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Abstract

Chemical lift-off lithography (CLL) is a subtractive soft-lithographic technique that uses 

polydimethylsiloxane (PDMS) stamps to pattern self-assembled monolayers of functional 

molecules for applications ranging from biomolecule patterning to transistor fabrication. A 

hallmark of CLL is preferential cleavage of Au-Au bonds, as opposed to bonds connecting the 

molecular layer to the substrate, i.e., Au-S bonds. Herein, we show that CLL can be used more 

broadly as a technique to pattern a variety of substrates composed of coinage metals (Pt, Pd, Ag, 

Cu), transition and reactive metals (Ni, Ti, Al), and a semiconductor (Ge) using straightforward 

alkanethiolate self-assembly chemistry. We demonstrate high-fidelity patterning in terms of 

precise features over large areas on all surfaces investigated. We use patterned monolayers as 

chemical resists for wet etching to generate metal microstructures. Substrate atoms, along with 

alkanethiolates, were removed as a result of lift-off, as previously observed for Au. We 

demonstrate the formation of PDMS-stamp-supported bimetallic monolayers by performing CLL 
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on two different metal surfaces using the same PDMS stamp. By expanding the scope of the 

surfaces compatible with CLL, we advance and generalize CLL as a method to pattern a wide 

range of substrates, as well as to produce supported metal monolayers, both with broad 

applications in surface and materials science.

Graphical Abstract

Molecular self-assembled monolayers (SAMs) on surfaces are versatile systems for 

investigating and tailoring surface, interfacial, and environmental interactions.1-5 There are a 

variety of SAM molecules with differing head and tail group functionalities that can be 

tuned to bind (covalently and noncovalently) and to interact with specific surfaces, with 

alkanethiol monolayers on Au surfaces representing a commonly used and well-studied 

system.6-9 The patterning of alkanethiolate SAMs on metal surfaces imparts an additional 

level of control and dimension into these systems, which has led to a multitude of 

applications in surface science and nanotechnology.1,2,4,6,10-12

Molecular monolayers can be patterned via conventional lithographic techniques (e.g., 
photolithography),13,14 but are more commonly patterned using low-cost and high-

throughput soft-lithographic methods.2,3,15,16 Conventional soft lithography (e.g., 
microcontact printing, μCP), involves the additive patterning of SAM molecules onto 

surfaces by transfer of molecular inks via contact of patterned polydimethylsiloxane 

(PDMS) stamps with the corresponding surfaces.17-22 While μCP has significantly advanced 

the field of SAM patterning, it is inherently limited in the resolution of features produced 

due to lateral diffusion of ink molecules during and after the patterning is performed.19,21-24 

Advances in soft lithography have improved feature resolution12-14,25,26 (e.g., polymer pen 

lithography27 and microdisplacement printing).11

In contrast to abundant additive patterning methods, chemical lift-off lithography (CLL) is a 

subtractive soft-lithographic strategy.28,29 Here, alkanethiol molecules, with exposed 

functional tail groups (e.g., -OH, -COOH, -NH2), in preformed SAMs are removed from Au 
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surfaces only in areas contacted by patterned PDMS stamps.28-30 Notably, as a result of the 

CLL process, Au atoms are transferred to the PDMS stamps.28,29,31 Chemical lift-off 

lithography enables high-fidelity patterning of SAMs over a wide range of feature sizes 

(nanometer to millimeter).28,29,32-34 This patterning process has inspired and enabled 

diverse applications including the patterning of bioactive molecules,30,32,35-39 supported 

gold monolayers,31 and the facile fabrication of field-effect transistor arrays.40,41

Nonetheless, CLL has been primarily used to pattern alkanethiol monolayers on Au 

surfaces, with the patterning of other coinage, transition, and reactive metal, semiconductor, 

and metal oxide surfaces representing potentially unexplored areas of interest.28,42,43 The 

formation and patterning of alkanethiolate SAMs on other coinage metal surfaces (e.g., Ag, 

Cu, Pd) have been previously demonstrated using μCP.6,8,44-52 Alkanthiolate SAMs on 

transition and reactive metal surfaces are less studied as the reactivity of these surfaces 

typically leads to the formation of passivating metal oxide layers that hinders additive SAM 

patterning.53-57 For subtractive patterning, such as CLL, the entire substrate surface is first 

functionalized with a SAM, and thus passivated preventing surface oxide formation prior to 

patterning.28 Straightforward and direct self-assembly and patterning of molecules on 

reactive surfaces may be beneficial for a variety of systems including the investigation of 

spin-selectivity in molecular assemblies on ferromagnetic surfaces,36,58 patterning of metal-

oxide semiconductors for transistor and biosensor applications,41,59,60 and growth of two-

dimensional materials (e.g., graphene nanoribbons).61,62

Herein, we extend CLL as a technique to pattern alkanethiolate SAMs on different coinage 

metals (Pt, Pd, Ag, Cu), transition and reactive metals (Ni, Ti, Al), and a semiconductor 

(Ge). Using the patterned monolayers as molecular resists, we demonstrate pattern transfer 

to underlying metal substrates via wet etching. In all cases, we show that corresponding 

supported (mono)layers of substrate atoms are removed during the CLL process. Moreover, 

we can form atomic blends of mixed metal monolayers on PDMS stamp surfaces. These 

findings illustrate that CLL is a versatile technique for economical and high-throughput 

patterning of a multitude of different material surfaces using straightforward alkanethiol 

self-assembly.

A schematic of the CLL process is shown in Figure 1. Patterned oxygen-plasma-activated 

PDMS stamps were brought into contact with SAMs of 11-mercapto-1-undecanol (MUO) 

on metal28 or semiconductor surfaces. Stamp contact enabled removal of SAM molecules in 

the contacted substrate areas. We first investigated coinage metals besides Au used in our 

previous studies (i.e., Pt, Pd, Ag, Cu). Self-assembled monolayers of alkanethiolates have 

been shown to form on other coinage metals;44-46,49,63,64 thus, we predicted that CLL could 

be used to pattern these additional metal surfaces.

Monolayers on metal surfaces were imaged using scanning electron microscopy (SEM) after 

patterning by CLL. Scanning electron micrographs of Pt, Pd, Ag, and Cu surfaces contacted 

by “CNSI/UCLA” patterned PDMS stamps showed evidence of negative features in MUO 

monolayers corresponding to the features of the stamp (Figure 2A-D,S1). Features did not 

show evidence of broadening associated with lateral diffusion of MUO after patterning,23 

similar to the case of CLL on Au.33
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Patterned monolayers on metal surfaces after CLL act as molecular resists to facilitate 

fabrication of metal nano/microstructures via chemical wet etching.28,31,34,40,41 To 

demonstrate the functionality and resolution of the patterned SAMs, and to confirm that 

molecules were removed via CLL, we exposed patterned metal surfaces to chemical etchants 

selective for Pt, Pd, Ag, and Cu, respectively (see Methods).47,48,51,52,65,66 In all cases, 

metal regions were selectively etched in regions corresponding to areas of SAM removal by 

CLL, transferring the pattern of the monolayer to the metal substrate (Figure 2E-H). We 

expect that not all SAM molecules are removed via CLL (ca. 70% for Au),28 however 

sufficient numbers of molecules were removed from all coinage metal surfaces to facilitate 

selective etching of underlying metals in the lifted-off areas.

Following the observations of coinage metal patterning, we explored extending CLL to 

transition and reactive metal surfaces (i.e., Ni, Ti, Al), upon which alkanethiolate 

monolayers can be formed.53-55 To prevent formation of surface oxides, substrates were 

immersed into degassed ethanolic MUO solutions to form SAMs immediately after metal 

evaporation. Since CLL removes regions of preformed SAMs, transition metal surfaces can 

be patterned straightforwardly without additional surface treatments (i.e., metal oxide 

etching).67 Oxide etching roughens metal surfaces,68 whereas other methods for patterning 

transition metals, such as SAM displacement, limit the types of molecules that can be 

patterned (i.e., molecules that are easily displaceable).11 Transition metal surfaces 

characterized using SEM indicated that SAMs on these surfaces were patterned using CLL 

(Figure 3A-C,S1).

We performed CLL on Ge surfaces, a semiconductor that can be functionalized with 

alkanethiols via covalent Ge-S bonds,68-71 to extend the lithographic capabilities of CLL 

beyond metals (Figure 3D,S1). Direct patterning of molecules on semiconductor surfaces 

would foreseeably enable a myriad of applications for semiconductor device processing. For 

example, local work functions in patterned regions of semiconducting substrates might be 

tuned for band bending and alignment purposes.72,73

We noticed that the contrast observed via SEM for the patterned SAMs appears to differ for 

the different surfaces in Figures 2 and 3. The levels of contrast in SEM for patterned SAMs 

is related to a variety of factors, including SAM densities and order, as well as the 

accelerating voltage and working distance of the electron beam during image acquisition.
23,27,31 Given the rapidity of metal oxide formation, we expect that SAMs formed on 

reactive metal surfaces are not as highly ordered as on coinage metals; trace metal oxides on 

the former would affect SAM formation.46,53-57 Differences in SAM formation (i.e., order 

and density), and thus differences in CLL yield, could contribute to observed differences in 

contrast. Additionally, formation of oxides in regions of removed SAM molecules after CLL 

could alter SEM contrast due to differential charging effects.74-76 Atomic-force microscopy 

images of patterned SAMs on Ge surfaces showed the expected topographies of monolayers 

of MUO (Figure S2),28,31 suggesting that the contrast observed for Ge via SEM is mainly an 

effect of surface compositional differences arising from the patterned SAMs and potentially 

differential charging effects on the semiconducting surfaces.
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To analyze whether substrate molecules were removed during CLL for the metal and 

semiconductor surfaces investigated herein, similar to previously studied Au substrates,28,31 

X-ray photoelectron spectroscopy (XPS) was performed on PDMS stamps post-CLL. In all 

cases, characteristic peaks corresponding to the metal or semiconductor substrate atoms 

were observed (Figure 4), demonstrating that layers of substrate atoms were removed by 

CLL from all surface types. In some cases, it appeared that layers greater than monolayer 

were removed (based on the differences in contrast observed in Figure 3, large signal-to-

noise differences observed in the XPS spectra in Figure 4, and the relative elemental 

sensitivities given in Table S1), similar to transfer printing techniques demonstrated by 

Rogers and others.77-80

We previously hypothesized that removal of Au atoms during CLL was partly due to the 

formation of covalent linkages between the PDMS stamp and SAM molecules, as well as 

formation of Au-alkanthiolate complexes that weaken the bond strengths between the 

outermost Au substrate atoms and the underlying Au substrate atoms.28,31,81 For all 

elemental substrates tested in this report, the metal-sulfur bonds are stronger than the metal-

metal bonds.82 The energetics of these systems suggest that contributions from differences 

in bond enthalpies play roles in the removal of the outermost layer(s) of substrate atoms, in 

addition to adatom formation observed in some monolayer systems.83 In sum, CLL can be 

used as a facile top-down method of fabricating and patterning supported metal62 and 

semiconductor monolayer materials (e.g., germanane)84 on flexible and transparent polymer 

supports such as PDMS.

An advantage of soft lithography is the ability to perform multiple patterning steps to 

straightforwardly create complex multicomponent patterns.12,28,39,85 To demonstrate 

patterning of multiple metals onto the same PDMS support with CLL, we investigated the 

formation of bimetallic metal layers on PDMS stamps. Previous reports indicated that the 

PDMS is still activated after a single CLL step (and up to ~5 successive CLL steps using the 

same stamp on different surfaces), and that full monolayers of Au atoms were not removed 

onto the PDMS.28,31,42,86 Taking advantage of this fractional removal, we performed two 

successive CLL steps on two different metal surfaces (Au and Ag) using the same activated 

PDMS stamp (Figure 5A). X-ray photoelectron spectroscopy of the PDMS stamp after the 

sequential CLL process showed peaks corresponding to both Au and Ag, demonstrating the 

formation of mixed-metal monolayers supported on PDMS (Figure 5B-C). Atomically 

blended bimetallic monolayers represent a new class of materials with unexplored properties 

and potential applications (e.g., catalysis),62,87 which can be fabricated straightforwardly 

using CLL.

In this study, SAMs of the same type of alkanthiolate molecule (MUO) were 

straightforwardly formed on different metal and semiconductor surfaces. Chemical lift-off 

lithography is not limited to the surfaces or SAM molecules studied herein;29,31 presumably, 

any surface that can be functionalized with molecular monolayers (e.g., metals,67,88-90 

semiconductors,91 transition metal dichalcogenides)92 could be patterned with CLL. 

Performing CLL with molecules containing additional functionalities within the alkyl 

backbone (e.g., hydrogen-bonding interactions)93 or functionalized cage molecules (e.g., 
carboranethiolates),94-96 which form relatively defect-free monolayers and can have a range 
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of bond densities between the monolayer and substrate, may have significant effects on the 

overall efficiencies of CLL.

Monolayers formed on reactive metal surfaces are likely not well ordered due to trace metal 

oxide formation, yet they can be patterned with via CLL. Changing the head group 

functionality of the SAM molecules to something that binds favorably to surface oxides 

(e.g., phosphonic acids)97 can enable the direct patterning of metal oxide surfaces.42 

However, CLL with these types of SAMs, in which the head group is not bound directly to 

the metal, would be hypothesized not to remove surface metal atoms in the process, but 

instead break the weakest bonds in the molecules constituting the SAM.42

We previously investigated the nanoscale structure and function of supported Au monolayers 

on PDMS fabricated with CLL and showed that these Au monolayers are ultrathin and 

optically transparent, yet they retain the chemical functionality of Au.31 Accordingly, 

ultrathin monolayers fabricated from other metal and semiconductor surfaces may have 

chemical and physical properties that can be differentially exploited compared to bulk 

materials (e.g., magnetism, Ni,98 semiconductor, Ge).84 Furthermore, functional metal 

monolayers could be used as supports for additional structural growth, enabling patterning 

of a diverse range of materials (e.g., nanoparticles,99,100 surface-tethered metal-organic 

frameworks and multilayers,101-103 and metal-organic chalcogenolate assemblies)104 on 

flexible and transparent substrates. Capabilities to create bimetallic and multi-metallic layers 

and monolayers with CLL adds an additional level of control to the generation and tailoring 

of supported metal monolayers with designed properties.

Collectively, we demonstrate CLL as a patterning technique that can be used to pattern 

SAMs on a variety of metal and semiconductor surfaces. Here, high-fidelity patterns of 

SAMs were generated on coinage, transition, and reactive metal, and semiconductor surfaces 

beyond Au. Patterned substrates were used as molecular resists for chemical wet etching to 

produce three-dimensional features. For all surfaces tested, XPS revealed the removal of 

corresponding substrate atoms during the CLL process. Moreover, reactive and reusable 

PDMS stamps enable the formation of bimetallic monolayers supported on PDMS by 

performing two sequential CLL steps on different substrates. Thus, we extend CLL to 

pattern a variety of surfaces straightforwardly with applications towards the fabrication and 

study of new materials and systems.

■ Experimental Methods

Materials

Prime quality 4″ Si{100} wafers (P/B, 0.001-0.005 Ω-cm, thickness 500 μm) were 

purchased from Silicon Valley Microelectronics, Inc. (Santa Clara, CA, USA). Sylgard 184® 

silicone elastomer kits (lot #0008823745) were purchased from Ellsworth Adhesives 

(Germantown, WI, USA). 11-Mercapto-1-undecanol was purchased from Sigma Aldrich.

Chemical Lift-Off Lithography

Metal and semiconductor surfaces were prepared via electron-beam evaporation (Kurt J. 

Lesker Company, Jefferson Hills, PA or CHA Industries, SOLUTION, Fremont, CA) onto Si 
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substrates. Self-assembled monolayers of MUO were formed on metal surfaces via 
immersion in 5 mM ethanolic solutions for 24 h. For reactive metal surfaces (e.g., Cu, Ni, 

Ti, Al), substrates were immersed in degassed MUO solutions immediately after metal 

evaporation to minimize metal oxide formation. For Ge, SAMs were formed via immersion 

into a 1:1 (v/v) ethanol:water solution of MUO. Chemical lift-off lithography was performed 

as previously reported,28,31 where surfaces were contacted with patterned or featureless 

oxygen-plasma-activated PDMS stamps for 24 h, after which the stamps were removed. To 

form supported bimetallic monolayers, featureless PDMS stamps were brought into contact 

with functionalized Au surfaces for 1 h and then functionalized Ag surfaces for an additional 

1 h immediately after lift-off from Au surfaces.

Scanning Electron Microscopy

Scanning electron microscopy images were obtained using a Zeiss Supra 40VP scanning 

electron microscope with an Inlens secondary electron detector. Surfaces were imaged 

immediately after CLL. Accelerating voltages were adjusted for each metal surface to 

produce optimal contrast: 1 kV for Ni, Ti, and Al; 1.5 kV for Pt; 2 kV for Pd, Ag, and Cu; 

and 3 kV for Ge. Working distances were optimized for each image. Modulating 

accelerating voltages and working distances affect the contrast observed for patterned 

SAMs.23 Images were processed via polynomial background subtraction using Gwyddion105 

and contrast limited adaptive histogram equalization in MATLAB.106

Metal Etching

Patterned metal surfaces were etched with corresponding chemical wet etchants: Pt with 

concentrated aqua regia (3:1 v/v 12.1 M HCl:15.6 M HNO3) for 20 min,66 Pd with a 

solution of 0.2 M K2Cr2O7 and 0.5 M HCl in 40% aqueous H3PO4 for 6 min,107 Ag with an 

aqueous 25 mM FeNO3 solution for 15 min,51 and Cu with an aqueous 12 mM FeCl3 

solution for 30 s.52

X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy of PDMS surfaces post-CLL was carried out using an 

AXIS Ultra DLD photoelectron spectrometer (Kratos Analytical Inc., Chestnut Ridge, NY) 

and a monochromatic Al Kα X-ray source with a 200 μm circular spot size in ultrahigh 

vacuum (10-9 Torr). High-resolution spectra of Au 4f, Pt 4f, Pd 3d, Ag 3d, Cu 2p, Ni 2p, Ti 

2p, Al 2p, and Ge 3d regions were acquired at a pass energy of 20 eV using a 300 ms dwell 

time. For all scans, 15 kV was applied with an emission of 15 mA. An average of 30 scans 

were collected for each of the high-resolution spectra. Note, all spectra were collected under 

charge neutralization conditions (i.e., electron flood gun)58 to prevent charging of sample 

surfaces. Charge neutralization results in shifts of binding energy values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General scheme for chemical lift-off lithography. An oxygen-plasma-activated 

polydimethylsiloxane (PDMS) stamp is brought into contact with a metal or semiconductor 

surface functionalized with a self-assembled monolayer (SAM), in this case, 11-mercapto-1-

undecanol. Lift-off of the PDMS stamp removes SAM molecules only in the contacted 

regions, patterning remaining SAMs on the substrate surfaces.
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Figure 2. 
Chemical lift-off lithography (CLL) of coinage metal (Pt, Pd, Ag, Cu) surfaces. Metals are 

ordered in terms of increasing reactivity from left to right. (A-D) Representative scanning 

electron microscopy images of patterned self-assembled monolayers (SAMs) of 11-

mercapto-1-undecanol (MUO) on metal surfaces after CLL. Monolayers were patterned 

such that MUO molecules remained in the “CNSI” letter regions and in the regions 

surrounding the “UCLA” letters. (E-H) Representative optical microscopy images of metal 

surfaces after chemical wet etching using the patterned SAMs as molecular resists.
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Figure 3. 
Chemical lift-off lithography (CLL) of transition or reactive metal and semiconductor 

surfaces. (A-D) Representative scanning electron microscopy images of patterned self-

assembled monolayers of 11-mercapto-1-undecanol on the metal surfaces (Ni, Ti, Al) and a 

semiconductor surface (Ge) after CLL. Stamps with the same features as Figure 2 were 

used.
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Figure 4. 
X-ray photoelectron spectroscopy (XPS) analysis of featureless polydimethylsiloxane 

(PDMS) stamps after a chemical lift-off lithography on Pt, Pd, Ag, Cu, Ni, Ti, Al, and Ge 

surfaces. Featureless PDMS stamps and XPS were used to investigate the presence of 

corresponding substrate atoms on the PDMS stamps, demonstrating that layers of substrate 

atoms are removed in the lift-off process, either nominal monolayers, or in some cases, 

potentially thicker layers.
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Figure 5. 
Sequential chemical lift-off lithography (CLL) of two different metals (Au, Ag) onto the 

same polydimethylsiloxane (PDMS) stamp. (A) Schematic illustration of the sequential CLL 

process. (B,C) X-ray photoelectron spectra of the PDMS stamp after the sequential CLL 

process showing characteristic peaks of both metals on the same stamp, demonstrating that 

both metals are “lifted-off” onto the PDMS stamp forming a supported mixed metal 

monolayer.
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