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Two-Dimensional Analytical Solutions for
Chemical Transport in Aquifers:

1. Simplified Solutions for Sources with Constant Concentration

CHAO SHAN anp IRAJ JAVANDEL
Earth Sciences Division, Lawrence Berkeley National Laboratory
University of California, Berkeley

Berkeley, CA 94720, USA

Analytical solutions are developed for modeling solute transport in a vertical
section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical
solution for cases in which a constant-concentration source is located at the top (or the
bottom) of the aquifer. The following transport mechanisms have been considered:
advection (in the horizontal direction), transverse dispersion (in the vertical direction),
adsorption, and biodegradation. In the simplified solution, however, longitudinal
dispersion is assumed to be relatively insignificant with respect to advection, and has
been neglected. Example calculations are given to show the movement of the
contamination front, the development of concentration profiles, the mass transfer rate,
and an application to determine the vertical dispersivity. The analytical solution developed
in this study can be a useful tool in designing an appropriate monitoring system and an

effective groundwater remediation method.



INTRODUCTION

The remediation of groundwater contamination usually requires a quantitative knowledge about
the distribution and fate of the contaminant. This kind of knowledge can be obtained by means of
mathematical modeling which solves the advection/dispersion equation either analytically or numerically.
To date, many numerical models have been developed for simulating transport problems under different
initial and boundary conditions [e.g., Pickens and Lennox, 1976; Sudicky, 1989; Yeh, 1990]. For
simplified cases, however, analytical solutions are still useful tools in practical applications.

Analytical solutions for groundwater transport can be classified into categories according to: (a)
flow - a radial flow [e.g., Chen, 1987; Tang and Peaceman, 1987], or a simple one-dimensional flow;
and (b) medium - a fractured porous medium [e.g., Tang et al., 1981; Sudicky and Frind, 1982], a
composite medium [e.g., Chen, 1991; Tang and Aral, 1992], or a simple homogeneous porous medjum.
Like most of the previous studies, the studies presented here will concentrate on problems of transport
in a homogeneous aquifer with steady uniform horizontal groundwater flow.

In the literaturé, many analytical solutions for one-dimensional transport problems consider
dispersion in the flow direction only [e.g., van Genuchten and Alves, 1982], while others consider two-
and three-dimensional dispersions [e.g., Cleary and Ungs, 1978; Wilson and Miller, 1978,; Javandel et
al, 1984; Domenico and Robbins, 1985; Leij et al, 1991]. Almost all analytical solutions assume a
uniform initial concentration and an infinite or semi-infinite medium. The contamination source can be
a point, a line, a plane, or even a spatially distributed source with a constant flux rate of known value.
However, there is a source characteristic that is common to all the previous studies: the source face is
perpendicular to the flow direction. In reality, there are many cases where the contamination is introduced
from a source at the top (or bottom) of the aquifer, whose face is parallel to the direction of groundwater
flow. One typical example is the leachate from a landfill or waste site. The other is a nonaqueous-phase

liquid (NAPL) sitting either on the top (light NAPL) or at the bottom (dense NAPL) of the aquifer. For
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both examples, the concentration profile will be non-uniform in the vertical direction. It is the purpose
of this study to obtain analytical solutions for such profiles under two different source conditions: (1) a
constant concentration of known value at the source (part 1), and (2) a constant flux rate of known value
from the source [part 2, Shan and Javandel, 1996].

Part 1 of the series applies to the problem of NAPL dissolution and transpdrt in unconfined
aquifers. Previous studies have shown that the rate of NAPL dissolution is directly related to groundwater
velocity, grain size of the medium and NAPL saturation [Miller et al., 1990; Powers et al., 1994]. For
certain aquifers with constant groundwater velocity, the concentration at the source can be a coﬁstant for
certain period of time. The problem of NAPL dissolution and transport has been studied by some other
researchers [Morin et al., 1988; Dillon,1989; Anderson et al., 1992a, b; Borden and Piwoni, 1992;
Johnson and Pankow, 1992]. Dillon (1989) developed a model, DIVAST, containing three separate
components: a hydraulic model, a Iongitudinal contaminant transport model, and a transverse contaminant
diffusion model. Basically, the model applied available analytical solutions to approximate the transport
in a curved flow field, which is useful to simulate transport process under the influence of a significant
amount of recharge from the top of the aquifer. In a series of papers, Anderson and his colleagues
presented their research results on the dissolution and transport of dense chlorinated solvents in
groundwater. Similar studies to the part 1 subject were given by Shan e al. (1990). In part 1 of the
series, we will present the analytical ‘solu'tions systematically and focus applications on the movement of
the contamination front, the concentration profiles at different locations, the mass transfer rate, and the

determination of the vertical dispersivity.



THEORY

To simplify a practical problem, we give the following assumptions: (1) the aquifer is
homogeneous and has a uniform thickness, 7'; (2) the récharge rate in the vertical direction is
insignificant such that the flow is in the horizontal direction with an average pore velocity, v'; (3) the
contamination source extends uniformly to a large distance in the direction perpendicular to groundwater
flow. The last assumption is necessary to simplify the problem to a vertical section. In part 1, we will
neglect dispersion in the flow direction. Figure 1 shows a schematic diagram of the mathematical model,
where we set the x' axis at the water table and the z’ axis vertically downward. The system is divided
into two regions by the z' axis: Region 1 (-£'<x'=0), and Region 2 (0<x'< + o), where £’ is the
length of the source in the flow direction. The dimensionless governing equations for the two regions can

be written in a unified form:

aC oac. ~ &C
24 AC,+—2-a—2 =0 n=1,2 1)
ot x  C g

where the dimensionless variables and parameters are defined by

c,=Cc’|C )
/ / / /
A R e o =2z ®3)
¢ ¢ v S
I/ 175
-y - RTA )
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where C', (n=1,2) represent the concentrations in Regions 1 and 2, respectively, C’, is the constant
source concentration, #' is time, N’ is the decay constant, R’ is the retardation factor, and o', is the
"apparent dispersivity" in the vertical direction which represents the combined effect of mechanical

dispersion and molecular diffusion. We will simply call ', the "vertical dispersivity” in the following.



The dimensionless initial and boundary conditions are assumed as follows:

C,(%20) =0 ®
C,(x,0,8) = 1 (6)
Ci(-1,z%) = 0 M

2C,(x00 _ ®

oz
Cy(=,2,) = 0 ©
C(0,2,) = C,(0,2,2) (10)
aC,(0,z,1) _ 0C,(0,z,7) 1)

ox ox

It is probably worthwhile to point out that (7) is derived based on the assumption of "no
horizontal dispersion". This assumption is given for two reasons: (a) the transport in the horizontal
direction due to dispersion is usually much smaller than that due to advection; and (b) the neglect of the
horizontal dispersion can simplify the solution derivation. The boundary condition at the bottom of the

aquifer (z'=h’) has not been given because we want to solve the problem for two different cases.

Case 1. Infinite 2’
For this case, we assume that 4’ is so large that the contaminant front will not reach the bottom
of the aquifer in the time period of interest. Under this assumption we may use the following boundary

condition

C (x,20) =0 (12)

With a complete set of conditions, we now solve (1) in both regions separately.




Region 1
Applying the Laplace transform with respect to ¢ and the Fourier sine transform with respect to
z, consecutively, (1) is reduced to
dCi,r or
— I L (s+A+arD)C,,, = — (13)
dx (s 7" )Cur s

where s and r are the Laplace transform and the Fourier sine transform parameters, respectively, and Cir

is defined by
C,1r(%1,8) = f C,,(x,2,8)sin(rz)dz a4)
0
Cr(®25) = [C(xzt)edt 5)
0

The solution of (13) that satisfies boundary condition (7) in the transformed domain is
( S

a,r 1-e -(s+).+¢zrz)(x+1)] (16)

C,,:(x,1,8) =
ol s(s+A+ar?)

For (16), if we take the inverse Laplace transform with respect to s and the inverse Fourier sine

transform with respect to r, consecutively, we obtain

C,(x,2,t) = f(Hu(x+1-t) +f(x+1)u(t-x-1) (174)

where

f(y)=%[ /7 e1f4{2 ‘/__-F )+e e'fC( s/vf+ )] 7B)

anid u(y) is the Heaviside unit function, which is zero for y <0 and unity for y> 0. The detailed derivation

process is given in Appendix A.
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For some cases, we may want to neglect the decay effect such that A=0. In this circumstance,

the solution for Region 1 is reduced to

2at

C,(z,1) = erfc( ) (t<x+1) (184)

C,(x,2) = erfr(2 @x+1) (18B)

o (x+1) ]

It is easy to see that as r=x+1 the two equations give exactly the same result, and the solution
reaches a steady state. The time required to reach the steady state, x+1, is actually the distance from the
up-gradient end of the source to the location of interest. Similar analysis can be given to the rest of the
solutions.

Region 2
Applying the Laplace transform twice, first with respect to ¢ énd then with respect to x, the

governing equation, (1) is reduced to

d*C
dzg” —A%Cyyy = -g(2,5) (19)

where C,;;, A and g(z,s) are defined by

CuP:zs) = f C,; (x,2,8)e Pdx 20)
0

Co(%25) = [C(xzt)e™dt 1)
[}

- [Go TR, 2

and




_ 1 [ -z/C+e, b4 [+ Da, z
(z,8) =——/e erfof—— -ys+i|+e erfol —— +y/s+A 23

The symbols s and p are the Laplace transform parameters. Substituting (22) and (23) into (19), and

solving the resulting equation, we obtain

Coyr =81 -8,%8 8 (24)

—y/S+A |+ &fe+ e, Y vy 25A
s M I

Pl - /[Gp+ie StprA)C
2, ____2%;[8 2,f(s+p+2A)] ,e,fc(__Z__ ’_—s+p+}\.] +ez,/( p+a)] ‘eﬂ'c(—z— + /S+p+2.)} (25B)
2/, 2/,
8= S VT erf(F5p7T) 50)
sp
8= S R erfl57) (25D)

spys+p+A

A double Laplace inversion leads to

C,=0 (t<x) (26A)
—arl ZUbeT) T —221(41 )
C,(x,2,t) = f LA, f '”dT e " 4 (x<t<x+1) (26B)
T o V@D T )
x+1 2 x+1 2
-A(x+1) -z%/(de7) e (4e,v)
Cy(x2) = E— [ = ) [ g ety (260
T % Jrix+l-1) T * Vo(T-1)

A detailed derivation process is given in Appendix A.

In cases where the decay is not considered (A=0), the solution can be simplified to



C,=0 (2<x)

bt -zY(@da)
C,(x,2,8) = -11; [f—d= (x<t<x+1)

x VT(-1T)

1 1 o lGe)
C(x,2)=— | ———dt (t>x+1)

Ty Jtix+l-1)

Case 2. Finite i’

For this case, boundary condition (12) is replaced by

acC,
(k0 =0
0z

Once again, we need to solve Equation (1) in two regions consecutively.

Region 1

(27A)

(27B)

27C)

(28)

Applying the Laplace transform with fespect to £, and the generalized finite Fourier transform

with respect to z consecutively, (1) is reduced to

dCuf 2 oa,
—é—;——+(s+2.+azan )Cllf= z
where
B

C,(x,m,5) = f C,.(x,z,5)sin(a,z)dz
0

1\xw
(-3

29

(30

€2))

where C;, is the Laplace transform defined by (15). The solution of (29) which satisfies boundary

condition (7) in the transformed domain is
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o.a, [ 1-e -(s+A+aza,,2)(3+1)] (32)

C.,{x,ns) =
el s@+r+aa?)

- Similarly, if we take the inverse Laplace transform with respect to s, and use the generalized

finite Fourier inversion formula (Churchill, 1958)
C,(x5,1) = %2 C, (x,m,8)sin(e,2) (33)
n=1
we obtain the solution for Region 1:

C, (%,2,%) =.u(x+1—t)%i f.(®)sin(a,z) + u(z—x—1)%fj £, (x+1)sin(a,2) (34A)
n=1 n=1

where
aa —(a.at
£ = e i S PR LA ] (34B)
aa’?+h
Region 2

Applying the Laplace transform with respect to z, and the finite Fourier cosine transform with
respect to z consecutively, (1) is reduced to

dC,,
?+(s+).+ozzbm2)C21f =0 (35)

where

2
CZU(x,m,s) = f C,,(x,z,5)cos(b,,z)dz (36)
0
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mw
bm = _}_1— (37)
where C,, is the Laplace transform defined by (21). The general solution to (35) is
Cyp(xm,s) = ke CH 1) (38)

where k is an integral constant determined as

® aa 2 _ _(s";""“za:)
k"'Csz(O:mr?):gE 22 "2.1 € (39)
o a,-b, s(s+).+aza,f)

Several steps are required to obtain (39): (a) set x=0 in (38); (b) apply (36) at x=0; (c) apply (10) in the
Laplace transformed domain to obtain C,(0,z,5)=C,,(0,z,5); (d) apply (33) to (32) and set x=0 to
calculate Cy, (0,z,5); and (e) substitute C,(0,z,5) into (36) and integrate.

Similarly, if we take the inverse Laplace transform with respect to s, we obtain

Cy=0 (t<x) (404)

* gal l_e-(ha,_a,?)(t—x)

2 n
sz(x:m’t) = ZE z ‘ 5

e~ (x<t<x+1) (40B)
n=1 a,f -b,f, A+aa,

o 2 -(A-ba:a?') 2
2% %% 1-e Y o ~Arabpx
Co(x,m) = ZE S e

> > (z>x+1) (400)
»=l @, -b, A+aa,

Finally, we apply the inversion formula for the finite Fourier cosine transform (Churchill, 1958)
C,(xnt) = 712-C2f(x,0,t) + %El C,i(x,m,t)cos(b, 2) @1y

and obtain
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C,=0 (t<x) (42A)
e -_e-().wza;‘:)(t—x) o, 2 1-e -(ra,gd)(e-x) e
C,(x22) = E —+ —E cos(b z)E z ——e =
n=1 A +o.a, n=1 a - bm A +e.a,
(x<t<x+1) (42B)
202 - e-("*“'azj 4 ~e 4L » -+ b2
C. (JC,Z) = : + — cos(b Z) e D%
2 h? g A+aal E ; a, —b,f, A+oczaf

(t>x+1) 420)

We find that the steady solution, (42C) can be obtained by setting z=x+1 in the transient

solution, (42B).

RESULTS AND APPLICATIONS

The two solutions derived for the two cases (finite or infinite aquifer thickness) both contain a
transient part for #<x+1 and a steady-state part for z=x+1. In both Region 1 (x<0) and Region 2
(x>0), for the case of no retardation (R'=1), the time to reach steady state represents the groundwater
travel time from the fresh water entry (at x=-1) to the point of calculation. In Region 2, both solutions
give a zero concentration for #<x. The reason is that Region 2 receives contaminants from Region 1 only
through advection.

The two solutions each have advantages and disadvantages. The solution for the case of an infinite
aquifer thickness requires a numerical integration and a double check to make sure that the contamination
front has not reached the bottom of the aquifer; however, the solution has a simple form and is easy to

calculate with a computer program. The solution for the case of a finite aquifer thickness does not need
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a numerical integration and is always applicable for aquifers with small thickness; ‘however, the solution
is accurate only if sufficiently large number of terms are taken from the infinite series. If the point of
calculation is very close to either the upper or lower boundary, more terms are needed to achieve a high
accuracy (note: the finite thickness solution cannot be used to calculate the concentrations at z=0 and
z=h). A comparison of the two solutions is given in Figure 2, for A=0, ¢,,=0.001 and ¢=10. The solid
lines represent the relative concentration contours calculated using the infinite thickness solution; and the
dots represent the corresponding concentration calculated using the finite thickness solution with 2=0.5.
Since the contamination front (C=0.001) has not reached the bottom of the aquifer at the time of
calculation (#=10), the two solutions give almost the same results. In calculating the finite thickness
solution, we have used up to 1000 terms in Region 1, 50 terms for 72 and 100 terms for » in Region 2.
Further increase of these numbers has an insignificant effect on the results. In reality, the length of the
source can be on the order of tens or hundreds of meters, while the vertical dispersivity can be on the
order of centimeters or millirr;eters. As a result, the dimensionless dispersivity, ¢, can be smaller than
0.001. For convenience, we assume A=0, ¢,,=0.001 (except for the study of dispersivity effect) and use

the infinite thickness solution for the following study of applications.

Mass Transfer Rates
In practice, it is important to estimate the mass transfer rate of a specific chemical from the
NAPL source to the aquifer. Using the solution for the infinite thickness case at Region 1 (equations 18A

and 18B), the mass transfer rate can be calculated by (a detailed derivation is given in Appendix A):
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M= — (t+l) (t<1) (43A)

M = T (t=1) (43B)

where the dimensionless mass transfer rate, A, is defined as

/
S ()
voczCo

R

where M, is the mass transfer rate per unit width of NAPL.

The mass transfer rate of a given solute in groundwater can also be estimated across any vertical
section in the aquifer. A section of particular interest is the interface between Regions 1 and 2, at x=0.
This mass transfer rate can be calculated by (a detailed derivation is given in Appendix A):

M, = 2 (¢<1) (45A)
T az

5

M, = (21) (45B)

where the dimensionless mass transfer rate, M, is defined by

/
M=M= @6)
va! C/,

where M', is the mass transfer rate per unit width of aquifer.
The variation of the normalized mass transfer rates is given in Figure 3, where the normalized

mass transfer rates, 0, and Q, are defined by
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Q = iM, (i=2x%) 47)

The normalized mass release rate from the source (Q,) starts from a relatively large value and then
declines, approaching unity as the dimensionless time, ¢ becomes 1. Thereafter, the release rate remains
constant, based on the assumption of a constant NAPL supply. Depending on the initial volume of NAPL,

the assumption could be valid for relatively long time, 7,, which can be estimated by

T = ——ﬁM‘ 48)
2v/ C(; @
where M, is the initial NAPL mass per-unit width. In deriving (48), we have neglected the early time
difference in mass release rate and assumed no dependence on NAPL saturation. Figure 3 also shows that
the normalized mass transfer rate leaving the source area (Q,) increase from zero at the beginning to unity
at r=1, and remains constaint later. The figure suggests that for all times corresponding to #> 1 the mass
entering the groundwater is equal to the mass leaving the source area. As a result, the mass of the
contaminants in the source area, Region 1, remains constant for all values of times corresponding to £> 1.
Note that, for the case of no retardation, t=1 corresponds to the time (¢) required for the water particles
to travel the length of the NAPL (£') along the groundwater-flow direction. Also note that the area
confined between the curves for Q, and Q, in Figure 3 is a measure of the mass of the constituent finally

accumulated in Region 1. By means of integration, the accumulated mass per unit width of aquifer, M,

can be estimated by

M, = %ze/a/a;cg : (49)
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Contamination Front
In most cases, one of our main concerns is how the contamination front moves through the
aquifer. To address this concern, we need to give the definition of contamination front for a specific
problem. For example, if the concentration of a constituent at the NAPL source is its solubility in water,
and the drinking water standard is one thousandth of the solubility, then the relative concentration contour
of C=0.001 is the contamination front. For «,=0.001, the contamination front at three different times
is shown in Figure 4. By means of this figure, one can find the contamination thickness at different

locations, which are useful for determining the depth of the monitoring and remediation wells.

Concentration Profiles

In some other cases, we may be interested in the magnitude of contamination at different depths
in a well. Figure 5 shows examples of concentration profiles at four different locations, x=0, 1, 2, 3
using ,=0.001. We have divided the figure into four frames using two sets of horizontal coordinates.
The upper coordinate for each frame increasing from 0 to 1 represents the relative concentration, while
the number shown at the lower left corner of each frame indicates the x coordinate of the profile section.
Each frame refers to two values of time, and the one with larger value shows the steady-state
concentration distribution. The larger value indicates the time when steady-state is reached. According
to this figure, concentration at a certain point downstream from the source increases with time until it
reaches steady state. This figure also shows that the depth of plume penetration increases with the distance
downstream from the NAPL source and that the steady-state concentration at shallow depths decreases

with distance downstream.

Determination of Vertical Dispersivity
In above applications, we have assumed that the vertical dispersivity is a known value. We now

discuss how to apply the analytical solution and field data to determine the vertical dispersivity inversely.
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To avoid the error caused by the estimation of time, the steady-state solution (18B and 27C) is
recommended. Correspondingly, only the steady concentrations from the field data will be used. Since
the functional relationship between «, and C is implicit, one needs to determine the vertical dispersivity
by using the method of iteration. As an example, we pick the location at x=0 so that we can apply the
simple formula, (18B). Since we know C,; and z, we can use the z value and an assumed «, value to
calculate the relative concentration using (18B). The right «, value is the one that would give a calculated
relative concentration equal to the observed value, C,. Figure 6 shows a set of type curves corresponding

to different values of z at x=0 for determining the vertical dispersivity.

CONCLUSION

Two analytical solutions have been derived independently for the problem of NAPL dissolution
and transport in unconfined aquifers, one assuming an infinite aquifer thickness, the other using finite
aquifer thickness. Both solutions consider advection in the aquifer flow direction (with constant flow rate),
dispersion in the vertical direction, adsorption, and biodegradation. By comparing the two solutions, the
assumption of infinite aquifer thickness has been proved valid as long as the contamination front does not
reach the bottom of the aquifer. The solutions can be used to predict the contamination development, to
calculate the mass transfer rate, and to determine the vertical dispersivity. Although the solutions were
derived using a source on the top of the aquifer (representing a light NAPL case), the solutions can also
be applied to cases of a source at the bottom of the aquifer (representing a dense NAPL case). In the
latter case, all we need to do is simply reverse the z’ axis in Figure 1 and shift the origin to the bottom

of the aquifer.
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APPENDIX A: SOLUTION DERIVATIONS

We use the following formulae from Tables of Integral Transforms [Erdélyi, 1954].

L Yp(s+a)} = e LY (s)} (A1A)
se‘l{ 1 } = (1 -e*Ya (AIB)
s(s+a) )
g—l{ﬂ} = e Dy (1-q) (A1C)
s+b
@ Ye o} = 5(t-a) (A1D)
se'l{s ;“} = 8(2) +a (A1E)
ge'l{e’f (‘/zg)} - L ua-9) (A1)
Vs T
gg—l{f;'“‘_ﬁ} - 1 -a¥e (A1G)
Vs Jnt
Fo 1{ r } = g % (A1H)
* 2 +a?

F I{Zre ~br*4a%)
S

2, ,2

=™ —i - % +_Z_ Al
- } e Zerfc(ab 2b) e%erfc(ab 2b) (A1D

r

where u(t-a) is the Heaviside unit function; and é(z-a) is the Dirac & function. In the applications of (A1C)
and (A1D) we have extended the original condition of a> 0 to all real values of a. This can be easily

proved by applying the following theorem with b=2a.
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Theorem: If L7{o(s)}=f(t), then L' { b (s)}=f(t+D).

Derivation of (I7A) and (17B)

For Equation (16), if we take the inverse Laplace transform with respect to s, we obtain

Cpp = —2f1-e" "] (r<x+1) (A2A)
ar+d
a,r (e r2+R)(x+
Cpp = —2J1- D] (12a1) (A2B)
oro+a

In this derivation, we have split (16) into three terms and applied (A1B) once, (A1C) twice, and used the
definition of the Heaviside unit function. It is interesting to find that ¢ in (A2A) was replaced by x+1 in
(A2B).

Taking the inverse Fourier sine transform with respect to r for (A2A) and (A2B), we obtain the

solutions, (17A) and (17B), in which process we have used (A1H), (A1) and the following relationship.

2 —erfc(b-a) = erfc(a-b) (A3)

Derivation of (26A) through (26C)
For Equation (16) if we apply (A1H) and (A1l) to perform the inverse Fourier sine transform
first, then take the inverse Laplace transform, and equate it with the results (C;) shown in (17A) and

(17B), we derive the following useful Laplace inversion formula

)
aza

2

f)u(a~1) + fl@)u(t-a) ' (Ad)
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where f(y) is defined by (17B). In the above process, we have replaced the term x+1 by a for more
general application.

In fact, the inverse Fourier sine transform of (16) also allows us to obtain the Laplace transform
of C, at x=0. Using boundary condition (10) and the inverse Fourier sine transform result shown in the

brace of (A4), we obtain

C1(0,25) = C;;(0,2,5) = . 2(zs) (A5)
where the function, g(z,s) is defined by (23).

In solving Equation (19) to obtain the solution (24) and (25), We have used the following

integration formula which was derived using the technique of integrating by parts.

f eefrc(bx+c)dx = 1 eZerfc(bx+c) +e“2/(4b2)’“"/berj(bx+c—21b) (A6)
a

The transformed solution, (24) is composed of four terms given in (25A) through (25D). Using

(A4), the inversion of (25A) is

L e = ADu(1-1) +f(Lu(z-1) (A7)

For (25B), we first apply (A4) with respect to s, replacing A by p+X, and using a=1. We obtain

g} = -2‘% e"‘/meqfc(——z ‘/Z_Zt -,/(m)_t) +e""/‘7’W’=erﬁ:(_2 ,/i_zi . (p+l)t”u(1—t)+

Vo eegrid 2 i k)| +e VT gt L 4 5 my |luce-1) (A3)
2p 2@: 2\/“_2

If we further apply (A4) to (A8) with respect to p and use the theorem, we obtain

& e W = [+ Du(t-x-1) +fDulx+1-H]u(1-1) + [fe+Du(-x) +f(Du)u@-1) (A9
Noting that x>0 in Region 2, by using the definition of the Heaviside unit function, we obtain the

inversion for g,, which is exactly the same as (A7).
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To obtain the inversion for (25C) we first rewrite it as

e? sip+h e VP

3 =

erf(y/s+p+21)

P s S+p+A

By applying (A1E) through (A1G) we obtain

s,e-l{%’—‘} = 5(t) + (p+A)

Q-l{ e’]:;—\/‘g) } - ‘/l_t u( 1 "t)
A T

ge_l e—z‘fsl“z - 1 e_.z2/(4u})
Vs Vi

Applying (A1A) and the convolution theorem, we obtain

-(p+x)z —2¥(da,T)

S

@ 1{ e —z,/(s+p+?-)/a

S+p+a )

Applying the convolution theorem to (A12) and (A15), we obtain

|, wfEphle, o~ by " Hde)
Qsl{e erf(s+p+A) [ = f u(l-t+v)de +
o YT({-7)
-z3 f(4c )
= f (p+A)e “P*‘)Tde f _u(1-T+0)dx
o VT (T-T)

Applying (A1C) and (A1D), we obtain

erfy/s+p+A )} f u(l-t+t)dz
0

26

(A10)

(A11)

(A12)

(A13)

(Al14)

(A15)

(Al6)
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s,P;‘{se;‘{gs}} = e ""u(x+1—t) f u(l-t+t)dT +

7(t-1)

-2%f(4e,z)

= f [8(x+1-T) + Au(x+1 Z)]e-*Tde #(1-T+t)dz

o Vt(T-1)

In a similar way we can also obtain the inversion for (25D)

1gep-1 1 e T 16D
gL g, = =e™ f ———u(l-t+t)u(x-t)dr +
T o YT@-T)

A t -2%(de,)
f "'Tde u(1-T+t)u(x-t)d=
o o Vt(T-71)
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(A17)

(A18)

Analyses for three different cases based on the definitions of the Heaviside unit function and the

Dirac 6 function lead to the final solution of (26A) through (26C). In fact, we can prove that the solutions

in two different regions give the same result at the interface, x=0, using the following identity

(Gradshteyn and Ryzhik, 1965. pp. 315)

e v
dy = Zerfe(y/au)
{ Wy-e o Vu

Derivation of (43A) and (43B)

Taking a finite element, dx’ along the NAPL source, we can write

which can be easily converted to the dimensionless equation

(A19)

(A20A)
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dM_ = —(—J dx (A20B)
2=0

by using Equations (2), (3) and (44).

Substituting (18A) and (18B) into (A20B), and integrating it from -1 to 0, we obtain

0

1

M, = @ (A21)
X, -1 \/T
where

T=t (2<x+1) (A22A)
T=x+1 (£2x+1) (A22B)

For the case of t<1, we can rewrite (22A) and (22B) as
T=t (t-1<x<0) (A23A)
T=x+1 (-1sx<z-1) ' (A23B)

For the case of > 1, noting that x<0, we simply have

T=x+1 (-1<x<0) (A24)

For the two different cases, if we substitute the expressions for T to (A21), and integrate the

resulting equation, we obtain solution (43A) and (43B).
Derivation of (45A) and (45B)
Taking a finite element, dz' along x=0, we can write

aM. = v/cl(0,2/,t")dz’ (A25A)

which can be easily converted to the dimensionless equation
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C,0.z0)dz

%

dM, =

X

(A25B)
by using Equations (2), (3) and (46).

Substituting (18A) and (18B) into (A25B), and integrating it from 0 to o, we obtain (45A) and

(45B) by using the following formula (Gradshteyn and Ryzhik, 1980)

e’fc(px)x%'l dx = M (A26)
{ 2/mqp™

and the fact, I'(1)=1.
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Two-Dimensional Analytical Solutions for
Chemical Transport in Aquifers:

2. Exact Solutions for Sources with Constant Flux Rate

CHAO SHAN anp IRAT JAVANDEL
Earth Sciences Division, Lawrence Berkeley National Laboratory
University of California, Berkeley

Berkeley, CA 94720, USA

In part 1 of the series [Shan and Javandel, the same issue], analytical solutions
are developed for the dissolution and transport of nonaqueous phase liquids in a vertical
section of a homogeneous aquifer. The source condition used in part 1 is a constant
concentration of known value. In part 2, we will present analytical solutions for cases in
which a constant flux sburce is located on the top of an aquifer with a uniformly
horizontal flow. The solutions consider advection in the horizontal direction, dispersion
in both the horizontal and vertical directions, linear adsorption, and biodegradation.
Example calculations are given to show the contamination contours, the effect of
degradation, the effect of horizontal and vertical dispersivities, and an application of the
solution to determine the two dispersivities. The analytical solutions can be useful in
designing an appropriate monitoring and remedial system for handling hazardous leachate

from a landfill.



INTRODUCTION

In part 1 of this series [Shan and Javandel, 1996] approximate analytical solutions have been
given to calculate the transport of a dissolved nonaqueous phase liquid (NAPL) in a vertical section (along
the groundwater flow direction) of a homogeneous aquifer. Depending on the density contrast with water,
the NAPL source could be located either on the top or at the bottom of the aquifer. In one solution, the
finite thickness .of the aquifer is considered; while the other solution assumes a semi-infinite thickness for
the aquifer. Both solutions were derived for the case of a constant source concentration. In practice, there
is another kind of possible source condition, i.e., where the mass flux rate is a constant of known value.
A typical example for this case is the groundwater contamination in an unconfined aquifer that receives
leachate from the vadose zone.

The transport of leachate in an unconfined aquifer has been studied by several researchers.
Huyakdm et al. (1987) presented an analytical .model for predicting contaminant transport from a
Gaussian vertical strip source in a uniform groundwater flow field. In tileir study, the effect of partial
penetration of the contamination source and a finite aquifer thickness were considered. The source is on
a plane perpendicular to the direction of groundwater flow. Ostendorf et al. (1984) modeled the transport
of a simply reactive contaminant through a landfill and an initially clean unconfined aquifer that has a
sloping bottom. An analytical solution was derived for the case of a constant mass loading rate into a
steady uniform aquifer flow. In deriving the solution, they assumed a first-order reaction kinetics and the
absence of dispersion and downgradient dilution. The solution is actually one-dimensional from the
transport point of view. Five years later, Ostendorf et al. (1989) presented another solution for the
leachate transport. They modeled the two-dimensional transport of a nonreactive constituent in an
unconfined aquifer with a gently sloping bottom. The two-dimensional flow field in a vertical section was
first calculated using the existing analytical solutions [Gelhar and Wilson, 1974; Ostendorf et al., 1984].

The results were then used for the transport calculation using some existing analytical solutions [Ogata
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and Banks, 1961; Parker and van Genuchten, 1984]. In summary, they calculated the transport process

by using the analytical solution for the vertical advection-dispersion equation on a moving reference
frame. The problem was also studied by Chrysikopoulos et al. [1994] through comparing the results of ‘
a laboratory experiment with an analytical solution for aquifers of infinite thickness. Due to the effect of
the impermeable lower boundary in their experiment, the measured concentration is larger than the
calculated concentration at later times. In part 2 of this series, we want to solve the two-dimensional
advection-dispersion equation using a constant flux source of finite length on top of the aquifer. Analytical
solutions will be derived for aquifers with finite thickness or assumed infinite thickness. Discussions will
be given on the effects of decay, the horizontal and vertical dispersivities, as well as to the potential

application of the analytical solutions in determining the dispersivities.



THEORY

The study in part 2 is based on the following assumptions: (1) the aquifer is homogeneous and
has a uniform thickness, #’; (2) the constant infiltration rate, g’ is so small that flow in the aquifer is in
the horizontal direction with an average pore velocity, v'; (3) the concentration of the leachate is a
constant, C,"; and (4) the source has such a large width that the sectional model is valid. We choose the
x' axis at the water table in the groundwater flow direction, the z’ axis vertically downwards, and the
origin at the down-gradient end of ti1e source (Figure 1). The whole aquifer is divided into three regions
by the z’ axis and the line, x'=-£": Region 1 (-£'<x’'<0), Region 2 (0<x'< + o), and Region 3 (-
oo <x'<-f£') where £’ is the length of the source in the flow direction. The dimensionless governing

equations for all three regions, however, can be written in a unified form:

ac,
2 AC+ = ma a2 = 0 (n=1,2,3) (1)

where the dimensional variables and parameters are defined by

Cn = Clnlclo (2)
/ / / T4/

X = .;_r_ R zZ= i R h = i R t= _v__t_ (3)
¢ 4 4 R'Y

“I a/ ql R/QI)./ 4

ax=.._.i’ az=_z’ qg=+, 2= ()
¢ ¢ v : v/

where C’, (n=1,2,3) represent the chemical concentration in Regions 1, 2, and 3, respectively; ¢’ is time;
A\’ is the decay constant; R’ is the retardation factor; o’, and o', are the "apparent dispersivities” in the
horizontal and vertical directions, respectively, which represent the combined effect of hydrodynamic

dispersion and molecular diffusion.



The dimensionless initial and boundary conditions for the problem are
C (x,20) =0 ®

C(x0,5) 4

az e, ©
G0N _y (i=2,3) ™
oz
Cy(=z,t) = 0 ®)
C,(-,2,%) =0 ®
C,(0,z,2) = C,(0,2,8) (102)
9C, (0,58 _ 3C,(0z.%) (10)
ox ox
C,(-1,2,1) = Cy(-1,2,1) (11a)
3C,(-Lzt) _ 3Cy(-Lz1) (L1b)

ox ox

The boundary condition at the bottom of the aquifer (z'=#") has not been given because we want

to derive the solutions for two different cases.

Case 1. Infinite &’
For this case, we assume that 4’ is so large that the contaminant front will not reach the bottom
of the aquifer within the time of calculation. Based on this assumption, we may use the following

boundary condition:



C (%27 =0 (12)

We now solve (1) under the above initial and boundary conditions.

Applying the Laplace transform with respect to ¢ and the Fourier cosine transform with respect

to z, consecutively, (1) is reduced to the form

d*c ;. dC,.
% d;x:n2 - dx -(S+A+azr2)cnu“ =f;; (133')
where
fi=-als, 5=£=0 (13b)

where s and r are the Laplace and Fourier cosine transform parameters, respectively; and C,; is defined

by
Corr(%1s8) = [C, (x5 cos(rz)dz (14)
0
Cr(625) = [C (mzt)edt (15)
0

The solutions of (13) which can satisfy the boundary conditions (8) through (11) in the

transformed domain are

Cur= ————2an ik -———2 x4 e OEDIRe) +-——-4a’q (16a)
As(A+1) As(A-1) s(42%-1)
Cypo= 209 [ea-szza,) _ e(l—,s)(xu)/(za,)] (16b)
As(A-1)
Cypo= 2e.q [eeDetiEe) _  Gees)] (16¢)
As(A+1)

where
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For Equation (16), if we take the inverse Laplace transform with respect to s and the inverse

Fourier cosine transform with respect to 7, consecutively, we obtain (a detailed derivation process is given

in Appendix A)

C=q-—z‘/_l/¢—z Z__ [i7)- eV z_ .-
e o Pl R oAl

q -2f(de,7)-Aq] x+1-% i‘i (182)
2 -n:u{ [’fc(2 " 1:) )fC(Z axt)}ﬁ'

1 4
CZ= q fe-zzl(‘tazt)—lt erfc X-7 —elf x+1-< _d_‘E_ (18b)
2\[me 2fazt 2fez )|/
y 2
C,= q fe-z J(da,z) -2t erfe T=2-1 T~x-1 -erf t-x \|dt (18¢)
2/ra.o 2 oz 2fe )|/

For some cases, we may not want to consider the decay effect such that A=0. Under this

circumstance, the first term in (182) should be replaced by the inversion given in (A6).

Case 2. Finite &'

For this case, the lower boundary condition, (12) needs to be replaced by

aC, kit

(19)
oz

The solution procedure is almost the same as that for the infinite /' case, except that we need to

apply the finite Fourier cosine transform (Churchill, 1958)
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C,p(x,m,s) = f C,;(x,z,8)cos(b,,z)dz (20)
0

where C,; is defined by (15), and b, is defined by

b, =% 21)

m R

Apparently, the equations in the transformed domain are exactly the same as (13a) except that
the subscripts, F and the parameter r should be replaced by f and b,,, respectively. The definition for f;
is still given by (13b). In addition, the boundary conditions in the transformed domain are exactly the
same as those for the infinite 72’ case. As a result, the solutions in the transformed domain for three
regions are exactly the same as (16a) through (16c), except that F should be replaced by f.
Correspondingly, r should be replaced by b,

The inversion procedure is also similar to that for (16a) through (16c), which has been shown
in Appendix A. The only difference is that after the Laplace inversion, we need to apply the inversion

formula for the finite Fourier cosine transform (Churchill, 1958)
C,(%,z,2) = C n(5:0:2) + —E [ (m,t)cos (B,,2) (22)

The final solutions for the three regions are

© —{(A+ 2
g(l-e™)  2g . 1-¢ ¢ 2
AR b A+abl

4 i TE Yy e LT dr -
o) o

cos(b 2)fe f e *‘l rfc(z )+ ,fc(’;‘“l 1’]] (232)
a T o

C = cos(b,,2) -
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q _ azb.-: -it _ x+1-7 23b
13 cos(b,2) [ f [etfv(z - r) lfc( J]dr (23b)

2ot

J}df :

q - ' -¢zb:t-3.'t T—x-1 1
= (b,2) (23¢c)

t
C =i -A1] 7-x-1
3 2h-£e [e'f 2fet e 2fat

2,/a T

For the case of A=0, the first term in (23a) can be reduced to g/z by applying the L’Hospital

rule.

RESULTS AND APPLICATIONS

The two analytical solutions for the two cases (infinite and finite thickness, /) are compared in
Figure 2, where the solid curves are calculated form the infinite thickness solution, and the dots are
calculated from the finite thickness solution using a dimensionless thickness, #=0.5. The agreement
between the two solutions is excellent. The other parameters used to obtain Figure 2 are A=0, =0.1,
«,=0.001, g=0.1 and ¢=10. This figure indicates that the analytical solution for the case of infinite
aquifer thickness is applicable to practical problems if (a) the aquifer has a relatively large thickness, or
(b) the contamination front has not reached the bottom of the aquifer at the calculation time. In cases
where the contamination front has reached the bottom of the aquifer at the calculation time (probably due

to a small aquifer thickness, a large vertical dispersivity, and a large calculation time), one needs to apply
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the analytical solution for aquifers with finite thickness. There are several points to be remembered in
the application of the finite thickness solution: (a) the solution cannot be used to calculate the
concentrations exactly at z=0 and z=h, (b) when the calculation is performed for points close to the
upper and lower boundaries and points in region 1, more terms should be taken from the in_ﬁnite series
in order to achieve a high accuracy. For example, the data points in ‘Figure 2 were obtained by taking
50 terms for points in regions 2 and Z.%, and 200 terms for points in region 1 (x=-0.5). Since the solution
for the infinite thickness case is simple and applicable in most cases, we will use it in the following

calculations.

Contamination Front Movement

In many cases, people are concerned about how the contamination front moves through the
aquifer, particularly, how the front develops downwards. As an example, we take the relative
concentration contour, C=0.01 as the contamination front in the following studies. For A=0, o,=0.1,
@,=0.001 and ¢g=0.1, the contamination fronts at three different times, r=1, 5, and 10 are shown in
Figure 3. This figure implies that sooner or later, the contamination front at certain distance downgradient
will reach a maximum depth and become stable. The maximum depth increases in the groundwater flow

direction. This figure can be useful in determining the depth of a monitoring or remediation well.

Decay Effect

We can apply the solution to study the effect of decay. The dimensionless decay constant, A is
defined as the product of the decay constant, \’, the retardation factor, R’, and the length of the source,
¢’ divided by the average linear groundwater velocity, v’ (see definition equation 4). Depending on
different chemicals in different problems, the dimensionless decay constant, A can be zero or large
positive values. For convenience, we take A=0, 0.1, 0.5, and 1 to show the effect of decay. Using

o, =0.1, ,=0.001 and ¢=0.1, the contamination fronts (C=0.01) corresponding to the four different
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A values at £=10 are shown in Figure 4. Apparently, the contamination in the aquifer can be significantly

reduced as A increases from 0 to 1.

Effect of Horizontal Dispersivity

The effect of «, is shown in Figure 5, where A=0, c,=0.001, and g=0.1 have been used. The
three curves in Figure 5 represent the contamination fronts at r=10 for three different o, values. As «,
increases, more front spreading is observed in both the up-gradient and down-gradient directions. One
can also find that as o, becomes very small, the contamination front is very sharp at the down-gradient
end, and the shape of the curve (corresponding to c;,=0.01 in Figure 5) is very similar to what we have
obtaine_d in the part 1 of this series [Shan and Javandel, 1996], where we have neglected horizontal

dispersion.

Effect of Vertical Dispersivity

Similarly, the effect of «, can be shown by varying its value and fixing other parameters. Using
A=0, o,,=0.1, g=0.1 and #=10, the contamination front (C=0.01) for o,=0.01, 0.001, and 0.0001 were
calculated and shown in Figure 6. As it is expected, a larger vertical dispersivity, o, always causes a

larger dispersion in the vertical direction and a smaller dispersion in the horizontal direction.

Method to Determine Dispersivities

Methods for determining dispersivities have been investigated by many researchers [e.g., Robbins,
1989; Syriopoulou and Koussis, 1991]. In the above calculations, we have assumed that the two
dispersivities are some known values. The solutions, however, can also be applied inversely to determine
the dispersivities in a tracer test. To improve the test efficiency, samples need to be collected at favorable
locations. It is recommended that wells be drilled at a short distance down-gradient from the source and

screened close to the top of the aquifer. There are thfee advantages in doing so: (1) the concentrations
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are relatively high and the measurement error can be relatively small; (2) it takes less time to obtain data,
particularly steady state measurements; and (3) there is a better chance to obtain samples with measurable
concentrations. Following this kind of optimal design, we can apply the simplified solution at region 2
(set z=0 in equation 18b) to determine the dispersivities. In the following, we will assume A=0 for

convenience. By substituting z=0 and A=0 into (18b), we obtain

c-—9L . (24a)

2/ne,

where

R
0 2fat 2 /ot )|VT

In practice, we may want to use the observed steady-state concentration to determine the
dispersivities. Correspondingly, we can calculate the steady-state concentration by setting z= o in (24b).
To obtain both ¢, and , from the same test, we may need two wells at two different locations: x=x, and

x=x;, and observe the steady-state concentrations, C, and C,. Applying (24a), we obtain the

concentration ratio

C.=C,/Cy=1,]I, 25)
which is a function of «, only. Using (24b), a C-«, curve can be calculated. Figure 7 gives an example
for x,=0.5 and x,=1.0. Using this curve, one can find the c, value corresponding to the observed steady-
state data. For example, if C,=1.225 and C,=1.068, we calculated C,=1.147. In Figure 7 the
corresponding horizontal dispersivity is o, =5. Substituting this dispersivity into (24b), one can calculate
the integral at any points as ¢ tends to infinity. For example, at point A, the integral is [,=1.373. Finally,
if we substitute the values of I,, C, and g (g=0.1 for this case) into (24a), we obtain c,=0.001 for this
example. In some other cases, if «, is known, we need to have one well only. The direct application of

(24a) and (24b) can give the value of c,.
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CONCLUSION

Two analytical solutions have been derived independently for contaminant transport in an
unconfined aquifer in a vertical cross section, one assuming an infinite aquifer thickness, the other using
a finite aquifer thickness. The solutions were obtained for cases where a constant mass loading rate from
the top of the aquifer can be assumed. The analytical solutions account for advection in the horizontal
direction (with constant flow rate), dispersions in the horizontal and vertical directions, adsorption, and
decay. A comparison between the two solutions indicates that the solution for the case of infinite aquifer
thickness is valid for most practical problems. The analytical solutions can be used to predict the
contaminant transport in aquifers as well as to determine the dispersivities. Therefore, the solutions
developed in this study can be useful in designing a field test for site characterization and in selecting an

effective system for site monitoring and remediation.
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APPENDIX A: SOLUTION DERIVATIONS

For A> 0, the inversion of the third term in (16a) is

4o g i
9;1 oL x -_ 49 -z/3fe, - /e, + (Al)
{ {S(Az-l)}} 2 Aaz_e e'fc(Z‘/a—t ‘/_) erﬂ{z ot ‘/—t)]

in which process we have used (17) and the following inversion formulae [Erdélyi, 1954]

82-1{ 1 } = (1-e™*)a @2
s(s+a)
gl 1 - = 9
“r2+a? a
g€ b _ e"zbz[e “@erfe(ab - =) + eZerfc(ab+ =) B
c 72+ a2 2a |_ 2b 25

and the identity of the complementary error function

2 ~erfc(b-a) = erfc(a-b) (A5)

For A=0, the inversion of the third term in (16a) is simply

of o 409 g [2f -ween 2 of 2 (A6)
# {9: {S(Az_l)}} el /e i 2&7)1 ’

which was derived using (17), (A3) and the Laplace inversion formula [Erdélyi, 1954]

1 e'“‘f} 2\ﬁ -a%it40) _ g erfc( (A7)
sys x/? 2/t

The forms of other six terms in (16a) through (16c) are the same. In fact, for a=0 and b= =1,

we have



Fl{g—l{me;:“b }} _ eab ]e—z2/(4¢zt)-).te If 5_@54- b_‘/? i‘i
@D)||  do fmas 2wy

which was derived using (17) and the following formulae

@Y (s+a)} = e L H(s)}
-a\/fs
) = pab+b% c[i+b t)
' {\/E(«/E+b)} A P
g'l{i(s—)} = [€Up(o)la
s 0

FHeer = 1 -2
Ta
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(A8)

(A9)

(A10)

(A11)

(Al12)

Applying (A1) and (A8) to (162) through (16c), we obtain the solution for the case of A>0.

Applying (A6) and (A8) to (16a) through (16c), and setting A=0, we obtain the solution for the case of

A=0.
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Figure 4. Contamination front (C=0.01) at t=10
for four different A values
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Figure 6. Contamination fromt (C=0.01) at t=10
for three different o, values
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