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Abstract

Fragment antigen-binding domains of antibodies (Fabs) are powerful probes of structure-function 

relationships of assembly-line polyketide synthases (PKSs). We report the discovery and 

characterization of Fabs interrogating the structure and function of the ketosynthase-acyltransferase 

(KS-AT) core of Module 2 of the 6-deoxyerythronolide B synthase (DEBS). Two Fabs (AC2 

and BB1) were identified to potently inhibit the catalytic activity of Module 2. Both AC2 

& BB1 were found to modulate ACP-mediated reactions catalyzed by this module, albeit by 

distinct mechanisms. AC2 primarily affects the rate (kcat), whereas BB1 increases the KM of an 

ACP-mediated reaction. A third Fab, AA5, binds to the KS-AT fragment of DEBS Module 2 

without altering either parameter; it is phenotypically reminiscent of a previously characterized 

Fab, 1B2, shown to principally recognize the N-terminal helical docking domain of DEBS Module 

3. Crystal structures of AA5 and 1B2 bound to the KS-AT fragment of Module 2 were solved 

to 2.70 and 2.65 Å resolution, respectively, and revealed entirely distinct recognition features of 
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the two antibodies. The new tools and insights reported here pave the way towards advancing 

our understanding of the structure-function relationships of DEBS Module 2, arguably the most 

well-studied module of an assembly-line PKS.

Graphical Abstract
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Assembly-line polyketide synthases (PKSs) are multi-enzyme systems that synthesize 

structurally complex polyketide natural products, many of which have found therapeutic 

utility (1). Engineering assembly-line PKSs to produce novel bioactive agents has therefore 

been a longstanding goal, albeit a challenging one due to their sheer complexity and our 

limited understanding of their structure-function relationships. To advance this frontier, 

our laboratory and others have focused on achieving a fundamental understanding of 

the core mechanisms underlying the enzymology of assembly-line PKSs. Specifically, 

each PKS module of an assembly line harbors a ketosynthase (KS), an acyltransferase 

(AT), and an acyl carrier protein (ACP) domain that collaborate to elongate the growing 

polyketide chain via a decarboxylative C-C bond forming reaction with an unsubstituted 

or substituted malonyl extender unit (2). Additional enzymatic domains (e.g., ketoreductase 

(KR), dehydratase (DH), enoyl reductase (ER)) may also be present in some but not all 

modules of assembly-line PKSs (3–5). Owing to the universality of the chain elongation 

process, we have sought to understand the mechanisms by which the KS, AT, ACP, and their 

covalently bound acyl-chain species interact with each other in the context of the catalytic 

cycle of a PKS module (Figure S1).

Over the past two decades, X-ray crystallography and single-particle cryo-electron 

microscopy (cryoEM) have been especially powerful structural tools for structure-function 

analysis of assembly-line PKSs (6–17). More recent structural efforts have also relied 

on the use of fragment antigen-binding domains of antibodies (Fabs) as chaperones for 

crystallography and cryoEM (6, 12–15). For example, the Fab 1B2 binds to the N-terminal 

helical docking domain of Module 3 of the 6-deoxyerythronolide B synthase (DEBS; Figure 

1) and has proven invaluable for visualizing entire modules of two unrelated PKSs, the 

lasalocid PKS (13) and DEBS (14). We therefore sought to discover additional antibody 
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probes to enhance our understanding of the KS-AT core of a representative assembly-line 

PKS module.

Analogous to our previous phage display library screen of Fabs (3.7 × 1010) against DEBS 

modules 1 and 3 (6, 12, 15), three unique Fabs (AA5, AC2, and BB1) against DEBS Module 

2 were identified (Figure 1). To stabilize Module 2 in its homodimeric state in the absence of 

the remainder of the DEBS 1 protein (Figure S1), this stand-alone module was fused to the 

N-terminal coiled-coil docking domain from Module 3 (hereafter referred to as D(3)-Module 

2).

Binding analysis using size exclusion chromatography (SEC) revealed that all three Fabs 

recognized the homodimeric D(3)KS2-AT2 fragment of D(3)-Module 2 (representative data 

for AA5 is shown in Figure 2; data for other antibodies is shown in Figure S2). Antibody 

recognition was quantified via ELISA with apparent KD values of AA5, AC2, and BB1 

being 5.7 ± 0.06, 1.6 ± 0.02, and 8.2 ± 0.07 nM, respectively (Figure S3).

The ability of all three Fabs to bind homodimeric D(3)KS2-AT2 tightly highlights the power 

of phage display libraries of naïve Fabs to yield high-affinity reagents. Control studies with a 

previously characterized Fab, 1B2, which recognizes the D(3) docking domain of Module 3, 

validated our analysis of the newly isolated antibodies (Figure S4) (15).

To establish that AA5, AC2, and BB1 specifically recognized the KS-AT fragment of 

Module 2 and not its flanking D(3) domain, each antibody was counter-screened against 

D(5)KS2-AT2, a homodimeric construct harboring the distantly related N-terminal docking 

domain of Module 5 in lieu of D(3) (Figure S5). All three Fabs described in this report 

(AA5, AC2, and BB1) retained their affinity for the latter protein, while 1B2 was unable to 

bind D(5)KS2-AT2 (Figure S6). From this data we concluded that AA5, AC2, and BB1 were 

specific for the KS-AT core of Module 2.

To investigate whether AA5, AC2, and BB1 inhibited the catalytic activity of Module 2, 

turnover of a truncated derivative of DEBS harboring its loading didomain, Module 1, and 

Module 2 fused to the terminal thioesterase (TE) domain was measured spectroscopically in 

the presence of each Fab (15). As shown in Figure 3A, AC2 and BB1 but not AA5 inhibited 

turnover of this bimodular PKS.

As illustrated by the control 1B2 antibody, this assay is incapable of discriminating between 

inhibition of intermodular chain translocation between the ACP domain of Module 1 and 

the KS domain of Module 2 from inhibition of a core reaction (transacylation or elongation) 

catalyzed by KS2-AT2. To do so, the turnover of stand-alone Module 2-TE was assayed in 

the presence of a diffusible analog of its natural diketide substrate (hereafter referred to as 

NDK-SNAC, whose preparation is described in Figures S7–S13) (15, 18–20). AC2 and BB1 

(but not AA5) inhibited Module 2-TE enzyme activity (Figure 3B). To further dissect this 

inhibition mechanism, Module 2 was dissociated into three fragments: D(3)KS2-AT2, KR2, 

and ACP2 (Figure S14). Prior efforts in our laboratory to reconstitute the catalytic activity of 

a PKS module from its dissected domains relied on 14C radiolabeling or LC-MS assays (21). 

Here we were able to quantify the activity of Module 2 by monitoring NADPH consumption 

in the presence of a stoichiometric excess of ACP2 (Figure S15). Under conditions where 
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neither KS acylation with its diketide substrate nor ACP acylation with a methylmalonyl 

extender unit nor β-ketoreduction of the elongated triketide product were rate-limiting, AC2 

and BB1 inhibited turnover of dissociated Module 2 while AA5 did not (Figure 3C, Figure 

S16) (19, 22). Notably, the inhibitory mechanisms of AC2 and BB1 were different; whereas 

AC2 appeared to be a non-competitive inhibitor, the inhibitory effect of BB1 appeared 

predominantly competitive. The competitive nature of BB1 inhibition in this assay is distinct 

from its non-competitive inhibitory effect in the stand-alone M2-TE assay (Figure 3B). 

Taken together, our data suggests that TE-promoted substrate off-loading, not KS-promoted 

chain elongation, is rate limiting in the M2-TE turnover assay under saturating NDK-SNAC 

concentrations. This finding yet again highlights the utility of Fabs as mechanistic probes for 

PKSs. Further analysis of the distinct inhibitory mechanisms of AC2 and BB1 is warranted.

While crystal growth from complexes comprised of KS2-AT2 and either AC2 or BB1 has 

proven elusive thus far, we took advantage of AA5 and 1B2 as crystallography chaperones 

to obtain co-crystals that diffracted to 2.70 and 2.65 Å, respectively (Figure 4, Table S1, 

Figure S17). In both cases the homodimeric KS2-AT2 protein crystallized in an extended 

architecture analogous to all previously characterized high-resolution structures of this 

didomain core of assembly-line PKS modules (13–15, 23).

Similar to its previously reported co-crystal structure with D(3)KS3-AT3, 1B2 predominantly 

made contact with the N-terminal docking domain of D(3)KS2-AT2 (Figure S18) (15). 

While D(3) was well-resolved in this co-crystal structure, it was not resolved in the AA5 

co-crystal structure. Meanwhile, AA5 principally contacted the hydrolase subdomain of the 

AT in an orientation that was directed away from its active site Ser residue. Additional 

contacts were also observed with the KS-AT linker. The remarkably high affinity of AA5 

for KS2-AT2 appears to be dominated by several polar contacts (Figure S19). Overall, 

this structure validates the non-inhibitory nature of AA5 binding to Module 2. No major 

conformational changes were observed between the two snapshots of the KS2-AT2 fragment 

(Figure S20, RMSD 1.44 Å). Slight variation between the two KS2-AT2 models can be 

attributed to AT flexibility; this type of rotation of the AT domain has been previously 

described (23–24). Modeling studies were undertaken with the previously reported NMR 

structure of ACP2 (PDB ID 2JU2) (25) to gain insight into the specificity-determining 

residues at the KS/ACP interface of DEBS Module 2. Recently the cryoEM structure of 

DEBS Module 1 with the ACP stalled in the elongation state (PDB ID 7M7F), was reported 

(14). To simulate the analogous binding pose for DEBS Module 2, the KS2-AT2 didomain 

from PDB 8EE0 (in complex with Fab 1B2) was superposed onto the KS1-AT1 didomain and 

the solution NMR structure of ACP2 was superposed onto ACP1 (Figure S21). In agreement 

with prior experimental data, the model revealed favorable interactions between Loop 1 of 

ACP2 and the KS2-AT2 (26), further supporting our reported structures.

This is the first reported structure of the KS-AT didomain of DEBS Module 2, arguably 

the most extensively studied module of an assembly-line PKS to date (11, 25–28). Our 

results highlight the utility of Fabs in studying PKSs. Three unique Fabs (AA5, AC2, and 

BB1) that recognize the KS-AT fragment of DEBS Module 2 were characterized. AA5 

was highlighted as a crystallography chaperone, meanwhile AC2 and BB1 have unique 

inhibitory properties that are useful mechanistic probes of Module 2. This module is known 
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to have an exceptionally broad substrate scope (27); further investigations into this property 

are warranted in a manner that is enabled by our reported structures and crystallographic 

chaperones.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fabs specific to distinct regions of DEBS Modules 1, 2 and 3 have been identified to date 

via phage display (top). SDS-PAGE analysis (bottom right) of purified Fabs (AA5, AC2, and 

BB1) described in this report are shown under non-reducing (left lane) and reducing (right 

lane) conditions. For reference, a previously characterized Fab (1B2) that binds specifically 

to the helical docking domain of Module 3 is also included.
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Figure 2. 
1.5 molar equivalents Fab AA5 were incubated with D(3)KS2-AT2 on ice for 1 h before 

injection onto a SEC column. Comparison of SEC UV Chromatographs of AA5 (pink), 

D(3)KS2-AT2 (blue), and AA5:D(3)KS2-AT2 (grey). SDS-PAGE analysis of the major SEC 

peak (grey) shows a near 1:1 stoichiometric mixture of AA5 and D(3)KS2-AT2.
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Figure 3. 
(A) NADPH consumption by a truncated bimodular derivative of DEBS comprised of only 

its first two modules was monitored in the presence of 1.5 equivalents AA5 (pink), AC2 

(green), BB1 (orange), or 1B2 (black). Control assays lacking M2-TE (grey) or any Fab 

(blue) are also shown. (B) Effect of AA5, AC2, BB1, and 1B2 binding on DEBS Module 

2-TE turnover at varied NDK-SNAC concentrations. (C) Effect of AA5 (5 μM), AC2 (5 μM) 

or BB1 (1 μM) on the activity of a dissociated form of Module 2 comprised of D(3)KS2-
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AT2, KR2, and varying concentrations of ACP2. Data points correspond to averages of 

technical triplicates.
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Figure 4. 
Crystal structure(s) of (A) 1B2- (PDB ID 8EE0) and (B) AA5- (PDB ID 8EE1) bound 

D(3)KS2-AT2.
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