U(a∗(θ), θ) = max
a∈A

U(a, θ). (1)

In addition to the payoff-relevant components of their relationship, we assume that the

players can communicate with the external enforcer using public, verifiable messages. Let

m = (m1,m2) denote the profile of messages that the players send and let M1 and M2 be

the sets of feasible messages. The sets M1 and M2 will be endogenous in the sense that

they are specified by the players in their contract.

Figure 1 shows the time line of the contractual relationship. At even-numbered dates

through Date 6, the players make joint observations and they make individual decisions—

jointly observing the state at Date 2, sending verifiable messages at Date 4, and selecting

the trade actions at Date 6. At Date 8, the external enforcer compels transfers.

At odd-numbered dates, the players make joint contracting decisions—establishing a

contract at Date 1 and possibly renegotiating it later. The contract has an externally-

enforced component consisting of (i) feasible message spaces M1 and M2 and (ii) a transfer
function y :M × A → R

2 specifying the transfer t as a function of the verifiable items m
and a. That is, having seen m and a, the external enforcer compels transfer t = y(m, a).
The contract also has a self-enforced component, which specifies how the players coordi-

nate their behavior for the times at which they take individual actions. Renegotiation of the

3That the external enforcer’s role is limited to compelling transfers is consistent with what courts do in

practice.
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contract amounts to replacing the original transfer function y with some new function y′,
in which case y′ is the one submitted to the external enforcer at Date 8.

The players’ individual actions at Dates 2, 4 and 6 are assumed to be consistent with

sequential rationality; that is, each player maximizes his expected payoff, conditional on

what occurred earlier and on what the other player does, and anticipating rational behavior

in the future.

The joint decisions (initial contracting and renegotiation at odd-numbered periods) are

assumed to be consistent with a cooperative bargaining solution in which the players divide

surplus according to fixed bargaining weights π1 and π2 for players 1 and 2, respectively.

The bargaining weights are nonnegative, sum to one, and are written π = (π1, π2). The

negotiation surplus is the difference between γ(θ) and the joint value that would result

if the players fail to reach an agreement, where the disagreement point is given by an

equilibrium in the continuation in which the externally enforced component of the contract

has not been altered.4

The effect of the renegotiation opportunity at Date 7 is to constrain transfers to be

“balanced” — that is, satisfying

t ∈ R
2
0 ≡ {t′ ∈ R

2 | t′1 + t′2 = 0}.

Thus, we will simply assume that transfers are balanced and then otherwise ignore Date 7.

So far, we have not explicitly included any specific investment technology in the model.

That is, we have not described the individual investment actions that determine the state.

We shall add this structure in the following sections, where we investigate the interaction

between the technology of trade and the technology of investment. Some of our technical

results concern only how the trade technology is modeled.

Public-Action Modeling and Forcing Contracts
Because the trade action a is assumed to be taken by player 1, we have specified here

an individual-action model. A public-action model, in contrast, would abstract by treating

the trade action a as something that the external enforcer directly selects. Watson (2007)

shows that specifying a public-action model is equivalent to examining the individual-

action model but limiting attention to a particular class of contracts called forcing contracts
which, for any given message profile, prescribe that player 1 select a particular trade action.

More precisely, a forcing contract specifies a large transfer from player 1 to player 2

in the event that player 1 does not take his contractually-prescribed action. This transfer

is sufficiently large to give player 1 the incentive to select the prescribed action in every

state. Thus, the induced trade action is constant in the state, conditional on the messages

sent earlier.

4The generalized Nash bargaining solution has this representation. The rationality conditions identify a

contractual equilibrium; see Watson (2004) for notes on the relation between “cooperative” and “noncooper-

ative” approaches to modeling negotiation.
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For example, holding the message profile fixed, the transfer function ŷ defined as fol-

lows will force player 1 to select action â and impose the transfer t̂ (as though the external

enforcer chose these in a public-action model):

Let L be such that L > supa,θ u1(a, θ)− infa,θ u1(a, θ). Then define ŷ(â) ≡ t̂

and, for every a �= â, set ŷ(a) ≡ t̂+ (−L,L).

We use the term forcing for any transfer function that, given the message profile, induces

player 1 to select the same trade action over all of the states.5 We use the term non-forcing
for transfer functions that induce player 1 to select different actions in at least two different

states.

When the players renegotiate at Date 3 or Date 5, they know the state θ and so they can

select a contract that forces the action a∗(θ) to obtain the joint value γ(θ).

Continuation Value Functions
A (state-contingent) value function is a function from Θ to R

2 that gives the players’

expected payoff vector from the start of a given date, as a function of the state. Such a value

function represents the continuation values for a given outstanding contract and equilibrium

behavior. We adopt the convention of not including any sunk investment costs from Date 2

in the values from later dates.

The continuation values from the start of Date 3 are important to calculate, because

these determine the players’ incentives to invest at Date 2. Thus, our chief objective is to

characterize the set of implementable value functions from the start of Date 3.6 A value

function v for Date 3 is implementable if there is a contract that, if formed at Date 1, would

lead to continuation value v(θ) in state θ from the start of Date 3, for every θ ∈ Θ.

We examine variations of the model in terms of whether renegotiation is possible at

Date 5 (ex post) and/or Date 3 (interim), and whether one restricts attention to forcing con-

tracts. We let V EPF be the set of implementable value functions from Date 3 for the case of

ex-post renegotiation and with the restriction to forcing contracts. We let V EP be the corre-

sponding set for the case of ex-post renegotiation and no contractual restrictions. Further,

we let V I be the set of implementable value functions for the case in which renegotiation

can occur only at Date 3 (the interim stage).7

5One could add a public randomization device to the model for the purpose of achieving randomization

over trade actions using forcing contracts. Allowing such randomization does not expand the set of imple-

mentable value functions here.
6Section 4 reviews how to calculate value functions from the various dates in the general model, by

backward induction.
7In the case of only interim renegotiation, a restriction to forcing contracts does not affect the imple-

mentable set. Also, with ex post renegotiation, allowing interim renegotiation has no additional effect.
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Related Literature
Much of the recent contract-theory literature focuses on public-action mechanism-

design models. For instance, Che and Hausch (1999), Hart and Moore (1999), Maskin

and Moore (1999), Segal (1999), and Segal and Whinston (2002) have basically the same

set-up as we do except that their models treat trade actions as public (collapsing together the

trade action and enforcement phase), so they focus on forcing contracts.8 In some related

papers, the verbal description of the contracting environment identifies individuals who

take the trade actions, but the actions are effectively modeled as public due to an implicit

restriction to forcing contracts. In some cases, such as with the contribution of Edlin and

Reichelstein (1996), simple forcing contracts (or breach remedies) are sufficient to achieve

an efficient outcome and so the restriction does not have efficiency consequences.9

Examples of individual-action models in the literature, among others, are the articles

of Hart and Moore (1988), MacLeod and Malcomson (1993), and Nöldeke and Schmidt

(1995). Also relevant is the work of Myerson (1982, 1991), whose mechanism-design

analysis nicely distinguishes between inalienable individual and public actions (he uses the

term “collective choice problem” to describe public-action models).

Most closely related to our work is that of Evans (2006, 2008), who emphasizes how

efficient outcomes can be achieved by conditioning external enforcement on costly individ-

ual actions. Evans (2006) examines general mechanism-design problems; Evans (2008),

which we discuss more in the Conclusion, examines contracting problems with specific

investment and durable trading opportunities. Related as well is the work of Lyon and Ras-

mussen (2004), which shares the theme of Watson (2007), and the recent work of Boeckem

and Schiller (2008) and Ellman (2006).10

In classifying the related literature, another major distinction to make is between models

with cross investment and models with “own investment.” In the latter case, investment

enhances the investing party’s benefit of trade. We discuss this distinction in more detail in

the next two sections. Since the hold-up problem is more problematic in the case of cross

investment, and there the distinction between forcing and non-forcing contracts (public-

versus individual-action modeling) is critical, we concentrate on settings with significant

cross investment.

8Aghion, Dewatripont, and Rey (1994) is another example. The more recent entries by Roider (2004)

and Guriev (2003) have the same basic public-action structure. Demski and Sappington (1991), Nöldeke and

Schmidt (1998), and Edlin and Hermalin (2000) examine models with sequential investments in a tradeable

asset; in these models, as in Maskin and Tirole (1999), transferring the asset is essentially a public action.
9Stremitzer (2009) elaborates on Edlin and Reichelstein (1996) by examining the informational require-

ments of standard breach remedies (specifically, partially verifiable investments).
10Also related are some studies of delegation in principal-agent settings with asymmetric information,

where implementable outcomes depend on whether it is the principal or agent who has the productive action.

As Beaudry and Poitevin (1995) show, ex post renegotiation imposes less of a constraint in the case of

“indirect revelation” (where the agent has the productive action). Thus, if it is possible to transfer “ownership”

of the productive action to the agent, the threat of ex post renegotiation provides one reason for doing this.
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2 Cross-Investment Example
In this section, we provide a simple example of specific investment and hold-up to illustrate

our results. Consider a contractual setting with what Che and Hausch (1999) call “coopera-

tive investments” (others use the term cross investments). One of the players is the investor
and the other player is the beneficiary. The investor chooses a level of investment at some

personal cost. The investment generates a benefit if the parties later trade, but it is the bene-

ficiary who stands to obtain much of it. Suppose that there is ex post renegotiation and that

the players have equal bargaining weights. Then there are contingencies (typically out of

equilibrium) in which the beneficiary can extract surplus from the investor by threatening

to hold up trade. This can distort the investor’s incentives and lead to inefficient investment.

We will look at two versions of the example, one in which player 1 (whom we continue

to call Al) is the investor and one in which player 2 (Zoe) is the investor. In both cases, Al

has the trade action, as we have specified in the general model. Thus, if Al is the investor

then we have a setting of unified investment and trade actions, whereas if Zoe is the investor

then we have the divided case.

Here are the numerical details for our example. At Date 2, the investor selects θ ∈ [1, 3]
at immediate cost c(θ) = 7

2
(θ − 1). That is, the investor takes an action that determines

the state. At Date 6 Al selects a trade action a ∈ [0, 8], which we interpret as a quantity of

an intermediate good that he trades with Zoe. The beneficiary’s gain from trade is

B(a, θ) = 8a− 6a2

θ
,

whereas the investor’s gain from trade (gross of investment cost) is

C(a, θ) =
2a2

θ
.

Thus, in the unified case where player 1 (Al) has both the investment and trade actions,

the payoffs (not including investment cost) are given by

u1(a, θ) =
2a2

θ
and u2(a, θ) = 8a− 6a2

θ
,

whereas in the divided case the payoffs are

u1(a, θ) = 8a− 6a2

θ
and u2(a, θ) =

2a2

θ

gross of investment cost. As we assume throughout, the sunk investment cost is not in-

cluded in these functions and in the value functions computed below.

The joint value of the relationship in state θ is U(a, θ) = 8a− 4a2

θ
, which is maximized

at a∗(θ) = θ. Therefore the maximal joint value in state θ is γ(θ) = U(a∗(θ), θ) = 4θ.

Regardless of who makes the investment, we see that the efficient level of investment θ∗

solves:

max
θ∈[1,3]

4θ − 7

2
(θ − 1) .

9



Thus the optimal investment level is θ∗ = 3.

Note that, at the ex post optimal trade action for each state, the investor’s gain is

C(θ, θ) = 2θ and the beneficiary’s gain is B(θ, θ) = 2θ. The example thus exhibits ele-

ments of both cross-investment (since the investment increases the beneficiary’s gain from

trade) and own-investment (since the investment also boosts the investor’s gain from trade).

The cross-investment element is particularly problematic, as the literature as shown.

This example is a member of the class studied by Che and Hausch (1999). These au-

thors formulate a public-action model, which restricts attention to forcing contracts and

thus does not distinguish between the unified and divided cases. Che and Hausch find that

in their model the hold-up problem severely restricts implementability and leads to inef-

ficiently low investment. In fact, for the parameters described here, their results establish

that the “null contract”—forcing no trade, regardless of the messages—is best.

Unfortunately, the null contract leads to an inefficient level of investment. To see this,

note that the players always renegotiate to take the ex post efficient trade action in each

state. In our example this implies that in state θ the renegotiation surplus equals the joint

value 4θ. Since the investor receives half of the surplus (recall that the bargaining weights

are 1/2), the investor’s value from Date 3 is 2θ. At Date 2, the investor therefore chooses θ
to solve

max
θ∈[1,3]

2θ − 7

2
(θ − 1) .

As a result, the inefficiently low level θ = 1 is chosen.

We next demonstrate that by using non-forcing contracts a more efficient outcome can

be achieved (Watson’s 2007 point) and that the unified and divided cases behave quite

differently. Let us start with the unified case, where payoffs are given by

u1(a, θ) =
2a2

θ
and u2(a, θ) = 8a− 6a2

θ
.

Consider the following contract that gives player 1 a trade-action-based option (messages

are not used).11 If Al chooses a = 0 then no transfer is made. If he chooses a = 1, a transfer

of 4/3 is made from Al to Zoe. Finally, if Al chooses any other value of a, a transfer of 150

is made to Zoe so that Al will never find it optimal to choose a /∈ {0, 1}.

Note that Al strictly prefers a = 1 if and only if

u1(1, θ)− 4

3
=

2

θ
− 4

3
> 0,

which simplifies to θ < 3/2. In this case, the surplus to be gained from renegotiation is

U(a∗(θ), θ)− U(1, θ) = 4θ −
(
8− 4

θ

)
,

11The literature has emphasized the importance of option contracts for aligning incentives (as in Demski

and Sappington 1991 and most of the more recent papers cited in the previous sections). By laying out the

details of the trade technology, we are able to differentiate between message-based and trade-action-based

options.
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Figure 2: Al’s Value Function Under Option Contract.

implying that Al’s state-contingent value from Date 3 is

v1(θ) = u1(1, θ)− 4
3
+ 1

2
[U(a∗(θ), θ)− U(1, θ)]

= 2
θ
− 4

3
+ 1

2

[
4θ − (

8− 4
θ

)]
= 4

θ
+ 2θ − 16

3

.

For all states θ ≥ 3/2, Al prefers a = 0 and so v1(θ) = 2θ as under the null contract.

As can be seen from Figure 2, at Date 2 Al maximizes the difference v1(θ) − c(θ)
by choosing θ = 3/2, which yields a higher joint value than is achieved with θ = 1.

Thus, by decreasing Al’s implemented value at low states (those below 3/2), this trade-

action-based option contract improves upon the investment incentives of the best forcing

contract. However, we can use the results of Appendix C to show that no contract induces

the efficient investment level θ = 3. So the bottom line is that, in the unified case, non-

forcing contracts strictly improve on the best forcing contract but efficient investment is

still not achievable.

The results are more dramatic in the divided case, which we now consider. Suppose

that Zoe makes the investment so that the payoffs are given by

u1(a, θ) = 8a− 6a2

θ
and u2(a, θ) =

2a2

θ
.

We show that a particular “dual option” contract can be used to make Zoe the resid-

ual claimant with respect to the post-investment joint value. The contract requires Zoe

(player 2) to send a message at Date 4; her message names a trade action â ∈ [0, 8]. Then

if Al subsequently selects a = â, the external enforcer compels a transfer of 2â from Al to

Zoe. If Al selects a = 0 then the transfer is zero. Finally, if Al chooses any other value of

a, a transfer of 150 is made to Zoe so that Al will never find it optimal to choose a /∈ {0, â}.

11
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Figure 3: Zoe’s Value Function Under Option Contract.

Let us calculate the value function that this contract implements. In any given state θ,

if Zoe names â = θ at Date 4 then it makes Al indifferent between selecting a = θ and

a = 0 at Date 6, so we can prescribe that Al will select a = θ. Because this is the ex

post efficient trade action in state θ, there is no renegotiation at Date 5. This gives Zoe a

value of 4θ, which is exactly γ(θ), and it holds Al’s payoff at zero. It is easy to see that

Zoe can do no better by choosing any other â at Date 4. Thus, for each state θ, the contract

implements the continuation value v(θ) = (0, 4θ) from Date 3, and thus it makes Zoe the

residual claimant.

As Figure 3 illustrates, at Date 2 Zoe maximizes v2(θ) − c(θ) by choosing θ∗ = 3.

Thus the dual option contract not only improves upon the investment incentives of the best

forcing contract but it induces Zoe to choose the efficient investment level.

In summary, the example shows that by using non-forcing contracts, the parties can

achieve a more efficient outcome than is possible with forcing contracts. Furthermore, the

efficiency gain depends on the relation between the technology of trade and the technology

of investment. In the divided case, a simple contract induces efficient investment and trade

actions. In the unified case, the efficient outcome cannot be attained but a non-forcing

contract still is preferred.

3 Residual Claimancy and Efficient Investment
In this section we provide a general version of the result on the divided case from the

example. Remember that player 1 takes the trade action at Date 6. We shall show that a

dual-option contract can be used to make player 1’s value from Date 3 constant in the state.

Player 2 then becomes the residual claimant with respect to the investment decision. Thus,

in the divided case (where player 2 is the investor), player 2 can be given the incentive to

12



invest efficiently regardless of the distribution of the investment gains.

Our result is facilitated by making the following assumption.

Assumption 1: There exists a trade action a ∈ A such that u1(a, θ) = u2(a, θ) = 0 for

every θ.

Think of a as the “no trade” choice. Assumption 1 means that the investment conveys

no direct benefits; that is, investment produces a gain only conditional on the players trading

at Date 6. The no-trade payoffs could be normalized to any level; we set them to zero here

for simplicity.

Theorem 1: Consider any contractual relationship that satisfies Assumption 1. Also as-
sume that there is ex post renegotiation. Let k be any real number and define value function
v by v1(θ) = k and v2(θ) = γ(θ)− k for all θ ∈ Θ. Then v ∈ V EP.

Note that Assumption 1 has to do solely with the technology of trade; it puts no con-

straints on the technology of investment. The proof of Theorem 1 (which may be found in

Appendix A) is constructive and runs along the lines of the demonstration for the example.

We show how to implement these value functions using a straightforward dual-option con-

tract in which player 2 is required to declare a state θ̂ at Date 4. The contract then gives

player 1 the incentive to tender trade action a∗(θ̂) or a. Thus, a message is required, but

only from player 2.

To formalize the implications of Theorem 1, let us specify the investment technology.

As in the example, suppose that one of the players makes an investment choice at Date 2.

We have two cases:

• Unified case – Player 1 has both the Date 2 investment action and the Date 6 trade

action.

• Divided case – Player 2 has the Date 2 investment action, whereas player 1 has the

Date 6 trade action.

Let the investment choice be denoted x ≥ 0. We assume that the investment imposes an

immediate cost of x on the investor. The state θ is then drawn from a distribution G(x) that

depends on the investment choice.12 Recalling that γ(θ) = U(a∗(θ), θ) is the maximum

joint value in state θ, we see that the efficient level of investment x∗ solves:

max
x≥0

∫
γ(θ)dG(x)− x.

Typically x∗ > 0. Thus, letting i denote the investing party, we will want to implement

a value function v so that vi(θ) is increasing in θ to some particular extent. In this way,

player i will be rewarded for investing.

12It is natural to assume that G is increasing in x in the sense of first-order stochastic dominance and that

U(a∗(θ), θ) is increasing in θ, so that higher investments increase the expected gains from trade, but these

assumptions are not needed for the Corollary presented here.
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Consider a value function that satisfies v1(θ) = k and v2(θ) = γ(θ) − k for all θ ∈ Θ
and suppose that the players contract at Date 1 to implement this value function. Let us

observe what this implies for investment in the divided case, where player 2 is the investor.

Clearly player 2 selects x at Date 2 to maximize∫
v2(θ)dG(x)− x =

∫
γ(θ)dG(x)− x− k.

Since k is a constant, player 2 seeks to maximize the joint value of the relationship and

thus player 2’s optimal investment level is x∗. Efficient investment and trade are obtained.

At Date 1, the players will select such a value function to maximize the joint value of

their relationship, and they will use k to divide the value between them. We formalize this

conclusion by stating:

Corollary: Under Assumption 1 and in the divided case in which player 2 is the investor
and player 1 has the trade action, optimal contracting induces efficient investment and
trade (the first best outcome).

Note that this result makes no restrictions on which party stands to gain from the in-

vestment. That is, the result holds for settings of cross-investment, own-investment, and

any combination of the two. The key is simply that the investment action and trade action

are taken by different parties.

The impact of the Corollary relative to the literature is most pronounced when applied

to settings of cross-investment.13 In such a setting, as in our example, one player is the

investor and the other is the beneficiary. The beneficiary’s gain from trade is B(a, θ),
whereas the investor’s gain is C(a, θ). We take these to be gross of investment cost (that

is, they do not include −x for the investor). In the divided case, we thus have u1 ≡ B and

u2 ≡ C. In the unified case, we have u1 ≡ C and u2 ≡ B.

The null contract is that which forces the no-trade action a regardless of the message

profile. Che and Hausch (1999) have shown that when the investor receives a sufficiently

small share of the benefits of the investment, the null contract is optimal among forcing

contracts. Under the null contract, the investor shares the gains from trade in proportion

to his/her bargaining weight (because the players renegotiate from the no-trade action in

order to trade). This means that at Date 2 the investor chooses x to solve

max
x≥0

∫
πiγ(θ)dG(x)− x,

where the investor here is denoted “i.” Since πi is typically below 1, unfortunately the

investor will not select the efficient x∗.
13The literature has demonstrated that forcing contracts can usually prevent the hold-up problem in the

“own-investment” case, where the investing party obtains a large share of the benefit created by the invest-

ment. See, for example, Chung (1991), Rogerson (1992), Aghion, Dewatripont, and Rey (1994), Nöldeke and

Schmidt (1995), and Edlin and Reichelstein (1996). An exception is the “complexity/ambivalence” setting

studied by Segal (1999), Hart and Moore (1999), and Reiche (2006).
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We therefore see that in the case of cross-investment, the above Corollary presents

a great improvement in comparison to the result from analyses that restrict attention to

forcing contracts. However, the picture is not so rosy in the unified case because it is

generally not possible to implement a value function that makes player 2’s continuation

value from Date 3 constant in the state. This is demonstrated in Appendix C, where we

provide the technical conditions. However, we can still show that non-forcing contracts

outperform forcing contracts in a wide range of contractual settings, which is the focus of

the rest of this paper.

Before launching into the general analysis on the comparison of forcing and non-

forcing contracts, some intuition from the example may be helpful. Consider the unified

case, where player 1 makes the investment and selects the trade action. In the example, his

gain from trade is C(a, θ) = 2a2/θ. Note that this function is supermodular in θ and −a.

Thus, for any transfers specified as a function of the trade action, player 1’s preferences

satisfy the single-crossing property and he weakly prefers higher actions in lower states.

Since ex post efficiency requires lower actions in lower states, we can find a non-forcing

contract that, relative to the null contract, induces a lower renegotiation surplus in lower

states, reducing player 1’s incentive to choose the lowest levels of investment.

Similar intuition is at work in settings where we want to give player 2 investment in-

centives but where Assumption 1 does not hold (so that we cannot rely on Theorem 1 and

its Corollary). If player 1’s gain from trade is supermodular in θ and a, then a non-forcing

contract can be used to induce player 1 to select higher trade actions in higher states. Fur-

thermore, if ex post efficiency calls for higher actions in higher states then player 1 can

be induced to select the ex post efficient trade action (so there is no surplus to renegotiate

over) and transfer some of his gain to the other party.

These are but two rough sketches. Clearly, there are many cases to consider and they are

differentiated on the basis of which player is the investor, whether player 1’s trade gains are

supermodular or submodular (or neither), and whether a∗(θ) is increasing or decreasing.

We can clearly transform a setting with submodularity into one with supermodularity by

relabeling the trade action as −a rather than a. For the rest of the paper we take a broad

perspective that focuses just on the trade technology. With supermodularity of u1 and some

other mild technical assumptions, we show that, in terms of implementability, non-forcing

contracts generally improve on forcing contracts. Appendix C provides additional details

for some cases of cross-investment.

4 Implementable Value Functions
Our second result requires a complete characterization of the implementable value func-

tions from Date 3. In this section, we analyze equilibrium behavior and provide the char-

acterization. Much of the analysis here repeats material in Watson (2007), so we keep this

text brief and ask the reader to see Watson (2007) for more details. The culmination of the

basic analysis here are some simple characterization results from Watson (2007), which we

15



build upon in the subsequent section.

The set of implementable value functions depends on whether renegotiation is possible

at Dates 3 or 5.14 We will examine the cases of ex post renegotiation, where the parties

can renegotiate at Date 5, and interim renegotiation, where the parties can renegotiate at

Date 3 but cannot do so at Date 5. We can characterize the implementable value functions

by backward induction, starting with Date 6 where player 1 selects the trade action.

State-Contingent Values from Date 6
To calculate the value functions that are supported from Date 6 (the “trade and enforce-

ment phase” shown in Figure 1), we can ignore the payoff-irrelevant messages sent earlier

(or equivalently, fix a message profile from Date 4) and simply write the externally en-

forced transfer function as ŷ :A → R
2. That is, ŷ gives the monetary transfer as a function

of player 1’s trade action.

Given the state θ, ŷ defines a trading game in which player 1 selects an action a ∈ A
and the payoff vector is then u(a, θ)+ ŷ(a). Focusing on pure strategies, we let â(θ) denote

the action chosen by player 1 in state θ. This specification is rational for player 1 if, for

every θ ∈ Θ, â maximizes u1(a, θ) + ŷ1(a) by choice of a. The state-contingent payoff

vector from Date 6 is then given by the outcome function w :Θ → R
2 defined by

w(θ) ≡ u(â(θ), θ) + ŷ(â(θ)). (2)

Let W denote the set of supportable outcome functions. That is, w ∈ W if and only if

there are functions ŷ and â such that â is rational for player 1 and, for every θ ∈ Θ, Equa-

tion 2 holds. Furthermore, let WF be the subset of outcomes that can be supported using

forcing contracts. It is easy to see that w ∈ WF if and only if there is a trade action â and

a transfer vector t̂ such that w(θ) = u(â, θ) + t̂ for all θ ∈ Θ. We can compare individual-

action and public-action models by determining whether the restriction to forcing contracts

implies a significant constraint on the set of implementable value functions.

State-Contingent Values from Date 5
We next step back to Date 5. If there is no opportunity for ex post renegotiation, then

nothing happens at Date 5 and so W and WF are the supported state-contingent value sets

from the start of Date 5 as well. On the other hand, if ex post renegotiation is allowed, then

at Date 5 the players have an opportunity to discard their originally specified contract y and

replace it with another, y′. The original contract y would have led to a particular outcome

w given the message profile from Date 4.

By picking a new contract y′, the players are effectively choosing a new outcome func-

tion w′, which is freely selected from the set W or the set WF (depending on whether there

is a restriction to forcing contracts). If the outcome w would be inefficient given the real-

ized state and message profile, the players will renegotiate to select an efficient outcome

14As noted earlier, we do not need to explicitly model the Date 2 investment technology in order to calculate

the set of implementable value functions from Date 3.
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w′. The players divide the renegotiation surplus according to the fixed bargaining weights

π1 and π2. Dividing the surplus in this way is feasible because W and WF are closed under

constant transfers.

Clearly, we have γ(θ) = maxw∈WF [w1(θ)+w2(θ)] because the trade action that solves

the maximization problem in Equation 1 can be specified in a forcing contract to yield

the desired outcome. If the original contract would lead to outcome w in state θ, then the

renegotiation surplus is

r(w, θ) ≡ γ(θ)− w1(θ)− w2(θ).

The bargaining solution implies that the players settle on a new outcome in which the

payoff vector in state θ is w(θ) + πr(w, θ).
An ex post renegotiation outcome is a state-contingent payoff vector that results when,

in every state, the players renegotiate from a fixed outcome in W . That is, a value function

z is an ex post renegotiation outcome if and only if there is an outcome w ∈ W such that

z(θ) = w(θ) + πr(w, θ) for every θ ∈ Θ. Let Z denote the set of ex post renegotiation

outcomes. Note that all elements of Z are efficient in every state; also, Z and W are

generally not ranked by inclusion. If trade actions are treated as public (and so attention is

limited to forcing contracts) then the set of ex post renegotiation outcomes contains only

the value functions of the form z = w + πr(w, ·) with the constraint that w ∈ wF. Let ZF

denote the set of ex post renegotiation outcomes under forcing contracts.

With ex post renegotiation, the set of supportable state-contingent values from the start

of Date 5 is Z in the case of the individual-action model and is ZF in the case of the public-

action model. We will be a bit loose with terminology and refer to functions in Z and ZF,

in addition to functions in W and WF, simply as “outcomes.”

State-Contingent Values from Dates 4 and 3
Analysis of contract selection and incentives at Date 4 can be viewed as a standard

mechanism-design problem. The players’ contract is equivalent to a mechanism that maps

messages sent at Date 4 to outcomes induced in the trade and enforcement phase (possibly

renegotiated at Date 5). The revelation principle applies in the following sense. We can

restrict attention to direct-revelation mechanisms, each of which is defined by (i) a message

space M ≡ Θ2 and (ii) a function that maps Θ2 to the relevant outcome set that gives the

state-contingent value functions from the start of Date 5. The outcome set is either W ,

WF, Z, or ZF, depending on whether ex post renegotiation and/or non-forcing contracts

are allowed. We can concentrate on Nash equilibria of the mechanism in which the parties

report truthfully in each state.15

Let us write ψθ1θ2 for the outcome that the mechanism prescribes when player 1 reports

the state to be θ1 and player 2 reports the state to be θ2. Note that, in any given state θ (the

actual state that occurred), the mechanism implies a “message game” with strategy space

15The revelation principle usually requires a public randomization device to create lotteries over outcomes

(or that the outcome set is a mixture space), but it is not needed here.

17



Θ2 and payoffs given by ψθ1θ2(θ) for each strategy profile (θ1, θ2). For truthful reporting to

be a Nash equilibrium of this game, it must be that ψθθ
1 (θ) ≥ ψθ̃θ

1 (θ) and ψθθ
2 (θ) ≥ ψθθ̃

2 (θ)
for all θ̃ ∈ Θ.

We proceed using standard techniques for mechanism design with transfers, following

Watson (2007). The key step is observing that, for any two states θ and θ′, the outcome

specified for the “off-diagonal” message profile (θ′, θ) must be sufficient to simultaneously

(i) dissuade player 1 from declaring the state to be θ′ when the state is actually θ and (ii)

discourage player 2 from declaring “θ” in state θ′. Thus, we require

ψθθ
1 (θ) ≥ ψθ′θ

1 (θ) and ψθ′θ′
2 (θ′) ≥ ψθ′θ

2 (θ′).

Because the outcome sets are closed under constant transfers, we can choose the outcome

to effectively raise or lower ψθ′θ
1 and ψθ′θ

2 while keeping the sum constant. Thus, a sufficient

condition for these two inequalities is that the sum of the two holds. Letting ψ ≡ ψθθ and

ψ′ ≡ ψθ′θ′ , we thus have the following necessary condition for implementing outcome ψ
in state θ and outcome ψ′ in state θ′:

(IC) There exists an outcome ψ̂ satisfying ψ1(θ) + ψ′
2(θ

′) ≥ ψ̂1(θ) + ψ̂2(θ
′).

This condition, applied to all ordered pairs (θ, θ′), is necessary and sufficient for implemen-

tation. The sum ψ̂1(θ)+ ψ̂2(θ
′) is called the punishment value corresponding to the ordered

pair (θ, θ′). The punishment value plays a central role in our analysis. Lower punishment

values imply a greater set of implementable outcomes.

If interim renegotiation is not allowed, then the analysis above completely determines

the implementable set of value functions from Date 3. Allowing interim renegotiation has

the effect of requiring each “on-diagonal” outcome to be efficient in the relevant state; that

is, for each θ we need ψθθ to be efficient in this state. In the case of ex post renegotiation,

allowing interim renegotiation entails no further constraint because every outcome in Z is

efficient in every state.

It is also the case that without ex post renegotiation, W and WF yield the same set of

implementable value functions from Date 3. In other words, a restriction to forcing con-

tracts does not reduce the implementable set in the case of interim renegotiation (Watson

2007, Lemma 3). Therefore, we have three settings to compare: unrestricted contracts with

ex post renegotiation, forcing contracts (public-actions) with ex post renegotiation, and

forcing contracts with interim (but not ex post) renegotiation. As stated earlier, we denote

the implementable value functions for these three settings by, respectively, V EP, V EPF, and

V I.

A value function v :Θ → R
2 is called efficient if v1(θ) + v2(θ) = γ(θ) for every θ ∈ Θ.

The following results summarize the characterization of V EP, V EPF, and V I and provide a

general comparison:

Result 1 [Watson 2007]: Consider any value function v :Θ → R
2.

• Implementation with Interim Renegotiation: v is an element of V I if and only if v is
efficient and, for every pair of states θ and θ′, there is an outcome ŵ ∈ WF such that
v1(θ) + v2(θ

′) ≥ ŵ1(θ) + ŵ2(θ
′).
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• Implementation with Ex Post Renegotiation: v is an element of V EP if and only if v
is efficient and, for every pair of states θ and θ′, there is an outcome ẑ ∈ Z such that
v1(θ) + v2(θ

′) ≥ ẑ1(θ) + ẑ2(θ
′).

• Implementation with Ex Post Renegotiation and Forcing Contracts: v is an element
of V EPF if and only if v is efficient and, for every pair of states θ and θ′, there is an
outcome ẑ ∈ ZF such that v1(θ) + v2(θ

′) ≥ ẑ1(θ) + ẑ2(θ
′).

Furthermore, the sets V EP, V EPF, and V I are closed under constant transfers.

Result 2 [Watson 2007]: The implementable sets are weakly nested in that V EPF ⊆ V EP ⊆
V I. Furthermore, V EPF = V EP if and only if, for every pair of states θ, θ′ ∈ Θ and every
ẑ ∈ Z, there is an ex post renegotiation outcome z̃ ∈ ZF such that z̃1(θ) + z̃2(θ

′) ≤
ẑ1(θ) + ẑ2(θ

′). Likewise, V EP = V I if and only if, for all θ, θ′ ∈ Θ and every ŵ ∈ WF,
there is an ex post renegotiation outcome ẑ ∈ Z such that ẑ1(θ)+ẑ2(θ

′) ≤ ŵ1(θ)+ŵ2(θ
′).16

To summarize, we have thus far analyzed the players’ behavior at the various dates in

the contractual relationship, leading to a simple characterization of implementable value

functions from Date 3. The characterization is in terms of the minimum punishment val-

ues for each pair of states, which yields a way of relating the implementable sets for the

cases of interim renegotiation, ex post renegotiation, and ex post renegotiation and forcing

contracts. We next turn to investigate the relation more deeply.

5 The Value of Non-Forcing Contracts: Robustness for a
Class of Trade Technologies

The example from Watson (2007) and ours in Section 2 provide illustrations of V EPF �=
V EP �= V I. Our main objective in this section is to examine the robustness of this con-

clusion. We consider the wide class of contractual relationships that satisfy the following

assumptions.

Assumption 2: The sets A and Θ are compact subsets of R and contain at least two ele-

ments, and u1(·, θ) and u2(·, θ) are continuous functions of a for every θ ∈ Θ.

Define a ≡ minA, a ≡ maxA, θ ≡ minΘ, θ ≡ maxΘ. Regarding our assumption

that U(a, θ) has a unique maximizer a∗(θ) for every state θ, we now make a slightly stronger

assumption on U(·, θ):
16Watson’s (2006) Lemma 1 provides some of the supporting analysis (which was not explained fully in

the relevant proof in Watson 2007). This lemma establishes that, for any given ordered pair of states θ and θ′

and any supportable outcome ψ, there exists an implementable value function v for which v1(θ) + v2(θ
′) =

ψ1(θ)+ψ2(θ
′). Because the minimum punishment values exists, in each case we can let ψ equal the outcome

that attains the minimum.
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Assumption 3: U(·, θ) is strictly quasiconcave for every θ ∈ Θ.

Assumption 4: u1 is supermodular, meaning that u1(a, θ)−u1(a
′, θ) ≥ u1(a, θ

′)−u1(a
′, θ′)

whenever a ≥ a′ and θ ≥ θ′.

Assumption 5: There exist states θ1, θ2 ∈ Θ such that θ1 > θ2 and either U(a, θ2) <
U(a, θ2) or U(a, θ1) > U(a, θ1).

Assumption 6: Player 1’s bargaining weight is positive: π1 > 0.

Assumptions 2, 3, 5, and 6 are mild technical assumptions. Assumptions 2 and 3 give us

a convenient and familiar technical structure to deal with. Assumption 5 removes a knife-

edge case concerning the relative joint values of the extreme trade actions in the various

states. For instance, if Θ has more than two elements and U(a, θ) �= U(a, θ) for some θ
strictly between θ and θ, then Assumption 5 is satisfied. If Θ has just two elements (θ and

θ), then Assumption 5 requires that either a is the efficient trade action in the high state or

a is the efficient trade action in the low state.17

Assumption 4 puts some structure on the payoff of player 1, the player with the trade

action: Without considering transfers, player 1’s marginal value of increasing his trade

action rises weakly with the state. In other words, higher trade actions are weakly more

attractive to him as the state increases. Note that if in a given application u1 satisfies

submodularity, one can redefine the trade action to be −a and then Assumption 4 would be

satisfied.

Many interesting examples studied in the literature satisfy these assumptions. For in-

stance, consider a buyer/seller relationship in which a is the number of units of an interme-

diate good to be transferred from the seller to the buyer. The buyer’s benefit of obtaining a
units in state θ is B(a, θ). The seller’s cost of production and delivery is d(a, θ), and we let

C(a, θ) = −d(a, θ). Suppose, as one would typically do, that B is increasing and concave

in a and that d is increasing and convex in a. If a is the buyer’s action (he selects how many

units to install, for example), then the buyer would be player 1 and so we have u1 ≡ B and

u2 ≡ C. If the seller chooses a (she decides how many units to deliver, say), then the seller

is player 1 and so we have u1 ≡ C and u2 ≡ B. In either case, Assumptions 2 and 3 are

satisfied. Assumption 4 adds the weak supermodularity requirement on the payoff of the

player who selects a.

We have the following robustness result:

Theorem 2: Consider any contractual relationship that satisfies Assumptions 2-6. The
sets of implementable value functions in the cases of unrestricted contracts with ex post
renegotiation, forcing contracts with ex post renegotiation, and interim renegotiation are
all distinct. That is, V EPF �= V EP �= V I.

17In Watson’s (2007) example, which has two states and two trade actions, a is the efficient trade action in

both states.
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The analysis underlying Theorem 2 amounts to characterizing and comparing the min-

imum punishment values that can be supported for each of the settings of interest. Recall

that the punishment value for the ordered pair (θ, θ′) is the value ψ1(θ) + ψ2(θ
′), where ψ

is the outcome specified in the message game when player 1 reports the state to be θ′ and

player 2 reports the state to be θ. Lower punishment values serve to relax incentive con-

ditions, so to completely characterize the sets of implementable value functions we must

find the minimum punishment values. We let P I, PEP, and PEPF denote the minimum

punishment values for the settings of interim renegotiation, ex post renegotiation, and ex

post renegotiation and forcing contracts, respectively:

P I(θ, θ′) ≡ min
w∈WF

w1(θ) + w2(θ
′),

PEP(θ, θ′) ≡ min
ẑ∈Z

ẑ1(θ) + ẑ2(θ
′),

PEPF(θ, θ′) ≡ min
ẑ∈ZF

ẑ1(θ) + ẑ2(θ
′).

Our assumptions on the trade technology guarantee that these minima exist.

From Result 2, we know that Theorem 2 is equivalent to saying that there exist states

θ, θ′ ∈ Θ such that P I(θ, θ′) < PEP(θ, θ′) and there exist (possibly different) states

θ, θ′ ∈ Θ such that PEP(θ, θ′) < PEPF(θ, θ′). Thus, to prove Theorem 2, we examine

the punishment values achieved by various contractual specifications in the different set-

tings. We develop some elements of the proof in the remainder of this section; Appendix B

contains the rest of the analysis. We shall focus in this section on the relation between

V EPF and V EP. The analysis of the relation between V EP and V I is considerably simpler

and is wholly contained in Appendix B.

We will establish PEP < PEPF by comparing the punishment values implied by (i)

the outcome in which player 1 would be forced to take a particular trade action (such as

one that yields the lowest punishment value in this class), and (ii) a related non-forcing

specification in which player 1 would be given the incentive to select some action a in state

θ and a different action a′ in state θ′. We derive conditions under which a and a′ can be

arranged to strictly lower the punishment value for (θ, θ′), relative to the best forcing case.

We then find states θ1 and θ2 such that the conditions must hold for at least one of the

ordered pairs (θ1, θ2) and (θ2, θ1).
To explore the possible outcomes in the cases of ex post renegotiation, consider player 1’s

incentives at Date 6. For any given transfer function ŷ, the following are necessary condi-

tions for player 1 to select trade action a in state θ and action a′ in state θ′:

u1(a, θ) + ŷ1(a) ≥ u1(a
′, θ) + ŷ1(a

′) and

u1(a
′, θ′) + ŷ1(a

′) ≥ u1(a, θ
′) + ŷ1(a) .

(3)

Transfer function ŷ can be specified so that player 1 is harshly punished for selecting any

trade action other than a or a′. Then, in every state, either a or a′ maximizes player 1’s

payoff from Date 6. Thus, we have:
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Fact 1: Consider two states θ, θ′ ∈ Θ and two trade actions a, a′ ∈ A. Expression 3 is
necessary and sufficient for the existence of a transfer function ŷ :A → R

2
0 (defined over

all trade actions) such that player 1’s optimal trade action in state θ is a and player 1’s
optimal trade action in state θ′ is a′.

Summing the inequalities of Expression 3, we see that there are values ŷ(a), ŷ(a′) ∈ R
2
0

that satisfy (3) if and only if

u1(a, θ)− u1(a
′, θ) ≥ u1(a, θ

′)− u1(a
′, θ′). (4)

Assumption 4 then implies:

Fact 2: If θ > θ′ then a ≥ a′ implies Inequality 4. If θ < θ′ then a ≤ a′ implies Inequal-
ity 4.

Note that Fact 2 gives sufficient conditions. In the case in which u1(·, ·) is strictly super-

modular (replacing weak inequalities in Assumption 4 with strict inequalities), player 1 can

only be given the incentive to choose greater trade actions in higher states.

For any two states θ, θ′ ∈ Θ, define

E(θ, θ′) ≡ {(a, a′) ∈ A× A | Inequality 4 is satisfied.}.
Also, for states θ, θ′ ∈ Θ and trade actions a, a′ ∈ A with (a, a′) ∈ E(θ, θ′), define

Y (a, a′, θ, θ′) ≡ {ŷ :A → R
2
0 | Condition 3 is satisfied.}.

Condition 3, combined with the identity ŷ1 = −ŷ2, implies:

Fact 3: For any θ, θ′ ∈ Θ and a, a′ ∈ A, with (a, a′) ∈ E(θ, θ′), we have

min
ŷ∈Y (a,a′,θ,θ′)

ŷ1(a) + ŷ2(a
′) = u1(a

′, θ)− u1(a, θ).

Using the definition of the set W (recall Expression 2 on page 16), any given w ∈ W
can be written in terms of the trade actions and transfers that support it. We have

w(θ) = u(â(θ), θ) + ŷ(â(θ))

and

w(θ′) = u(â(θ′), θ′) + ŷ(â(θ′)),

where â gives player 1’s choice of trade action as a function of the state and ŷ is the transfer

function that supports w.

For any state θ̃ and trade action ã, define R(ã, θ̃) to be the renegotiation surplus if,

without renegotiation, player 1 would select ã. That is, R(ã, θ̃) = U(a∗(θ̃), θ̃) − U(ã, θ̃).
Combining the expressions for w in the previous paragraph with Fact 1 and the definition

of ex post renegotiation outcomes, we obtain:
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Fact 4: Consider any two states θ, θ′ ∈ Θ and let α be any number. There is an ex post
renegotiation outcome z ∈ Z that satisfies z1(θ) + z2(θ

′) = α if and only if there are trade
actions a, a′ ∈ A and a transfer function ŷ such that (a, a′) ∈ E(θ, θ′), ŷ ∈ Y (a, a′, θ, θ′),
and

α = u1(a, θ) + ŷ1(a) + π1R(a, θ) + u2(a
′, θ′) + ŷ2(a

′) + π2R(a′, θ′). (5)

In the last line, the first three terms are w1(θ) plus player 1’s share of the renegotiation

surplus in state θ, totaling z1(θ). The last three terms are w2(θ
′) plus player 2’s share of the

renegotiation surplus in state θ′, totaling z2(θ
′).

Finding the best (minimum) punishment value for states θ and θ′ means minimizing

ẑ1(θ) + ẑ2(θ
′) by choice of ẑ ∈ Z. For now, holding fixed the trade actions a and a′ that

player 1 is induced to select in states θ and θ′, let us minimize the punishment value by

choice of ŷ ∈ Y (a, a′, θ, θ′). To this end, we can use Fact 3 to substitute for ŷ1(a) + ŷ2(a
′)

in Expression 5. This yields the punishment value for trade actions a and a′ in states θ and

θ′, respectively, written

λ(a, a′, θ, θ′) ≡ u1(a
′, θ) + π1R(a, θ) + u2(a

′, θ′) + π2R(a′, θ′). (6)

Next, we consider the step of minimizing the punishment value by choice of the trade

actions a and a′, which gives us a useful characterization of PEP(θ, θ′). Assumption 2

guarantees that λ(a, a′, θ, θ′) has a minimum.

Fact 5: The minimum punishment value in the setting of ex post renegotiation is charac-
terized as follows:

PEP(θ, θ′) = min
(a,a′)∈E(θ,θ′)

λ(a, a′, θ, θ′).

We obtain a similar characterization of the minimal punishment value for the setting in

which attention is restricted to forcing contracts. The characterization is exactly as in Fact 5

except with the additional requirement that a = a′ because forcing contracts compel the

same action in every state.

Fact 6: The minimum punishment value for the setting of forcing contracts and ex post
renegotiation is characterized as follows:

PEPF(θ, θ′) ≡ min
a∈A

λ(a, a, θ, θ′).

Recall that proving Theorem 2 requires us to establish that PEP(θ, θ′) > PEPF(θ, θ′)
for some pair of states θ, θ′ ∈ Θ. Appendix B finishes the analysis by exploring how one

can depart from the optimal forcing specification in a way that strictly reduces the value

λ(a, a′, θ, θ′).
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6 Conclusion
In this paper, we have reported on the analysis of contractual relationships for a large class

of trade technologies. We have provided general results on the relation between individual-

action and public-action models of contractual relationships, showing that limiting atten-

tion to forcing contracts has significant implications for implementability and hence ineffi-

ciency. Further, we have shown that (by utilizing non-forcing contracts) the payoff of the

party with the trade action can be neutralized so that the other party claims the full benefit

of the investment, gross of investment costs. This result led to the key novel insight of

our analysis for applications, which is to identify the distinction between the divided and

unified cases of investment and trade actions. We find that, in the setting of cross invest-

ment, the hold-up problem can be averted (and efficiency obtained) in the divided case but

generally not in the unified case.

Our results reinforce the message of Watson (2007) on the usefulness of modeling

trade actions as individual, particularly in settings of cross investment. The results suggest

revisiting some of the conclusions of public-action models in the existing literature. In

particular, settings with cross investment are generally not as problematic as previous mod-

eling exercises (Che and Hausch 1999, Edlin and Hermalin 2000, and others) have found.

Efficient outcomes can be achieved in the case of divided investment and trade actions.

Our results show the importance, for applied work, of differentiating between the cases of

divided and unified investment and trade actions. This distinction may be just as important

as the distinction between own- and cross-investment (on which the literature has focused

until now).

In our model, the trading opportunity is non-durable in that there is a single moment in

time when trade can occur. One might wonder if the results differ substantially in settings

with durable trading opportunities (where if trade does not occur at one time, then it can

still be done at a later date). This issue has been explored by Evans (2008) and Watson and

Wignall (2007), both of which examine individual-action models. Evans’ (2008) elegant

model is very general in terms of the available times at which the players can trade and

renegotiate. He constructs equilibria in which, by having the players coordinate in different

states on different equilibria in the infinite-horizon trade/negotiation game, the hold-up

problem is partly or completely alleviated. Evans’ strongest result (in which the efficient

outcome is reached) requires the ability of the players to commit to a joint financial hostage;

that is, money is deposited with a third party until trade occurs, if ever. Without the joint

financial hostage, the efficient outcome may not be achieved.

Watson and Wignall (2007) examine a cross-investment setting without the possibility

of joint financial hostages, and their model is more modest in other dimensions. They show

that the set of implementable post-investment payoff vectors in the setting of a durable

trading opportunity is essentially the same as in the setting of a non-durable trading oppor-

tunity. This suggests that, in general, the results from the current paper carry over to the

durability setting. Watson and Wignall also show that, in the divided condition, there are

non-stationary contracts that uniquely support the efficient outcome.
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Our modeling exercise, combined with the recent literature, suggests some broad con-

clusions about the prospect of efficient investment and trade in contractual relationships.

First, the hold-up problem is not necessarily severe, and efficient outcomes can often be

achieved. Durability of the trading opportunity does not worsen the hold-up problem and

may soften it in some cases, but it depends on the investment and trade technologies. Inef-

ficiency may be unavoidable in the following problematic cases:

• when there is cross investment and unified investment and trade actions, as identified

herein;

• when trade involves “complexity/ambivalence” as described by Segal (1999), Hart

and Moore (1999), and Reiche (2006);

• when multiple parties make cross/cooperative investments; and

• when the investment conveys a significant direct benefit (not requiring trade) on the

non-investing party, in addition to any benefit contingent on trade.

On the last point, Ellman’s (2006) model provides intuition in terms of the notion of speci-

ficity.

In each of the cases above, the hold-up problem would be reduced if the parties have

some way of creating joint financial hostages, as explored by Evans (2008) and Baliga and

Sjöström (2008). Bull (2009) provides a cautionary note on the inability of such financial

arrangements to withstand side-contracting.

Regarding extensions of our analysis here, it may be useful to examine different classes

of trade technologies, in particular ones in which both parties take trade actions (either

simultaneously or sequentially). We expect our results to extend to such settings.18 Per-

haps more interesting would be to examine settings with partially verifiable trade actions.

For example, a court may observe whether a particular trade was made but have trouble

identifying which party disrupted trade (in the event that trade did not occur).19

Finally, recall that in the modeling exercise here, we have assumed that each party’s

productive actions are exogenously given. However, in some settings it may be possible to

arbitrarily assign a particular task (such as delivering an object from one place to another)

to an individual player. Our model indicates that the parties would have preferences over

task assignment. Thus, it would be useful to determine whether physical trade actions are

assignable in some real settings, and to develop a model of optimal assignment. One might

imagine a theory of firm boundaries that is based on the optimal assignment of different

types of tasks over time.

18The contract could force one of the players to select a specific trade action and give the other player an

option as studied here. It would be interesting to work out how Assumption 4 would have to be modified to

generate the same results.
19Hart and Moore’s (1988) model has this feature. It is straightforward to incorporate partial verifiability

into the modeling framework developed here. One can represent the external enforcer’s information about

the trading game as a partition of the space of action profiles. One can then simply assume that the contracted

transfers y must be measurable with respect to this partition.
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A Proof of Theorem 1
This appendix provides a proof of the first theorem. For any fixed k, consider the following

contract. In the message phase (Date 4), player 2 must declare the state. Let θ̂ denote

player 2’s announcement. If player 1 subsequently selects action a∗(θ̂) then the enforcer is

to compel a transfer of t̂ = (k − u1(a
∗(θ̂), θ̂), u1(a

∗(θ̂), θ̂) − k). If player 1 selects action

a then the transfer is t = (k,−k). If player 1 chooses any other trade action, then the

enforcer compels transfer (−τ, τ), where τ is set large enough so that player 1 is forced

to choose between a∗(θ̂) and a. That is, regardless of θ̂, in no state will player 1 have the

incentive to choose a �∈ {a∗(θ̂), a}.

Suppose that Date 6 is reached without renegotiation and that the state is θ. Note that,

by Assumption 1, player 1 would get a payoff of k if he chooses a. Alternatively, his payoff

would be

u1(a
∗(θ̂), θ) + k − u1(a

∗(θ̂), θ̂)

if he chooses a∗(θ̂). Thus, it is rational for player 1 to choose a∗(θ̂) if u1(a
∗(θ̂), θ) ≥

u1(a
∗(θ̂), θ̂) and to select a otherwise, which we suppose is how player 1 will behave.

Consider next how player 2’s payoff from Date 4 depends on θ̂. Let θ be the actual state

and divide the analysis into three cases. First, if player 2 declares θ̂ = θ then, under the

original contract, player 1 would choose a∗(θ̂) at Date 6 and there is nothing to be jointly

gained by renegotiating at Date 5. In this case, the payoffs from Date 4 are k for player 1

and

u1(a
∗(θ), θ) + u2(a

∗(θ), θ)− k = γ(θ)− k

for player 2.

Second, if player 2 were to instead declare the state to be some θ̂ �= θ such that

u1(a
∗(θ̂), θ) < u1(a

∗(θ̂), θ̂), then the players anticipate that player 1 would select a at

Date 6 under the original contract. Incorporating the impact of renegotiation at Date 5,

player 1’s payoff from Date 4 would then be k + π1R(a, θ), where R(a, θ) is the renego-

tiation surplus in state θ if, without renegotiation, the players anticipate that a will be the

chosen trade action. Since R(a, θ) ≥ 0, player 1’s payoff from Date 4 weakly exceeds k
and we conclude that player 2’s payoff is weakly less than γ(θ)− k.

Finally, suppose that player 2 were to declare the state to be θ̂ �= θ such that u1(a
∗(θ̂), θ) >

u1(a
∗(θ̂), θ̂). In this case, the players anticipate that player 1 would select a∗(θ̂) at Date 6

under the original contract. Incorporating renegotiation at Date 5, player 1’s payoff from

Date 4 would then be

u1(a
∗(θ̂), θ) + k − u1(a

∗(θ̂), θ̂) + π1R(a∗(θ̂), θ),

where R(a∗(θ̂), θ) is the renegotiation surplus in state θ if, without renegotiation, the play-

ers anticipate that a∗(θ̂) will be the chosen trade action. The first and third terms sum

to weakly more than zero, so the entire expression weakly exceeds k. This implies that

player 2’s payoff is weakly less than γ(θ)− k.
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We have shown that player 2 optimally tells the truth at Date 4; that is, she declares

θ̂ = θ. The payoffs from Date 3 are thus k for player 1 and γ(θ) − k for player 2, which

means that the contract implements the desired value function. Q.E.D.

B Proof of Theorem 2
In this appendix, we complete the proof of Theorem 2. We start with the comparison of

V EPF and V EP and then provide the analysis for the comparison of V EP and V I.

Completion of the Proof that V EPF �= V EP

We pick up from the analysis at the end of Section 5. Consider a pair of states θ1, θ2

that satisfies Assumption 5. That is, we have θ1 > θ2 and either U(a, θ2) < U(a, θ2) or

U(a, θ1) > U(a, θ1). Let b1 denote a solution to the forcing-contract problem

min
a∈A

λ(a, a, θ1, θ2)

and let b2 denote a solution to the forcing-contract problem

min
a∈A

λ(a, a, θ2, θ1).

We shall demonstrate that either PEP(θ1, θ2) < PEPF(θ1, θ2) or PEP(θ2, θ1) < PEPF(θ2, θ1),
or both, which implies that V EPF �= V EP.

Let us evaluate the minimum punishment value corresponding to the ordered pair of

states (θ1, θ2). Specifically, compare the optimal forcing contract punishment (forcing

player 1 to select b1 in both states) with a non-forcing specification in which player 1 is

induced to select b1 in state θ1 and a in state θ2. This is a valid non-forcing contractual

specification because, by Fact 2, θ1 > θ2 and b1 ≥ a imply (b1, a) ∈ E(θ1, θ2).
If V EP = V EPF then it must be that λ(b1, b1, θ1, θ2) ≤ λ(b1, a, θ1, θ2). Applying the

definition of λ, this is

u1(b
1, θ1) + π1R(b1, θ1) + u2(b

1, θ2) + π2R(b1, θ2)

≤ u1(a, θ
1) + π1R(b1, θ1) + u2(a, θ

2) + π2R(a, θ2).

Canceling the second term on each side and using the definition of R, we arrive at

u1(b
1, θ1) + u2(b

1, θ2)− π2U(b1, θ2) ≤ u1(a, θ
1) + u2(a, θ

2)− π2U(a, θ2).

Substituting u2(·, θ2) = U(·, θ2)− u1(·, θ2) on both sides, we have

u1(b
1, θ1) + U(b1, θ2)− u1(b

1, θ2)− π2U(b1, θ2)

≤ u1(a, θ
1) + U(a, θ2)− u1(a, θ

2)− π2U(a, θ2).
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Finally, rearranging this expression a bit and using π1+π2 = 1, we conclude that λ(b1, b1, θ1, θ2) ≤
λ(b1, a, θ1, θ2) is equivalent to

u1(b
1, θ1)− u1(a, θ

1)− [u1(b
1, θ2)− u1(a, θ

2)] ≤ π1[U(a, θ2)− U(b1, θ2)]. (7)

Similarly, ordering states θ1 and θ2 in the opposite way, we compare the optimal forc-

ing contract punishment (forcing player 1 to select b2 in both states) with a non-forcing

specification in which player 1 is induced to select b2 in state θ2 and a in state θ1. Note

that θ2 < θ1 and b2 ≤ a imply (b2, a) ∈ E(θ2, θ1). If V EP = V EPF then it must be

that λ(b2, b2, θ2, θ1) ≤ λ(b2, a, θ2, θ1), which similar algebraic manipulation reveals to be

equivalent to

u1(a, θ
1)− u1(b

2, θ1)− [u1(a, θ
2)− u1(b

2, θ2)] ≤ π1[U(a, θ1)− U(b2, θ1)]. (8)

We have shown that if V EPF = V EP, then Expressions 7 and 8 hold. Assumption 4

then implies that the left sides of these inequalities are non-negative, which implies

U(a, θ2) ≥ U(b1, θ2) and U(a, θ1) ≥ U(b2, θ1).

Using Assumption 3, we obtain:

Fact 7: If V EPF = V EP then U(a, θ2) ≥ U(a, θ2) and U(a, θ1) ≥ U(a, θ1).

Assumption 5 and the contrapositive of Fact 7 provide the contradiction that proves V EPF �=
V EP.

Proof that V EP �= V I

We next prove the claim about the relation between V I and V EP. Since forcing contracts

are sufficient to construct V I, we have:

Fact 8: The minimum punishment value in the setting of interim renegotiation is charac-
terized as follows:

P I(θ, θ′) = min
a′′∈A

u1(a
′′, θ) + u2(a

′′, θ′).

Remember that, by Result 2, V I = V EP if and only if PEP(θ, θ′) = P I(θ, θ′) for all

θ, θ′ ∈ Θ. We can again compare the minimization problems to determine if this is the

case.

Take θ1, θ2 satisfying Assumption 5. Consider any solution to the minimization prob-

lem that defines PEP(θ1, θ2) and denote it (b, b′). That is, (b, b′) solves

min
(a,a′)∈E(θ1,θ2)

u1(a
′, θ1) + π1R(a, θ1) + u2(a

′, θ2) + π2R(a′, θ2).
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Then PEP(θ1, θ2) = P I(θ1, θ2) is equivalent to

u1(b
′, θ1) + π1R(b, θ1) + u2(b

′, θ2) + π2R(b′, θ2) = min
a′′∈A

u1(a
′′, θ1) + u2(a

′′, θ2).

Because R(·, ·) ≥ 0, we see that PEP(θ1, θ2) = P I(θ1, θ2) only if b′ solves the minimization

problem on the right side of the above equation and also R(b, θ1) = R(b′, θ2) = 0.

By Assumption 3, R(b′, θ2) = 0 if and only if b′ = a∗(θ2). Combining this with the

requirement that b′ must minimize u1(·, θ1) + u2(·, θ2), we derive that

u1(a
∗(θ2), θ1) + u2(a

∗(θ2), θ2) ≤ u1(a
′′, θ1) + u2(a

′′, θ2)

for all a′′. In particular, the following inequality must hold:

u1(a
∗(θ2), θ1) + u2(a

∗(θ2), θ2) ≤ u1(a, θ
1) + u2(a, θ

2).

Using the identity u2 = U − u1 and rearranging terms, we see that this is equivalent to

u1(a
∗(θ2), θ1)− u1(a, θ

1)− [u1(a
∗(θ2), θ2)− u1(a, θ

2)]

≤ U(a, θ2)− U(a∗(θ2), θ2).

(9)

Similarly, ordering states θ1 and θ2 in the opposite way, it is necessary that a∗(θ1) must

solve P I(θ2, θ1) in order for PEP(θ2, θ1) = P I(θ2, θ1). In particular, we must have

u1(a
∗(θ1), θ2) + u2(a

∗(θ1), θ1) ≤ u1(a, θ
2) + u2(a, θ

1).

This inequality is equivalent to

u1(a, θ
1)− u1(a

∗(θ1), θ1)− [u1(a, θ
2)− u1(a

∗(θ1), θ2)]

≤ U(a, θ1)− U(a∗(θ1), θ1).

(10)

By Assumption 4, the left sides of Expressions 9 and 10 must be non-negative, which

implies both U(a, θ2) ≥ U(a∗(θ2), θ2) and U(a, θ1) ≥ U(a∗(θ1), θ1). From Assumption 3,

we see that this is only possible if a = a∗(θ2) and a = a∗(θ1). If this is the case, Assump-

tion 3 also implies that U(a, θ2) ≥ U(a, θ2) and U(a, θ1) ≥ U(a, θ1). Thus we obtain:

Fact 9: If V I = V EP then U(a, θ2) ≥ U(a, θ2) and U(a, θ1) ≥ U(a, θ1).

The contrapositive of Fact 9 combined with Assumption 5 provides the contradiction that

proves V I �= V EP. Q.E.D.
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C Additional Analysis
In this appendix, we explore whether there are implementable value functions that hold

player 2’s payoff constant in the state, which would be required to extend the Corollary in

Section 3 to the unified case. We also provide more analysis of cross-investment settings.

Making Player 1 the Residual Claimant

To make player 1 the residual claimant, we need to implement a value function v satis-

fying, for some constant k, v2(θ) = k and v1(θ) = γ(θ) − k for all θ ∈ Θ. Consider two

states θ and θ′, and order them so that θ > θ′. The conditions for implementation associated

with these two states (for (θ, θ′) and (θ′, θ)) are

v1(θ) + v2(θ
′) ≥ PEP (θ, θ′)

and

v1(θ
′) + v2(θ) ≥ PEP (θ′, θ).

Using Fact 5 from Section 5, these conditions are equivalent to the existence of trade actions

a, a′, b, b′ such that (a, a′) ∈ E(θ, θ′), (b′, b) ∈ E(θ′, θ),

v1(θ) + v2(θ
′) ≥ λ(a, a′, θ, θ′)

and

v1(θ
′) + v2(θ) ≥ λ(b′, b, θ′, θ).

Substituting for v1 and v2 using the identities v2(θ) = k and v1(θ) = γ(θ) − k, these two

inequalities become:

λ(a, a′, θ, θ′) ≤ γ(θ) (11)

and

λ(b′, b, θ′, θ) ≤ γ(θ′). (12)

Summarizing, we have:

Lemma: Consider any contractual relationship that satisfies Assumptions 2 and 4. Let k
be any real number and define value function v by v2(θ) = k and v1(θ) = γ(θ)− k for all
θ ∈ Θ. Then v ∈ V EP if and only if for all pairs of states θ, θ′ with θ > θ′, there are trade
actions a, a′, b, b′ such that (a, a′) ∈ E(θ, θ′), (b′, b) ∈ E(θ′, θ), and Inequalities 11 and 12
hold.

One can use these conditions to establish whether efficient investment can be obtained

in specific examples with unified investment and trade actions, but sufficient conditions

would be much stronger than are the assumptions we have made in this paper.

For an illustration of cases where the conditions of the Lemma fail, suppose that the

strict version of Assumption 4 is satisfied, meaning u1 is strictly supermodular. Further

suppose that Assumptions 2, 3, and 6 hold. Also suppose that U is strictly increasing in θ
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and that U(a, θ) > γ(θ). That is, the joint value of the highest trade action in the highest

state exceeds the maximal joint value in the lowest state (gross of investment cost).

Using Equation 6, U = u1 + u2, and some algebra, we can rewrite Inequality 12 as:

π1[U(b, θ)− U(b′, θ′)] ≤ π2[γ(θ
′)− γ(θ)]− [u1(b, θ

′)− u1(b, θ)].

Examining the case of θ = θ and θ′ = θ, this becomes

π1[U(b, θ)− U(b′, θ)] ≤ π2[γ(θ)− γ(θ)]− [u1(b, θ)− u1(b, θ)]. (13)

Because u1 is strictly supermodular, b ≥ b′ is required. From Assumption 3, that

U(a, θ) > γ(θ), and that U is strictly increasing in θ, we conclude that the left side of

Inequality 13 is strictly positive and bounded away from zero.20 We also have that the first

bracketed term on the right side is strictly negative.

Thus, if |u1(b, θ) − u1(b, θ)| is small relative to π2|γ(θ) − γ(θ)|, then Inequality 13

fails to hold and there is no way to implement value functions that make player 2’s payoff

constant in the state. In other words, in the case of unified investment and trade actions, the

first-best level of investment generally cannot be induced.

More on Cross-Investment

This part of the appendix continues the discussion of Section 3. Consider the unified

case with ex post renegotiation and cross-investment, where player 2’s gain from trade is

B(a, θ) and player 1’s (the investor’s) gain is C(a, θ). We focus on the unified case because

the divided case is solved by Theorem 1. Suppose that the cross-investment element is

strong relative to the own-investment element, so that Che and Hausch’s (1999) result on

forcing contracts holds—that is, the null contract is optimal among forcing contracts.

We look at two subcases: pure cross-investment, where C(a, θ) is constant in the state

θ, and near pure cross investment, where C varies in θ only slightly compared to how B
varies in θ.

Let us begin with the pure cross-investment case. Investment is best motivated by

making v1(θ) − v1(θ
′) large for θ > θ′, requiring v1(θ

′) + v2(θ) to be low. Thus we

want the punishment value ẑ1(θ
′) + ẑ2(θ) = λ(a′, a, θ′, θ) to be small. Here a non-forcing

contract can provide better investment incentives if and only if there exists a, a′ such that

λ(a′, a, θ′, θ) < λ(0, 0, θ′, θ).

Expanding this inequality using Expression 6, we have

u1(a, θ
′) + π1R(a′, θ′) + u2(a, θ) + π2R(a, θ)

< u1(0, θ
′) + π1R(0, θ′) + u2(0, θ) + π2R(0, θ).

20To see this, consider two cases. If U(a, θ) ≥ U(a, θ), because U is strictly quasiconcave in a, every

point on the graph of U(·, θ) is above every point on the graph of U(·, θ) and so the result is immediate. If

U(a, θ) < U(a, θ), U strictly increasing in θ implies that the result holds over the range [a, a∗(θ)]. Over the

range [a∗(θ), a], the problem reduces to the first case.
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This reduces to

u1(a, θ
′) + π1R(a′, θ′) + u2(a, θ) + π2R(a, θ) < π1R(0, θ′) + π2R(0, θ).

Using the definition of renegotiation surplus, this inequality becomes

u1(a, θ
′) + π1U(a∗(θ′), θ′)− π1U(a′, θ′) + u2(a, θ) + π2U(a∗(θ), θ)− π2U(a, θ)

< π1U(a∗(θ′), θ′)− π1U(0, θ′) + π2U(a∗(θ), θ)− π2U(0, θ).

Simplifying yields

u1(a, θ
′)− π1U(a′, θ′) + u2(a, θ)− π2U(a, θ) < −π1U(0, θ′)− π2U(0, θ),

and further

u1(a, θ
′) + u2(a, θ)− π2U(a, θ) < π1U(a′, θ′) (14)

Because player 1’s utility is constant in the state (and thus not strictly supermodular),

we are not bound by the constraint that a must be at least as high as a′. Therefore an

implementable non-forcing contract that will ensure that Expression 14 holds is a′ = a∗(θ′)
and a = 0. This makes the left hand side zero, while the right hand side is positive by

Assumption 3 as long as a∗(θ′) > 0 and so a non-forcing contract can improve on the best

forcing contract just as in the divided case.

Next take the case of near pure cross-investment, so that the investor’s (player 1’s) trade

utility C(a, θ) depends only a bit on the state θ. For example, we could have C(a, θ) = εaθ
where ε is a constant that is close to zero. Results will depend on whether ε is positive or

negative.

If the investment is such that the beneficiary receives more than the total benefit created

by the investment (so ε < 0), then the investor’s trade utility becomes submodular in θ, just

as in our example. In the unified case, in order to satisfy Theorem 2’s assumption of weak

supermodularity, we simply reverse the action space: The investor’s utility function is then

weakly supermodular in (−a, θ). Just as in the case of pure cross investment, it is clear that

there is a feasible option contract in which the investor will select a∗(θ′) in state θ′ and 0 in

state θ.21 This implies that, for investment incentives, a non-forcing contract can improve

on a forcing contract.

Next suppose that the beneficiary receives less than the total benefit created by the

investment (so ε > 0). The utility function of the investing party (player 1) is strictly

supermodular, and so a non-forcing contract can only induce a ≥ a′ for two states θ, θ′

with θ > θ′. Thus, it is not possible to induce player 1 to choose 0 in state θ and a∗(θ′) in

state θ′. As a result, Expression 14 will not hold in general, and whenever this condition

fails, the incentives provided by the forcing contract cannot be improved upon using a

non-forcing contract.

21Recall that (a∗(θ), 0) ∈ E(θ′, θ) is required.
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