
UC San Diego
Technical Reports

Title
Coping with Dependent Process Failures

Permalink
https://escholarship.org/uc/item/3dg8n92m

Authors
Junqueira, Flavio
Marzullo, Keith
Voelker, Geoffrey M

Publication Date
2002-10-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dg8n92m
https://escholarship.org
http://www.cdlib.org/

Submission to DSN-2002 – Main Track: Dependable Computing and Communications

Coping with Dependent Process Failures �

Flavio P. Junqueira

flavio@cs.ucsd.edu

Keith Marzullo

marzullo@cs.ucsd.edu

Geoffrey M. Voelker

voelker@cs.ucsd.edu

Abstract

When developing fault-tolerant protocols, systems are usually modeled assuming that process failures

are independent and identically distributed. In this paper, we present a system model that can represent

correlated failures. We show that such a model is useful in that protocols can be made more efficient.

Central to our approach is the idea of a core, which is a reliable minimal subset of processes. We present

two probabilistic failure models for dependent failures and discuss them in terms of computing cores. For

both, finding a smallest minimal core is NP-hard, but one of the two models can be strengthened in a natural

way to make computing a minimal core in P.

Keywords: Reliability, Distributed Systems, Fault Tolerance, Dependent Failures,

Computational Complexity

Submission category: regular paper

Word count: 10,500 excluding optional appendices

The material included in this paper has been cleared through authors’ affiliations

Contact author: Flavio Junqueira

University of California, San Diego

9500 Gilman Dr., Dept. 0114

La Jolla, CA 92093-0114

USA

Phone number: (+1) 858 534-9669

CARTER Award: yes

Nominated student: Junqueira, Flavio

Advisor(s): Prof. Marzullo, Keith

Prof. Voelker, Geoffrey

�This work was developed in the context of the RAMP project, supported by DARPA as project number N66001-

01-1-8933.

1 Introduction

Most fault-tolerant protocols are designed assuming that out of n components, no more than t can

be faulty. For example, solutions to the Consensus problem are usually developed assuming no

more than t of the n processes are faulty where “being faulty” is specialized by a failure model.

We call this the t of n assumption. It is a convenient assumption to make. For example, bounds

are easily expressed as a function of t: if processes can fail only by crashing, then the Consensus

problem is solvable when t < n if the system is synchronous and when t < 2n if the system is

asynchronous [1, 2].

The use of the t of n assumption dates back to the earliest work on fault-tolerant computing [3].

It was first applied to distributed coordination protocols in the SIFT project [4] which designed

a fly-by-wire system. The reliability of systems like this is a vital concern, and using the t of n

assumption allows one to represent the probabilities of failure in a simple manner. For example,

if each process has a probability p of being faulty, and processes fail independently, then the

probability P (t) of no more than t out of n processes being faulty is:

P (t) =

t

X

i=0

�

n

i

�

p

i

(1� p)

n�i

If one has a target reliability R then one can choose for t the smallest value that satisfies P (t) � R.

The t of n assumption is best suited for components that have identical probabilities of failure

and that fail independently. For embedded systems built using rigorous software development this

can be a reasonable assumption, but for most modern distributed systems it is not. Processes’ fail-

ures can be correlated because, for example, they were built with the same software that contains

bugs.

That failures can have different probabilities and can be dependent is not a novel observation.

The continued popularity of the t of n assumption, however, implies that it is an observation that is

being overlooked by protocol designers. One reason that it is being overlooked is that one can use

the t of n assumption for correlated failures; one just has to find a large enough value of t when

deploying a system composed of a set of protocols. But, if one does so then the the resulting system

can have superfluous redundancy. It would be better if one could take into account dependent

failure information when designing a protocol.

This paper is a step towards allowing one to do so. In Section 2 we propose an abstraction that

exposes dependent failure information for one to take advantage of in the design of a protocol.

Like the t of n assumption, it is expressed in a way that hides its underlying probabilistic nature in

2

order to make it more generally applicable.

The abstraction is based on what we call a core, which is a minimal set of processes that do not

all fail during any run of the protocol. We show in Section 3 that using this abstraction does not

change the set of problems that are solvable, but it does allow for more efficient implementations.

We then show in Section 4 that finding a smallest core is, in general, NP-hard and discuss some

natural strengthenings of dependent failure assumptions that make finding a smallest core tractable.

There has been some work in providing abstractions more expressive than the t of n assumption.

The hybrid failure model (for example, [5]) generalizes the t of n assumption by providing a

separate t for different classes of failures. Using a hybrid failure model allows one to design more

efficient protocols by having sufficient replication for masking each failure class. It is still based

on failure in each class being independent and identically distributed. Quorum update has been

developed that does take nonuniform behavior into account (for example, [6]) but an abstraction

like the t of n assumption hasn’t come out of this work.

2 System Model

In this section we describe an abstraction for dependent failures.

The following is a typical failure model that one finds in papers on fault-tolerant distributed

protocols:

We assume that there is a set of processes � of size n. Each pair of processes is

connected by a bidirectional communication channel. The channels are fair, in that

they can drop messages, but if p repeatedly sends m to q and p and q do not fail, then

q will eventually receive m. Channels do not spontaneously generate messages: if q

receives m from p, then p had sent m, and q does not receive more copies of m than

p sent.

We assume that processes fail independently and no more than t of the n processes

can fail. A process fails by crashing, where a crashed process takes no further steps.

The last paragraph is often not realistic. For example, if a process fails due to a software bug,

then another process running the same software might also fail should it reach the same state or one

similar enough to activate the bug. Another example is related to exploits in computer networks:

the Code Red worm [7] affected hundreds of thousands of machines around the world that had in

common the web server they were running.

3

The purpose of this paper is to start exploring the space of designing protocols for dependent

process failures. Instead of assuming that processes fail independently, process failures are allowed

to be correlated. With the assumption of dependent failures, the probability of a process failing

during a run of a system depends on the history of failures in the run.

The t of n assumption is implicitly a probabilistic one: one chooses a value of t such that the

probability of more than t processes failing is negligible. It is convenient for protocol designers to

represent the target reliability in such a manner. We wish to have a similar convenient representa-

tion for the dependent failure assumption. We base ours on the notion of a core:

Definition 1 A core S is a minimal subset of � such that, in any run of the system, at least one

process in S does not crash.

The implicit assumption we make is that the probability of all the processes in a core failing is

negligible (that is, it is less than 1�R for some target reliability R).

A cores set is a set of all the cores of �. A protocol designer can assume that in any run of

the system, for each core S in the cores set, there will always be at least one process in S that

does not crash. For example, consider a six process system � = fp

1

; p

2

; p

3

; p

4

; p

5

; p

6

g. One

could have a cores set ffp
1

; p

2

; p

3

g; fp

1

; p

2

; p

4

g; fp

1

; p

2

; p

5

g; fp

1

; p

2

; p

6

gg. This could result, for

example, if p
1

and p

2

are jointly fairly reliable, but not reliable enough by themselves. Adding

one more process results in a core. The other processes, however, have correlated failures and so

by themselves do not provide sufficient reliability to be a core.

An equivalent way of representing dependent failures is with a survivor set. This representation

is most simply explained using a little propositional logic. The cores set can be expressed as a

proposition in conjunctive normal form, where the name of a process p is interpreted as a pred-

icate meaning “p does not fail”. For example, the cores set given above can be expressed as the

conjunctive normal form proposition

(p

1

_ p

2

_ p

3

) ^ (p

1

_ p

2

_ p

4

) ^ (p

1

_ p

2

_ p

5

) ^ (p

1

_ p

2

_ p

6

):

Rewritten into disjunctive normal form, the proposition is

p

1

_ p

2

_ (p

3

^ p

4

^ p

5

^ p

6

):

The set of terms of such an expression—here, ffp
1

g; fp

2

g; fp

3

; p

4

; p

5

; p

6

gg—is the survivor set.

In any run of the system, all of the processes in at least one of the elements of the survivor set will

not fail.

4

The number of elements in the cores set and in the survivor set can be large. From a practical

point of view, it is worthwhile to avoid explicitly using the entire cores set or the survivor set when

possible.

Unlike with process failures, we do not introduce a novel model of channel failures. Thus,

channels are assumed to drop messages, but not to permanently partition two processes. To cope

with message losses, we assume that the two primitives send(m) and receive(m) are provided.

These two primitives are assumed to implement a retransmission mechanism responsible for guar-

anteeing the delivery of a given message m. Since we assume fair channels, the channels become

reliable by using these two primitives. In addition, these primitives satisfy the following two prop-

erties (commonly called Validity and Uniform Integrity):

� If p sends m to q, and both p and q are correct, then q eventually receives m;

� For any message m, q receives m at most once from p, and only if p previously sent m to q.

In terms of timing assumptions, the two extremes considered in the literature are the syn-

chronous and asynchronous models. In the synchronous model, message delays, clock drift, and

process speed are all bounded, whereas in the asynchronous model, no assumption is made about

any of these system characteristics. Usually, real systems are neither totally synchronous nor to-

tally asynchronous. They exhibit a mixed behavior, alternating between periods of asynchrony

and synchrony. Several partially synchronous models try to capture this characteristic, such as the

ones described in [8, 9, 10].

In Section 3, we show that modifying the system model to assume dependent failures does not

change the set of solvable problems. It does, however, improve performance of protocols. We

prove this claim by showing the tight bound on the number of steps required for consensus in the

synchronous crash model with dependent failures.

3 Improving protocol performance by assuming dependent failures

In this section, we show that a model assuming dependent process failures allows for more efficient

protocol implementations than a model assuming independent process failures. To support this

claim, we first argue that a model assuming dependent failures is equivalent to the same model

modified by assuming independent failures in terms of the problems that can be solved in both

models. This result is not coupled to timing assumptions. We then illustrate the value of using a

dependent failure model by proving a lower bound on the number of steps required for consensus

5

in the synchronous crash model with dependent process failures. Finally, we show that this bound

on the number of steps is tight by giving a distributed algorithm that solves consensus in this

number of steps.

3.1 Independent vs. dependent failure assumptions

The assumption that process failures may be correlated does not restrict or increase the set of

problems that can be solved by the same model when assuming independent and identically dis-

tributed failures. To see this, assume a model M with some timing assumptions (synchronous,

asynchronous, or partially synchronous). We call M
d

the model M assuming dependent failures

and M
i

the model M assuming independent failures. We want to show that M
d

and M
i

are equiv-

alent in terms of the set of problems that can be solved in these models. We show that one model

can emulate the other.

It is easy to see that M
d

can emulate M
i

for any reasonable M
d

. M
d

should model a reasonable

set of ways processes can fail. One reasonable way is when the processes fail independently

and have identical probabilities of failure. To illustrate this, one dependent failure model that we

discuss later in this paper is the process-oriented model. This model specifies a set of processes

�, and target reliability R and a function Pf (p 2 �; S � �) which is the probability that p has

not failed given that all of the processes in S have failed. Modeling the t of n assumption is then:

� the set of processes � remains the same;

� the mapping Pf is defined as:

Pf (p 2 �; S � �)

8

<

:

x if p 62 S

1 otherwise

� R 1� (1� x)

t

where x is a rational value 0 � x � 1.

To show that M
i

can emulate M

d

we need to provide a value for t, the upper bound on the

number of faulty processes in any execution of the system. The value of t has to be large enough

so that any subset of processes that fail in an execution has a size no larger than t. We can find the

smallest t from the survivor set survivor. The size of a smallest element e 2 survivor corresponds

to the minimum number of processes that do not crash over all possible executions of the system.

Therefore, if we make the value of t equal to n � jej, then we guarantee that no more than t

processes fail in any execution of the system.

6

3.2 Number of Steps for Synchronous Consensus

One important performance metric is the number of steps needed to solve consensus. In this

problem, each process p 2 � has a initial value v

p

2 f0; 1g. The goal is to have all correct

processes deciding on the same value v, which is proposed by some process either faulty or correct.

Consensus satisfies the following four properties:

Validity : if a correct process p
i

decides de
i

, then there is a process p
j

such that v
j

= de

i

Integrity : every correct process decides on at most one value, and if it decides v 6=? then some

process proposed v;

Agreement : if some correct process p
i

decides de
i

and another correct process p
j

decides de
j

,

then de
i

= de

j

;

Termination : every correct process eventually decides on some value.

Under the t of n assumption, it is well known that t+ 1 steps are required to solve consensus1.

Informally, this lower bound arises because, if the set of processes cannot yet decide on a consensus

value, then the failure of a process can leave the remaining set of processes still undecided. If one

structures the consensus protocol to first reach consensus within a smallest core Smin , then the

maximum number of steps is at least jSmin j � 1.

In Appendix A we reproduce the lower bound proof from [11] on the number of steps to solve

consensus in a synchronous system, rewritten to generalize the proof to apply to our dependent

failure assumption. We show that this lower bound can be met with the consensus protocol of

Figure 1. The protocol itself resembles the t of n consensus protocol in [12]. The original protocol

presented a consensus service for the construction of failure-tolerant agreement protocols.

Claim 2 DC solves consensus in a synchronous system.

Proof: We need to prove that DC satisfy the four properties in the specification for consensus.

From the protocol, all nonfailed processes decide in the last round on the first value v different

from ? found in the array of proposed values v
p

. Because we initialize the array with ? in every

position of v
p

, the value of a position v

p

[i℄ only changes to v 2 f0; 1g if process i proposes v.

Thus, DC satisfies Validity.

1Early stopping protocols can solve consensus using min(t+1; t

0

+2) steps where t

0 is the actual number of failures

in the run. The same techniques can be used with the dependent failure assumption, and a tighter bound can be obtained.

Due to space constraints we use the simpler case of non-early stopping protocols for this paper.

7

Algorithm DC for process p:

Initialization:

S is a core subset of processes

v

p

[1 � � � j�j℄ is an array of proposed values

For i = 1 to j�j do v
p

[i℄ =?

v

p

[p℄

R

 f0; 1g

Round 0, 8p 2 S:

m (p; v

p

)

send(m) to all process in S

Round 1 � t < jSj � 1, 8p 2 S:

upon receive(m = (q; v

q

)) do

for i = 1 to j�j do

if (v
q

[i℄ 6=?) then v

p

[i℄ v

q

[i℄

m

0

 (p; v

p

)

send(m0) to all processes in S

Round jSj � 1, 8p 2 S:

upon receive(m = (q; v

q

)) do

for i = 1 to j�j do

if (v
q

[i℄ 6=?) then v

p

[i℄ v

q

[i℄

m

0

 (p; v

p

)

send(m0) to all processes in �

Round jSj, 8p 2 �:

upon receive(m = (q; v

q

)) do

for i = 1 to j�j do

if (v
q

[i℄ 6=?) then v

p

[i℄ v

q

[i℄

i 0

while (v
p

[i℄ =?) do i i+ 1

de

p

= (v
p

[i℄)

Figure 1: Synchronous Consensus for Dependent Failures

8

If a process p receives a value v
p

0 in round i : 1 � i < jSj and if p does not fail by the next

round, then all processes q will have v
q

[p

0

℄ set to v
p

0 . A simple inductive argument shows that if a

nonfaulty process sets v
q

[p

0

℄ in the last round, then it was sent in the previous round by a nonfault

process. Consequently, the values that the nonfailed processes decide upon are the same, and so

Agreement is satisfied.

Since Validity is satisfied, the value a process decides upon has to be proposed by some other

process. In addition, by the construction of the protocol, every correct protocol decides on exactly

one value. Hence, Integrity is satisfied.

Finally, Termination is trivially satisfied. Every execution of the protocol takes exactly jSj steps.

2

To illustrate the benefits of assuming dependent failures, consider again the example presented

in Section 2 of the six processes fp
1

; p

2

; p

3

; p

4

; p

5

; p

6

g with cores set ffp
1

; p

2

; p

3

g; fp

1

; p

2

; p

4

g;

fp

1

; p

2

; p

5

g; fp

1

; p

2

; p

6

gg (and consequently the survivor set ffp
1

g; fp

2

g; fp

3

; p

4

; p

5

; p

6

gg). Any

protocol for synchronous consensus assuming independent crash failures can be used in this sys-

tem, but t would need to be five since the smallest element in the survivor set has a size of one. The

number of steps required by this protocol is consequently t+ 1 = 6. Our algorithm DC, however,

only requires three steps, which is the size of the smallest core.

4 Probabilistic models of dependent failures and cores

Up to now we have argued that using the cores set abstraction can help one design more efficient

fault-tolerant protocols, but we have not yet shown that the abstraction is sound. In this section we

ask the question of whether the cores set abstraction can be supported by reasonable probabilistic

models of dependent failures.

There are obvious problems of tractability associated with cores sets: the number of elements

can be exponential in the number of processes. But, as we have seen in the previous section, in

some cases we only need to know the identity of a single core. If there is some function r(S) that

computes in polynomial time the probability that at least one process in the set S � � of processes

has not failed, then there is a trivial and efficient method of finding a core. If r(�) < R for a target

reliability R > 0 then there is no core. Otherwise, initialize some variable C to �. As long as

there is a process p 2 C such that r(C � fpg) � R then discard p. Since r(;) = 0, this loop will

terminate, and the resulting value of C is a core.

The tractability of finding a smallest core depends on the probabilistic model one uses. To

9

illustrate the use and the consequences of choosing different probabilistic models, we describe

two of them. One model associates probabilities of failure with sets of processes while the other

associates probabilities of failure with attributes of processes. We call the first model the process-

oriented model and the second the attribute-oriented model.

4.1 Process-oriented model

The elements of process-oriented model are as follows:

� A set of processes �;

� A mapping Pf : ��P(�)! [0; 1℄\ Q , where P(�) is the power set of � and Q is the set

of rational numbers;

� A target degree of reliability R, where 0 < R � 1

Pf evaluates to the probability that a process p 2 � is correct given that all processes in a subset

S � � are failed. More carefully, associate with every process an indicator variable that represents

the current state of the process. We define the indicator variable X
p

as follows:

X

p

=

�

0; if process p has crashed

1; if process p has not crashed

Using our definition of indicator variables, we have the following interpretation of Pf :

For p; q
1

; q

2

; � � � ; q

k

2 �

Pf (p; fq
1

; q

2

; � � � ; q

k

g) = Pr[X
p

= 1jX

q

1

= 0;X

q

2

= 0 � � � ;X

q

k

= 0]

There are two special cases that are worth mentioning. First, if the subset in the second pa-

rameter contains p, then the probability that p has not crashed is zero. Second, in the case that

no process has failed, the second parameter is ; and the probability of the process in the first

parameter being correct corresponds to the probability of it failing by itself. That is,

Pf (p; fp; q
1

; � � � ; q

k

g) = Pr[X
p

= 1jX

p

= 0;X

q

1

= 0;X

q

2

= 0 � � �X

q

k

= 0] = 0

Pf (p; ;) = Pr[X
p

= 1]

To define r(S), we first set up a framework based on [13]. For a system with n processes,

let x = (X

1

;X

2

; � � � ;X

n

) be a vector of indicator variables representing the state of the system.

Define the structure function �(x) as follows:

10

�(x) =

�

0; if x denotes an invalid failure pattern

1; otherwise

Let �
S

(x

S

) refers to the structure function associated with subset S, where x
S

is a state vector

representing the failure state of S:

�

S

(x

S

) = 1�

Y

i2S

(1�X

i

)

Function �

S

(x

S

) evaluates to 1 whenever the state vector x
S

contains at least one indicator

variable X
i

equals to 1. Therefore, if there is at least one correct process in S, then we consider

the subset S to be functioning as a core. We can now define r(S):

r(S � �) = E[�

S

(x

S

)℄

= Pr[�

S

(x

S

) = 1℄

So, one computes r(S) as follows:

r(S = fs

1

; � � � ; s

k

g) = E[�

S

(x

S

)℄

= E[1�

Y

i2S

(1�X

i

)℄

= 1�E[

Y

i2S

(1�X

i

)℄; by linearity of expectation

= 1� (1� Pr[[

i2S

(X

i

= 1)℄)

= Pr[[

i2S

(X

i

= 1)℄

= 1� Pr[\

i2S

(X

i

= 0)℄

= 1� ((1� Pf (s
k

; ;)) �

k�1

Y

i=0

(1� Pf (s
i

; fs

i+1

; s

i+2

; � � � ; s

k

g)))

If one wishes to represent Pf as a mapping, then an exponential space structure is required. To

avoid this difficulty, we represent Pf as a time-bounded Turing machine, noting that in doing so

we limit the situations for which this model can be applied.

We now argue that finding a smallest core is NP-hard. Define the decision problem associated

with finding a smallest core SC as follows:

Input: A set of processes �, a time-bounded Turing machine Pf , a target degree of reliability

R 2 Q \ [0; 1℄, a positive integer k;

Question: Is there a subset S � � such that r(S) � R and jSj � k?

11

To show that SC in NP , we need to provide a polynomial-time verifier that takes a certificate C

and an instance h�;Pf ; R; ki and decides whether this instance is in SC or not. Unfortunately, we

do not know how to verify in polynomial time whether the probability distribution associated to

the Turing Machine is consistent or not. Hence, we don’t know whether the input can be verified

in polynomial time and hence don’t know whether SC is in NP .

We show in Appendix B that SC is NP-hard by giving a reduction from the vertex cover prob-

lem. We provide here a brief description of this reduction. Assume an instance hG = (V;E); ki

of the vertex cover problem [14]. Create a process for each vertex and associate the same proba-

bility of failure x with each edge. Edges fail independently, and a process fails when all the edges

incident on that process fail. Consequently, the probability that a node p fails by itself is provided

by the intersection of the events corresponding to the failure of the edges touching p. To build TM

Pf , we need to define the probability that a process p has not failed given that some subset S has

failed. If no neighbor of p is included in S, then Pf (p; S) is equal to x to the power of the number

of neighbors of p. Otherwise, Pf (p; S) is equal to x to the power of the number of neighbors of p

in S subtracted from the total number of neighbors of p. We set the target degree of reliability to

be a function of x to the power of the total number of edges, which forces the solution to represent

a vertex cover. Moreover, this vertex cover has size at most k if and only if the solution subset has

also size at most k.

Since SC is NP-hard, the process-oriented model does not scale with the number of processes.

If one has a large number of processes, then one would want to use approximation or randomized

algorithms. Our work in this area so far leads us to conjecture that there is no polynomial time

constant approximation algorithm.

4.2 Attribute-oriented model

Processes in real systems can be characterized by attributes, such as operating system, TCP/IP

stack implementation, hardware version, etc. By identifying attributes that are critical to the cor-

rectness of the processes, it might be possible to infer failure dependencies. Processes are charac-

terized by attributes that can fail. Once a process with a given attribute a
1

fails due to this attribute,

we assume that all other processes with attribute a
1

will eventually fail. We assume that attributes

fail independently.

We define attributes to be binary: for every possible attribute a, a process either has or doesn’t

have a. For instance, the attribute “OS IS LINUX” is owned only by those processes that run

12

Linux. One can think of other possible models in which attributes are not binary, but such a model

can be translated to a binary attribute model. For example, suppose we have a model with n-ary

attributes where all proceses have the same set of attributes. Each attribute a and each possible

value x of a can be associated with a new attribute a
x

. A process consequently either has or doesn’t

have a
x

. By definition, a
x

is a binary attribute.

We have in the attribute-oriented model a set of attributes � and two mappings f and Pa. f

takes a process as a parameter and returns the set of attributes this process has. Pa evaluates to the

probability of an attribute not failing. More formally, the model has the following components:

� a set � of processes

� a set � of attributes

� a mapping f : �! S

a

� �

� a mapping Pa : �! Q \ [0; 1℄

� a target degree of reliability R 2 [0; 1℄ \ Q

With this model we define the structure function

�(x) = 1�

Y

p2S

(1�

Y

a2f(p)

X

a

)

where there is an indicator variable X
a

for every attribute a. Then,

r(S) = E[�(x)℄

= 1�E[

Y

p2S

(1�

Y

a2f(p)

X

a

)℄

Finding a smallest core is also NP-hard in this model. The associated decision problem AS is:

Input: a set of processes �, a set of attributes �, a mapping f : � ! �, a mapping Pa : � !

(0; 1) \ Q , a target degree of reliability R 2 (0; 1) \ Q , a positive integer k � j�j;

Question: is there a subset S � � such that r(S) � R and jSj � k?

We show that the AS problem is NP-hard in Appendix C by reduction from CLIQUE. Compared

to SC, though, AS has the advantage of enabling the verification of the input in polynomial time.

Because the probability of failure is expressed in terms of the attributes and the attributes fail

independently, it is only necessary to verify that Pa(a) 2 (0; 1) \ Q for all a 2 �.

The attribute-oriented model, however, can be strengthed to allow for polynomial computation

of smallest cores. We give two such strengthenings next.

13

4.2.1 One Strengthening This first strengthening of the attribute-oriented model is plausible

for a set of processes described by the same set of multi-valued attributes.

Assume a system with n processes and a fixed number of attributes a, uniformly distributed

over the processes. Moreover, each process has a fixed number of attributes x and each attribute

has the same probability � of failure. If we assume that a >> x, then we have several sets in

which no pair of processes share an attribute. We say that a set of processes is a disjoint set if no

two processes in the set share an attribute. The maximum number of process in an disjoint set is

ba=x because there are at most ba=x disjoint combinations of attributes. The expected core size

is the smallest i that satisfies 1� (1� �

x

)

i

� R.

The following heuristic finds a smallest core satisfying R. The notation p
R

 S means assign to

p a value from S chosen randomly.

Algorithm MVA on input h�; A; f; p
a

; Ri

1- Candidates �

2- p
R

 Candidates

3- S p

4- while (r(S) < R and Candidates 6= ;) do

4.1- Remove from Candidates all processes that share an attribute with p

4.2- p
R

 Candidates

4.3- S S [fpg

5- output S

MVA first chooses a process p at random from � and a set of candidate processes Candidates

is set to �. S, which will always be a disjoint set, is initialized to p. In the while loop starting on

Step 4, all processes that share an attribute with p are discarded from Candidates; all the remaining

processes share no attributes with the processes in S. One of the processes in Candidates is added

to S and the loop continues as long as the desired reliability is met and Candidates is not empty.

When the algorithm terminates, it outputs a disjoint set that may or may not be a core. (A user of

this algorithm can check to see if it is a core by applying the function r to the output set.)

MVA is efficient in terms of time complexity. Steps 1, 2, and 3 take constant time. The while

loop in Step 4 iterates at most n times, but each iteration does not take constant time. Removing

processes that share attributes with the randomly chosen process p takes O(x � n2) steps over all

iterations. Therefore, MVA runs in O(x � n2) steps.

Now we discuss how successful MVA is in finding a minimum core, assuming there is one. Let

Z

k

be random variable denoting the size of the set Candidates after k iterations of the while loop

14

Iterations Number of processes

70 500 1000

1 50.43 360.22 720.44

2 34.89 249.26 498.52

3 22.93 163.79 327.58

4 14.06 100.49 200.98

5 7.84 56.03 112.06

6 3.79 27.09 54.18

7 1.44 10.34 20.68

8 0.34 2.46 4.92

9 0.01 0.12 0.24

Table 1: Expected size of Candidates

where k � ba=x. Z
k

has a binomial distribution:

� The number of trials is n, one for each process;

� A trial is done by checking if a randomly chosen process has attributes disjoint from a

randomly chosen disjoint set of k processes. The probability of success pr(k) is

pr(k) =

0

�

a� k � x

x

1

A

=

0

�

a

x

1

A

:

Since Z
k

has a binomial distribution, its expected value is pr(k) � n.

Table 1 illustrates how the expected value of the size of Candidates decreases with the number

of iterations. Note that jSj is the iteration number plus one. It shows that even with a large number

of processes the expected size of Candidates decreases with the number of iterations. This affects

the chances of MVA returning a core. For example, if the expected size of a core is 10 (which is

the size of S after 9 iterations), then for n = 70 the expected size of Candidates is small by nine

iterations; the chances of MVA returning a core is low. If n = 1000, however, then the chances are

much better.

As with any randomized heuristic, if we run the algorithm over the same input several times,

then the probability of finding the desired output increases. To determine the minimum number of

times we need to execute MVA to find a disjoint set of adequate size, we first compute the prob-

ability of finding such a disjoint set in one run of the algorithm. The probability that Candidates

has at least one element is:

Pr[Z
k

� 1℄ = 1� (1� pr(k))

n , for k � ba=x (1)

15

As one would expect from Table 1, when the total number of processes increases, (1� pr(k))n

becomes smaller and the probability Pr[Z
k

� 1℄ increases. We can use Equation 1 to compute the

probability that we find an independent set of appropriate size if we run the algorithm several times.

In order to compute this probability, we define a second random variable Xr

k

that corresponds to

the number of times the algorithm finds a subset of size k when we run the algorithm r times. The

following equation gives us the probability that Xr

k

finds at least one such disjoint set by running

MVA r times:

Pr[Xr

k

� 1℄ = 1� (1� Pr[Z
k

� 1℄)

r

Note that this probability is only meaningful if the total number of processes n in the system

is much greater than ba=x. Otherwise, it is simpler to run a deterministic algorithm that simply

checks all possible combinations.

4.2.2 Second strengthening In the second strengthening of the attribute model, we associate

with each process exactly one attribute (which we call its color). Formally, the model consists of:

� a set � of processes

� a set C of colors

� a mapping f : �! C

� a mapping Pc : C ! Q \ [0; 1℄

� a target degree of reliability R 2 Q \ [0; 1℄

The function Pc() is the probability that color does not fail during a run of the system.

Because we assume that the failure of a color
1

has no influence in the failure of another color
2

and each process has exactly one color, we have that for
1

6=

2

: f

�1

(

1

) \ f

�1

(

2

) = ;.

With this color model one can find a smallest core in polynomial time. The following algorithm

illustrates this fact:

Algorithm Color: on input h�; C; f;Pc; Ri

1- Sort colors by increasing order of failure probability

2- Let Sorted[1 � � � jCj℄ be the array of sorted colors

3- S ;

4- TR 1 probability of all in S failing

5- for i = 1 to jCj

5.1- p any process in f�1(Sorted[i℄)

5.2- S S [fpg

5.3- TR TR � (1� Pc(C[i℄))

5.4-if (1� TR � R) then output S

4- output S

16

The algorithm first sorts colors by increasing order of failure probability. It then traverses the

array of sorted colors and stops when either it finds a core or reaches the end of the array. We need

to show that the algorithm Color outputs a minimum core subset, whenever such a subset exists.

Otherwise it outputs a minimal subset of processes with maximal reliability.

Claim 3 Given an instance I = h�; C; f;Pc; Ri of the color model, algorithm Color outputs the

smallest core subset for this instance if such a subset exists. Otherwise, Color outputs a smallest

subset for which reliability is maximal.

Proof: Given an instance h�; C; f;Pc; Ri of the color model, the maximum reliability achievable

is Rmax = 1 �

Q

i

2C

(1 � Pc[i℄). By the construction of the algorithm, if R � Rmax, then it

outputs a subset S such that jSj � jCj. Otherwise, Color returns a subset S of size exactly jCj.

It remains to be shown that the size of the core is minimum. There are two cases to consider.

If there is at least one core in this instance, then assume that Color outputs a subset of processes

S that is not the smallest. Thus, there is another core S

0 with jS0

j > jSj. By the construction

of the algorithm, if a process p is removed from S, then r(S � fpg) < R, which implies that

S

0

6� S. Because S

0 cannot be a subset of S, there is at least one process p0 2 S

0 such that

p

0

62 S. Moreover, p0 is more reliable than at least one process in S. This is not possible, however,

because the failure probabilities of all the processes q 2 S are smaller than or equal to the failure

probabilities of the processes p 2 �� S. This is a contradiction, and so there is no such core S0.

If there is no core in the system, then r(S) < R for every S 2 P(�). The maximum reliability

achievable is Rmax = 1 �

Q

i

2C

(1 � Pc[i℄) and a smallest subset that satisfies this condition

contains exactly one process from each color. Color outputs one such subset in this case.

2

This algorithm is efficient in terms of the number of steps it takes to find a smallest core. Sorting

the Colors in step 1 takes �(� log) steps, where is the number of colors. The loop in step 5

iterates at most C times and each step in an iteration takes O(1) time. Notice that step 5.1 utilizes

the inverse of f , which is constructed only once in time �(n), where n is the total number of

processes. Therefore, the total running time of the algorithm is �(�log ++n) = �(�log +n).

4.3 Discussion

The tractability of finding a smallest core is not the only question one might have about a prob-

abilistic model of dependent failures. The model has to be able to accurately represent the ways

that processes fail. For example, our models restrict the ways that failures can be correlated. One

17

restriction they both impose is that the failure of a process p does not affect positively the proba-

bility of failure of a process q. In other words, no process becomes more reliable due to the failure

of another process. The probability of failure of a process p either remains the same or increases

with the failure of another process q. This doesn’t seem to be a grave restriction: we are not aware

of any real system for which this restriction does not apply.

A second restriction they impose is that failure probabilities and correlations do not change over

time. As time advances in a run of the system, the failure probability of a process might change

according to the failure of other processes, but the way it is affected is constant over time. For

example, they do not model systems in which the failure of some process p makes the probability

of failure of another process q increase for the next x minutes, nor do they model systems in

which a process reliability increases over time as it “burns in”. A third restriction is that failure

probabilities are symmetric. For example, they do not model systems in which the failure of a

process s makes the failure of high, but the failure of does not raise the probability of s failing.

The relation of probabilistic models of dependent failures with the cores set abstraction requires

further study. An open question is whether the cores set abstraction is sufficiently general to model

all reasonable probabilistic models. Our experience with the process-oriented and application-

oriented models, though, indicate that the cores set abstraction has wide applicability.

5 Conclusions and Future Work

In this paper we have presented a new modeling abstraction for designing fault-tolerant algorithms

when failures can be correlated. This abstraction, which is meant to serve in the same way that the

t of n assumption served, is based on cores, which are sets of processes such that at least one of

the processes will not fail in any execution. By using cores sets (or the equivalent abstraction of

survivor sets) one can design protocols that can take advantage of the knowledge of how processes

fail together. Doing so can result in more efficient protocols. We illustrated the benefit with a

synchronous consensus protocol that can terminate faster.

This paper is one first step in the study of the impact of dependent failures on the design of

fault-tolerant protocols. We are currently working on the following lines of research:

1. As noted in Section 4.3 our models of dependent failures are restricted. The details of the

model of dependent failures determine the complexity (or, indeed, the computability) of

core sets. Similarly, more restricted models of dependent failures can lead to more easily

computed smallest cores. We are continuing to explore this question to better understand

18

the applicability of the cores set abstraction.

2. There are numerous protocols that have been designed using the t of n assumption. We are

looking at a few of them—notably Consensus in synchronous and asynchronous systems

and some information diffusion protocols such as [15]—to gain experience with designing

protocols for dependent failures. Our hope is to develop a set of design rules for coping with

dependent failures.

3. Determining failure probabilities, which underlie the t of n failure assumption, is difficult.

Determining the correlated probabilities of failures, which underlie the abstraction of cores,

is certainly no easier. In large open distributed systems it will most likely be impossible to

know these probabilities with accuracy. We hope, though, that on-line techniques can be

used to estimate these probabilities. With such techniques one could design a system to be

adaptive as it determines how failures are correlated.

Acknowledgements We would like to thank our colleagues in the RAMP project (Stefan Sav-

age, John Bellardo, Jessica Chiang, Sashka Davis, Marvin McNett, and Renata Teixeira), Andrè

Barroso, Idit Keidar, Fred Schneider, and Dmitrii Zagorodnov for their support and comments on

our work. We would also like to thank Mihir Bellare and Russell Impagliazzo for their guidance

in the complexity results in this paper. Any errors in the results, however, are ours alone.

References

[1] T. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest Failure Detector for Solving Con-

sensus,” Journal of the ACM, vol. 43, pp. 685–722, July 1996.

[2] T. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed Systems,”

Journal of the ACM, vol. 43, pp. 225–267, March 1996.

[3] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms from unreliable

components,” in Automata Studies, pp. 43–98, Princeton University Press, 1956.

[4] J. Wensley, “SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft Control,”

in Proceedings of the IEEE, vol. 66, pp. 1240–1255, October 1978.

[5] F. Meyer and D. Pradhan, “Consensus with dual failure modes,” in Advances in Ultra-

Dependable Distributed Systems (N. Suri, C. J. Walter, and M. M. Hugue, eds.), IEEE Com-

puter Society Press, 1995.

[6] D. K. Gifford, “Weighted voting for replicated data,” in Proceedings of the 7th ACM Sympo-

sium on Operating Systems Principles (SOSP), pp. 150–162, 1979.

[7] D. Moore, “The spread of the code-red worm (crv2).”

http://www.caida.org/analysis/security/code-red/coderedv2 analysis.xml, July 2001.

19

[8] F. Cristian and C. Fetzer, “The Timed Asynchronous Distributed System Model,” IEEE

Transactions on Parallel and Distributed Systems, vol. 10, pp. 642–657, June 1999.

[9] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the Presence of Partial Synchrony,”

Journal of the ACM, vol. 35, pp. 288 – 323, April 1988.

[10] C. Delporte-Gallet and H. Fauconnier, “Synchronized Phase Systems,” in OPODIS 99,

(Hanoi), October 1999.

[11] I. Keidar and S. Rajsbaum, “On the Cost of Fault-Tolerant Consensus When There Are No

Faults - A Tutorial,” Tech. Rep. MIT-LCS-TR-821, MIT, May 2001.

[12] R. Guerraoui and A. Schiper, “Consensus service: A modular approach for building agree-

ment protocols,” in Proceedings of the 26th International Symposium on Fault-Tolerant Com-

puting, pp. 168–177, June 1996.

[13] S. M. Ross, Introduction to Probability Models, ch. 9. Harcourt Academic Press, 7th ed.,

2000.

[14] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-

completeness. W. H. Greeman, 1979.

[15] M.-J. Lin, K. Marzullo, and S. Masini, “Gossip versus deterministic flooding: Low message

overhead and high reliability for broadcasting on small networks,” Tech. Rep. CS1999-0637,

UCSD, 1999.

20

The reviewer need not read the following appendices to understand the paper. We include

them here for any reviewer who wishes to examine the proofs we omitted from the main text

because of space limitations.

A Lower bound for consensus in the synchronous crash model

To demonstrate the lower bound for the synchronous crash model with dependent failures, we use

the technique of layering proposed by Keidar and Rajsbaum [11]. Beginning with a set of initial

states, layers are applied consecutively to this set to show that the new set of states generated still

contains states in which some correct process has not decided yet. A layer in this context is an

action of the environment. This action can be, for example, messages dropped or processes failing.

More technically, layering is defined as a set of environment actions that can be performed by

the system. The set of possible actions is coupled to the failure model assumed. In our case, we

assume that a layering consists of crashing at most one arbitrary process at a given step. Moreover,

before failing, a process can send messages to a number of process. Notice that a process p sends

at most one message to another process q at each step. We then use (p; [q℄) to denote that process p

fails during this step, but the messages p sent to processes f1 � � � qg � � in this step are received.

Thus, we have the following layering for our model:

L = f(p; [q℄) j p 2 �; [q℄ = f1 � � � qg � �g

A layering is applied to a state. In this context, an initial state augmented by one or more

applications of layering L is called an execution. We use L(x) = fx � ljl 2 Lg to denote the

application of layering L to state x and L(X) = fL(x)jx 2 Xg to denote the application of

layering L to the set of states X . In addition, we define Li as the application of L for i consecutive

times. This is expressed recursively as follows:

L

0

(X) = X

L

k

(X) = L(L

k�1

(X))

We observe, however, that the number of consecutive layering applications is restricted to jSj�

1, where S is a minimum core. By assumption, at least one process in a core does not crash and

after jSj � 1 applications not all layers (i; [j℄) 2 L can be applied. Consequently, the model

restricts the number of consecutive applications of L.

Another important definition is the one of similar states. Similarity of states captures the notion

of states in which a correct process cannot make a decision, because there is not sufficient infor-

21

mation for it to do so. This notion is used extensively in the proofs presented below. Similar states

and similarity connected sets of states are defined as follows:

Definition 4 States x and y are similar, denoted x � y, if there is a process p
j

that is non-failed

in these states, such that (a) x and y are identical except in the local state of p
j

, and (b) there exists

p

i

6= p

j

that is non-failed in both x and y. A set of states is similarity connected if for every

x; y 2 X there are states x = x

0

; x

1

; � � � ; x

m

= y so that x
i

� x

i+1

, for all 0 � i � m.

Each process p begins the execution of a consensus algorithm with a proposed value v
p

. We

assume a binary set of possible values. That is, we have that v
p

2 f0; 1g. The set of initial states

is consequently the set of all binary strings with length j�j. We call this set Init and we show that

Init is similarity connected with the following lemma.

Lemma 5 Init is similarity connected.

Proof:

Given a state z, we denote by z

j

the local state of process p
j

in the state z. Let y; y0 be two

states in Init. For every 0 � m � n, define xm by setting x

m

j

= y

j

for all j > m and x

m

j

= y

0

j

for all j � m. We get: x0 = y and x

n

= y

0. Note that xm�1 and x

m differ exactly in the local

state of process p
m

. Since all the processes are non-failed in every state in Init, these states are

similar, that is, xm�1

� x

m.

2

Now, we need to show that any k consecutive applications of layering L on a similarity con-

nected set of states generates another similarity connected set of states. We note, however, that we

can have no more than jSj layering applications, by assumption. This is shown with the following

lemma.

Lemma 6 Let X be a similarity connected set of states in which no process is failed and S be a

core, then Lk(X) is similarity connected for all k � jSj.

Proof: We prove by induction. The base case is k = 0. By definition, we have that L0(X) =

X . Consequently, L0(X) is similarity connected. The induction hypothesis is that Lk�1(X) is

similarity connected and we want to show that L(Lk�1(X)) is also similarity connected. To show

this, we need to demonstrate that the two following properties hold:

1. if x 2 Lk�1

(X) then L(x) is similarity connected;

2. if y; y0 2 Lk�1

(X), y � y

0, then L(y) [L(y0) is similarity connected;

22

1: Suppose we apply layers (i; [0℄) and (j; [0℄) to x. Because no process is failed in none of

these layers, we have that x � (i; [0℄) and x � (j; [0℄) are identical. Now let us apply layers (i; [l�1℄)

and (i; [l℄) to x. x � (i; [l � 1℄) and x � (i; [l℄) are either identical, in the case that process i did not

send a message to l, or differ on the state of l, in which case they are similar.

2: y and y0 differ in the state of one process, let’s say i. If we apply layer (i; [n℄) to both states,

we get y � (i; [n℄) and y

0

� (i; [n℄). Notice that in this step, no process received a message from i.

Moreover, all processes besides i have identical state in y and y

0 and consequently the messages

they send have to be the same. Therefore, we have that y � (i; [n℄) � y

0

� (i; [n℄). Along with

property 1, this proves our claim that L(y) [L(y0) is similarity connected.

2

We use the two previous lemmas to show a theorem that provides the lower bound on the number

of steps required if jSj � 1 processes crash. The theorem is as follows:

Theorem 7 Consider an algorithm for consensus in the synchronous crash model with dependent

failures for a system with a core S. There exists an execution of the algorithm with jSj � 1 failures

in which it takes at least jSj steps for all correct processes to decide.

Proof: By lemmas 5, the set of initial states is similarity connected. According to 6, the jSj � 1

applications of layering L on the set of initial states Init results in another similarity connected

set of states. Thus, there is some execution in which after jSj � 1 steps there is at least one correct

process that has not decided yet. Therefore, at least jSj steps are required for all correct processes

to decide.

2

B SC is NP-hard

Claim 8 Vertex Cover �
m

SC

Proof:

We need to provide a polynomial-time algorithm A that returns an instance h�, Pc, R, szi of

the SCproblem given an instance hG = (V;E); ki of the vertex cover (VC) problem, such that the

following holds:

1. hG = (V;E); ki 2 VC) h�;Pc; R; szi 2 SC

2. h�;Pf ; R; szi 2 SC) hG = (V;E); ki 2 VC

23

We describe the algorithm A as follows:

A on input G = (V;E), k

1- � ;

2- x 0:2 (arbitrary choice)

3- For every vertex u 2 V

3.1- Create a new process labeled u

3.2- � � [fug

4- Make function Pf as follows:

Pf on input p 2 �, S � �

if p 2 S then return 1

nb number of neighbors of p

if S = ; then return xnb

S

0

 S

i 0

while S0

6= ;

q

R

 S

0

S

0

 S

0

� fqg

if (p; q) 2 E then i i+ 1

return xnb�i

5- R 1� x

jEj

6- sz k

7- Output h�;Pf ; R; szi

The algorithm clearly runs in polynomial time on the input hG; ki. One detail about the algo-

rithm that needs clarification is the arbitrary choice of probability x. In this reduction, we can see

x as the probability of an edge e 2 E failing. A process p 2 � is faulty if and only if all the

edges touching p fail. Hence, assuming a sample space in which samples represent edges failing,

some samples may not contain sufficient faulty edges to make any process faulty. Moreover, these

samples have probability greater than or equal to 0 (zero). Suppose E
p

corresponds to the event in

which p 2 � is faulty, we then have the following:

0 � Pr[[

p2�

E

p

℄ �

�

jEj

1

�

� x�

�

jEj

2

�

� x

2

+ � � �+ (�1)

k+1

�

jEj

k

�

� x

k

+

+ � � �+ (�1)

jEj+1

�

jEj

jEj

�

� x

jEj

= (�1)

jEj�1

(x� 1)

jEj

+ 1 , for jEj � 1

We need to determine for which values of x Equation 2 is satisfied. For odd jEj, we have the

following three constraints:

0 < x < 1

(x� 1)

jEj

< 0) x < 1

�1 < (x� 1)

jEj

) x > 0

24

For even jEj, we have the following three constraints:

0 < x < 1

�(x� 1)

jEj

< 0) x 6= 1

�1 < �(x� 1)

jEj

) 0 < x < 2

Therefore, any value in the range (0; 1) is appropriate. It remains to show that properties 1 and

2 hold for A.

First, we prove 1. Let us assume that a graph G = (V;E) has a subset V 0 of size at most k such

that for every edge (u; v) 2 E either u or v is in V

0. We can build a solution S for the instance

h�;Pf ; R; szi by including in S the processes associated with the vertices in V

0. There are two

cases to be analyzed. In the first one, no pair of nodes in V

0 are neighbors. More formally, for

every u; v 2 V

0

; u 6= v, we have that (u; v) 62 E. According to the algorithm, for every process

p 2 S, we have that Pf (p; S � fpg) = x

nb(p). Thus, if V 0 is a vertex cover for G and we apply 1,

we have that the reliability of S is exactly 1 � x

jEj. Now, let us assume that there is at least one

pair of vertices u; v 2 V

0, such that (u; v) 2 V

0. In this case, according to the construction of Pf

and equation 1, the reliability of S is exactly 1� x

jEj, because in computing the probability of all

processes in S being faulty, we multiply x exactly once for every edge in E.

Now, we show 2. If there is a subset of processes S of size at most sz = k that satisfies the

target degree of reliability R = 1� x

jEj, then a vertex cover V 0 for G is composed of the vertices

associated with the processes in S. According to our algorithm and equation 1, for every edge

(u; v) 2 E, we multiply x exactly once in the computation of the probability of all processes

being faulty, even if both the processes labeled u and v are in S. Therefore, to obtain reliability

R, S has to be composed of processes associated to vertices such that for every edge (u; v) 2 E

either process u or process v is in S. We conclude that V 0 is a vertex cover for G of size at most k.

2

C AS is NP-hard

We prove the claim that the problem AS is NP-hard by providing a reduction from CLIQUE as

follows:

Claim 9 CLIQUE�
m

AS

Proof: We need to provide a polynomial-timeAAS algorithm that takes an instance hG = (V;E); ki

of the the CLIQUE problem and output an instance h�;�; f;Pa; R; k0i of the AS problem such

that:

25

1. if hG = (V;E); ki 2 CLIQUE then h�;�; f;Pa; R; k0i 2 AS

2. if hG = (V;E); ki 62 CLIQUE then h�;�; f;Pa; R; k0i 62 AS

We describe AAS as follows:

Algorithm AAS

On input hG = (V;E)i

1- � ;; � ;

2- For every u 2 V

2.1- Create process p
u

2.2- � � [fp

u

g

3- For every p
u

2 �

3.1- Create attribute a
u

3.2- f(p
u

) fa

u

g

3.3- � � [fa

u

g

4- For every u; v 2 V; u 6= v, such that (u; v) 62 E do

4.1- Create attribute a
u;v

4.2- f(p
u

) f(p

u

) [fa

u;v

g;f(p
v

) f(p

v

) [fa

u;v

g

4.3- � � [fa

u

vg

5- x 0:002, %probability of process p crashing by itself

6- For every u; v 2 V; u 6= v, such that (u; v) 62 E do

6.1- r maxfjf(p

u

)j+ 1; jf(p

v

)j+ 1g

6.2- Pa(a
uv

) 1�

r+1

p

x

7- For every u 2 V do

7.1- Pa(a
u

)

x

(

Q

a2f(p

u

);a 6=a

u

(1�Pa(a)))

8- k0 k

9- R 1� (1� 0:002)

k

10- Output h�;�; f;Pa; R; k0i

We argue that AAS runs in polynomial time. The first five steps clearly run in polynomial

time. Steps 1 and 5 take constant time, while 2, 3 and 4 iterate a polynomial number of times on

the size of either the set of vertices or the set of edges. Each statement in these loops executes

in polynomial time, since they are creating new elements, such as processes and attributes, and

adding these elements to their respective sets. Steps 6 and 7 execute expensive operations such

as nth root and multiplication, but multiplication and rational approximation of nth root can be

done in polynomial time. Rational approximation introduces an error to the computation, but as

we argue below this error does not impact the correctness of the reduction. Finally, computing the

target degree of reliability in step 9 requires k multiplications and two subtractions, which turns

out to be polynomial on the integer k.

The algorithm works by creating an attribute a
uv

for every edge (u; v) in the complement graph

G

0. This attribute is shared by the processes touched by the edge. Every process p
u

has also

26

an attribute a
u

which is not shared with any other process. The main reason for having this extra

attribute is to equalize the probability of failure of the processes. Any error that is introduced by the

rational approximation of extracting the nth root can be compensated for with these probabilities

for the attributes a
u

. Although the processes have different failure correlations, every process has

the same probability of failing by itself. Intuitively, by doing this, we avoid having very reliable

processes that are not present in a clique.

We now need to show that properties 1 and 2 hold for AAS.

1: Assuming there is a clique of size k in G, there is a subset of processes S � � such that no

pair of processes in S share an attribute and S has size k. Consequently, the processes in S fail

independently and the reliability is exactly 1� (1 � 0:002)

k .

2: Assuming there is no clique of size k in G, there is no subset of processes S � � such that

no pair of processes in S share an attribute and jSj = k. Because all the processes have the same

probability of crashing and every subset of size k has correlated failures, there is no subset of size

less than or equal to k that satisfies the target degree of reliability 1� (1� 0:002)

k .

This concludes our proof.

2

27

