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1. OBJECTIVES AND SCOPE

This research has two objectives. The first objective is to explore the use of the modeling tool called

"latent structural equations" (structural equations with latent variables) in the general field of travel behavior

analysis and the more specific field of dynamic analysis of travel behavior. The second objective is to apply

a latent structural equation model in order to determine the causal relationships between income, car

ownership, and mobility.

Many transportation researchers might be unfamiliar with latent structural equation modeling, which

is also known as "latent structural analysis," "causal analysis," and "soft modeling." However, most

researchers will be quite familiar with techniques that are special cases of latent structural equations: e.g.,

conventional multiple regression and simultaneous equations, path analysis, and (confirmatory) factor

analysis. F~urthermore, recent advances in estimation techniques have made it possible to incorporate

discrete choice variables and other non-normal variables in structural equations models. Thus, probit choice

models (binomial, ordered, and multinomial) can be incorporated within the general model framework.

The empirical analysis reported here involves dynamic travel demand data from the Dutch National

Mobility Panel for the three years 1984 through 1986. All variables in the model, with the exception of

income level in the first year, are endogenous: income is treated as an ordinal (four category) variable; car

ownership is treated as either an ordinal (ordered probit) or a categorical (multinomial probit) choice

variable; and mobility, in terms of car trips and public transport trips, is treated as two censored (tobit)

continuous variables. The model fits the data well, but only scratches the surface of the potential of latent

structural equation modeling with panel data. Some possible extensions are outlined.

The methodological discussion is not intended as a comprehensive overview of structural equation

modeling with latent variables. Rather, the aim is to explore the technique in comparison to conventional

methods of travel behavior analysis. Many extensive overviews are available, due to the popularity of the



technique in the fields of sociology and psychology, and more recently in marketing research. The

technique as described here has been in use since the early 1970s, but, because of recent rapid

developments, current overviews are more relevant to transportation researchers. Such overviews are

provided by Bentler (1980), Bentler and Weeks (1985), Fornell and Larcker (1981), Hayduk (1987), 

JSreskog and Wold (1982), among others. In particular, Hayduk (1897) provides an extensive bibliography.

Historical developments are reviewed in Bentler (1986) and Bielby and Hauser (1977).

The author is aware of three computer programs for latent structural equation modeling: LISREL

(JSreskog and SSrbom, 1984; 1987), EQS (Bentler, 1985), and USCOMP (Muth6n, 1987). Each program

is based on a different approach to estimation and testing and each has its advantages and disadvantages.

The three approaches are briefly reviewed in Section 6 on estimation methods. The application results

presented here were obtained using the LISCOMP program. It is also possible to replicate the approaches

of these programs by implementing several separate estimation procedures (e.g., maximum likelihood

estimations of probit models and tobit models, and generalized least square and maximum likelihood

estimations of simultaneous equations) in sequentlal and recursive order, but this is inefficient in view of the

available comprehensive packages.

2. METHODOLOGY

2.1 Structural equation modelinq

A structural equation (or, structural relationships) model is a specific type of simultaneous equation

system in which the variables are divided into two sets-endogenous variables and exogenous variables--

and each equation In the system represents the direct effect of one variable upon another variable. Thus,

any structural equation system can be expressed as

y = c= + By + ~ + £ (1)

where y is a (p x 1) column vector of p endogenous (dependent) variables, x Is an (m x 1) column 

of m exogenous (Independent) variables, c~ is a (p x 1) vector of mean values (regression intercepts), 



a (p x 1) vector of disturbances, B is a (p x p) parameter matrix of regression coefficients for the equations

directly relating the endogenous variables, and [’ is a (p x m) parameter matrix of regression coefficients

for the equations retating the endogenous and exogenous variables. A necessary condition for identification

of the simultaneous equation system is that the matrix (I - B) be nonsingular.

Each (,8=j) element in the B parameter matrix represents the direct effect of endogenous variable 

on endogenous variable yl, and the main diagonal of B is specified to contain only zeros. Similarly, each

%j element in the I" matrix represents the direct effect of exogenous variable ~ on endogenous variable YL.

Consequently, there is a one-to-one correspondence between equation (1) system and a flow diagram 

which there is a unidirectional arrow between each variable pair with nonzero elements in the B and r

matrices.

For example, a simple multiple regression with three independent and one dependent variables can

be expressed in the notation of system (1) 

Y, = ~1 "t" "~11 Xl-I" ~12X2 "~" "~13X3 "{" ~’1 (2)

where p = 1 and m = 3; so y, ~, and £ are scalars, B (1 x 1) is zero by definition, and F (1 x 3) has three

parameter elements. The corresponding flow diagram is shown in Figure 1.

FIGURE 1

FLOW DIAGRAM OF A MULTIPLE REGRESSION MODEL INVOLVING THREE
INDEPENDENT AND ONE DEPENDENT VARIABLE

3



However, very few substantive problems in travel behavior analysis involve only a single endogenous

(dependent) variable. Certainly activity-based approaches encompass multiple variables indicating, for

example, the satisfaction of different activities in spatial and temporal dimensions. Moreover, dynamic

studies have focused on mobility levels, demand elasticities for various transport modes, and other travel

behavior manifestations that are by definition multidimensional. The present analysis concerns the dynamic

interrelations among four variables: income, car ownership, and trip-making by two modes (car and public

transport). Clearly, the multiple regression structure of equation (2) and Figure 1 is inappropriate; there 

multiple dependent variables in such a problem.

A possible model of the contemporaneous causal structure among the four variables in question

follows Golob (1989): system (1) is specified with p = 3 endogenous variables (y~ = car ownership; =

car trip rate; and Y3 = public transport trip rate) and m = 1 endogenous variable (x1 = income). It is

postulated that income affects both car ownership and public transport trip-making, but not car trip-making;

car trip-making is affected only by car ownership. Also, public transport trip-making is affected by both

car ownership and car trip-making, as well as income. These causal relationships can be represented by

equation system (1), with

and

E
° ° 1

B = 0 0 (3a)
0

E 3’1~

1
£ = 0 (3b)

"/31

There are five parameters in this system, represented by the nonzero elements in the B and £ matrices. This

structural equation model is thus depicted unambiguously by the five arrows in the flow diagram of Figure

2.

Estimation of the B and £ parameters in a structural equation model such as (1)-(3a)-(3b) (Figure 

is straightforward with conventional assumptions concerning the endogenous y variables and the

covariances of the ~" disturbance terms. If multivariate normality is assumed for the distribution of the y
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FIGURE 2

FLOW DIAGRAM OF A STRUCTURAL EQUATION MODEL INVOLVING
ONE INDEPENDENT AND THREE DEPENDENT VARIABLES

variables conditional on the x variables, it is sufficient to consider only the first and second order moments

E(y I x) = (I-a) "1(z + (I-B) "1£x (4)

and

(Y I x) = (I-B)I-~ (I -B)’’ l[’x (5)

where E (p x 1) and ~ (p x p) are the first and second order moments, ~ (p x p) is the second 

moment matrix of the £ disturbances, and it is assumed that £ is uncorrelated with x. The second order

moment matrices are typically vadance-covariance matrices, but can also be correlations (variance-

covariances of standardized variables).

For most analyses with a single population group, the mean vector is unconstrained and it is sufficient

to consider the ]C model vadance-covariance matrix in relation to the sample vadance-covadance matrix S.

The fitting function F for maximum-likelihood estimation of B and £ is

F = I n I .1 + trace(S ~,") I n I sl- ( p + m) (6)



and the fitting function for unweighted least squares is

F = 1/2 trace [(S- ~)2]. (7)

Unfortunately, such a straightforward approach to the specification and estimation of structural

equation models is inappropriate for many problems in travel behavior modeling which involve y variables

that are not continuous and normally distributed. This is true of car ownership, income measured in terms

of ordinal categories, and even the trip rate variables in the present problem (the trip rate variables taking

on only positive values, with spikes in the distributions at zero). Also, unique opportunities in analyzing panel

data argue for extending the structural equation system (1) to accommodate more general disturbance term

structures. Non-normal variables and other useful generalizations are accommodated by introducing

nonlinear transformations and latent, or unobserved, variables into structural equations models.

2,2 Latent Variables

The usefulness of structural equation models can be greatly enhanced by introducing the concept of

latent variables into the equation system. A latent variable is a theoretical construct that does not
=

correspond exactly to an observed variable. The discrepancy between the theoretical construct and its

observed indicator variable or variables might be due to inaccuracy in measurement or the inability to

capture the concept through variables obtained from survey data. Whatever the source of the discrepancy,

explicit recognition of measurement problems is critical in the development of improved behavioral models

(Blalock, 1979; 1982). Structural equation models with latent variables (also known as "latent structure

analysis" and "soft modeling") provide a means of integrating measurement concerns with the specification,

estimation, and testing of causal hypotheses (Bohrnstedt, 1983; Wold, 1982; Hayduk, 1987).

Latent variables are introduced by expanding system (1) into a system involving two submodels:

y = v+ At/+ ~ (8a)

r/ = (x+Br/ +Ix+ (8b)

where r/ is a (q x 1) column vector of latent variable constructs, ~, is a (q x 1) vector of latent variable

expected values (measurement model intercepts), A is a (q x p) matrix of coefficients In the measurement

model relating the latent variable constructs and the observed endogenous variables, and ~ Is a (q x 1)

6



vector of measurement errors. The measurement submodel (8a) is also known as the inner relationships,

while submodel (8b) is also known as the block structure (Wold, 1982). The entire system (8a) and (8b) 

to be solved simultaneously.

It is also possible to introduce latent variable constructs for the exogenous x variables, and these are

generally denoted as £" variables. However, there is no loss in generality in disregarding these concepts

in the present discussion. Statistical estimation problems arise from non-normal endogenous rather than

exogenous variables, so the r/endogenous constructs of system (8) are of utmost importance in travel

behavior modeling. These latent variable constructs can serve as indicators for observed choice variables

that are dichotomous, ordered polytomous, or censored continuous variables.

Latent variables with multiple observed variables (i.e., measurement submodels where p observed

variables are summarized by q < p latent constructs) are common in applications of latent structural

equation modeling in the social sciences. A hypothetical model is given by system (8) with p = 

endogenous variables, q = 2 latent variables, m = 2 exogenous variables, and

(9a)
"~,,2/

foolB = (9b)
0 0

and

[%’O3
r = (9c)

"121 "722

This model is shown in the flow diagram of Figure 3. It could be a confirmatory factor analysis model with

two factors (latent variables) representing five endogenous y variables, with factor scores being related 

two exogenous x variables. Typically, the y variables would be attitudinal scales or test items, and the x

variables would be sociodemographic variables (such as age, sex, income).

Even if there is a one-to-one correspondence between the latent variable constructs and the observed

endogenous variables (i.e., when p = q and the measurement $ matrix has only nonzero main diagonal

elements), the measurement submodel of a latent structural equations system can be important: If the
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FIGURE 3

FLOW DIAGRAM OF A STRUCTURAL EQUATION MODEL INVOLVING
TWO LATENT VARIABLES, TWO OBSERVED INDEPENDENT VARIABLES,

AND FIVE OBSERVED ENDOGENOUS VARIABLES
(A CONFIRMATORY FACTOR ANALYSIS WITH REGRESSOR VARIABLES)

continuous latent construct is indicated by an observed dichotomous, ordered polychotomous, or censored

continuous observed variable, then the measurement model can capture nonlinear (e.g., probit or tobit)

transformations. This generalization makes latent structural equation modeling a particularly appropriate tool

for travel behavior analysis.

As an example of a nonlinear measurement model transformation structure, consider the model of

system (1)-(3a)-(3b) and Figure 2, this time with all variables considered to be endogenous and with 

latent construct indicated by a single (non-normal) observed variable. The resulting latent structural equation

model is depicted in the flow diagram of Figure 4. The equations are specified by system (8) with

i,ooolA = 0 A~ 0 0 (10a)
0 0 A~ 0
0 0 0 A~

8



LEVEL OF
INCOME I INCOME 1

CATEGORY
Yl

NUMBERCARSY2 OF J

I NUMBER OF I
:, CAR TRIPS

Y3

NLq~BER OF I

P.T. TRIPS
Y4

FIGURE 4

FLOW DIAGRAM OF A STRUCTURAL EQUATION MODEL WITH MEASUREMENT
SUBMODEL INVOLVING FOUR LATENT ENDOGENOUS VARIABLES AND FOUR

OBSERVED ENDOGENOUS VARIABLES

I° 1S = ~21 0
O0 O0

(lOb)

/9,, p~ 0

where p = 4 endogenous variables (yl = income category; y= = number of cars owned; Y3 = car trips; and

Y4 = public transport trips); q = 4 latent variables ( r/1 = income level; r/2 = car ownership or accessibility;

r/3 = car mobility; and r/4 = public transport mobility); and m = 0 (no x variables). This model structure

is the cross-sectional basis of the dynamic model discussed in Section 7, where the transformations

underlying the measurement submodel are extended to be nonlinear, as described in the next section.

Estimation of the A, B, and £ parameters in a latent structural equation model (Sa)-(8b) is a direct

extension of estimation of the structural equation model without the measurement submodel. The first and

second order moments (4) and (5) of the structural equation model become, in the presence of 

measurement submodel:

E (ylx) = v + A (I-B)"<~ + A(I-B)’I (11)



and

~. (y Ix) = A (I-B)" ~ (I-B)"’ A’+ (12)

where 0 is the second order moment matrix of the ~ measurement errors. The objective functions of the

maximum likelihood and least squares solutions (6) and (7) are unchanged in terms of the expanded 

function (12).

2.3 Non-Normal Choice Variables

Very few variables that are indicative of travel behavior decisions are continuous and normally

distributed: Such variables tend to be dichotomous (e.g., whether to purchase a public transport season

ticket or not, or whether to make a certain journey or not), polytomous (e.g., which of several modes 

choose for a particular journey), ordered polytomous (e.g., how many cars to own), continuous, censored

at zero (e.g., how many trips are made by a certain mode during a particular time period) or continuous,

censored at both zero and an upper bound (e.g., time or distance traveled within a certain time interval, such

as peak hours). Recent advances in latent structural equation modeling make it possible to consistently

estimate systems containing endogenous (dependent) variables of any of these non-normal types.

Variables that are non-normally distributed can be accommodated within a latent structural equation

model by adding an additional submodel that relates the noncontinuous, censored, or truncated observed

variables to continuous indicator variables. In modeling travel choice, noncontinuous dichotomous and

ordered polytomous variables are of utmost importance, as are variables censored with a lower bound of

zero (e.g., trip rates or distances traveled).

The transformation from an observed ordered polytomous indicator variable y~ with c~ categories to

an underlying continuous latent indicator variable y=* is given in terms of an unknown K threshold vector by

Yl =

1 ifkj,~ < Yl* < kl,=

0 if Yl* < I~, 1

(13)
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Dichotomous variables are a special case of (13) with c~ = 

For a continuous y~ observed indicator variable that is censored from below at the lower bound d,,

the transformation is given by

f dl if y*-kl, o < dl
Yl =

Y* - k,.o if Y’- k,.o > dl
(14)

(where the lower bound d, is usually zero for endogenous travel behavior variables).

The thresholds I~,I (j = 0 or J = 1 ..... c~ - 1) in transformations (13) and (14) are estimated so 

the underlying latent continuous y~* variables are distributed multivariate normally. Transformation (13) 

thus a probit model (binomial probit with c, = 2, or ordered-response probit with ~ > 2). For the ordered-

response probit model (or, simply the ordered probit model) developed by Aitchison and Silvey (1957) 

Ashford (1959), equation (13) can be expressed 

P(y, = i I x) = e(k],, <__ y* < kj+,,i )

= - (kj,, (15)
where ~r’x = E(y=* I x) are the conditional expectations of the latent y~* variable on the exogenous x variables,

and ̄  denotes the standard cumulative normal distribution function (Maddala, 1983).

Transformation (14) is the tobit transformation (Tobin, 1958) used to eliminate bias in regressions 

censored dependent variables (Amemiya, 1973; Maddala, 1983). An estimation approach to establishing the

threshold values internally in the estimation of the entire structural equation model is outlined in Section 6.

The y* variables can thus replace the y indicator variables in latent structural equations whenever the

y variables are noncontinuous (dichotomous or ordered polytomous) or censored continuous. The measure

of association between two noncontinuous y variables is the correlation between the two latent y* variables

underlying the noncontinuous indicators. This correlation is called a "polychodc" correlation coefficient. In

the special case of two transformed dichotomous variables, the polychodc correlation is referred to as a

’~etrachoric" correlation; and in the case of a pair involving a continuous variable and a transformed

polychotomous variable, it is referred to as a "polyserial" correlation. These correlations are important

concepts in model estimation.

As an application of structural equations with non-normal endogenous variables, consider system

(10a)-(10b) and Figure 4 with the following transformations between the four pairs of observed and latent

11



variables: There is an ordered probit model relating the latent level of income variable to observed Income

in four categories, another ordered probit model relating the latent car ownership variable to three observed

categories of the number of cars owned (0, 1, and 2+), and two tobit transformations between the latent

mobility variables and trip rates by car and public transport. An alternative treatment of the car ownership

latent variable is to break the observed indicator into two dichotomous observed variables-zero versus one

car, and one versus two or more cars-and relate each observed dichotomous variable to a corresponding

latent car ownership variable. The resulting two binomial probit models, with an error covariance link

between the two latent variables is equivalent to a multinomial probit model (Muthan, 1982). Each of these

ways of incorporating non-normal variables in a latent structural equation model is used in the application

documented in the present paper.

2.4 Lonclitudinal Models

Latent structural equation models can be particularly effective in analyzing the dynamics of travel

behavior. A!splied to panel data, such models can incorporate changes over time ("growth curves") 

several variables simultaneously, while also including lagged causal relationships between variables. In

addition, autocorrelated error structures can be introduced to account for specific types of biases in panel

data (JSreskog and SSrbom, 1977; J5reskog, 1979).

The ability to postulate responses with time lags is important in many applications, because this

allows tests of alternative causality to be conducted: Does Yr cause Yi, or does Yl cause y~? For an

appropriate time interval between panel waves at t and t + 1, this implies testing alternative B matrix

elements: (1) from Yu to Yl, t.1, versus (2) from Yi, t to y~, t.l. This application of structural equations model

represents a generalization of the technique of cross-lagged panel correlation (Kenny, 1973; 1975; Kenny

and Horackiewlcz, 1979; Rogosa, 1980) and examples are described in Bentler (1984).

The general application to panel data can be visualized by partitioning the vector of endogenous

latent variables into T sets of q variables, where the panel data involves the repeated measurement of the

q variables over T waves. The corresponding partitioning of the B coefficient matrix in system (8a)-(8b),

introduced by Golob and Meurs (1988), 

12



where each B~j is a (q x q) matrix.

(16)

Without loss of generality, with three panel waves:

Bll BI= B’3 1
B = B21 Bzz B~ (17)

B3, B= B=

This partitioning of matrix (17) can be depicted in the manner of Figure 5. The Bll, Bzz, and B= matrices

in the block diagonal of Figure 5 capture the contemporaneous (cross-sectional) relationships among the

endogenous variables; each of these three matrices is defined to have zero elements in the diagonal. The

Time t1 Time t= Time t=
Variables Variables Variables

B11 B12 B13
Time t~ Contempo- Anticipatory Anticipatory
Variables raneous Effects Effects

Effects
Time tl t= to t~ t=to t~

B21 B22 B23
Time L~ Lagged Contempo- Anticipatory
Variables Effects raneous Effects

Effects
t, to t= Time t= t= tot=

831 B32 B33
Time t= Lagged Lagged Contempo-
Vadable~ Effects Effects raneous

Effects
t, tot= t=to t= Time t=

FIGURE 5

PARTITIONING THE B STRUCTURAL EQUATIONS PARAMETER MATRIX FOR
THREE-WAVE PANEL DATA
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B21 and B~ matrices capture the lagged relationships for a single time period; the diagonal elements of B21

and B~ represent the history-dependence (or inertia) of each variable. And the B31 matrix captures two-

period lagged effects. The diagonal elements of B21, B~, and B~I for each variable i = 1, 2 ..... q together

comprise the temporal trend (growth curve) for that variable. Nonlinear trends generally require significant

multiperiod effects (nonzero diagonal elements in B~I), while linear trends can generally be described with

only single-period (first-order) autocorrelations. For a panel with large T, these structural equation

parameters can reproduce auto-regressive moving average (ARMA) models (Maravall and Aigner, 1977).

The B12, B23, and B~ matrices capture effects that are backward in time. In general these will be null

matrices, but in some situations there can be effects of "anticipated" variables.

As an example of dynamic structural parameters, a single-lag structure between two waves of the

four travel behavior variables in the contemporaneous model of Figure 2 is

B2| (18)

which corresponds to the flow diagram of Figure 6. Here it is postulated that income level at time 2 is a

dynamic function only of income level at time 1. Car ownership in time 2, however, is a function of all

previous variables: The lagged effect of income on car ownership is consistent with economic theory, and

the lagged effects of car and public transport mobility on car ownership represent pressures to increase car

ownership in response to high levels of travel demand. Similarly, car mobility is postulated to be lagged

function of income and previous public transport mobility. This model can be tested using panel data,

provided of course that the system of simultaneous equations is identified.

Dynamic structural equation models also provide a unique opportunity to isolate and correct certain

errors that plague predictive behavioral models. This is accomplished by taking advantage of the repeated

measurements aspect of panel data. For instance, consistent estimates can be generated even in the

presence of model misspeciflcation by either introducing individual regression constants for each individual

in the panel sample or adding additional disturbance terms expanding the error variance (an error

component model) (Tuma and Hannan, 1984, pp. 438-446; Arminger, 1986; Maddala, 1987). However,

Arminger (1987) has demonstrated that some of these corrections for misspecification are not possible when

14



there are lagged causal effects among the variables. These extensions are beyond the scope of the present

paper.

I ’= JI - 1)~ 776

MOBILITY
}77

i MOBILITY
i. 74

TIME t TIME t+l

FIGURE 6

FLOW DIAGRAM OF A DYNAMIC STRUCTURAL EQUATION MODEL INVOLVING
EIGHT ENDOGENOUS LATENT VARIABLES REPRE- SENTING FOUR VARIABLES

MEASURED AT TWO POINTS IN TIME

2.5 Estimation Methods

Latent structural equation models can be estimated using either maximum likelihood or least squares

methods. The former method has traditionally been based on theories appropriate for continuous variables

with multivariate normal distributions. Normal theory maximum likelihood estimation was the first estimation

method for latent structural equations to be readily available (J(3reskog, 1969; Gruvaeus and JSreskog, 1970).

It is the basis for the widely used USREL program developed by J6reskog (1973) (J6reskog and SSrbom,

15



1984; 1987). Extensive USREL applications are documented in Hayduk (1987, pp. xii-xiv), Bentler (1980,

1986), and Blelby and Hauser (1977); applications in the field of travel behavior analysis are provided by 

Boon (1980), Golob and Zondag (1983), Golob and Meurs (1987; 1988), and Golob (1989).

Systems with non-normal endogenous variables can be estimated using maximum likelihood

methods, if separate pre-estimations of polychoric correlations are conducted. However, it is preferable to

employ a generalized least squares approach with non-normal variables because such least squares

estimates have been shown to be asymptotically distribution-free. Generalized least square estimators that

explicitly accommodate non-normal variables are a relatively recent phenomena (Browne, 1982; 1984;

Bentler, 1983a; 1983b; Muthen, 1983; 1984). These recent breakthroughs are based on previous work on

elliptical and arbitrary distribution theory by Browne (1974), and Lee and Bentler (1980), among others, 

the work on polychoric correlations by Olsson (1979) and Muthen (1978; 1979), among others.

Two generalized least squares computer programs are available: EQS, developed by Bentler (1985),

and USCOMP, developed by Muthen (1987). The LISCOMP program is used in the present application. The

remainder of this section outlines the estimation procedure in LISCOMP; the procedures is documented in

detail in Muthen (1983; 1984).

The’estimation involves a three-stage limited-information generalized least squares (GLS) procedure.

In the first stage, the first order statistics for all endogenous variables are consistently estimated using

maximum likelihood. For ordered polytomous (including dichotomous) variables, this establishes thresholds

that are cut points on the normal distributions. With exogenous variables present, the normal distributions

are conditional; for a noncontinuous variable the conditional estimation amounts to a univariate probit

regression of the variable on all x variables.

In the second stage, second order statistics are consistently estimated by conditional maximum

likelihood given the first order statistics. For p endogenous variables, p(p-1)/2 tetrachoric correlation

coefficients need to be estimated at this stage. With exogenous variables present, the estimates represent

reduced-form residual correlations.

In the third and final stage, the second order statistics are invoked as the weight matrix in a weighted

least squares estimation of the parameters of the structural equation and measurement submodels. The

objective function of the least squares solution of equation (7) is thus generalized 

16



F -- (S- ~.)’W" (S- (19)

where W is the positive-definite weight matrix of second-order statistics estimated in stage two of the

procedure. The ~. matrix captures the model parameters (equation (12)), as well as scaling factors 

Muthen, 1983; 1984; for a more detailed treatment). The objective function is minimized using a modified

Fletcher-Powell algorithm.

The resulting estimates, as well as those generated by the alternative EQS approach of Bentler

(1985), are consistent for any distribution on an asymptotic basis. Thus, relatively large sample sizes should

be used with these estimation approaches, and Bentler (1985) recommends a ratio of sample size to the

number of free parameters to be estimated of 10:1 or greater. Also, the approaches are computationally

expensive in terms of computing time and memory storage. For example, the second stage in the LISCOMP

procedure requires the assessment of probabilities for the entire sample at each iteration, where there is an

integration of the cumulative normal distribution function of an order equal to the number of noncontinuous

endogenous variables. This places a practical limit on the complexity of the model in a microcomputing

environment.

3. APPLICATION: INCOME, CARS, AND MOBILITY

3.1 Data description

The application of dynamic latent structural equations with non-normal variables involves four

observed travel behavior variables measured at three points in time. The data source is the Dutch National

Mobility Panel (J. Golob, et al., 1986; Meurs and van Wissen, 1987). The three points in time are the spring

of each of the years 1984, 1985, and 1986, corresponding to waves one, three and five of the Panel. Trip

rate data have been weighted to account for bias due to panel attrition and respondent fatigue, according

to the weighting scheme described in Meurs and van Wissen (1987).

The four variables are income, car ownership, trips by car, and trips by public transport, all at the

household level. Income is measured in terms of four categories, and car ownership is in terms of three
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categories (0, 1, and 2 or more cars, there being an insignificant number of households with more than two

cars in the sample). The two trip rate variables were extracted from seven-day travel diades completed by

all household members (’diary keepers") over eleven years of age. The variables are in terms of trips per

week per diary keeper to account for differences in household size. The variables are described in Table

1.

The analyses employ a sample of 620 households, representing those panel households that did not

change the number of diary keepers (members over eleven years of age) over the course of the three waves

(1984 through 1986). This sample size implies that the number of free parameters in the models estimated

using the asymptotically distribution-free generalized least squares method should be kept below 62 to

adhere to the rule-of-thumb of ten observations per parameter.

3.2 Model specification

The application involves the twelve variables listed in Table 1, representing four measurements

repeated at three points in time. Each of these non-normal variables, denoted by y~ (i = 1 ..... 12), 

postulated to be the observed consequences of a latent variable y~* (i = 1 ..... 12). These latent variables

are distributed multivariate normally. For the ordinal variables y,, Ys, and Y9 (income measured at the three

points in time), the relationship between y~ and y~* is

Yl ----

3ifki, 3 < Yi*

2 if kl,2 < yl*< kl,3
1 if kj,1 < yi* <__ ki~

0 if Yl* <__ ku

(2O)

for i = 1, 5, 9. For the ordinal variables Y2, Ye, and Ylo (car ownership measured at three points in time), the

relationship Is
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Variable

Yl

Y,

Measurement

household
income

household
car ownership

car trips per
week per diary
keeper

public transport
trips per week per
diary keeper

TABLE 1

VARIABLE DESCRIPTIONS

Time
Period Variable TvDe

1984 4-category
ordinal

1984 3-category
ordinal

1984

1984

zero and
positive
continuous

zero and
positive
continuous

Treatment

ordered probit

ordered probit

censored normal

censored normal

Y5 household
income

household
car ownership

car trips per
week per diary
keeper

public transport
trips per week per
diary keeper

1985 4-category
ordinal

1985 3-category
ordinal

1985

1985

zero and
positive
continuous

zero and
positive
continuous

ordered probit

ordered probit

censored normal

censored normal

Y12

household
income

household
car ownership

car tdps per
week per diary
keeper

public transport
trips per week per
diary keeper

1986 4-category
ordinal

1986 3-category
ordinal

1986

1986

zero and
positive
continuous

zero and
positive
continuous

ordered probit

ordered probit

censored normal

censored normal
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2ifkj~ < Yl*

Ya 1 if kf,1 < *= Yl <__ k,~ (21)

0 if YI* <__ kJ.1

for i = 2, 6, 10. Finally, for the trip rate variables Y3, Y4, YT, Ys, Y11, and Y~2, which are censored at zero, the

corresponding relationship is

YI* if Yl* > kl
= (22)Y~

0 otherwise

fori = 3,4,7,8, 11, 12.

The measurement model for the application (equation system (8a)) postulates an identity relationship

between the r/ latent constructs and the y* variables. Also, there are no exogenous x variables. The

structural equations part of the model (equation system (8b)) is thus simplified 

y* = By* + ~" (23)

where y* and ~" are 12-element vectors and B is the (12x12) parameter matrix.

The ~" residual terms in (23) can be standardized to unit variance without loss of generality because

there are no unconstrained continuous observed variables, and the disturbance term covariances are

postulated to be zero because all relationships among the variables are postulat[ed to be captured in the B

matrix structure. This implies

where I denotes the identity matrix.

The parameters to be estimated in the model defined by equations (20) through (24) are the unknown

thresholds in equations (20) (21) and (22) and the elements specified to be nonzero in the (12:<12) 

of the structural equation system (23). The thresholds in equations (20) and (21) are estimated 

ordered-response probit models (equation (15)); and the thresholds in equation (22) are estimated using 

tobit transformations, both as described in Section 2.3. The structural equation (B) parameters are estimated

conditional upon the thresholds using the generalized least squares approach described in Section 2.5.

The B parameter matrix partition of equation (17) and Figure 5 is used, with B (12 x 12) and each 

(4 x 4). The contemporaneous relationships among the variables at each point in time, B, = B~ = B~, 
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given by system (lOb). These contemporaneous relationships are depicted together with the measurement

of model (lOa) in Figure 

The dynamic relationships representing lagged effects for one time period, B21 = B~,, is given by

definition (18) and depicted in the flow diagram of Figure 6. The B31 two-period effect submatrix is specified

to be diagonal in order to account for nonlinear temporal trends. The B12, Bz3, and B13 matrices are null,

with the exception of four parameters representing the effects of anticipated income; these are described

in the following section.

3.3 Parameter estimation

The model fit the data well with only a few modifications. The final model had 36 free parameters, and

the standardized estimates and z-statistic for the free parameters are listed in Table 2. The chi-square

statistic for the model, evaluated at the minimum value of the objective function (19), is 38.23 with 

degrees of freedom. This represents a probability of p = .144; the model cannot be rejected at the p = .05

level. The root-mean-square-residual statistic (Golob and Meurs, 1988) is 0.027, indicating very good

correspondence between the sample variance-covariance matrix and the variance-covariance matrix

replicated by the model.

A key subset of model results involve the effects on the four variables at the central time period, t

= 2 (1985). These are the estimates of the parameters for the fifth through eighth rows of the B (12 x 

matrix: /~ij (i = 4, 5, 6, 7; j = 1, 2 ..... 12). There were sixteen parameters in this portion of the matrix that

were postulated to be nonzero, and these are parameters numbered 8 through 23 in Table 2. All parameters

with the exception of the last one (parameter number 23) were significantly different from zero at the p 

.05 level for one-tailed tests (Table 2).

The sixteen standardized parameters are displayed in the flow diagram of Figure 7, which is a subset

of the complete model flow diagram. Focusing on the contemporaneous relationships among the variables

in the 1985 (second) time period:

(1) Car ownership is a contemporaneous (positive) function of income.
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(2) Car mobility is a contemporaneous (positive) function of car ownership, but the effect 

income on car mobility is channeled exclusively through car ownership (no direct income-

car mobility link).

(3) Public transport is a (negative) function of both car ownership and car mobility; i.e., both

owning and using cars implies less public transport use. However, public transport mobility

is a positive function of income; holding car ownership and use constant, a higher level

of income implies a higher use of public transport.

The dynamic relationships can be divided into three groups, the first of which are inertial effects for

each variable (the diagonal elements in the B~I submatrix of equation (16))o The strongest inertia is for 

ownership, and the weakest is for car mobility. This indicates that, while there is very little turnover in car

ownership over the time period, there is considerably more variation in levels of car trip-making from 1984

to 1985.

The second group of dynamic relationships are the cross-lagged effects from 1984 to 1985 (off-

diagonal elements in the B2~ submatrix):

(1) Income has a lagged effect on both car ownership and car mobility, but not on public

transport mobility.

(2) Car ownership in 1985 is a (positive) function of car mobility in 1984; higher car use implies

a need to increase car ownership.

(3) Car ownership in 1985 is also a (negative) function of public transport mobility in 1984; high

public transport use implies a need to reduce car ownership.

Finally, the third group of dynamic relationships involves the effects from future time 1986 to present

time 1985 (the elements of the B= submatrix). In general, these effects are illogical (Golob and Meurs,

1988). However, with regard to car ownership and mobility they capture the influences of .a.nticipated future

income:
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(1)

(2)

Households with higher future income levels have higher car ownership levels, all else

constant.

Households with higher future income levels also exhibit higher levels of public transport

mobility, all else constant.

These effects of anticipated future income were not originally postulated; rather, they were discovered

through investigations of the first derivatives of the objective function (19), Tests of nested models revealed

that the effects of anticipated income are significant at the p < .01 level. This is an example of the insights

into travel behavior that might be gained using latent structural equation models.

TABLE 2

MODEL ESTIMATES
(*indicates coefficient significantly different from zero

at p=.05 for one-tailed tests)

Standard-
Para- ized Z-
meter Beta Esti- Sta-
Number Element mate tistic

1 (2,1 .433 11.20"
2 (2,5) .122 6.44*
3 (3,2) .655 27.72*
4 (4,1 .256 4.59*
5 (4,2) -.321 -6.68*
6 (4,3) -.276 -6.81 *
7 (4,5) .043 1.80"
8 (5,1) .847 75.95*
9 (6,1) .312 4.85*
10 (6,2) 1.125 12.96"
11 (6,3) .203 4.34*
12 (6,4) -. 176 -3.68"
13 (6,5) .090 4.14"
14 (6,9) .050 1.93*
15 (7,1) -.110 -2.91"
16 (7,3) .541 18.39"
17 (7,4) .055 2.15"
18 (7,6) .205 9.20*

Standard-
Para- ized Z-
meter Beta Esti- Sta-
Number Element mate tistic

19 (8,4) .762 18.38*
20 (8,5) .083 2.64*
21 (8,6) -. 155 -4.55*
22 (8,7) -.079 -2.02*
23 (8,9) .041 1.45
24 (9,1 .676 28.91 *
25 (9,5) .178 12.09*
26 (10,2) -.314 -4.49*
27 (10,3) .133 3.01 *
28 (10,6) 1.034 23.25*
29 (10,9) .041 1.83*
30 (11,3) .407 11.94"
31 (11,5) .040 2.56*
32 (11,7) .496 17.17"
33 (11,210) .147 7.50*
34 (12,4) .407 8.35*
35 (12,8) .445 10.66"
36 (12,10) -.044 -1.88*
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FIGURE 7
FLOWS TO THE VARIABLES AT THE SECOND POINT IN TIME, WITH

STANDARDIZED COEFFICIENT VALUES, FOR THE ESTIMATED MODEL

3.4 Total causal effect~

Each of the elements/gml of the B parameter matrix estimated in Table 1 and partially depicted in the

flow diagram of Figure 7 represent the direct causal effects of variable yj* on variable y$, as postulated by

the structural equations model. However, the to.tal causal effect of any variable on any other variable is the

sum total of the direct effect, if it exists, and all of the indirect effects represented by paths through

intermediate variables. That is, variable Yl can influence variable y, even if there Is no direct effect from yj

to Yi (/5’ U 
= O) provided that variable yj affects at least one other variable, y,, that affects y,~=, # 0).
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Total

reduced-form regression equations.

as A, with elements o~q:

effects are calculated from the structural equation system (23) as the coefficients of the

Denoting the (12x12) matrix of direct effects in the present application

A= (l-B)" 

where, as before, I denotes the identity matrix and B is the matrix of structural equation coefficients.

The total effects calculated from the model results of Table 2 are listed in Table 3. Some of the key

results are:

(1) There are relatively strong total effects from income in the base year to car mobility in the

base year and in subsequent years, even though there are no positive direct effects; the

effects are indirect, mostly through car ownership.

(2) The contemporaneous total effects of income on public transport mobility in each year are

positive, but these total effects are relatively small and less than the contemporaneous

direct effects; all lagged total effects of income on public transport mobility are negative

and relatively small.

(3) - There are relatively strong negative total effects on public transport mobility in all time

periods from both car ownership and car mobility in the base year, with the car ownership

effects being consistently stronger than the car mobility effects.

(4) Public transport mobility in the base year has negative total effects on car ownership in

subsequent years, indicating the public transport use is somewhat effective in suppressing

car ownership.
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Yl

Y~

Y2 0.54

Y3 0.35

Y4 0.02

Y5 0.85

Y6 1.10

Y7 0.31

Y8 -0.07

Y9 0.83

Ylo 1.05

Yll 0.48

Y12 -0.07 -

TABLE 3

TOTAL EFFECTS BETWEEN VARIABLES (ONLY NONZERO VALUES SHOWN)

Y2 Y3 Y4 Y5 Y8

0.12

0.66 0.08

-0.50 -0.28 -0.02

1.35 0.25 -0.18 0.26

0.60 0.58 0.02 0.10 0.21

-0.64 -0.30 0.79 0.03 -0.17

0.18

1.17 0.39 -0.18 0.24 1.03

0.74 0.75 43.02 0.16 0.25

-0.54 -0.26 0.77 -0.01 -0.12

-0.08

0.05

0.01

0.03

- 0.09

0.50 0.02 0.15

-0.04 0.45 0.01 -0.04

Yll Y12
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