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Abstract

We derive a Bayesian Ideal Observer (BIO) for detecting amotnd
solving the correspondence problem. We obtain Barlow aijehifry’s
classic model as an approximation. Our psychophysical rerpats
show that the trends of human performance are similar to theefian
Ideal, but overall human performance is far worse. We ingats ways
to degrade the Bayesian Ideal but show that even extremadgegns
do not approach human performance. Instead we propose thers
perform motion tasks using generic, general purpose, maidehotion.
We perform more psychophysical experiments which are sterdi with
humans using a Slow-and-Smooth model and which rule outtamat
tive model using Slowness.

1 Introduction

Ideal Observers give fundamental limits for performinguaistasks (somewhat similar to
Shannon’s limits on information transfer). They give bamelnks against which to evaluate
human performance. This enables us to determine objectivieht visual tasks humans
are good at, and may help point the way to underlying neunoreahanisms. For a recent
review, see [1].

In an influential paper, Barlow and Tripathy [2] tested thiiglof human subjects to detect
dots moving coherently in a background of random dots. Theiwed an “ideal observer”

model using techniques from Signal Detection theory [3]eyBhowed that their model
predicted the trends of the human performance as propeftibs stimuli changed, but that
humans performed far worse than their model. They argudadddgrading their model,

by lowering the spatial resolution, would give predictiarigser to human performance.
Barlow and Tripathy's model has generated considerabéeast, see [4,5,6,7].

We formulate this motion problem in terms of Bayesian Decisiheory and derive a
Bayesian Ideal Observer (BIO) model. We describe why Badod Tripathy’s (BT) model
is not fully ideal, show that it can be obtained as an appraxion to the BIO, and deter-
mine conditions under which it is a good approximation. Wdqren psychophysical ex-
periments under a range of conditions and show that thegreituman subjects are more
similar to those of the BIO. We investigate whether degradie Bayesian Ideal enables
us to reach human performance, and conclude that it doesvithb(t implausibly large



deformations). We comment that Barlow and Tripathy’s ddgtian model is implausible
due to the nature of the approximations used.

Instead we show that a generic motion detection model whigs & slow-and-smooth
assumption about the motion field [8,9] gives similar paerfance to human subjects under
a range of experimental conditions. A simpler approachgiaislowness assumption alone
does not match new experimental data that we present. Wéuckenihat human observers
are not ideal, in the sense that they do not perform inferesoeg the model that the
experimenter has chosen to generate the data, but maydnstea general purpose model
perhaps adapted to the motion statistics of natural images.

2 BayesDecision Theory and Ideal Observers

We now give the basic elements of Bayes Decision Theory. Tpatidata isD and
we seek to estimate a binary stdté (e.g. coherent or incoherent motion, horizon-
tal motion to right or to left). We assume mode¥ D|W) and P(IW). We define

a decision rulea(D) and a loss function.(a(l), W) = 1 — d4py,w. The risk is
R(a) =3 "p w L(a(D), W)P(D|W)P(W).

Optimal performance is given by the Bayes rut¢: = arg min R(«). The fundamental
limits are given by Bayes Risk?* = R(a*). Bayes risk is the best performance that can
be achieved. It corresponds to ideal performance.

Barlow and Tripathy’s (BT) model does not achieve Bayes. rigkis is because they used
simplification to derive it using concepts from Signal D¢l theory (SDT). SDT is es-
sentially the application of Bayes Decision Theory to thektaf signal detection but, for
historical reasons, SDT restricts itself to a limited clasgrobability models and is unable
to capture the complexity of the motion problem.

3 Experimental Setup and Correspondence Noise

We now give the details of Barlow and Tripathy’s stimuli, itheodel, and their experi-
ments. The stimuli consist of two image frames wifidots in each frame. The dots in the
first frame are at random positions. For coherent stimud,fegure (1), a proportiod’ N

of dots move coherently left or right horizontally with a ftkeranslation motion with dis-
placemenf’. The remainingV(1 — C') dots in the second frame are generated at random.
For incoherent stimuli, the dots in both frames are gendrateandom.

Estimating motion for these stimuli requires solving therespondence problem to match
dots between frames. For coherent motion, the noise dotsaotrespondence noise and
make the matching harder, see the rightmost panel in figire (1

Barlow and Tripathy perform two types of binary forced cleexperiments. ldetection
experiments, the task is to determine whether the stimuli is coherenbcoherent motion.
For discrimination experiments, the goal is to determine if the motion is to the right or the
left.

The experiments are performed by adjusting the fraafiaf coherently moving dots until
the human subject’s performance is at threshold (i.e. 76ep¢rcorrect). Barlow and
Tripathy's (BT) model gives the proportion of dots at threlshto beCy = 1//Q — N
whereQ is the size of the image lattice. This is approximately/Q (becauseV << Q)
and so is independent of the density of dots. Barlow and fmpeompare the thresholds of
the human subjects with those of their model for a range oéempental conditions which
we will discuss in later sections.
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Figure 1: The left three panels show coherent stimuli wite= 20, C = 0.1, N = 20,C =
0.5 andN = 20,C = 1.0 respectively. The closed and open circles denote dots ifirtie
and second frame respectively. The arrows show the motithroeé dots which are moving
coherently. Correspondence noise is illustrated by thadat panel showing that a dot in
the first frame has many candidate matches in the second.frame

4 TheBayesan |deal M odel

We now compute the Bayes rule and Bayes risk by taking intowrdieexactly how the data
is generated. We denote the dot positions in the first anchseftame byD = {z; : i =
1,...; N} {ya : @« = 1,..., N}. We define correspondence variablgs : V;, = 1if z; —
Ya, Vie = 0 otherwise.

The generative model for the data is given by:

P(D|Coh,T) = Y P({ya}H{ai}. {Via}, T)P({Via})P({z:}) coherent,
Via
P(D|Incoh) = P({y.})P({z;}), incoherent. (¢D)]

The prior distributions for the dot positiod3({x;}), P({y.}) allow all configurations of
the dots to be equally likely. They are therefore of foRt{z;}) = P({y.}) = <5
where @ is the number of lattice points The modE({ya}|{xi}, {Via},T) for coher-
ent motion isP({y.}{z:},{Via}, T) = (Q CN), [L, (6y. 2 +7)"*. We set the priors

P({Viq} to be the uniform distribution. There is a constraint, Vi, = C'N (since only
C'N dots move coherently).

This gives:
P(Djncoh) = é!N)!(Q C_Q,N)!,
P(D|Coh,T) = {(N(N?!N) (N( CN)! *(CN)! ZH vatTw,)

’L(L ia

These can be simplified further by observing thaf, T[;, ( ya,JEiJrT)‘/i"' = (\I/+I')‘M'

where is the total number of matches — i.e. the number of dots in taeffame that have
a corresponding dot at displacem@nin the second frame (this includes “fake” matches
due to change alignment of noise dots in the two frames).

The Bayes rule for performing the tasks are given by testiedag-likelihood ratios: (i)

log % for detection (i.e. coherent versus incoherent), ando@)% for
discrimination (i.e. motion to right or to left). For detamt, the log-likelihood ratio is a
function of . For discrimination, the log-likelihood ratio is a funati@f the number of
matches to the righ¥,. and to the leftl;. It is straightforward to calculate the Bayes risk

and determine coherence thresholds.



We can rederive Barlow and Tripathy’s model as an approxonab the Bayesian Ideal.
They make two approximations: (i) they model the distribatof 1) as Binomial, (ii) they
used’. Both approximations are very good near threshold, exaeprhall N. The use of
d' can be justified ifP(¥|Coh, T) and P(¥|Incoh) are Gaussians with similar variance.
This is true for largeV = 1000 and a range of” but not so good for smalV = 100, see
figure (2).
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Figure 2: We plotP(¥|Coh,T) and P(¥|Incoh), shown asP(¥|C) and P(¥|N) re-
spectively, for a range aV andC'. One of Barlow and Tripathy’s two approximations are
justified if the distributions are Gaussian with the sameavene. This is true for largéy
(left two panels) but fails for smalv (right two panels). Note that human thresholds are
roughly 30 times higher than for BIO (the scales on grapHeif

We computed the coherence threshold for the BIO and the Bletadokr NV = 100to N =
1000, see the second and fourth panels in figure (3). As descrimdidrethe BT threshold
is approximately independent of the numbBéiof dots. Our computations showed that the
BIO threshold is also roughly constant except for smallthis is not surprising in light of
figure (2). This motivated psychophysics experiments tergine how humans performed
for small NV (this range of dots was not explored in Barlow and Tripatlexperiments).

All our data points are from 300 trials using QUEST, so erbass are so small that we do
not include them.

We performed the detection and discrimination tasks wahgtation motiorl” = 16 (as
in Barlow and Tripathy). For detection and discrimatiore thuman subject’s thresholds
showed similar trends to the thresholds for BIO and BT. Buhano performance at small
N are more consistent with BIO, see figure (3).

—~— HL
= RK

oo \\_,/-/

Coherence Threshold

Coherence Threshold
Coherence Threshold

Coherence Threshold

1000 10000 00 1000 10000 0136 1000 L 00 1000
Dot Numbers (N) Dot Numbers (N) Dot Numbers (N) Dot Numbers (N)

Figure 3: The left two panels show detection thresholds —dmusubjects (far left) and BIO
and BT thresholds (left). The right two panels show disanation thresholds — human
subjects (right) and BIO and BT (far right).

But probably the most striking aspect of figure (3) is how fbumans perform compared
to the models. The thresholds for BIO are always higher thase for BT, but these
differences are almost negligible compared to the diffeesrwith the human subjects. The
experiments also show that the human subject trends diffen the models at largdy.
But these are extreme conditions where there are dots onpuimgs on the image lattice.



5 Degradating the Ideal Observer Models

We now degrade the Bayes Ideal model to see if we can obtaimmy@rformance. We
consider two mechanisms: (A) Humans do not know the precike\of the motion transla-
tionT". (B) Humans have poor spatial uncertainty. We will also coratboth mechanisms.

For (A), we model lack of knowledge of the velocityby summing over different motions.
We generate the stimuli as before fraR{D|Incoh) or P(D|Coh,T), but we make the
> P(D|Coh, T)P(T)

P(DJIncoh) '

decision by thresholdindog

For (B), we model lack of spatial resolution by replaci®i{y,}|{=:}, {Vi},T) =
—N)! —N)!

% Hia V;aéya,xm% by P({ya}‘{xl}7 {Via}> T) = % Hm ViafW(ym T+ t)'

Here W is the width of a spatial window, so thadiy (a,b) = 1/W?2, if |a — b <

W5 fw(a,b) =0, otherwise.

Our calculations, see figure (4), show that neither (A) norr{Bt their combination are
sufficient to account for the poor performance of human subje Lack of knowledge
of the correct motion (and consequently summing over séweoaels) does little to de-
grade performance. Decreasing spatial resolution dogadegerformance but even huge
degradations are insufficient to reach human levels. Badod Tripathy [2] argue that
they can degrade their model to reach human performancééutegradations are huge
and they occur in conditions (e.dv = 50 or N = 100) where their model is not a good
approximation to the true Bayesian Ideal Observer.
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Figure 4. Comparing the degraded models to human perforenaie use a log-log plot
because the differences between humans and model threshelety large.

6 Sownessand Slow-and-Smooth

We now consider an alternative explanation for why humafoperance differs so greatly
from the Bayesian Ideal Observer. Perhaps human subjeatetdaose the ideal model
(which is only known to the designer of the experiments) aisteiad use a general purpose
motion model. We now consider two possible models: (i) a sk model, and (ii) a slow
and smooth model.
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Figure 5: The coherence threshold as a functiodbr different translation motion%'.
From left to right, human subject (HL), human subject (RKDNIN (shown forT" = 16
only), and 1DNN. In the two right panels we have drawn the ayethuman performance
for comparision.



The slowness model is partly motivated by Ullman’s minimalpping theory [10] and
partly by the design of practical computer vision trackirygtems. This model solves
the correspondence problem by simply matching a dot in tis¢ fiame to the closest
dot in the second frame. We consider a 2D nearest neighbodelni2DNN) and a 1D
nearest neighbour model (1DNN), for which the matching isst@ined to be in horizontal
directions only. After the motion has been calculated wdqgoer a log-likelihood test
to solve the discrimination and detection tasks. This eesabk to calculate coherence
thresholds, see figure (5). Both 1DNN and 2DNN predict thatespondence will be easy
for small translation motions even when the number of doteig large. This motivates a
new class of experiments where we vary the translation motio

Our experiments show that 1DNN and 2DNN are poor fits to hunesfopmance. Human
performance thresholds are relatively insensitive to tivalmer N of dots and the trans-
lation motionT’, see the two left panels in figure (5). By contrast, the 1DNN 2BNN
thresholds are either far lower than humans for smalbr far higher at largeV with a
transition that depends ah We conclude that the 1DNN and 2DNN models do not match
human performance.
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Figure 6: The motion flows from Slow-and-Smooth fir = 100 as functions ofC and
T. From left to right,C = 0.1,C = 0.2,C = 0.3,C = 0.5. From top to bottom,
T =4,T = 8,T = 16. The closed and open circles denote dots in the first and decon

frame respectively. The arrows indicate the motion flow Hmetby the Slow-and-Smooth
model.

We now consider the Slow-and-Smooth model [8,9] which hamntshown to account for
a range of motion phenomena. We use a formulation [8] thatspasifically designed for
dealing with the correspondence problem.



This gives a model of fornP(V, v|[{z;}, {ya}) = (1/Z)e= FIV:?l/Tm  where

N N N
E[V,0] =Y > Via(ya — zi — v(@:))* + A|[Lo|* + ¢ D Vio, 2
i=1a=1 =1

L is an operator that penalizes slow-and-smooth motion apdriis on a paramtess see

Yuille and Grzywacz for details [8]. We impose the constraimat vaza Vie = 1, Vi,
which enforces that each poifin the first frame is either unmatched,Vif, = 1, or is
matched to a poini in the second frame.

We implemented this model using an EM algorithm to estimiagenbotion fieldv(x) that
maximizesP (v|{z:}, {y.}) = >y P(V,v[{z;}, {ya}). The parameter settings &, =
0.001, A = 0.5, ¢ = 0.01, 0 = 0.2236. (The size of the units of length are normalized by
the size of the image). The size®fetermines the spatial scale of the interaction between
dots [8]. This parameter settings estimate correct moti@ctions in the condition that all
dots move coherently, = 1.0.

The following results, see figure (6), show that for 100 déi{s£ 100) the results of the
slow-and-smooth model are similar to those of the humarestbjor a range of different
translation motions. Slow-and-Smooth starts giving cehee thresholds betweéh= 0.2
andC = 0.3 consistent with human performance. Lower thresholds eeduior slower
coherent translations in agreement with human performance

Slow-and-Smooth also gives thresholds similar to humafopeance when we alter the
numberN of dots, see figure (7). Once again, Slow-and-Smooth stasitsgghe correct
horizontal motion betweesai= 0.2 andc = 0.3.
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7 Summary

We defined a Bayes Ideal Observer (BIO) for correspondenise mmd showed that Bar-
low and Tripathy's (BT) model [2] can be obtained as an apipnation. We performed
psychophysical experiments which showed that the trendsuofan performance were
more similar to those of BIO (when it differed from BT). We atipted to account for
human’s poor performance (compared to BIO) by allowing fegrédations of the model
such as poor spatial resolution and uncertainty about theige translation velocity. We
concluded that these degradation had to be implausiblg lEr@ccount for the poorness
of human performance. We noted that Barlow and Tripathygal#ation model [2] takes
them into a regime where their model is a bad approximatiahedBI|O. Instead, we in-
vestigated the possibility that human observers perfoesdhmotion tasks using generic
probability models for motion possibly adapted to the stats of motion in the natural
world. Further psychophysical experiments showed thatdmuperformance was inconsis-
tent with a model than prefers slow motion. But human perforoe was consistent with
the Slow-and-Smooth model [8,9].

We conclude with two metapoints. Firstly, it is possible &sidn ideal observer models for
complex stimuli using techniques from Bayes decision thebhere is no need to restrict
oneself to the traditional models described in classicaigetection books such as Green
and Swets [3]. Secondly, human performance at visual tagksbm based ogeneric
models, such as Slow-and-Smooth, rather than the ideal modelféogtperimental tasks
(known only to the experimenter).
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