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Suture Forces for Closure of Transapical Transcatheter Aortic 
Valve Replacement: A Mathematical Model
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Julius M. Guccione, PhD1, Mark Ratcliffe, MD1, Elaine E. Tseng, MD1

1Department of Surgery, University of California San Francisco and San Francisco VA Medical 
Centers, San Francisco, CA

2Department of Radiology, University of California San Francisco and San Francisco VA Medical 
Centers, San Francisco, CA.

Abstract

Importance: Transcatheter aortic valve replacement (TAVR) has revolutionized treatment of 

severe aortic stenosis in high-risk and inoperable patients. TAVR has multiple access routes, 

transfemoral (TF), transapical (TA), direct aortic (DA), axillary, transcarotid, and transcaval. The 

most commonly applied algorithm is a TF first approach, where only when patients are unsuitable 

for TF, are alternatives, such as transapical considered. However, an infrequent, but dreaded 

risk, is left ventricular (LV) apical bleeding from tearing or rupture with TA approach. With 

burgeoning transcatheter mitral technology which requires TA, the Holy Grail would be to predict 

patient-specific risk of apical tearing or rupture based upon myocardial biomechanics.

Objective: To develop a mathematical model to determine suture forces for transapical closure.

Design: Preoperative cine-cardiac magnetic resonance imaging (MRI) was used to acquire 3D 

LV geometry at end-systole and end-diastole. Endo- and epi-cardial boundaries were manually 

contoured using MeVisLab, a surface reconstruction software. Three-dimensional surfaces of 

endo- and epi-cardium were reconstructed, and surfaces at end-systole were used to create a 3D 

LV finite element (FE) mesh. TA access was mimicked by developing a 10mm defect within the 

LV FE model. LV apex was closed using a virtual suture technique in FE analysis with application 

of two virtual sutures. After virtual closure, FE analysis was performed of LV model diastolic 

filling and systolic contraction.

Setting: This pilot study was performed using the clinical TAVR program from San Francisco VA 

Medical Center.

Participants: Severe aortic stenosis patient eligible for TAVR was recruited.

Exposure: TAVR patient was consented for preoperative research MRI.

Main Outcome Measure: To determine suture forces for closure of transapical access.
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Results: Proof of concept was achieved to develop an LV transapical access site and perform FE 

analysis to achieve closure. FE method of virtual suture technique successfully approximated LV 

apical defect. Peak axial force on virtual sutures at end-diastole and end-systole was 0.445N and 

0.736N, respectively.

Conclusions: We mathematically developed a LV TA access model that evaluated suture tension 

of the transapical closure process. Further development of this approach may be useful to risk

stratify patients in the future for LV apical tearing.

Introduction

Transcatheter aortic valve replacement (TAVR) has become established therapy for high

risk and inoperable patients with severe symptomatic aortic stenosis (AS). Five-year 

outcomes of the randomized trial of TAVR vs medical therapy have shown persistent 

survival improvement with TAVR1, while TAVR vs surgical aortic valve replacement 

(SAVR) has shown equivalent mortality at 5 years2. TAVR was initially developed using 

antegrade trans-septal approach but quickly transitioned to the transfemoral (TF) approach. 

Currently, multiple access routes for TAVR are available, including transfemoral (TF), 

transapical (TA), direct aortic (DA), axillary, transcarotid, and recently transcaval3. The 

most widely adopted algorithm is a TF first approach, where patients with suitable 

iliofemoral access undergo TF-TAVR, while those without suitable access, then consider 

the alternatives, including TA4. However, one dreaded, relatively rare TA complication is 

left ventricular (LV) apical bleeding from tearing of friable ventricular tissue with possible 

rupture5,6. Delayed LV pseudoaneurysm may result as described in several case reports7–10. 

Assessing preoperatively myocardial friability, determining patient risk of apical tearing, and 

optimizing apical access location would be ideal, but currently not possible. The goal of our 

study was to develop a patient-specific mathematical model of transapical access and closure 

to determine suture forces for closure.

Materials and Methods

A patient with severe symptomatic AS eligible for TAVR from San Francisco Veterans 

Administration Medical Center (SFVAMC) was recruited for this pilot study. Informed 

consent was obtained for subjects to undergo research magnetic resonance imaging (MRI). 

The study was approved by Committee on Human Research at University of California at 

San Francisco Medical Center and Institutional Review Board at SFVAMC.

Finite element (FE) model of the baseline LV

Pre-TAVR ECG-gated cardiac magnetic resonance imaging (MRI) was performed to image 

LV geometry. A series of short-axis images of the heart were obtained using cine gradient 

echo MRI imaging. MRI data acquisition was triggered by the QRS complex of the 

electrocardiogram. Acquired images were imported into MeVisLab (Mevislab, Bremen, 

DE), a surface reconstruction software, to contour endocardial and epicardial boundaries. 

Contours were then converted to 3D surface masks using algorithm previously described11. 

Three-dimensional surface meshes were then created using the marching cube algorithm12. 

The 3D surface meshes were then imported into GeoMagic Design, (3DSystems, Rock 
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Hill, SC, USA) a CAD (computer aided design) for surface smoothing. Smoothed surfaces 

were imported into Truegrid (XYZ Scientific, Inc., Livermore, CA, USA) to create 3D 

finite element (FE) model of LV. Spaces between endocardial and epicardial surfaces were 

filled with 8-node trilinear brick elements, with a single integration point for computational 

efficiency, to generate a volumetric mesh that was 4 elements thick transmurally. Myofiber 

angles were assumed to vary linearly from −60 degrees at the epicardium to 60 degrees at 

the endocardium (counterclockwise positive when viewed from the epicardium) with respect 

to the circumferential direction.

LV material properties

Myocardial wall was modeled as a combination of passive and active material. The 

passive myocardial wall was modeled with a nearly incompressible, transversely isotropic, 

hyperelastic material constitutive law. Active myocardial contraction was modeled as a time 

varying elastic term, whose magnitude is controlled by a muscle contractility term and 

sarcomere length. Passive and active material laws were implemented with a user-defined 

material subroutine in the commercial explicit FE solver, LS-DYNA (Livermore Software 

Technology Corporation, Livermore, CA), as previously described13. Passive myocardial 

material property is governed by the following strain energy function:

W = C
2 eQ E − 1

with

Q E = bfEff
2 + bt Ess2 + Enn2 + Esn2 + Ens2 + bft Efs

2 + Esf
2 + Efn

2 + Enf
2

where Eij are components of Lagrange-Green strains along the fiber (f), myofiber sheet (s) 

and normal (n) directions. C, bf, bt, bfs are material parameters controlling the stress-strain 

relationship of the ventricular wall and needed to be determined for the patient. Following 

Genet14, bt was set to be 40% of bf and bft to be 70% of bf; therefore, the only passive 

parameters needed to be determined for the patient-specific model were C and bf. Active 

contractile tension generated by the myofibers was modeled as

T t, Eff =
Tmax

2
Ca0

2

Ca0
2 + ECa50

2 Eff
1 − cos ω t, Eff

where Ca0 is the peak intracellular calcium concentration, ECa50 is the length dependent 

calcium sensitivity, and ω is a time varying term controlling the output of tension. All these 

parameters were set to values as previously described14. Tmax is a scaling factor controlling 

the amount of maximum force generation and was determined through an optimization 

procedure by finding the optimal match between finite element predicted and MRI measured 

end-systolic volumes13.
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Hemodynamic loading conditions and constraints.

Patient-specific ventricular pressure data can only be measured through an invasive approach 

and were not acquired in this study. LV end-diastolic pressure was assumed to be 20mmHg 

and LV peak systolic pressure was assumed to be 200mmHg, respectively. Pressure was 

applied uniformly to the endocardial surface. At the time of simulation, endocardial wall 

was first loaded to end-diastolic pressure with the active tension term set to zero in the 

myocardial wall model. The active tension term was then activated and end-systolic pressure 

was loaded to the endocardium.

Virtual Surgery

Endocardial and epicardial surfaces were loaded into Geomagic Design X (3DSystems, 

Rock Hill, SC, USA), a CAD (computer aided design) software, and a 10mm TA access site 

was created near the apex. A new finite element mesh was created taking into account 

the TA access defect. Two virtual sutures were then added to the model. The virtual 

suture technique has been described previously15, where essentially the sutures were beam 

elements with axial tension. The axial tension contracted the beam elements and pulled the 

two ends of each element toward the center, thus mimicking the suturing process. Virtual 

tension gauges were added to the end of virtual sutures to measure the tensile force on the 

sutures15.

Results

Cine cardiac MRI from which the LV model was derived is shown in video 1. The 

contouring process of LV endocardium and epicardium from short-axis MRI images is 

shown in figure 1. The geometric surface model and corresponding FE mesh of the LV 

is shown in figures 2a and 2b, respectively. The passive and active myocardial material 

properties after optimization are listed in Table 1. Slow motion animation of LV baseline 

simulation is presented in video 2. MRI predicted LV end-diastolic and end-systolic volumes 

were 133.9ml and 34.4ml, respectively. Experimentally measured volumes were 130ml and 

35ml, respectively. Transapical access defect was created in the geometric LV surface model 

as seen in figure 3a–b. The LV FE mesh was recreated with the transapical access defect 

as demonstrated in figure 4a–b. The virtual sutures were added to the model (figure 5). 

Animation of the virtual suturing process is portrayed in video 3. At baseline, average end

diastolic and end-systolic myofiber stresses were 13.9kPa and 44.9kPa, respectively (figure 

6a). After suture closure of transapical defect, average LV end-diastolic and end-systolic 

myofiber stresses were 13kPa and 43kPa, respectively (figure 6b). Sutures create high 

regional stress concentration near the apex (figure 6). Peak tension on the virtual sutures was 

0.736N at end-systole and 0.445N at end-diastole.

Discussion

In this study, we developed a patient-specific LV model, simulated TA access creation 

and suture closure of the defect. Using FEA, we determined suture forces for TA closure. 

Balloon-expandable TAVR has demonstrated survival benefit over medical therapy and 

equivalent survival as surgery at 5 years1,2. Majority of TAVR programs favor a TF first 
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approach, with only a handful of centers offering an equal TF/TA approach4,16. Indeed, 

self-expanding CoreValve (Medtronic, Inc, Minneapolis, MN) does not have a TA approach, 

so their non-TF approaches are mainly direct aortic or axillary. Advantages of TF over 

TA approach include 1) TF avoids the mini-thoracotomy which allows for faster patient 

recovery, 2) TF is less invasive and can often be done completely percutaneously, 3) TF 

can also be done as a minimalist approach without general anesthesia or transesophageal 

echocardiography. Some studies suggest that TF has less short-term mortality and fewer 

early adverse events17–19. In a propensity-matched comparison of TF vs TA patients from 

the Placement of Aortic Transcatheter Valves (PARTNER) randomized trials, TA was 

associated with a higher rate of early death as well as increased risk of bleeding and 

renal failure17. However, propensity-matching does not inherently remove all bias and other 

studies20 showed no differences in survival between TA and TF20–22. As transcatheter 

aortic valves (TAV) design has iterated to reduce delivery catheter size to the 14–18Fr 

range, the pendulum continues to swing toward the TF approach18, with some centers in 

Europe approaching 90% TF. Even among alternative therapies, use of TA shows a relative 

decline compared to other non-TF approaches18. Nevertheless, TA approach will not become 

obsolete as burgeoning transcatheter mitral valve replacement (TMVR) technologies require 

TA access23. A dreaded complication of TA access is apical bleeding from LV tearing5,6 or 

delayed rupture with LV pseudoaneurysm development7–10. Unfortunately, no preoperative 

imaging to date has been able to predict soft friable myocardial tissue and tissue quality 

is not known until visualized by the surgeon in the operating room. This pilot study was 

undertaken to develop patient-specific LV model and assess suture forces for apical closure 

as a first step towards patient-specific modeling for risk prediction of apical tearing.

Patient-specific finite element modeling

Tearing of the suture closure points is a mechanical failure, most likely occurring when 

elevated wall stress created by the sutures exceeds the strength of the myocardial wall. 

Understanding the mechanical interaction between the sutures and myocardial wall could 

potentially improve surgical planning for TA-TAVR. Mechanical stress of TA-TAVR access 

closure is determined by LV geometry, myocardial wall material properties, the pressure 

loading conditions, as well as surgical suturing process. Not all this information will be 

available for surgical planning. For example, ventricular pressure data can only be obtained 

through invasive pressure measuring and is not readily available for preoperative surgical 

planning, until specifically requested during cardiac catheterization for coronary artery 

disease. In this study, we used average ventricular pressure values previously reported in 

the literature24. These pressure data represented average loading conditions in severe AS 

patients and should be interpreted as such.

Material properties of human myocardial wall have not been fully described, in part due 

to the scarcity of human tissue. In this work, we used an optimization procedure to find 

a set of material parameters that led to close matching between finite element modeled 

and MRI measured ventricular volumes at end-diastole and end-systole. The optimization 

procedure, however, did not use any regional motion data; therefore, the optimized material 

parameters did not account for potential regional variation. Future work will incorporate 

regional motion data to improve the overall accuracy of the model.
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Multi-scale simulation

Tearing of the myocardial wall is due to local stress concentration caused by the contact 

between the sutures and surrounding tissue. Typically 3–0 polypropylene sutures are used 

and the diameter of these sutures is 0.2 mm. To accurately model the contact between 

sutures and myocardium, the finite element meshes need to have a resolution smaller 

than 0.1mm. This is significantly higher than the mesh resolution used in the current 

work (~2mm). A straightforward mesh refinement would make the computational cost 

prohibitively expensive. In the future, we will pursue a multi-scale simulation approach 

where the current large scale model is coupled to a regional model focusing on the apical 

region only as a more feasible solution. Until such a tool is developed, direct modeling of 

tearing force on the myocardial wall is not possible. Tension on the virtual sutures, however, 

provides a surrogate for the tearing force, since the suture tension is mostly balanced by the 

myocardial wall; higher suture tension would indicate higher stress on the surrounding wall 

tissues. For this reason, we focused our current work on suture tension.

Access and suture optimization

Ventricular wall stress near the suture is strongly affected by many controlling factors, 

including access location, size of access defect, number of sutures, and direction of sutures. 

TA-TAVR closure may be optimized by finding a set of these controlling factors that leads 

to the least wall stress. Since there are too numerous combinations of these factors, an 

optimization method that automatically searches among the possible combinations and finds 

the best design is necessary. Such methods have been previously applied in determining 

optimal designs of cage for posterior lumbar interbody fusion25, cardiovascular stents26, and 

hip implants27, among others. Combining our virtual suture model with an optimization 

method could eventually lead to a powerful tool for pre-surgical planning for TA-TAVR.

Conclusions

A mathematical model that evaluated the suture tension of closure of TA-TAVR access 

site was developed. Further development of this approach would allow us to pre-surgically 

evaluate apical tearing risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Contours (red lines) of endo and epi-cardiums on short axis images of the LV.
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Figure 2. 
(a) 3D surface model of the LV; (b) finite element mesh for the baseline LV model.
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Figure 3. 
(a) Creation of apical access hole; (b) View of apical access hole, en face view.
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Figure 4. 
(a) Finite element mesh with apical access, side view; (b) finite element mesh with apical 

access, en face view.

Ge et al. Page 12

J Heart Valve Dis. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Virtual sutures.
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Figure 6. 
Contours of end-systolic myofiber stress at the (a) baseline and (b) after virtual suturing. 

Sutures create high regional stress concentration near the apex.
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Table 1.

Passive and active material properties after optimization

Parameter Value

C 0.544 kPa

bf 6.6519

Tmax 528 kPa
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