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1. INTRODUCTION

In the abstract to There is No Really Good Definition of Mass, physicist Eugene
Hecht laments that

There seems to be a fairly prevalent belief in the physics community
that the basic concepts of our discipline (mass, force, energy, and
so forth) are well understood and easily defined. After all, there are
dozens of textbooks on every level that supposedly define all the terms
they introduce. Apparently, we teachers can pass this wisdom on to
our students without any cautionary notes and without any concern
for subtleties. Remarkably, this is most certainly not the case, and
anyone who has studied the foundational literature in physics over the
last several centuries knows that none of the fundamental ideas [are]
satisfactorily defined.

Hecht’s concerns are not new, but they are alarming; the problem of providing an
adequate definition of the dynamical concepts of force and mass in classical mechanics
has been the subject of much debate since the subject’s inceptionﬂ. One of the key
historical figures in this debate is Ernst Mach, who wished to divest mechanics from
the metaphysical notions of force and mass:

That which in the mechanics of the present day is called force is not
something that lies latent in the natural processes, but a measurable,
actual circumstance of motion... Also when we speak of the attrac-
tions or repulsions of bodies, it is not necessary to think of any hidden
causes of the motions produced. We signalise by the term attraction
merely an actual resemblance between events determined by condi-
tions of motion and the results of our volitional impulses. [Mach1919
264]

For Mach, the dynamical terms of force and mass are to be “determined by con-
ditions of motions,” which is to say by their kinematics. Therefore Mach’s opera-
tionalism challenges:

Using only kinematical data, which we take to be directly observable,
define all physical quantities (namely mass) referred to in Newtonian
mechanics.

This charge necessitates an answer to the following question:

Is mass definable in Newtonian mechanics?

LAn excellent account of this history can be found in Jammer [Jammer1961]
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This question is deceptively simple in its formulation. An answer, whether af-
firmative or negative, can only be made sensible if we can specify what is meant
by
a. Definability
b. Newtonian Mechanics (or a scientific theory more generally)

c. Mass (or a physical quantity or property more generally)

Fixing each of these notions furnishes, as a matter of fact, an answer to the afore-
mentioned question.

It is my view that, in the existing literature, most of the substantive disagreement
regarding the definability of mass in Newtonian mechanics arise in the respective
authors’ conceptions of definability and how it interacts with their views on the
methodology of science.

My hope in these pages is to develop a framework that simultaneously allows one
to:

a. give a taxonomy of the differing views underlying differing accounts of definability
in science, and

b. objectively assess the definability of physical quantities within given theories in
their own terms.

In the end, the full framework will consist of a modal logic built out of a specifi-
cation of two parameters:

I. A physical theory T with a partition of the underlying language £ into observ-
able and theoretical terms.

II. The “admissible data” E that reflects the epistemic position of an idealized
scientist.

Given this input, we construct an associated modal frame, Frg, to be interpreted in
standard first-order modal logic

Following Bressan [Bressan1972a,b], we may then ask of the frame whether or not
the physical quantity in question is “modally definable” in terms of observational
terms. A quantity is modally definable provided:

a. For all objects it is possible to perform an experiment that would yield a unique
determination of the quantity in question given knowledge of the admissible data.

b. It is necessary that if the experiment is performed on the same object, the values
obtained in each experiment are identical. This criteria for modal definability
specializes to the first-order notion of definability in the case of modal collapse,
which for instance happens in Pendse’s account [Pendse1939).

In the end, my hope is to provide a first step towards a defense of Mach’s definition
by exhibiting a toy model for which it is the case that Mach’s proposed definition is
a definition in the modal sense.
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2. THE PROBLEM OF MASS IN CLASSICAL MECHANICS

2.1. Setting the Stage. The theory of Newtonian mechanics, Ty, consists of a
family of rules which serve as the target of interpretation of many further refinements
of the theory. The formal multi-sorted language we will use consists of

e A sort P for particles

e An interval T C R of time.

e A two-place function s(p,t) : P x T'— R? for position.
e A mass function m(P) : P — R™.

e A force function Fj,, : P2xT —R3

The basic laws of Newton’s theory are by-and-large geometrical, interpreting the
fundamental concept of force as being equal to the product of the vector-valued accel-
eration of an object and the mass of the object. In order to make an observational
prediction, though, the theory requires one to work in a certain wnertial frame of
reference, which corresponds to picking a distinguished point O in absolute space,
called the origin, which is acted on by no force. We denote the total force on P as
measured in reference frame O as Fpp. For convenience, we identify O with the zero
vector in R3.

In the inertial frame of reference O, Newton’s Laws may be written as

(1) (Inertia) (Vo € P)(Vtg € T) D=,y = 0 if and only if Fo,(ty) = 0.
(2) (Definition of Force) (Va € P)(Vtg € T) Fou(to) = %\t:to =mpLe|_y.
(3) (Reaction) (Vx € P)(Vtyg € T') Fyy(to) = Fou(to) — Foy(to).

I call the above theory Vanilla Newtonian Mechanics. You may notice that
in this account there is no mention of gravity or any other forces. This is due to the
fact that the usual (classical) theories interpret the above theory in a straightforward
way. If the world were, at a fundamental level, Newtonian and we have a list of its
fundamental forces, then the interpretation of force given by

Ftotal:ZFi

for all particles x at all times ¢ yields a model of Newtonian mechanics.

These interpretations of complex phenomena into the basic framework of New-
tonian mechanics yield inter-theoretical property inheritance relations and facilitate
inferences about definability and operationality. For instance, if in T, mass was
operationally definable and the interpretation of T into Ty..; were also operational,
one would have an operational definition of mass in 7. Conversely, while Vanilla
Newtonian mechanics may not define mass, stronger theories that interpret Newto-
nian mechanics may define mass.
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2.2. Mach’s Definition. One of Mach’s main goals in axiomatizing classical me-
chanics was to provide an operational definition of mass. What constitutes an oper-
ational definition, and what rules govern the analysis of scientific concepts in terms
of their operational definability? Moreover, do notions of definability in science bear
any resemblance to notions of definition encountered in logic?

Mach defines mass ratios between particles kinematically, assuming at the outset
that Newton’s laws hold for the derived concept of force, realized as mass times
acceleration.

Following Mach (1919, 243), the idea is as follows: take two particles A and B
forming an isolated system and measure their accelerations, provided that they are
not zero. Newton’s third law says that

maa(A,t) = —mpa(B,t);

but as Mach does not avail himself to masses but only mass ratios, the correct
formulation would be that

a(A,t) = —mpaa(B,t)

where mp4 is the mass ratio of A in B. Since a unique scalar exists, this mass ratio is
uniquely determined by the experiment. In order to handle the case of an n-particle
system, he prescribed repeating the experiment for other pairs of particles as well.

2.3. Pendse’s Objection. In 1938, C. G. Pendse problematized Mach’s proposed
definition of mass on epistemic grounds by showing that, while

Mach’s definition of mass may be a dynamical one, it does not en-
able an observer to determine the ratios of the masses of a system—
an 'isolated system’—of bodies (particles) from his observations if the

system be composed of more than a certain number of bodies (parti-
cles) (Pendse1939 1013).

That is, Pendse maintains that Mach’s view on the definition of mass is flawed.
To show this, Pendse reconstructs Mach’s definition of the mass-ratio of a pair of
particles as follows:

Mach defined the ratio of two particles as the negative inverse ratio
of their mutually produced accelerations, and he postulated that that
ratio was a constant (Pendse1939 1016).

Pendse latches on to the highly idealized circumstances to which Mach’s proposed
definition applies: it defines

the ratio of the masses of two bodies (particles)” under the assumption
that “the bodies (particles) form an ‘isolated’ system relative to the
frame of reference. Hence it is necessary to examine Mach’s definition



6 REID DALE

from a theoretical standpoint when the system is composed of more
than two bodies (particles) (Pendse1939, 1016).

Pendse’s concerns seem to hinge upon an argument of the following type:

(Unique Determination Principle) An operational definition of a phys-
ical quantity must uniquely determine the value from given observa-
tional data.

(Underdetermination of Mass) Mach’s proposed definition of mass
is not guaranteed to uniquely determine mass ratios for systems with
sufficiently many particles.

(Conclusion) Therefore, Mach’s proposed definition of mass ratios
is not an operational definition.

This form of argument depends on what is meant by observational data. For
Pendse, observational data seems to be bounded above by merely recording the kine-
matical facts of particles in the system. Pendse wonders

will it be possible for an observer fixed in a Newtonian frame for the
system of particles... to determine the ratios of the masses of the
particles by observing their motions? It is assumed that the observer
can record the path of each particle... [and therefore] know the motion
of every particle in the system. He cannot observe the ratios of the
masses of the particles or the reactions between them: he can only
aspire to infer them [Pendse1939 1017].

A caveat needs to be made: Pendse considers only finite numbers of observations,
as evidenced by the statement of his theorems:

Theorem 2.1 (Pendse 1939). In models of Newtonian Mechanics with at least 8 par-
ticles (P) and an arbitrary finite number r of observations of kinematical data, mass
15 1n general not uniquely recoverable. That is, there exist at least two assignments
of masses to particles p € P consistent with Newtonian Mechanics.

A corollary of this theorem is the first-order undefinability of mass in Vanilla
Newtonian Mechanics from kinematical information:

Corollary 2.2. In Vanilla Newtonian Mechanics together with any finite quantifier
free sentence in the language consisting of kinematic terms, the mass function m is
not first-order definable.

Noticeably missing from Pendse’s setup is the possibility of intervention by a
Newtonian observer. That Pendse does not allow for this maneuver is evident by his
rejection of the following line of reasoning:
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(Intervention Hypothesis) Any two bodies may be placed in an iso-
lated system and be made to mutually produce accelerations with one
another.

(Mach’s Definition of Mass) In an isolated system comprised of two
bodies, the mass ratio of the two bodies is the negative inverse ratio
of their mutually produced accelerations.

(Conclusion) Mach’s definition of mass uniquely determines the
mass ratio between any two particles and is therefore an operational
definition.

Therefore Pendse holds a restricted view on what data is admissible in the infer-
ences meant to determine the values of mass ratios between bodies.

3. MoODAL DEFINABILITY

The underdetermination results of the previous section seem to bar the first-order
definability of mass from observational data. However, why demand that the defini-
tion be first-order in the first place? In this chapter we investigate the possibility of
defining mass (and other theoretical terms) with a modal definition.

To this end, we study the desiderata for a modal definition of quantities as ar-
ticulated by Bressan (1972a) and exhibit Kripke frames that furnish such a modal
definition. In general, we construct out of a given scientific theory T and collec-
tion of epistemically admissible sentences E a Kripke frame Frg and corresponding
modality Urg to yield the intersection modality of a certain epistemic modality and
a physical possibility modality. This approach has many advantages:

a. This approach is flexible enough to describe many potential views on modal defi-
nitions in science.

b. By focusing on the semantic side of the logic and interpret it in standard first-
order modal logic, we avoid the complicated process of building up a logic from
scratch.

3.1. Modally Definable Functions. The notion of definability that we will use
here is a notion of definability from modal logic similar to Aldo Bressan’s no-
tion [Bressan1972a]. This notion is meant to capture the intensional content of the
performance of an experiment that yields, as a function of its input, the data the
experiment was meant to provide.

Definition 3.1. Let F be a Kripke frame on the class of models of a theory 7. A
function fE] is modally definable in an L£-theory T in a reduct L,.q of L if there is an
L, eq-formula ¢(Z,7) such that

2Here, I really mean for all families of functions ( Jw)weMod(T)
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e (Coincidence) For all W E T and for all T € W

(WE(E,p) = f(@)=0p
o (Possibility) For all W E T' it is always possible to evaluate the function:

W EY23p (Ov(T, p))

e (Uniqueness in Worlds) For all W & T the function is necessarily well-defined
when witnessed in a world:

W E OVaVpVp' (O(F, p) AU, p) = (p = /)

Some remarks are in order. First, for the purposes of operationalism we demand
that the graphs of the functions (fw)wemoda(r) are “represented” by a single first-
order formula v to capture the idea that i) provides an intensional way of tracking
the function (fw)wemoar). That is, we can think of ¢ as the (partially-realized)
process generating the values making up (fw)wemod(r). Second, we do not demand
that in any single world W, the predicate 1(Z,7) is a function. In natural language,
that would amount to requiring that the world W, materially witnesses the process
described by 1) being carried out on all objects in the domain of fy,. This is
undesirable as, in general, there are processes which render impossible the realization
of other processes. Finally, the notion of modally-definable functions generalizes
the notion of (first-order) definable functions assuming that the Kripke frame we
work with is reflexive. First-order definable functions arise as the modally-definable
functions in the trivial reflexive frame:

Proposition 3.2. a. Let F be any reflexive Kripke frame and f a (@-) definable
function in T'. Then f is a modally-defined function.

b. There is a Kripke frame K on the set of worlds Mod(T") such that for all functions
f, f is modally definable in L,.q if and only if f is first-order definable in L,.4.

Proof. a. Suppose that F is reflexive. If f is a (&)-definable function, there is a
formula ¢¢(Z,y) such that

W E ¥¢(Zo,Yy) <> f(To) = Yo

so that the coincidence axiom is satisfied. The possibility axiom is satisfied by the
definition of definable function, as

T = VZ3yys(7,7)
and therefore for all W ET
W F Vz3gs(Z,7)
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Finally, the uniqueness in worlds axiom is satisfied since, by definition, definable
functions satisfy

THVavg,y (V(T.9) AU(EY) =T =)
which implies that for all W E T
W EVEVY, Y (V(T,9) AT Y) =T =)
as desired.
b. Consider the Kripke frame where each model W E T" accesses only W. Then fy is
modally defined by a formula ¢ (x,y) in L,.q if and only if fi is first-order defined

by £red-
0

3.2. The Frames Frr. With the notion of modal definability in mind, we introduce
a family of Kripke frames that reflect a naive scientific mood: the possible worlds
are those that are physically reasonable (with respect to a background theory T') and
epistemically possible. This mood is formalized as follows, first by defining the notion
of an ideal scientist’s epistemic access function and then by defining the frames in
question:

Definition 3.3. Let T be a first-order theory and M a monster modef] of T. We
define the notion of an epistemic access function on T to be a map

E : Mod(T') — P(Sent,a))
that maps a model M to a set Sy C Sent, () of sentences true in M:

Sy C Thg(M)

This definition is very flexible; in fact, at this level of generality there’s very little
one can say about it. However, its intended interpretation is as follows. Suppose
that the world of the ideal scientist is in fact a model W E T. We then think of
E(W) as the set of true sentences that the ideal scientist knows about the world W.
While I leave the definition very broad, some natural candidates for E tailored to a
Newtonian worldview are apparent:

Definition 3.4. The F'ST (formula, spacetime) epistemic functions are parametrized
by the following conditions:

(1) (Formula) A family F' C L of formulas of the full language.ﬁ
(2) (Spacetime) A region R C R? x R.

3The notion of monster model comes from model theory. A monster model M can be thought of
as a large, saturated, homogeneous model of T.
4For instance, a reduct L,.q of L.
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Then Epgr(M) is the set of all true quantifier-free F-sentences of M with parameters
from R.

Remark 3.5. Some clarifications of the above definition are called for.

(1) Why include the “Formula” parameter? There are two immediate benefits.
First, it allows one to restrict to exclusively observable predicates. Second, it
allows one to restrict the scope of generalizations along the axis of complexity.
For example, one may wish to avoid II; generalizations such as “every particle
is one of x1,...,x,,” formalized as

Va \/ (r =x;).
1<n

(2) One interpretation of the “Spacetime” parameter is one in which the ideal
scientist restricts her epistemic access only to her lab environment. This kind
of idealization is the kind that Mach often employs.

(3) In the present paper we restrict to quantifier-free sentences because they
represent the measurements taken in an “ideal lab notebook,” absent any
form of induction.

Given a specification of the theory T and epistemic function F, we can finally
define the modal frame Frr and the associated modal operators Cpp and $rp

Definition 3.6. The (T, E)-frame Frg consists of the following:

(1) The class of possible worlds of F is the class of models M E T

(2) There is an edge from M to N, written M <rgp N, provided that N FE
T UE(M). In other words, N is consistent with the scientist’s knowledge of
M.

Its corresponding necessity and possibility operators are denoted Urp and $rp re-
spectively.

3.3. Towards a Vindication of Mach. We define a frame amenable to Machian
physics of the sort Frg by specifying a theory 7" and epistemic accessibility function
E.

For the theory, we let Thqen be Vanilla Newtonian Mechanics together with the
following physical hypotheses:

(1) (Almost-Always Separation) This condition intuitively says that every parti-
cle is almost always separated from all other particles by some small distance.
It is important that this condition allow for contact between particles, hence
why it holds only “almost everywhere.” Formally, it can be expressed as fol-
lows:

VpvEysat (e, > 0) (|t — '] < 8) A ((Fs € [t — et + 6))(~3q)q € B, (p(t))))
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(2) (Object Permanence) In this setting we assume that no particles can be an-
nihilated. This assumption is crucial if one wishes to use a weaker frame.

Vavt(3z € R*)p(w,t) = 2

(3) (Only Contact Forces) This postulates that the only forces are contact forces
that act at the level of pointsﬂ

For our epistemology, we consider any FCST epistemic accessibility function
FEaraen, of the sort

o L, the observable formulas in the Newtonian language, namely, the kinematic
predicates.
e A bounded region R C R3 x R of spacetime.

For notational convenience, set

FMach = fTJ\/Iach7EMach

Given this, we may state the following theorem:

Theorem 3.7. Let Fyraen be a frame of the form described above. Then mass is
modally definable.

Proof. To begin, note that Vanilla Newtonian Mechanics proves the Uniqueness in
Worlds criterion of a modal definition.

It therefore suffices to verify the Possibility criterion. Let M be a model of Ty qen
and select two particles x and y in M. Let M’ be a world such that after a finite
number of collisions by particles outside of the region R, p(z,t) = p(y,t) for some
t > to. This results in a collision, and the mass-ratio of x and y is given in M’. By

construction, M <pseen M', and so the possibility criterion for modal definition is
satisfied. 0

Dropping the assumption of Almost-Always Separation allows counterexamples
such as swampy worlds.

Remark 3.8. Call a world swampy if for all times ¢ and all positions s € R? there
exists a particle = such that pos(z,t) = s. In such a world, between every two
particles x and y there is a particle z lying on the line between z and y by the
axioms of a real closed field together with the swampy hypothesis. Thus, no two

distinct particles can be collided in swampy worlds: it is not possible for x to reach
Y. 0

A natural objection to these results goes as follows:

S5This assumption is, of course, physically unrealistic. However, it allows one to compute masses
ezactly without the problem of dealing with forces that act at a distance.
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Envision Mach attempting to collide two particles, A and B, in world
W in order to compute their mass ratio, by performing the above
experiment. A Machian demon, sitting outside the spatial region ac-
cessible within (W), decides to play spoiler. Every time Mach sends
a particle P to collide with A, Mach’s demon sends a particle P to
collide with P, preventing a collision between A and B. In this sce-
nario, the experiment £ cannot happen. Does this not rule out Mach’s
definition of mass as a modal definition?

To respond to this line of objection, special attention must be paid to the notion
of cannot invoked in the argument. First, we show how this argument fails to show
that mass is (modally) undefinable under the assumptions of the previous section.
Let Waemon be any world satisfying the constraints of the above. Then

W STE Wdemon~
This does in fact establish that
W E $re—(3p, t)Exp(A, B, p,t)

However, even in Wyemon, it is possible in the sense of {7 for Mach’s experiment to
be carried out. This follows by boundedness assumptions: because E(Wiemon) allows
epistemic access only to a bounded R C R3, upwards-bounded

T Q (—OO,to] g ]R,

and quantifier-free information, it is indeed possible for there to be a time t; > t,
and particle P(x,t) outside of R for all ¢ < ¢y to collide with A, which then collides
with B. Call such a world W’. Thus

Wdemon ': <>TE(EIP7 t>EXp(A7 B7 P, t)
and, by upwards transitivity,
W E Ore(3p, t)Exp(A, B, p,t).

What are we to make of this? The crucial technical point is that E(Wyemoen) does
not see that there is a Machian demon.
A natural, imprecise conjecture is that:

Conjecture 3.9. Under assumptions more physically reasonable than the conjunc-
tion of Almost-Always Separation, Object Permanence, and Only Contact Forces,
mass is modally definable.
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4. REMARKS ON THE SUPPES-BRESSAN DEBATE

In a pair of papers presented at the Biennial Meeting of the Philosophy of Science
Association, Suppes and Bressan discussed the role of modal concepts in science.
Suppes position is that

modal concepts. . .are essential to standard scientific talk. Yet, in a
majority of cases the modal concepts remain implicit in that talk,
and their logic is scarcely used in either theoretical or experimental
analyses of empirical phenomena. [Suppes1972 305]

In the case of spacetime, Suppes justifies this position by pointing to the eliminability
of modal language in the definition of a physical spacetime manifold:

I shall not attempt to examine the technical details of constructing the
space-time manifold as the set of possible paths of particles or bodies.
The simpler constructive geometry, based upon the two operations of
intersection and laying-off of segments, provices a conceptual model
of the kind of T have in mind. [Suppes1972 313]

Suppes seems to locate the role of modal concepts in science as providing a mental
model for some scientific concept, which scientists then eliminate in favor of direct
extensional constructions.

In the case of spacetime, Suppes seems to be largely successful. However, the
above results on the various forms of definability of more sophisticated concepts
puts pressure on Suppes’ position: there is a precise sense in which certain scientific
concepts (such as mass) cannot have their modal definitions be eliminated in favor
of direct (first-order) definitions.
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