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Taking account of analyticity, crossing and signature, we derive 

sum rules relating triple Regge vertices to integrals over low missing 

J masses in inclusive reactions. Some implications for triple Regge 

couplings are discussed . 
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I. INTRODUCTION 

Recently it has been suggested1 that it might be possible to use analyticity 

to derive sum rules for single particle distributions in inclusive reactions. On 

the basis of model studies sum rules have been proposed relating integrals over 

low missing masses in inclusive spectra at high incoming energies to triple 

Regge vertices. In form and content these finite mass sum rules are similar 

to finite energy sum rules for two-body processes. 

In this paper we discuss the, der~vation of sU9h sum rules, paying particular 

attention to the correct incorporation of crossing. We emphasize which pairs 

of crossed reactions are related by the sum rules, what sum rules are free of 

wrong signature fixed poles, and how triple Regge signature should be taken into 

account. The sum rules we obtain take the form 

n d cr . . ,n+ 1 d cr . 
[ dV v E -d (a+b-c+anythmg) + (-1) E -d-(c+b-a+anythmg)l 

N [ 3 . 3 

o c Pc a Pa J 

i j* k k 
Po _(t) Po ... (t) g .. (t) «'-b-(O) x ac a.., 1] '-0 
a

k
(0)+n+1- a.(t) -a.(t) 

1 ] 

(1) 

where v =%. (Pa -pc) = ~(M2 -t-m~), t= (Pa _pc)2 and YJ =%' (Pa +Pc) = ~ (sab -

sb- - m 2 + m 2 ) (see Fig. 1). . Other quantities in Eq. (1) are defined as follows: c a c 

T., T. and Tk are Regge signatures, and g.(t) == (T.+e- i1fai(t»)/sin 1fa.(t), 
1 J 1 1 1 

13;(5(t) and (1)(0) are the reduced residue functions familiar from two-body 

scattering, and gt(t) is the vertex for the three Reggeons ai(t), aj(t) and O!k(O). 

In order that Regge exchanges in the t;..channel dominate, the range of integration 

in (1) must be such that YJ» N, Itl. 
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Strictly speaking the sum rules should be evaluated at fixed t and fixed YJ • 

However experiments are normally done at discrete laboratory energies, and 

Pa· % = ~YJ+v), so that data does not exist at fixed YJ. However, evaluating 

E dd
3

<T (a + b - c + anything) at one fixed laboratory energy W = 0. . P 1mb and cpa ~o a 
c 

E dd
3
<T(c+b_a+anything) at another fixed energy W =o..p 1mb will yield an 

a Pa c ~ 0 c 

approximation to the sum rule accurate to orders N/~wa' N/mbwc' provided 

IWa -w cl = O(N/mb)« wa ' wc· This point will be discussed below. 

II. DERIVATION 

It has been made plausible2, 3 that the inclusive differential cross section 

for the process a+b- c+anything (see Fig. 1) is related to a discontinuity in 

M2 = (p +0. -p ) 2 of th~ forward a + b + C - a + b + c scattering amplitude a ~ 0 c 

A( s ab' M2, t) . This discontinuity must be evaluated on a sheet where the incoming 

subenergy sab is just above its physical cut, and the outgoing sub energy sab just 

below its physical cut, as indicated in Fig. 2. Clearly at fixed t we may equally 

2 
well regard the amplitude A as a function of YJ and v rather than ~b and M 

Then 

where A(sab,m!,m~) is the usual flux factor. According to the Steinmann-like 

relations, 3 the locations relative to their cuts of variables overlapping the 

missing-mass variable M2 = (Pa +~ -pc) 
2 

do not affect the value of the discon­

tinuity appearing in Eq. (2).J We choose the incoming sub energy ~c just below 

its cut and the outgoing subenergy sr>c just above its cut. Then A is on a sheet 

such that the inclusive cross section for c + b - a + anything is the discontinuity 
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of A in (p +Pb-P ) 
2 

In terms of v : 
C a 

Regge analyses 4 of the (3-3) amplitude A suggest that in the limit 'YJ » v, t 

it may be approximated asymptotically as 

A-I: 
i, j 

.. ,:,.;,. 

(4) 

[For notational simplicity, we have absorbed signature factors and residues into 

the definition of f..(v, t).] The powers of 'YJ in the first term of Eq. (4) are 
I) . " 

determined by the leading helicity poles which are related to the Regge poles 

indicated in Fig. 3. The remainder term A has a different .power behavior in 

YJ and is not expected5 to contribute to the discontinuities in v. The quantity 

f. .(v , t) is referred to loosely as the Reggeon-particle scattering amplitude -
I) . 

more precisely it is the analytic continuation of the maximum helicity flip 

amplitude in the center-of-mass of the crossed channel bb- a. O! .. 
. . , 1 ) 

In order to write a dispersion relation for f . . (v , t), and therefore derive a 
I) 

sum rule, one must understand its singularity structure. Supposing A has no 

discontinuity in v, we find for large YJfrom Eqs. (2) and (4) that 

d3 """ O!.+O!.-l 
E d 0'" (a+ b - c + anything) ~ L.J 'YJ 1 ) disc > 0 f . . (v , t) (5) 

c Pc i,j v I) 

and from Eqs. (3) and (4) that 

d3 """ O!.+O!.-l 
Ea dpaO'" (c + b- a+ anything) = LJ YJ 1 ) disc v < 0 fij(v ,t) 

i, j 
(6) 

Thus f.. has a right-hand cut which may be interpreted as the absorptive part of 
I) , 

the O! .+b - O! .+b Reggeon-particle scattering amplitude, and a left-hand cut which 
1 ) 
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corresponds to the absorptive part of a. + b:"" a. + b. Both cuts are required 
J 1 

because if f.. is continued to particle poles in positive t one expects to recover 
IJ 

the usual analyticity properties of two-body scattering amplitudes. 

The question arises whether, at negative values of t, f. .(v, t) has any other 
IJ 

Singularities in the complex v plane. Such singularities do not occur in models 

that have been studied such as perturbation theory, 6 the Gribov Reggeon 

calculus, 7 and the dual resonance model. 8 Further there is no reason yet known . 

from S-matrix theory why singularities should occur at complex values of v • 

Thus normal threshold singularities of the (3-3) amplitude A in other physical 

region variables such as (p +0. +p )2 move off to 00 as 71-00, and so could not a ~o c 

appear in f. .(v , t). Most simple triangle and box diagram Landau singularities 
IJ 

in A move off to 00 as 71 -00 ; those that occur at finite values of v lie on the 

real axis, and are included3 in the definitions of the discontinuities to be associ-

ated with inclusive cross sections. It therefore seems reasonable to follow 

previous authors in assuming that f . . (v, t) has the same analyticity properties 
IJ 

in v as a (2-2) particle scattering amplitude. 

In order to derive useful sum rules it is necessary to know the asymptotic 

behavior of f.. in v. This is determined by Reggeons in the bb channel via the 
IJ . 

"triple Regge" formula 9 

* i j* k k r (t) ~ . (t) f3 _(t) f3 _(t) f3bb-( 0) g .. (t) 
1 J ac ac IJ 

(7) 

All the symbols in Eq. (7) were defined in Section I, with the exception of T, the 

triple Regge Signature factor .. 
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That T is not simply the ~ignature T k of the RE;lgge trajectory O!k can be 

seen by imagining a case where O!i(t) and O!j(t) are unit-separated trajectories 

of opposite signatures. Proceeding to a double particle pole in the t-channel. 

f.. is proportional to an amplitude with cross-channel helicity' flipped by O! .+O! .• 
1) ., 1 ) 

an odd number. It is well-known10 that in such a case T = - T k. A choice 

of T consistent with this observation is T = T.T .T k . This is indeed the form ·1) . . 

taken by T in Feynman tree graph models with elementary particle exchanges. 

and. more realistically. in the dual resonance model as shown in the appendix. 

We have now motivated the required analyticity properties of the Reggeon-

particle scattering amplitudes fij(v.t). related (Eqs. (5) and (6» its cuts to 

inclusive cross sections and know the behavior of f. .(v. t) as v - 00. Therefore 
1). . 

we can derive a sum rule for each f..(v. t) using the contour shown in Fig. 4. 
. 1) 

Adding these sum rules together with weights 110!i+O!r1 the finite mass sum 

rules (1) for inclusive reactions are immediately obtained. Note that (2-2) 

processes such as elastic reactions should be included in the missing mass 

integrals. and will give important contributions. 

As mentioned in Section I., the finite mass sum rules should strictly speaking 
I 

be evaluated using 'data on inclusive cross sections at fixed values of TJ = Do • (p +p ). . ~D a c 

As v = Do • (p -p ) varies this corresponds to varying the incident laboratory energies 
~D a c . 

wa and Wc over a range O(N/mb). But in the approximation where at-channel Regge 

description is used this variation in energy makes a fractional change in the cross 

section of O(N/rf) «1. Hence if we insert data at fixed laboratory energies into 

the sum rules (1) they should still be accurate to order N/l1' In fact to the same 

accuracy it is not necessary that the laboratory energies wand w be exactly a c 

equal, as long as I wa -w cl = O(N/mb). However this does mean that terms down 

by O(N/l1) relative to the leading terms in the Regge pole expansions (5), (6) or 

- 6 -
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(7) cannot be evaluated reliably using the sum rules (1). For example, in 

processes where both the Pomeron and ordinary meson trajectories can be , 
exchanged in the t-channel, sum rules at fixed laboratory energies will permit 

the determination of Pomeron-Pomeron and Pomeron-Reggeon contributions, 

but not Reggeon-Reggeon contributions. 

Schwarz-like
l1 

sum rules can be written down for other combinations of 

integrals over the inclusive cross sections a + b - c + anything and 

c + b - a + anything, but then nonsense wrci'ng signature fixed pole residues R~~(t) 
1J 

must also be included on the right-hand sides: 

JNdl) I)n [Ec ~3(J"(a+b -c+anything) + (_1)n E ~3(J"(c+b_a+anything)] 
o Pc a Pa 

=L 
i, j 

O! . (t)+O! .(t)-1 ..* 
'YJ 1 J g .(t) g~(t) rl (t) j3J _(t) 

1 J a~ ac 

O!k(O)+n+l - O!.(t)-O!.(t) 
1 J 

(8) 

III. DISCUSSION 

The most interesting applications of the finite mass sum rules (1) are likely 

to be in the estimation of triple Reggeon vertices by integrating over data at 

relatively low values of the missing mass. Data in the triple Regge region 

'YJ» I) »~ are not likely to be available until there are results from NAL; 

precise evaluations of triple Regge vertices from fits will have to wait until 

then. It would also be interesting to use the sum rules to investigate whether 

the Harari-Freund12 conjecture can be generalized in the natural way to 
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Reggeon-particle scattering. One would evaluate resonance production contri-

butions to the inclusive cross section integrals to see whethe.r they built up 

Regge exchanges in the bb channel. A similar analysis could help resolve the 

controv.ersyl3 on the duality properties of Pomeron-particle scattering. 

It has been argued
14 

that certain of the fixed pole residues R~~) (t) appearing 

in Eq. (8) may vanish at t=O because of crossed channel unitarity. This sug-
> ; , 

gestion could in principle be checked:by using the sum rules (1) to evaluate the 

triple Regge vertices g~.(t), and substituting them into the Schwarz sum rules (8) 
IJ· \ 

to evaluate the residues R"!!(t). The evaluation of fixed pole residues in the . IJ . 

aeggeon-particle amplitude for a range of t is quite interesting physically, since 

the fixed pole residues set the scale of Reggeon-Reggeon cut contributions to two-

body scattering. Thus measurements of single-particle inclusive cross sections . 
in principle determi;ne the magnitude of cuts in two-body scattering .. Thus the 

Regge pole description we have assumed could be checked for self-con:;istency. 15 

In all the above work the Pomeron has been treated as an ordinary Regge 

trajectory (possibly with zero slope), on the assumption that this is a :reasonable 

first approximation to its nature. The sum rules give a lower limit to the 
f 

rate of fall-off of Pomeron-particle scattering amplitudes. Consider the special 

case of the sum rule (1) with particles a and c identical, n=l, and YJ so large 

that non-diffractive processes may be ignored. Then 

I-cOS 1I"0l~t) 

(9) 
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where ap(t) is the Pomeron trajectory, and the sum is over trajectories k with 

" positive signature. The left-hand side of the sum rule (9) has a nonzero positive 

contribution from the elastic process a + b - a + b. Because the inclusive cross 

section is positive this contribution cannot be cancelled, so that the coefficient 
2a p(t)-1 ' 

of s on the right-hand side of (9) cannot fall to zero for large N. Hence 

there must be a nonzero coupling g for the Pomeron to some positive sig-
PIk 

nature J-plane singularity with a k ~ O. This could either be the ~ or Pomeron 

trajectory,17 or some other cut, trajectory or fixed pole with J ~ O. Under 

reasonable assumptions
14 

about the residues of wrong signature fixed poles in 

Pomeron-particle scattering, this restriction on multi-Pomeron couplings can 

be strengthened to establish 16 a lower bound on the triple-Pomeron coupling at 

tfo. 

The term sin rr(ak(O)-a.(t)-a.(t) in the denominator of Eq. (7) might appear 
1 J 

to give an unphysical singularity in t in the full 3-3 amplitude. It has been 

pointed out18 thatthe apparent singularity can be cancelled by terms in A(Sab' M2, t) 

for a .(t) + a .(t) - ak(O) = 0, -1, -2. .. and suggested that for a .(t)+a .(t)-ak(O) = 
1 J 1 J 

1,2,3. .. the poles are cancelled by zeroes in the vertices g~.(t). This latter 
1J 

proposal is clearly required by sum rules (1) (continued if necessary to positive 

L t) for the cases a.(t)+a.(t) - ak(O) = L > 0 such that (-1) = T.T.T k . These 
1 J 1 J 

zeroes arise because right signature fixed poles were assumed to be absent in 

the triple Hegge formula (7). If nonsense wrong-signature fixed pole residues 

were Iionsingular, then the finite mass Schwarz sum rules (8) could be used to 

prove the existence of the zeroes at integers L : (-1) L = -T.T .T
k

. A recent 
1 J 

paper by Mueller and Trueman19 reaches a similar conclusion on the basis of 

Feynman diagram calculations. 

- 9 -



APPENDIX 

In the dual resonance model, the helicity pole limit can be investigated 

explicitly.5 We multiply each cyclically inequivalent ordering of the exte~al 

momenta by the appropriate Chan-Paton factor. Then, in the limit, YJ - «I, 

V _«I, YJ » v (fixed t) the asymptotic behavior of the amplitude is determined 

by the sum of eight cyclically inequivalent terms 20 (Fig. 5). 

" k {~ a . a'J ~ a . a 'J A '" L.J 'Y.. . (-s b) 1 + T. (-Sb-) 1 (-S-b-) J + T .(-8.- ) J 
. . k IJ a 1 c a J ' OC 
1, J, 

(A .1) 

k The residue, 'Y .. =r(-a.)r(-a.)r(a.+a.-ak) , is the same for all eight terms. 
IJ 1 J 1 J 

To the expression above must be added another term which has no discontinuity 

in the missing mass and is of no interest for the present discussion. In the 

limit of interest, we have 

s ~ -s - ~ v > 0 
abc abc 

A complete definition of the expression requires a specification of the phases of 

each of the powers (_YJ)a. To obtain the inclusive cross section do-(a +b -c + anything) , 

the prescription is to choose2
, 3 

(a) Re sab = Re sab ~ YJ 

Notice that the inclusive cross section d (a + b - c + anything) could equally well be 

obtained by the alternative prescription 

(f3) Re sab = Re sah ~YJ Im sah = + if 

- 10 -
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In general, the two prescriptions correspond to taking the discontinuity in s b­
a c 

on different Riemann sheets. bf course, the complete determination of the 

sheet requires the specification of other energy variables, such as ~c and ~c' 

relative to their physical cuts; however, according to the Steinman-like relations, 3 

the discontinuity in s b- is independent of the specification of the overlapping variables. . a c 

(Furthermore, the equality of the discontinuity on sheets having either pre-

scription (a) or ((3) is a consequence of time reversal invariance.) Although 

the discontinuity in s b- > 0 is independent of the choice of phase of s. and s. _, a c DC DC 

the discontinuity in s abc will not be. The inclusive cross section do-(c + b -+ a + anything) 

will be obtained from either of the following choices 

(y) Re sbc = Re ~c ~7J 1m ~c = -ie 

(8) Re ~c = Re ~c ~7J 1m ~c = +ie fin ~c = -ie 

On a sheet satisfying prescriptions (a) and (y), the expression given above, 

Eq. (A. 1), can be written simply as 

(A.2) 

If however we choose (a) and (8) we find 

A"'" L: y~. 7Jai+aj [g.{'f(_V)ak-ai-a j + ~.f'! T.T.T
k 

vak-aCaj] (A.3) 
ijk 1J 1 J J 1 1 J 

Using the fact that y~. =y~. the two expressions are precisely equal. 
1J J1 

No doubt the asymptotic forms (A. 2) and (A. 3) follow from the assumption 

of Regge behavior on all the sheets and are not peculiar to the dual resonance 
k . .* k . k 

model. In the general case, the residue would be y .. = l-(t) (3! (t) L1. b-(O) g .. (t) . 
1J ac ca""O 1J 

The symmetry property y~. =y~. follows quite generally from the requirement 
1J J1 

that the discontinuity for v > 0 is the same no matter whether prescription (a) or 

-11-



({3) is taken. The reality condition 'Y~' ='Y~.* is assured by the requirement that . .. 1J 1J '. .' 

the discontinuity be real. 

Assuming Regge.asymptotic behavior. oneach of the many. sheets, other 

sum rules could be written down; however, it seems that only on. the sheets 

discussed above can the discontinuities be actually determined experimentally. 

For example, imagine choosing all Subenergi~s above their cuts as for the 

physical 3- 3 amplitude.. The discontinuity in sabe would then be quite com-:, 

plicated, and multibody, S-matrix elements would be needed for its ~valuation. 
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FIGURE CAPTIONS 

Kinematics for a + b -+ C + anything. 

Discontinuity related to the inclusive cross section. 

Representation in the limit sab» Ni', t of term in (3-3) amplitude 

with Nt- discontinuity. 

Contour used in deriving sum rules. 

Cyclically inequivalent terms contributing in triple Regge limit. 
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