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ABSTRACT

Taking account of analyticity, crossing and signature, we derive

sum rules relating triple Regge vertices to integrals over low missing

4

masses in inclusive reactions. Some implications for triple Regge

couplings are discussed.
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I. INTRODUCTION

Recently it has been suggested1 that it might be possible to use analyticity
to derive sum rules for singlé particle disffibutio'ns in inclusive reactions. On
the basis of model studies sum rules ha{xe been proposed relating integrals over
low missing masses in inclusive spec}tra at high incoming energies to triple
Regge vertices. In form and contexit these finite ﬁlass sum ruléé are similar
to finite energy sum rules for two-body processes.

In this paper we disc'uss the déri‘vation'of su_c'h:sum. rules, paying particular
attention to the correct incorporation of crossing. We emphasize which pairs
of crossed reactions are relat.ed by'the su'm"rules., what sum rules are free of
wrong signature fixed poles, and how triple_Régge sig‘natu?e should be taken into

account. The sum rules we obtain take the form

de nie d_32' +b—c+ hine) + (<11 E »dso- b S
A v vo|E, ap, (a c +anything) + (-1) a dp, (c +b — a +anything)
| ai(vt)+a-(t)—1 a, (0)+n
-2 K (e e )@ T N qege
1,],
S,

Bag®) A5 80 Bi5(0 1
o (01— a;(B) - () (1)

1/..2 2 2 1
Where v =p (P, "P) = E(M —t_mb) » £=(p,7P) and m =gy " (P*P;) = 5 (Sab -
Sbé - m§+ mg)(see Fig. 1). - Other quantities in- Eq. (1) are defined as follows:

| are Regge signatures, and fi(t) = (Ti+e_i7rai(t))/sin Ta(t),

ﬁ;(_}(t) and ,81;5(0) are the reduced résidue functions familiar from two-body

7., T.and 7
i’ ]

scattering, and gli{j(t) is the vertex for the three Reggeons ozi(t), aj(t) and ak(Q) .
In order that Regge exChang’és in the t-channel dominate, the range of integration

in (1) must be such that » > N, |tI.
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Strictly speaking the sum rules should be evaluated at fixed t and fixed 7 .
However experiments are normally done at discrete laboratory energies, and

pb= l(7;+u), so that data does not exist at fixed 7. However, evaluating
E a3 U(a+b —~c+anyth1ng) at one fixed laboratory energy W, =Py, P, /m and

C

E d’ G(c +b — a + anything) at another fixed energy w =Py P, /m will yield an

approx1mat10n to the sum rule accurate to orders N/ m W, N/ m o, provided

|w -w | = O(N/m)<w ,w . This point will be discussed below.
a ¢ b a’ ¢

II. DERIVATION

It hns been made plausiblez’ 3 that the inclusive differential cross section
for the process a+b— c+anything (see Fig. 1) is related to a discontinuity in
M2 = (pa+pb—pc)2 of the forward a+b+c —a+b+c scattering amplitude
A(Sab’ Mz, t). This discontinuity must be evaluated on a sheet where the incoming

subenergy s , is just above its physical cut, and the outgoing subenergy s_ — just

ab
below its physical cut, as indicated in Fig. 2. Clearly at fixed t we may equally
well regard the amplitude A as a function of » and v rather than S5 and M2.

Then

d30' 1

—— (a+b— c +anything) =
¢ dp )\(s m mz)
Fo ab’ a’"'b

discy >0 A(n,v,t) (2)

where ?\( b,mz,mg) is the usual flux factor. According to the Steinmann-like
relations, the locations relative to their cuts of variables overlapping the
missing-mass variable M2 = (pa+pb-p c)2 do not affect the value of §h¢ discon-
tinuity appearing in Eq. (2)., We choose the incoming subenergy She just below
its cut and the outgoing subenergy Sha just above its cut. Then A is on a sheet

such that the inclusive cross section for ¢ +b— a+anything is the discontinuity



. 2
of A in (pc+pb—pa) . Intermsof v:

d30' (c+b—>a+anythm ) = 1
a dp_ g

a T Afepermmy

)d1sc <0 A, v,t) | (3)

Regge analyses4 of the (3-3) amp_litude A suggest that in the limit n > v, t

it may be approximated asymptotically as
a, (t)+01 ty ~ ' .
A~ Z n fij(v',t) + A(m,v,t) (4?

[For notational simplicity, we have abvsorbed signature factors and residues into
the definition of fij(V ,t).] The powers of 7 in the first term of Eq. (4) are ‘
determined by the leading helicity poles which are related to the Regge beie's
mdlcated in Fig. 3. The remainder term A has a different power behavior in
n and is not expected to contribute to the d1scont1nu1t1es inv. The quant1ty
fij(V , 1) is referred to loosely ae the Reggeon—partmle scattering amplittide —
more precieely it is the analytic continnation of the maximum helicity flip
a.mplitude in the center-ef-mass of the cressed channel bb— o_e;aj.

In order to write a dispersion relation for fij(v 1), and therefore deri\}e a
sum rule, one must understand its singularity structure. Supposing A has no

discontinuity in v, we find for large n from Egs. (2) and (4) that

3 a +a -1
d°o . .
E, ag(awb—» c+anything) = Z U] dlch 50 fij(u ,t) (5)
and from Egs. (3) and (4) that
d o _ o +oz -1 .
E af)a—(c+b—> a+anything) Z 4] dlch< 0 fij(y,t) (6)

Thus fij has a right—ha.nd cut which may be interpreted as the absorptive part of

the ozi+b —- aj+b Reggeon-particle scattering amplitude, and a left-hand cut which

-4 -
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corresponds to the absorptive part of &j-*-b'—— &i+b. Both cuts are required
because if fij is continued to particle poles in positive t one expects to recover
the usual analyticity properties of two-body scattering amplitudes.

The question arises whether, ‘at negative values of t, fij(v ,t) has any other
singularities in the complex v plane. | Such singularities do not occur in models
that have been studied such as perturbation theory, 6 the Gribov Reggeon
calculus, 7 and the dual resonance model. 8 Further there is no reason yet known
from S-matrix theory why singularities should occur at complex values of v.
Thus normal threshold singularities of the (3-3) amplitude A in other physical
region variables such as (pa+pb+pc)2 move off to o as 17—, and so ‘could not
appear in fij(V ,t). Most simple triangle and box diagram Landau singularities
in A move off to » as 1 — ; those that occur at finite values of v lie on the
real axis, andare included3 in the definitions of the discontinuities to be associ~-
ated with inclusive cross sections. It therefore seems reasonable to follow
previous authors in assuming that fij(u ,t) has the same analyticity properties
in v as a (2-2) particle scattering amplitude.

In order to derive useful sum rules it is necessary to know the asymptotic
behavior of fij in y. This is determined by Reggeons in the bb channel via the

"triple Regge" formula9

@, (tra(t)
n | ) ;09

-i (0)-a,(t)-a (t)
~ Z(ﬁ)ai(t)+aj(t)vak(0) e ”(‘”k )=y (f)-cy )

S, V7 sin (ak(O)-ai(t)-aj(t))

g0 LM OaFOE® O

All the symbols in Eq. (7) were defined in Section I, with the exception of 7, the

triple Regge signature factor.



That 7 is not simply the signature Tk of the Regge trajectory @, can be
seen by imagining a case where ozi(t) and ozj(t) are unit-separated trajectories |
of opposite signatures. Proceeding to a double particle pole in the t-channel,
fij is proportional to an amplitude witll cross—channel helicity flipped by ozi+aj,
an odd number. It is well—knownlo that in such a case 7= - Tk. A choice
of- T consistent with this observation is r= TiTj'Tk- This is indeed_tlie form
taken by 7 in Feynman tree graph models with elementary particle exchanges,
and, more realistically, in the dual resonance model as shown in the appendix.

We have now motivated the required analyticity properties of the Reggeon-
particle scattering amplitudes fij(v,t), ‘related (Eqs.‘ (5) and (6)) its cuts to
inclusive cross sections and knpw the behavior of fij(V’ t) as v, Therefoi'e
we can derive a sum rule for each fij(v , t) using the contoiir shown in Fig. 4.

@i*a =1 o finite mass sum

Adding these sum rules together with weights 7
rules (1) for inclusive reactions are immediately obtained. Note that (2-2)
processes such as elastic reactions should be included in the missing mass
integrals, and will give important contributions.

As mentioned in Section I,.the finite. mass sum rules §hould strictly speaking
be evaluated using ’.data on inclusive cross sections at fixed values of 7 =P, (pa+pc).
As v‘=pb- (pa-pc) varies this corresponds to varying the incident laboratorji en_ergies
wy and w, Over a range O(N/ mb); But in the approximation where a t—chalinel Regge
description is used this variation in enei‘gy makes a fractional change in the cross
section of O(N/7) < 1. Hence if we insert data at fixed laboratory energies into
the sum rules (1) they should still be accurate to order N/n. In fact to the same
accuracy it is not necessary that the laboratory energies w, and w, be exactly

equal, as long as Iwa-wc| = O(N/mb). However this does mean that terms down

by O(N/7) relative to the leading terms in the Regge pole expansions (5), (6) or

-6~



£ .k v ;. e
o dlU 3/ U sy 2

(7) cannot be evaluated reliably using the sum rules (1). For example, in
processes where both the Pomeron and ordinary meson trajectories can be
exchanged in the t-channel, sum rules at fixed laboratory energies will permit

o

the determination of Pomeron-Pomeron and Pomeron-Reggeon contributions,

~e but not Reggeon-Reggeon contributions.
Schwarz—like11 sum rules can be written down for other combinations of
integrals over the inclusive cross sections a+b — ¢ +anything and
fn)

c+b — a+anything, but then nonsense wrc‘;ng signature fixed pole residues Rij(t)

must also be included on the right-hand sides: |

3 3
f dv v [ (a+b —c +anything) + (- 1) E -——(c+b——a+anyth1ng)]

o, (t)+oz (t) -1 i *
" £((8) EX(t) Bog(t) Bys(t)

1,]

k(O)+n+1—(x (t) -« (t)
Ry () + > (1+( 1) TiTka) k(°)+“+1 YR

k
(8)

III. DISCUSSION

The most interesting applications of the finite mass sum rules (1) are likely
to be in the estimation of triple Reggeon vertices by integrating over data at
relatively low values of the missing mass. Data in the triple Regge region
n>vy>» mtz> are not likely to be available until there are results from NAL;

- precise evaluations of triple Regge vertices from fits will have to wait until
. then. It would also be interesting to use the sum rules to investigate whether

the Harari—Freundlz conjecture can be generalized in the natural way to

-7 -



\Reggeon—particle scattering. One would eyaluate resonance production contri-
butions to the inclusive cross section integrals to see whether they built up
Regge exchanges in the bb channel. A similar analysis could help resolve the
cdntrov_ersy13 on the duality properties of Pomeron-particle scattering.

It has been arg:ued14 that certain of the fixed pole residues Rgl) (t) appearing
in Eq. (8) may vanish at t=0 because;_of crossed channel unitarity. This sug-
gestion could in principle be checked by using the sum rules (1) to evaluate the
friple Regge vertices ‘gli{j(t), ‘and substituting them into the Schwarz sum rules (8)
to evaluate the residues R(Iilj)(t). The evaluation of fixed pole residues in the
Reggeon-particle amplitude for a range of t is quite interesting physically, since
the fixed pole residues set the scale of Réggéon—Reggeon cut contributions to two-
body scvattering. Thus measurements of single-particle inclusix‘re cross sections
in principle determine the magnitude of cuts in two-body scattering. - Thus the
Regge pole description we have assumed could be checked for self-consistency. 15

In all the above work the Pomeron has been treated as an ordinary Regge
trajectory (pquibly with zero slope), on' the assumption thét fhis is a reasonable
first approximation to its nature. The sum rules give a lower limit to the
rate of fall-off of Pomeron-particle scattering amplitudes. Consider the ;pecial
case of the sum rule (1) with partic'les a and c identical, n=1, and 7 so large
that non-diffractive processes may be ignored. Then

N B | Z(n)zap(t)-l ( @ (0)+1 2|;3§§(t)| 2

_/0" dv v ‘Y_Ea,@;(a+b.—.— a+ anything) =

£pp 850
@ ()2 - 205 ©)

X

N ©  l-cos ‘Ira];{t)

v
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where aP(t) is the Pomeron trajectory, and the sum is over trajectories k with
positive signature. The left-hand side of the sum rule (9) has a nonzero positive
contribution from the elastic process a+b —»Ia +b. Because the inclusiVe Cross
section is posifive this contribution cannot be cancelled, so that the coefficient

2aP(t)—1 :
s on the right-hand side of (9) cannot fall to zero for large N. Hence

of
there must be a nonzero coupling gP - for the Pomeron to some positive sig-
nature J-plane singularity with oy > 0. This could either be the f* or Pomeron
trajectory,17 or some other cut, trajectory or fixed pole with J > 0. Under
reasonable assumptions14 about the residues of wrong signature fixed poles in
Pomeron-particle scattering, this restriction on multi-Pomeron couplings can
be strengthened to establish16 a lower bound on the triple-Pomeron coupling at
t#0.

The term sin n(ak(O) -ai(t)—aj(t) in the denominator of Eq. (7) might appear
to give an unphysical singularity m t in the full 3-3 amplitude. It has been
pointed oui:18 that the apparent singularity can be cancelled by terms in K(sab, Mz, t)

for ai(t) +ozj(t) —ak(O) =0,-1,-2... and suggested that for ai(t)+aj(t)-ak(0) =

1,2,3... the poles are cancelled by zeroes in the vertices gli{j(t). This latter

proposal is clearly required by sum rules (1) (continued if necessary to positive

t) for the cases ozi(t)+aj(t) - ozk(O) = t > 0 such that (—l)L = TiTjT These

K
zeroes arise because right signature fixed poles were assumed to be absent in
the triple Regge formula (7). If nonsense wrong-signature fixed pole residues
were nonsingular, then the finite mass Schwarz sum rules (8) could be used to
prove the existence of the zeroes at integers ¢ : (-1) L= —Ti‘T].Tk . A .recent

paper by Mueller and Trueman19 reaches.a similar conclusion on the basis of

Feynman diagram calculations.



APPENDIX | S -

in the dué.l resonance model, the helicity pole limit can be investigated -
explicitly.5 We multiply each cyclically inequivalent ordering of the extei'ixal
momenta; by the appropriate Chan;Paton factor. Then, in the limit, n——do, ' ;
V-;-—w, m > v (fixed t) . the asymptotic behavior of the amplitude is determined
by the sum of eight cyclically ine(juivalent termsz0 (Fig. 5). |

A~ 1E]k yli‘j {‘[(-sab)an Ti(-sbé)o_‘i] [(-séﬁ)"‘j +7 (-85 c)o‘j] (=5 1) j

+ [(-sas)ai+ T i(_sﬁé)ai] [(—sgb,)aj + Tj('sbc)aj] (=S ,55 koo i—al'}_
(A.1)

The residue, 'ylfj %F(—ai)F(-aj)F(ai+aj—ak), is the same for all eight terms.
To the expression above must be added another term which has no discontinuity
in the missing mass and is of no interest for the present discussion. In the
1imit of interest, we have
856 = S5e ™ "%ab = Sab ¥ Shg ~ Spe ™ 1> 0 . : ‘
S ba v >0
A complete definition of the expression requires a specification of the phases of
each of 'fhe powers (—n)a . To obtain the inclusive cross section do(a +b — ¢ +anything),

the prescription is to choose
= ] - . =<4+i - =-1
() Re S.b Re Sap =M Im_ Sab ie Im Sab ie
Notice that the inclusive cross section d (a+b — ¢ +anything) could equally well be
obtained by the alternative prescription .

(B) ResabzResgﬁzT] Imsab=-ie hns§5=+ie

-10 -
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In general, the two prescriptions correspond to taking the discontinuity in 8abd

on different Riemann sheets. Of course, the complete determination of the

sheet requires the specification of other energy variables, such as She and SHo
relative to their physical cuts; however, according to the Steinman-like relations, 3
the discontinuity in S b is mdependeht of the specification of the overlapping variables.
(Furthermore, the equality of the discontinuity on sheets having either pre-

scription (a) or (B) is a consequence of time reversal invariance.) Although

the discontinuity in Saba >0 is independent of the choice of phase of Sho and Spa’

the discontinuity in .56 will not be. The inclusive cross section do-(é +b— a +anything)

will be obtained from either of the following choices

(y) Re Spe Re SBE =~ Tm Spe = -ie Im Sgs = +i€
(6) Re Sbc=Re Sa =N Imsbc=+ie Imsscz_ie

On a sheet satisfying prescriptions (o) and (y), the expression given above,

Eq. (A.1), can be written simply as

A~ Z PK @ity g ex [(-v)‘”k'“i‘“j +(riTim) uo‘k'ai“"j] (A.2)
ik U 1 vIE
If however we choose (a) and (§) we find
A~ D v‘i‘j Ui [fif;<-v>“k‘“i‘“i+ RN v“k""i“"i] (A.3)
ijk

Using the fact that yli{j =71j{i the two expressions are precisely equal.
No doubt the asymptotic forms (A.2) and (A. 3) follow from the assumption
of Regge behavior on all the sheets and are not peculiar to the dual resonance
- k i i*. k. Kk,
model. In the general case, the residue would be 'Yij = ‘Baé(t) ﬁaa(t) ,Bbb(O) gij(t) .
The symmetry property 'Yli{j ='y§,{i follows quite generally from the requirement

that the discontinuity for » > 0 is the same no matter whether prescription (@) or

-11 -



. *
(B) is taken. The reality condition Yli{jz'yli{j is assured by the requirement that

the discontinuity be real.

Assuming Regge asymptotic behavior on each of the many sheets, other.
sum rules could be written down; however, it seems that only on the sheets
discussed above can the discontinuitiés be actually. determined experimentally.
For example, imagine chooéing all subenergies above their cuts as for the .
physical 3— 3 amplitude. The discontinuity in S4ba would then be quite com- -

plicated, and multibody:S-matrix elements would be needed for its evaluation.

Acknowledgements -

We thank P. Goddard, M. B. Green, P. V. Landshoff, R. D. Peccei and

A. R. White for useful comments and discussions.

7%

- 12 -



‘10.
11.

12.

REFERENCES AND FOOTNOTES

M. B. Einhorn, UCRL Preprint 20688 (1971);

P. Olesen, CERN Preprint TH 1376 (1971);

A. I. Sanda, NAL Preprint THY .19 (1971);

C.-L. Jen, K. Kang, P. Shen and C.-1. Tan, Phys. Rev. Letters 27, 754
(1971).

H. P. Stapp, Phys. Rev. D3, 3177 (1971);

C.-I. Tan, Brown University Preprint NYO-2262TA-240 (1971).

J. C. Polkinghofne, DAMTP Cambridge Preprint 71/36 (1971).

C. E. DeTar, C. E. Jones, F. E. Low, J. H. Weis, J. E. Young and
C.-I. Tan, Phys. Rev. Letters 26, 675 (1971).

C. E. DeTar and J. H-_ Weis, M.I.T. Preprint CTP-218 (1971). It is not
clear how general or model ‘independent are the properties found by these
authors in the dual resonance model and assumed by us here.

P. V. Landshoff, Nucl. Phys. B15, 284 (1970).

V. N. Gribov, Sov. Phys. JETP 26, 414 (1968).

See for example C. Lovelace, Phys. Letters 35B, 500 (1971);

C. E. DeTar and J. H. Weis, Ref. 5; and P. Olesen, Ref. 1.

See C. E. DeTar et al., Ref. 4; also work on the related triple Regge
limit by M. N. Misheloff, Phys. Rev. 184, 1732 (1969);

P. Goddard and A. R. White, Nucl. Phys. B17, 45 (1970).

P.D.B. Collins, Physics Reports 1C, 103 (1971).

J. H. Schwarz, Phys. Rev. 159, 1269 (1967).

P.G.0O. Freund, Phys. Rev. Letters 20, 235 (1968);

H. Harari, Phys. Rev. Letters 20, 1395 (1968).

- 138 -



13.

14.

15.

16.

17.

18.

19.

20,

M. B. Einhorn, M. B. Green and M. A. Virasoro, Phys. Letters 37B,

292 (1971). |

H.D.I. Abarbanel and M. B. Green, Prinéeton IAS Preprint (1971);

P. Goddard and A. R. White, DAMTP Cambridge Preprint 71/45 (1971).
This point has also been recognized by H.D.I. Abarbanel and M. B. Green
(private communication from M. B. Green). e
Though the triple-Pomeron coupling must vanish at t=0, from direct-
channel arguments. See H.D.I. Abarbanel, G. F. ..Chew, M. L. Goldberger
and L.YM. Saunders, Phys. Rev. Lettefs 26, 937 (1971). o

J. Ellis, J. Finkelstein and R. D. Peccei, Preprint SLAC-PUB-990 (1971).
S.-J. Chang, D. Gordon, F. E Low and S. B. Treiman, NAL Preprint
THY 16 (1971). ' | |

A. H. Mueller and T. L. Trueman, Brookhaven Preprint BNL 16350 (1971).

For this discussion, it is convenient to label the external particlés as

if they weré all incoming.

1%

- 14 -



O w U U d 7 d s 2 36

FIGURE CAPTIONS
Kinematics for a + b — ¢ + anything. |
Discontinuity related to the inclusive cross section.
Representé.tion in the limit Sab > M2 , .t of term in (3-3) ampliéude
with M2 discontinuity.
Contour used in deriving sum rules.

Cyclically inequivalent terms contributing in triple Regge limit.
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