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ABSTRACT OF THE DISSERTATION 

 
Evolution of bacteriophages infecting Enterococcus from the human microbiome 

 
By 

 
Stephen Wandro 

 
Doctor of Philosophy in Molecular Biology & Biochemistry 

 
 University of California, Irvine, 2019 

 
Assistant Professor Katrine Whiteson, Chair 

 
 
 

Enterococcus can be both a friend and a foe in the human microbiome. As an 

opportunistic pathogen, Enterococcus is normally benign. However, Enterococcus is 

responsible for many hospital-acquired infections and has shown rising rates of 

vancomycin resistance. Bacteriophages (phages) could be an alternative to antibiotics to 

target these antibiotic resistant bacteria, but the evolutionary and phenotypic outcomes of 

phage-bacteria interactions need to be investigated more thoroughly.   

We begin by investigating the gut microbiome of preterm infants that had been 

exposed to antibiotics to learn about the scenarios in which Enterococcus blooms occur in 

the gut (Chapter 1). We show that antibiotic exposed gut microbiomes are dominated by 

facultative anaerobes such as Enterococcus and Enterobacteriaceae. Further, we show that 

the bacterial composition is correlated to the overall metabolite profile. Metabolomics is a 

powerful tool for investigating microbial metabolism, and we contribute to the effort of 

developing standardized practices for metabolomics in the human microbiome by showing 

that freezing microbial samples required for long term storage (Chapter 2).  
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Next, we investigated how phages could be used as therapeutics for treating 

Enterococcus blooms and infections (Chapters 3, 4, and 5). When Enterococcus is grown 

with its phages in vitro, it evolves resistance to phage infection by mutating 

exopolysaccharide synthesis genes. These mutations alter the exopolysaccharides on the 

surface of the bacterial cell to prevent binding of phage. Further, this mechanism of 

resistance appears to be a general mechanism leading to resistance against a diverse array 

of phages. This work demonstrates that experimental evolution is a powerful tool for 

characterizing interactions between bacteria and phages. 

Phage therapy is often administered as a cocktail of multiple phages, but there are 

no rules or best practices described for combining phages to be most effective. We show 

that in vitro, Enterococcus phage cocktails are more effective at preventing the growth of 

phage-resistant mutants, but the composition of the cocktail is important. Genetically 

diverse phage cocktails performed better than cocktails of related phages. My work 

demonstrates some of the outcomes of phage-Enterococcus interactions and will move us 

closer to applying phage therapy to treat Enterococcus infections. 
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INTRODUCTION 

The human microbiome 

The human microbiome contains incredible microbial diversity (Yatsunenko et al. 

2012; Human Microbiome Project Consortium 2012). From birth, we are colonized by a 

dense community of microbes that profoundly impact our health and development (Rosa et 

al. 2014). Recently, affordable next-generation sequencing technologies have allowed us to 

probe these microbial communities on a large scale for the first time. We can now see that 

the human microbiome is comprised of a complex community including bacteria, viruses, 

and fungi (Lloyd-Price et al. 2017). Interactions among microbes and host cells form a 

complex web that we are only beginning to untangle. 

Most of the microbes associated with the human body live in the gastrointestinal 

tract, specifically in the large intestines. The animal gut is one of the densest communities 

of microbes on the planet, containing 1011 bacteria per gram of feces (Sender, Fuchs, and 

Milo 2016). The ratio of human to bacterial cells in the human body is nearly 1:1 by current 

estimates, but, the genetic diversity encoded by microbes far exceeds the genetic diversity 

within the human genome (Human Microbiome Project Consortium 2012). The human 

genome encodes for approximately 20,000 genes, while the bacteria in our microbiome 

encode millions of genes (Qin et al. 2010). Therefore, much of what makes us unique 

individuals is encoded by our microbes.  

Microbes in the gastrointestinal tract perform many beneficial functions for the 

host, including aiding in digestion, preventing colonization of pathogens, producing 

nutrients, and training the immune system (Pflughoeft and Versalovic 2012). Microbiome 

interactions with the immune system have become a center of focus as microbes are 
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implicated in many health conditions including obesity, diabetes, Crohn’s Disease, and 

autism (Turnbaugh et al. 2006; Larsen et al. 2010; Buffington et al. 2016; Hsiao et al. 2013). 

However, one of the clearest messages that is emerging from human microbiome research 

is that each person’s microbiome is unique. Since, there is no universal “healthy” 

microbiome, it has been a challenge to link microbiome states to health and disease. 

Metabolomics to study the microbiome 

In addition to sequencing, metabolomics has emerged as a powerful tool for probing 

microbial systems. Metabolomics is the study of small molecules called metabolites. It can 

be used to study the metabolism of microbes and provide insight into the functional role of 

the microbial community that cannot be gained from simply studying bacterial abundances 

or genomes (Lamichhane et al. 2018b; Wandro, Osborne, et al. 2017). Metabolomics has 

been used in microbiome studies to find biomarkers of health and disease (Sévin et al. 

2015). Many of the ways our body interacts with the microbes in the gut is through the 

metabolites they produce. For example, production of short-chain fatty acids by gut 

microbes through the fermentation of fiber has been shown to benefit gut barrier function, 

modulate the immune system, and improve glucose homeostasis (Chang et al. 2014; 

Morrison and Preston 2016). There are many ways to perform metabolomics and each has 

its benefits and drawbacks (Lamichhane et al. 2018a). Practices and techniques for 

metabolomics in microbiome studies are much less standardized than genomics, making it 

difficult to compare results across studies (Wandro, Carmody, et al. 2017). In addition, the 

gut metabolome is highly personalized just like the microbiome (Wandro, Osborne, et al. 

2017). 
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Phages in the microbiome 

Bacteriophages are the viruses that infect bacteria. They are abundant in the 

microbiome and contribute greatly to the diversity and personalized nature of the 

microbiome. The human gut virome consists of almost entirely bacteriophages (phages) 

that are lytic predators or lysogens of the resident bacterial community (Ogilvie and Jones 

2015; Minot et al. 2011). Little is known about how the phages affect the abundance and 

composition of bacteria in humans (Manrique et al. 2016). Like bacterial communities, 

phage communities in the healthy adult gut are mostly stable over time, but some classes of 

phages demonstrate such high mutation rates that speciation has been observed within an 

individual over only 2.5 years (Minot et al. 2011, 2013). Phages have also been shown to 

facilitate horizontal gene transfer between bacteria, which could result in spreading 

antibiotic resistance genes (Canchaya et al. 2003; Keen et al. 2017). Despite these 

important functions of phages, few studies have examined the bacterial and phage 

components of the microbiome together over time (Reyes et al. 2015; Minot et al. 2011; 

Lim et al. 2015; Breitbart et al. 2008). 

Microbiome in early development 

 The personalized nature of the microbiome makes it difficult but important to 

understand the forces that influence its initial assembly and development after birth. Early 

life is thought to be a critical time of microbiome development that has lifelong health 

consequences (Gibson et al. 2016; Koenig et al. 2011; C. Palmer et al. 2007; Kostic et al. 

2015). Initial exposure to microbes occurs during birth as the infant microbiome is seeded 

by microbes from the mother and from the environment (Asnicar et al. 2017; Ferretti et al. 

2018; Brooks et al. 2017). Many factors have been shown to alter the assembly of the infant 
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microbiome, including diet, prematurity, and antibiotic exposure (Pannaraj et al. 2017; 

Schulfer and Blaser 2015; Bokulich et al. 2016; Gibson et al. 2016). Antibiotic exposure in 

particular can severely disrupt the microbiome and result in the permanent loss of 

bacterial strains (Dethlefsen and Relman 2011a). 

It is generally thought that it takes about three years for a mature microbiome to 

develop (Yatsunenko et al. 2012). In the first few years of life, critical interactions occur 

between microbes in the gut and immune cells that help to train the immune system to 

correctly recognize threats (Cox et al. 2014; Thaiss et al. 2016). Therefore, having the 

correct composition of microbes in the gut during those first years is essential for the 

development of the immune system. The gut microbiome of infants in developed countries 

is increasingly diverging from infants in other parts of the world due to changes including 

diet, sanitation, family size, and antibiotic usage (Yatsunenko et al. 2012; Charbonneau et 

al. 2016; Henrick et al. 2018). Infants, and especially premature infants, are prescribed 

antibiotics at a higher rate than any other age group (Ting et al. 2016). The microbiomes of 

antibiotic-exposed infants are often dominated by fast-growing, facultative anaerobes, such 

as Enterococcus, Streptococcus, and Enterobacteriaceae (Sommer and Dantas 2011; 

Dethlefsen and Relman 2011a; Ubeda et al. 2010a; Bäumler and Sperandio 2016). 

Overgrowth of normally low-abundance members of the infant gut could have lifelong 

immune consequences (Zeng, Inohara, and Nuñez 2017; Fujimura et al. 2016). 

Antibiotics perturb the microbiome 

Antibiotics are the main tool used to treat bacterial infections, but are relatively 

non-specific and will kill many commensal microbes in the process (Dethlefsen et al. 2008). 

After the human microbiome is decimated by antibiotics, a different composition may 
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reemerge upon regrowth of the community (Dethlefsen and Relman 2011a). After 

antibiotic administration, the gut is temporarily more aerobic, allowing the quick growth of 

facultative anaerobes (Sjlund et al. 2003; Dethlefsen and Relman 2011a). This can lead to a 

loss of diversity over time or even severe illness in the case of Clostridium difficile infections 

(Buffie et al. 2012). A more targeted approach to treating bacterial infections and dysbioses 

would be beneficial to minimize adverse effects on the microbiome. 

Overuse of antibiotics in the last several decades has also led to rising rates of 

antibiotic resistant bacterial infections (Bradford 2018). Using antibiotics to kill bacteria 

selects for bacteria that are resistant; the more an antibiotic is used, the more common 

resistance to that antibiotic will become. Thus, in every instance when a new antibiotic is 

introduced, antibiotic resistance is quickly observed (Zaman et al. 2017). This becomes a 

major problem when bacteria evolve resistance to multiple antibiotics and we are no 

longer able to treat those infections (Nikaido 2009). Additionally, antibiotic resistant 

bacteria tend to spread around hospitals, infecting people with weakened immune systems 

and diminished capability to fight off infections (D. L. Smith et al. 2004).  

Enterococcus 

Enterococcus is a genus of gram-positive bacteria that are present at low abundance 

in the intestines of most humans. The two most common species of Enterococcus found 

associated with humans is Enterococcus faecalis and Enterococcus faecium (Agudelo Higuita 

and Huycke 2014a). Enterococcus has an ancient association with animals, and has been 

present in the microbiomes of humans and our ancestors for over 400 million years 

(Francois Lebreton, Willems, and Gilmore 2014). However, Enterococcus is an 

opportunistic pathogen in humans, accounting for 9% of hospital acquired infections 
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(Magill et al. 2014). They are commonly responsible for UTIs, wound infections, root canal 

infections, endocarditis, and sepsis (Koch et al. 2004). The Enterococcus genus is naturally 

resistant to many antibiotics, and vancomycin resistant Enterococcus has emerged as a 

major health crisis (Agudelo Higuita and Huycke 2014b). Alternative therapies are needed 

to deal with the rising rates of vancomycin-resistant Enterococcus. 

Phage therapy 

Using phages to treat bacterial infections is known as phage therapy (Kortright et al. 

2019b). Phages target a much narrower range of bacteria than antibiotics, resulting in less 

harmful effects to the microbiota (Kortright et al. 2019b). Phage therapy has been utilized 

since the 1920s, but was largely abandoned after the discovery of antibiotics (Summers 

2012). With the supply of effective antibiotics dwindling, phage therapy could provide an 

alternative or complementary option for treating multidrug resistant bacterial infections. 

Phage therapy has been successful in a few recent cases, and interest in developing phage 

therapy to treat antibiotic resistant infections has been increasing (Chan et al. 2018; 

Duplessis et al. 2017). Phages have even shown potential in treating Enterococcus in vitro 

and in mice (Khalifa et al. 2016, 2015a; Chatterjee et al. 2019). However, more work must 

be done to isolate diverse phages and characterize their interactions with Enterococcus 

before phage therapy can be a viable option. 

Phages and bacteria constantly co-evolve, but the extent and implications of this 

coevolution in the human microbiome is not known. The dynamics and outcomes of phage-

bacteria coevolution have been studied extensively in model systems, including 

Escherichia, Pseudomonas, and Synechococcus (Hall et al. 2011; Paterson et al. 2010; 

Marston et al. 2012; Perry et al. 2015). In laboratory experimental evolution, arms-race 
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dynamics are normally observed in which reciprocal evolution of bacterial resistance and 

phage infectivity lead to more generally resistant bacterial phenotypes and more generally 

infectious phage phenotypes (Mizoguchi et al. 2003a; Martiny et al. 2014; Marston et al. 

2012). The evolutionary and phenotypic outcomes of co-evolution between bacteria and 

phages will be important to understand before phage therapy can be widely adopted. 

Bacteria can evolve resistance to phage infection by several routes including 

restriction modification, abortive infection, CRISPR-Cas, and blocking of adsorption (Dy et 

al. 2014). Blocking adsorption is commonly seen in laboratory evolution experiments, and 

occurs by modification, deletion, or blocking of the binding target/receptor (Meyer et al. 

2012; Mizoguchi et al. 2003b). Mutations allowing phage resistance often have an 

associated fitness cost such as impaired growth, colonization defects, or increased 

antibiotic susceptibility (Scanlan, Buckling, and Hall 2015; B. Koskella et al. 2012; Chan et 

al. 2016; Chatterjee et al. 2019; Lennon et al. 2007). These fitness costs would allow phage 

therapy to be effective even if bacteria evolve resistance to phage. A method of preventing 

the evolution of bacterial resistance to phage is to use cocktails of multiple phages (Nale et 

al. 2018a; M. Yen, Cairns, and Camilli 2017a; Kortright et al. 2019a). There are currently no 

guidelines or best practices for combining phages for phage cocktails.  Diverse phages that 

utilize different receptors may reduce the likelihood that a single mutation will provide 

broad resistance, but this has not been thoroughly tested across multiple systems (R. C. T. 

Wright et al. 2018; Flores et al. 2011a; Lennon et al. 2007). 

Goals and scope of dissertation 

 The aim of this dissertation is to elucidate the evolutionary interactions between 

human associated Enterococcus and its bacteriophages to move the field closer to utilizing 



8 

 

phage therapy to treat Enterococcus. First, we investigate Enterococcus blooms in the 

microbiomes of preterm infants that have been exposed to antibiotics using both genomic 

and metabolomic approaches. Next, we begin to investigate the evolutionary interactions 

with phage by showing the in vitro co-evolution of Enterococcus with one of its lytic 

bacteriophages. We then expand that view to an entire sub-family of Enterococcus 

bacteriophages. Finally, we investigate the principles of how to combine bacteriophages for 

optimal killing of Enterococcus. We hope this work will lay the groundwork for 

understanding the outcomes of co-evolution between Enterococcus and its phages. 
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CHAPTER 1 

The microbiome and metabolome of pre-term infant stool is personalized, and not 

driven by health outcomes including necrotizing enterocolitis and late-onset sepsis 

Co-authors: Stephanie Osborne, Claudia Enriquez, Christine Bixby, Antonio Arrieta, and 

Katrine Whiteson 

ABSTRACT 

The assembly and development of the gut microbiome in infants has important 

consequences for immediate and long-term health. Preterm infants represent an abnormal 

case for bacterial colonization because of early exposure to bacteria and frequent use of 

antibiotics. To better understand the assembly of the gut microbiota in preterm infants, 

fecal samples were collected from 32 very low birthweight preterm infants over the first 

six weeks of life. Infant health outcomes included healthy, late-onset sepsis, and necrotizing 

enterocolitis (NEC). We characterized the bacterial composition by 16S rRNA gene 

sequencing and metabolome by untargeted gas chromatography mass spectrometry. 

Preterm infant fecal samples lacked beneficial Bifidobacterium and were dominated by 

Enterobacteriaceae, Enterococcus, and Staphylococcus due to the near uniform antibiotic 

administration. Most of the variance between the microbial community compositions could 

be attributed to which baby the sample came from (Permanova R2=0.48, p<0.001), while 

clinical status (healthy, NEC, or late-onset sepsis), and overlapping time in the NICU did not 

explain a significant amount of variation in bacterial composition.  Fecal metabolomes were 

also found to be unique to the individual (Permanova R2=0.43, p<0.001) and weakly 

associated with bacterial composition (Mantel statistic r = 0.23 ± 0.05, p<0.05). No 
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measured metabolites were found to be associated with necrotizing enterocolitis, late-

onset sepsis or a healthy outcome. Overall, preterm infants gut microbial communities 

were personalized and reflected antibiotic usage. 

IMPORTANCE 

Preterm infants face health problems likely related to microbial exposures including sepsis 

and necrotizing enterocolitis. However, the role of the gut microbiome in preterm infant 

health is poorly understood. Microbial colonization differs from healthy term babies 

because it occurs in the NICU and is often perturbed by antibiotics. We measured bacterial 

compositions and metabolomic profiles of 77 fecal samples from thirty-two preterm infants 

to investigate the differences between microbiomes in health and disease. Rather than 

finding microbial signatures of disease, we found the preterm infant microbiome and 

metabolome were both personalized, and that the preterm infant gut microbiome is 

enriched in microbes that commonly dominate in the presence of antibiotics. These results 

contribute to the growing knowledge of the preterm infant microbiome and emphasize that 

a personalized view will be important to disentangle the health consequences of the 

preterm infant microbiome.  

INTRODUCTION 

Early life exposure to microbes and their metabolic products is a normal part of 

development, with enormous and under-explored impact on the immune system. The 

intestinal microbiota of infants initially assembles by exposure to the mother’s microbiota 

and microbes in the environment (Gibson et al. 2016; Rosa et al. 2014; Bäckhed et al. 2015; 

Bokulich et al. 2016). In healthy breast-fed infants, Bifidobacteria longum spp. infantis 

capable of digesting human-milk oligosaccharides dominate the infant gut (Frese et al. 
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2017). When infants are born preterm, they are exposed to environmental and human 

associated microbes earlier in their development than normal, and rarely harbor 

Bifidobacteria spp. in their gut communities. We do not yet understand the effects of 

altering the timing of initial bacterial exposure. With numerous emerging health 

consequences related to the microbiome, understanding factors that influence this initial 

assembly of the microbiome will be important. 

Preterm infants are routinely treated with antibiotics, enriching for microbes that can 

colonize in the presence of antibiotics (Bokulich et al. 2016; Nobel et al. 2015; Cox et al. 

2014). While antibiotics have tremendously reduced infant mortality, their effect on 

microbiota assembly and resulting health consequences is not fully understood. Prenatal 

and postnatal antibiotics have been shown to reduce the diversity of the infant intestinal 

microbiota (Tanaka et al. 2009; Keski-Nisula et al. 2013). Children under two years old are 

prescribed antibiotics at a higher rate than any other age group, and 85% of extremely low 

birthweight infants (< 1000 g) are given at least one course of antibiotics (Ting et al. 2016). 

Even if an infant is not exposed to antibiotics after birth, approximately 37% of pregnant 

women use antibiotics over the course of the pregnancy (Stokholm et al. 2013).  

Perturbing the microbiota of infants can have immediate and long-lasting health 

consequences. In the short term, infants can be infected by pathogenic bacteria that results 

in sepsis, which is categorized as early-onset or late-onset depending on the timing after 

birth. Preterm infants are also at high risk to develop necrotizing enterocolitis (NEC), 

which is a devastating disease that causes portions of the bowel to undergo necrosis. NEC is 

one of the leading causes of mortality in preterm infants, who make up 90% of NEC cases 

(Fitzgibbons et al. 2009). The incidence of NEC among low birthweight preterm infants is 
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approximately 7% and causes death in about one third of cases. The exact causes of NEC 

are not known, but an excessive inflammatory response to intestinal bacteria may be 

involved (Nanthakumar et al. 2011). 

Many of the long-term consequences of microbial colonization are believed to be mediated 

by interactions between the intestinal microbiota and the immune system. In addition to 

direct interactions, the microbiota interacts with the immune system through the 

production of metabolites that can be taken up directly by immune and epithelial cells 

(Dodd et al. 2017a; Wikoff et al. 2009). For example, bacterial production of short chain 

fatty acids can affect health and integrity of the intestinal epithelia and immune cells 

(Willemsen et al. 2003; Chang et al. 2014; C. J. Kelly et al. 2015). However, few studies use 

metabolites alongside bacterial community profiling. In fact, the healthy composition of an 

infant fecal metabolome is understudied. 

In this retrospective study, we follow the changes in the gut microbiota over time in 32 

very low birth weight (< 1500 grams) preterm infants born at Children’s Hospital Orange 

County. We simultaneously track the bacterial composition and metabolite profile over 

time. Infants were classified into three groups based on health outcomes: healthy, late-

onset sepsis, and NEC. The composition of the intestinal microbiota was measured by 16S 

rRNA gene sequencing of fecal samples taken over time.  Preterm infant guts were 

dominated by Enterobacteriaceae and Enterococcus, and Staphylococcus. Untargeted 

metabolomics analysis of the fecal samples by gas chromatography mass spectrometry 

(GC-MS) revealed a personalized metabolome that was weakly associated with the 

bacterial composition. 
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RESULTS 

Patient cohort 

A total of 77 fecal samples were collected from 32 very low birth weight infants in the NICU 

at Children’s Hospital Orange County from 2011 to 2014 (Table 1.1, Figure 1.1). 

Birthweights ranged from 620 – 1570 grams. Fecal samples were collected between day 7 

and 75 of life. Sampling time and number of fecal samples varied. Three or more 

longitudinal samples were available from ten of the infants, while one or two samples were 

available from the remaining 22 infants. Three infants developed NEC, eight developed 

late-onset sepsis, and 21 remained healthy. Twelve infants were delivered vaginally while 

the remaining 22 were delivered by cesarean section. All infants were fed by either 

breastmilk or a combination of breastmilk and formula. Twenty-four infants had record of 

receiving antibiotics at some point during the sampling period, the most common being 

ampicillin and gentamycin. 

Microbial Community Characterization  

We sequenced the 16S rRNA gene content of each fecal sample to determine bacterial 

composition. The total bacterial load of each fecal sample was measured by qPCR of the 16S 

rRNA gene and scaled to the total weight of stool that DNA was extracted from. Among all 

infants, bacterial abundances vary over four orders of magnitude and were lower in infants 

that developed NEC or late-onset sepsis (p < 0.001) (Figure 1.2). The high variation in 

bacterial load is likely due to the near uniform use of antibiotics. Bacterial communities 

were composed of mostly Enterobacteriaceae, Enterococcus, Staphylococcus, and 

Bacteroides (Figure 1.2). Most samples were dominated by one to three genera of bacteria. 

Only three infants (two fed breastmilk, one fed breastmilk and formula) were colonized at 
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greater than 1% relative abundance by Bifidobacteria, which emerging evidence suggests is 

a key member of the infant microbiome. However, we note that the primers used are able 

to detect 1741 out of 5146 (30%) of Bifidobacteria species represented in the Ribosome 

Project Database including 38 infantis substrains, versus 2177663 out of 3196041 (68%) of 

all bacterial species in the database (Cole et al. 2014). No single bacterial OTU or 

community composition was consistently found for infants that became sick (NEC or late-

onset sepsis) compared to the infants that remained healthy. 

Longitudinal sampling revealed that over the course of days, the bacterial composition 

could change dramatically (Figure 1.3). Permutational Multivariate Analysis of Variance 

(PERMANOVA) was applied to determine which of the known clinical factors explained the 

most variance in the bacterial community composition. The individual explained 48% (p < 

0.001) of the variance in the samples, meaning that about half of the total variance among 

all tested fecal samples could be attributed to the infant the fecal sample came from 

(Supplemental table 1.1a). Delivery mode explained a smaller proportion of variance 

(12% variance, p < .05), but none of the other factors explained a significant amount of 

variation in the bacterial composition, including infant health, overlapping dates in the 

NICU, or feeding mode.  Only vaginally born infants were colonized by Bacteroides (four out 

of nine infants) while none of the twenty-two infants born by C-section were colonized. 

Four of the infants in the study are twins. Twin set 1 (infants 12 and 13) had a similar 

microbial composition while the other three sets did not (Supplemental Figure 1.1). 

Diversity of the bacterial communities was low, as expected for preterm infants. Alpha 

diversity as measured by Shannon index increased overall with age, but the trend was not 

significant (linear model R2 = 0.005, p = 0.52) (Figure 1.4a). Other clinical factors including 
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health outcome, feeding (breastmilk versus breastmilk and formula), antibiotic use, and 

delivery mode were tested for an effect on the alpha diversity (Figure 1.4b-e). None of the 

factors were associated with a difference in alpha diversity except recorded antibiotic use, 

in which Shannon diversity was unexpectedly lower on average in infants that did not have 

a record of receiving antibiotics (Wilcoxon rank sum test p=0.06). It should be noted that 

although six infants did not have a record of antibiotic use, records may be incomplete due 

to hospital transfers. 

Metabolomics 

Metabolite profiles of infant fecal samples were analyzed by gas chromatography mass 

spectrometry, which measures small primary metabolites. Over 400 small molecules were 

detected from each fecal sample and 224 metabolites were known compounds. Metabolites 

were grouped into the following categories: amino acid metabolism, bile acids, central 

metabolism, fatty acids, fermentation products, lipid metabolism, nucleotide metabolism, 

organic acids, sterols, sugars, sugar acids, sugar alcohols, and vitamin metabolism (Figure 

1.5, Supplemental table 1.2). No metabolites or categories of metabolites were found to 

be associated with necrotizing enterocolitis or late-onset sepsis. The metabolite profile of 

each infant was seen to vary over time, similar to the amount of variation seen in the 

bacterial composition (Figure 1.6). PERMANOVA analysis to determine which factors 

explain the most variance in the metabolite profile indicate that the individual explains 

43% (p < 0.001) of the variation (Supplemental table 1.1b). 

To determine which metabolites might be useful for tracking bacterial metabolism in the 

infant gut, we examined metabolites with consistent abundance among infants versus 

those that varied (Supplemental figure 1.2). In general, sugars, central metabolites, and 
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amino acids were variable while fatty acids, sterols, organic acids, and bile acids were more 

consistent. Infant 23, which developed necrotizing enterocolitis at day 16 of life, had low 

abundances of amino acid metabolites the two days prior to disease onset (Figure 1.5). 

However, several of the healthy control infants also had similarly low abundances of amino 

acid metabolites. The individual signal of each infant’s metabolome is far more evident than 

any trends due to clinical factors (Supplemental table 1.1b).  

Bacterial composition associated with metabolite profile 

Bacterial metabolism in the gut is expected to contribute to the abundances of metabolites 

detected in fecal samples. We wanted to know if fecal samples with a similar bacterial 

composition were also similar in their metabolite profile. We employed a Mantel test using 

Pearson correlations between distances among bacterial compositions of samples and 

distances among metabolite profiles of samples. Because bacterial compositions and 

metabolite profiles are personalized, using multiple samples from a single infant would 

skew the result. Therefore, one sample from each infant was randomly selected 100 times 

to remove the effect of the individual and the Mantel test was applied to each subset. The 

average Mantel statistic of r = 0.23 ± 0.05 (p < 0.05) indicates a weak but significant 

association between the bacterial composition and metabolite profile. Also, within 

individual infants, shifts in the bacterial composition are accompanied by shifts in the 

metabolome. Infants 17, 23, and 31 have dramatic shifts in both bacterial composition and 

metabolome profile over time, while infants 10 and 37 remain stable in both bacterial 

composition and metabolome.  

To investigate the correlations driving this overall association, we calculated correlations 

between bacterial abundances and metabolite intensities (Figure 1.7a). Staphylococcus 
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had the most positive correlations including several classes of sugar metabolites, organic 

acids, and central metabolites. Fatty acids, lipid metabolism, and amino acids were 

positively correlated with the commonly abundant gut colonizers Enterobacteriaceae and 

Bacteroides, and negatively correlated with the commonly low abundance colonizers 

Staphylococcus and Enterococcus. We also looked more specifically at individual 

metabolites correlated with bacterial abundances (Figure 1.7b). Bacteroidetes were found 

to be positively correlated with succinate (r = 0.85).  Many other weak correlations (r < 0.5) 

exist between bacterial abundances and metabolite intensities, but the sample size is not 

large enough to distinguish signal from noise.  

DISCUSSION 

Bacterial compositions in this cohort were consistent with the emerging picture from other 

studies that show the preterm infant gut harbors communities dominated by facultative 

anaerobes including Enterobacteriaceae, Enterococcus, and Staphylococcus (Gibson et al. 

2016; Rosa et al. 2014; Grier et al. 2017). These communities appear to be enriched in 

commonly antibiotic resistant organisms (Sommer and Dantas 2011). While we expected 

to find associations between bacterial community composition and health outcome in this 

cohort, we were surprised to find that there were not clear signatures of microbiome 

composition linked to NEC or sepsis. In larger cohorts, associations between particular 

bacteria or metabolites with NEC have been reported, however, they are not universal 

signatures across patients, and may reflect patient variation more than disease etiology 

(Morrow et al. 2013; Sim et al. 2015; Heida et al. n.d.; Cassir et al. n.d.). In fact, the strongest 

signal in both the microbiome and metabolome data from this cohort was the infant from 

whom the sample was taken. Overall, preterm infant microbiomes in this study were 
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shaped by antibiotics, which have a strong impact on all patients, regardless of health 

outcome.  

Although the bacterial composition of infant guts varied over time, we saw longitudinal 

samples from individual infants remained highly personalized over several weeks; nearly 

half of the variation in the microbial community compositions can be explained by which 

individual the sample came from. The stability of animal-associated microbiomes is an 

active area of research, with studies finding that the individual microbiome of an adult 

remains stable through time (Faith et al. 2013), but can be perturbed by extreme changes 

in diet or antibiotics (Dethlefsen and Relman 2011a; David et al. 2013; Brüssow 2016). The 

bacterial composition in the adult gut largely returns to its previous state one month after 

antibiotic treatment, but altering the initial assembly of the microbiota in infants can have 

long lasting health consequences (Dethlefsen and Relman 2011a; Dethlefsen et al. 2008; 

Cox et al. 2014; Schulfer and Blaser 2015). Previous work has found ampicillin and 

gentamycin (the most common antibiotics taken by infants in this study) to have an 

inconsistent effect on bacterial diversity, sometimes increasing and sometimes decreasing 

diversity (Gibson et al. 2016). Similarly, in these infants, ampicillin and gentamycin 

resulted in more variation in bacterial diversity, but there was no clear trend of increasing 

or decreasing diversity. However, antibiotics change the dominant members of the 

microbiota which could have profound effects on immune development and growth 

(Metsälä et al. 2015; Mueller et al. 2015; Cox et al. 2014; Schulfer and Blaser 2015). 

Evidence is emerging that a healthy infant gut microbiota is dominated by Bifidobacteria 

with the capacity to digest human milk oligosaccharides in breastmilk (Karav et al. 2016; 

Frese et al. 2017; Underwood et al. 2017). The lack of a core Bifidobacteria community in 



19 

 

infants could leave the microbiota open to colonization by facultative anaerobes like we 

observed in these infants (Stewart et al. 2016). Proteobacteria such as Enterobacteriaceae 

are commonly seen to increase in abundance after antibiotic administration (Sommer and 

Dantas 2011; Andersen et al. 2016; Ubeda et al. 2010a). Indeed, infants in this study had 

microbiomes that were shaped by antibiotic use. Although six of the thirty-two infants in 

this study did not have recorded antibiotic use around sampling time, the microbiota can 

still be affected by prenatal antibiotics taken by the mother (Clark et al. 2006; Cox et al. 

2014; Schulfer and Blaser 2015).   

Microbiome studies have become widespread, so that a typical bacterial composition is 

well characterized in a range of sample cohorts. However, the same cannot be said for the 

metabolome. There is a dearth of knowledge about what a consensus healthy infant fecal 

metabolome should be, making comparisons for the cohort in this study difficult. To add to 

the complexity, each metabolomic approach detects subsets of metabolites, and depends on 

sample extraction and other method choices. Increasing the frequency of metabolomics 

data collection in microbiome studies would be a huge step forward for the field. Baseline 

knowledge about the typical connections between metabolite abundances and bacterial 

metabolism should be collected, so that molecules that have consistent abundances in a 

healthy state could give context to data generated from clinical samples in different disease 

states.  

Untargeted metabolomics can survey many metabolites in a biological sample to provide a 

snapshot of the active metabolism in a system such as the human gut. Metabolite profiles of 

preterm infants in this study were found to be personalized to a similar degree as the 

bacterial composition. This is in contrast to a previous study on full term infants that 
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showed the metabolomic profile to be stable, and weakly associated with bacterial 

composition, over the first few years of life (Kostic et al. 2015). Personalized metabolic 

signatures of disease hold great promise to complement microbiota profiling in human 

systems (Stewart et al. 2016; C. J. Kelly et al. 2015). However, analyzing metabolomic data 

is challenging because an array of inputs contribute to the abundances of metabolites in 

fecal samples including bacterial metabolism, host biology, and food intake.  

We report a number of correlations between bacteria and metabolites in preterm infant 

feces, and bacterial metabolism has been previously shown to contribute to metabolite 

abundances in humans and mice (Wikoff et al. 2009; S. Yen et al. 2015; Dodd et al. 2017b). 

Short chain fatty acids are now commonly measured and associated with bacterial 

fermentation in the gut (Morrison and Preston 2016). In this study, the only short-chain 

fatty acid detected was succinate, which we found to be correlated with the presence of 

Bacteroides, which produces acetate and succinate from carbohydrate fermentation (Miller 

1978).  We also detected several medium-chain fatty acids, which were generally 

correlated with the abundance of Bacteroides and Enterobacteriaceae. None of the twenty-

two C-section born infants in this study were colonized by Bacteroides, possibly due to a 

lack of vertical transmission from the mother during birth (Bäckhed et al. 2015).  

Overall, we find preterm infant microbiomes are shaped by shared exposures especially to 

antibiotics, leading to the dominance of antibiotic resistant facultative anaerobes such as 

Enterococcus spp.. The anaerobic, milk degrading Bifidobacteria were largely absent, even 

in preterm infants with access to breastmilk, possibly due to a lack of exposure to microbes 

from family members in the sterile hospital environment along with antibiotics. Our 



21 

 

understanding of the health consequences of microbial colonization under these antibiotic-

enriched circumstances is still in its infancy. 

MATERIALS AND METHODS 

Sample Collection 

Stool samples from diapers of preterm infants in the neonatal intensive care unit at 

Children’s Hospital Orange County were collected by nurses over three years from 2011 to 

2014. Samples were immediately stored at -20 °C then transferred to -80 °C no more than 

three days post-collection. Samples were kept at -80 °C and thawed once for DNA 

extraction and metabolomics. A total of 77 stool samples were collected from 32 preterm 

infants. 

DNA extraction and 16S rRNA gene sequencing 

Stool samples were thawed once and DNA was extracted from 10 mg using a Zymo Fecal 

DNA MiniPrep Kit (#D6010). The V3 and V4 region of the 16SrRNA gene was amplified 

with two-stage PCR. The first PCR amplified the V3 to V4 region of the 16S rRNA gene using 

341F and 805R primers: forward primer (5’- CCTACGGGNGGCWGCAG-3’) and reverse 

primer (5’- GACTACHVGGGTATCTAATCC -3’) (Herlemann et al. 2011). These primers also 

added an overhang so that barcodes and Illumina adaptors could be added in the second 

PCR. The first PCR was done as follows: 30 cycles of 95 °C 30 seconds; 65 °C 40 seconds; 72 

°C 1 minute. Immediately after completion of the first PCR, primers with sample specific 

barcodes and Illumina adapter sequences were added and a second PCR was performed as 

follows: 9 cycles 94 °C for 30 seconds; 55 °C 40 seconds; 72 °C 1 minute. PCR reactions 

were cleaned using Agencourt AMPure XP magnetic beads (#A63880) using the 

recommended protocol. Amplicons were run on an agarose gel to confirm amplification 
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and then pooled. The amplicon pool was run on an agarose gel and the 500bp fragment was 

cut out and gel extracted using Millipore Gel Extraction Kit (#LSKGEL050). The sequencing 

library was quantified using Quant-iT Pico Green dsDNA Reagent and sent to Laragen Inc. 

for sequencing on the Illumina MiSeq platform with 250bp paired-end reads producing a 

total of 2.4 million paired-end reads. 

qPCR for bacterial load 

The bacterial load of each fecal sample was measured with quantitative PCR of a conserved 

region of the 16S gene. The following primers were used: (5’- TCC TAC GGG AGG CAG CAG 

T-3’), (5’- GGA CTA CCA GGG TAT CTA ATC CTG TT-3’). PerfeCTa SYBER Green SuperMix 

Reaction Mix (Quantabio #95054) was used to quantify DNA from samples. Relative 

abundance of 16S rRNA genes relative to the mass of stool was compared for each sample. 

Total fecal DNA was measured with Quant-iT Pico Green dsDNA Assay Kit (ThermoFisher 

#P11496). 

Sequence processing 

Sequences were quality filtered using PrinSeq to remove adapters as well as any sequences 

less than 120 base-pairs, containing any ambiguous bases, or with a mean PHRED quality 

score of less than 30 (Schmieder and Edwards 2011). Reads were found to drop steeply in 

quality after 140 base pairs, so all reads were trimmed to 140 base pairs. The forward read 

contained the V3 region in the high quality first 140 base pairs, while the V4 region was 

captured in the low-quality region of the reverse reads. Therefore, we used only the 

forward reads for subsequent analyses. 

Bacterial community analysis 
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Quantitative Insights Into microbial Ecology (QIIME) was used for de novo OTUs picking 

using the Swarm algorithm with a clustering threshold of 8 (Caporaso et al. 2010; Mahé et 

al. 2014). This resulted in 2,810 OTUs among all samples. OTUs containing only one 

sequence were filtered out, leaving 212 OTUs. Taxonomy was assigned to each OTU using 

QIIME and the Greengenes 13_8 database. An OTU table was constructed and used for 

downstream analysis. Ten rarefactions were performed on the OTU table down to 2000 

reads per sample, which was the largest number of reads that allowed retention of most 

samples. QIIME was used to calculate alpha diversity by Shannon index and beta diversity 

by the average weighted UniFrac distance of the ten rarefactions. Community composition 

barplots, Principal Coordinate Analysis (PCoA) plots, and alpha diversity plots were 

created using R and the ggplot2 package (Wickham 2009; Lozupone and Knight 2005). All 

R scripts are included in the supplemental information. 

Untargeted metabolomics by GC-MS 

When fecal samples were thawed for DNA extraction, approximately 50 mg was collected 

and refrozen at -80 ° for metabolomics. Samples were sent on dry ice to the West Coast 

Metabolomics Center (WCMC) at UC Davis for untargeted metabolomics by gas 

chromatography time-of-flight mass spectrometry. Metabolites were extracted from fecal 

samples with a 3:3:2 mixture of isopropanol, acetonitrile, and water respectively before 

derivatization and GC-MS analysis by Fiehn Lab standard operating procedures (Kind et al. 

2009, 2017; Cajka and Fiehn 2016). Metabolite profiles were compared by calculating 

Manhattan distances between samples based on all metabolite intensities and visualized by 

PCoA using the vegan and ape packages in R (Paradis, Claude, and Strimmer 2004; Oksanen 

et al. 2016). 
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Permutational multivariate analysis of variance (PERMANOVA) 

PERMANOVA was used to determine factors that explained variance in bacterial 

community composition and metabolite profile. PERMANOVA was performed using the 

adonis function in the vegan package in R. The input for PERMANOVA was a UniFrac 

distance matrix of the 16S data and Manhattan distances of the metabolite profiles. Briefly, 

PERMANOVA quantifies the variation among samples explained by the given groupings 

compared to randomized groupings. To measure the variance explained by individual 

infant, we excluded samples that had fewer than three longitudinal samples, leaving ten 

infants. To measure the variance explained by health outcome, we again only included 

infants with three or more longitudinal samples and groups were permuted among infants, 

not samples, so that the effect of the individual will be minimal. When performing 

PERMANOVA for factors other than individual, we accounted for the longitudinal sampling 

by averaging samples from each individual. 

Correlations between bacteria and metabolites 

Pearson correlations between bacterial abundances and normalized metabolite intensities 

were calculated using the cor function in R. Correlations were calculated between the 

relative abundances of all bacterial classes and all metabolite intensities among all samples 

in all infants. Only the four most highly abundant general of bacteria were used to ensure 

no results were skewed by taxa present in only one or a few samples. For each class of 

metabolite, the average of all correlations between metabolites in that class and each taxon 

was calculated so that trends between bacterial taxa and classes of metabolites could be 

visualized by heatmap. 

Mantel test 
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To determine if fecal samples with similar bacterial compositions also have similar 

metabolite profiles, a Mantel test was performed. To account for the effect of longitudinal 

sampling, each dataset was randomly subsampled down to one sample per infant. A Bray-

Curtis dissimilarity matrix was computed for the bacterial composition and Manhattan 

distances calculated for metabolite intensities. The Mantel function in the vegan package of 

R was used to calculate the Mantel statistic for a Pearson correlation between the two 

dissimilarity matrices. The average and standard deviation of the Mantel statistic r and p-

value for the 100 Mantel tests was reported. 

DATA AVAILABILITY 

Raw sequence data is available on the SRA at accession: SRP137076. OTU tables, raw 

metabolomics data, a markdown file of sequence processing workflow, and R scripts used 

for analyses are available at https://github.com/swandro/preterm_infant_analysis. 
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FIGURES AND TABLES 

 

 

Figure 1.1 Study design schematic. Longitudinal fecal samples were collected over the first 

75 days of life from very low birthweight infants in the NICU. Bacterial compositions and 

metabolomes were characterized. 
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Figure 1.2 Bacterial composition and bacterial load of preterm infant guts. Stacked 

barplots show relative abundance of bacteria at the genus level in all infant samples. The 

family Enterobacteriaceae is included because genus level resolution was not available. Log 

scaled relative bacterial load is shown underneath each sample.  
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Figure 1.3 First axis of PCoA based on weighted uniFrac distances between bacterial 

communities plotted over time. Each dot represents a single fecal sample and is colored by 

infant. Lines connect samples for each infant to show change over time. Only infants with 

three or more longitudinal samples shown. 
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Figure 1.4 Alpha diversity measured by Shannon index of bacterial composition. A) Alpha 

diversity of all samples over the age of the infant. Boxplots of the average alpha diversity of 

each infant separated by B) health outcome, C) infants that were fed only breastmilk or a 

combination of formula and breastmilk, D) record of antibiotic usage, or E) delivery mode.  
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Figure 1.5 Metabolite profile of preterm infant fecal samples. Color is the modified z-score 

which is based on the median intensity for each metabolite in all infant samples. Red cells 

indicate standard deviations below the median and blue indicate standard deviations 

above the median value for each metabolite. Measured metabolites that could be assigned 

to a category are shown. Samples on the x-axis and grouped by infant and ordered 

longitudinally. Metabolites within each category are listed in the supplemental data. 
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Figure 1.6 First component of PCoA of metabolite profile over time. Manhattan distances 

between samples were calculated and visualized by PCoA. The first principal component 

which explains the most variation among the samples is shown over time. Each dot 

represents a single fecal sample and is colored by infant. Lines connect samples for each 

infant to show change over time. Only infants with three or more longitudinal samples 

shown. 
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Figure 1.7 Correlations between bacteria abundances and metabolite intensities. A) 

Average of correlations between bacterial abundances and all metabolites in each 

metabolite category. B) Correlation between Bacteroides abundance and succinic acid 

intensity in all samples. Numbers indicate infant number. 
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Table 1.1. Clinical and sampling information for all infants.  

Infant 
# of 

samples 

Age 
sample(s) 
collected 
(days) 

Age at 
disease 

onset 
(days) 

Group 
Fetal 
age at 
birth 

Birth 
weight 
(g) 

Antibiotics  
(amp = 

ampicillin, 
gent=genta

mycin) 

Delivery 
mode  

Feeding type 
 (BM: 
breastmilk 
F: formula) 

Twin 
set 

1 2 7,7  control 27w4d 875 

 

c-section BM 
 

2 3 15,15,36  control 31w 1570 amp, gent c-section BM, F 
 

3 1 19  control 26w 980 amp, gent c-section BM 
 

4 2 11,11  control 30w3d 1335 

 

vaginal BM 
 

5 2 18,18  control 24w5d 630 

 

c-section BM 
 

6 4 25,26,28,43  control 28w5d 860 amp, gent c-section BM, F 
 

7 3 10,21,24  control 25w2d 885 

 

c-section BM, F 
 

8 1 10  control 25w4d 940 amp, gent vaginal BM 
 

9 1 8  control 27w2d 1205 

 

vaginal BM 
 

11 2 29,29  control 27w4d 850 amp, gent vaginal BM 
 

12 1 22  control 26w2d 880 amp, gent c-section BM, F 1 

13 1 23  control 26w2d 925 amp, gent c-section BM, F 1 

14 1 8  control 31w4d 1190 amp, gent c-section BM 
 

15 3 18,40,40  control 28w1d 1270 amp, gent c-section BM, F 2 

16 1 19  control 28w1d 1355 amp, gent c-section BM, F 2 

17 3 18,32,54  control 26w2d 660 amp, gent c-section BM 
 

21 1 10  control 28w6d 1180 amp, gent c-section BM 
 

22 1 25  control 28w6d 1360 amp, gent vaginal BM, F 
 

24 2 27,73  control 26w 740 amp, gent c-section BM 3 

25 1 28  control 26w 780 amp, gent c-section BM 3 

35 2 18,18  control 25w5d 920 

 

c-section BM, F 
 

23 7 
14,15,27,28,30

,30,56 
27 NEC 26w6d 1080 

amp, gent, 
cefotaxime,
vancomycin 

vaginal BM 

 

28 4 31,32,33,48 31 NEC 26w 1060 
vancomycin
,piperacillin 

c-section BM, F 
 

30 4 21,41,42,56 41 NEC 23w6d 620 
cefazolin,azi
thromycin,a
mp 

vaginal BM, F 

 

20 1 21 26 septic 24w5d 815 amp, gent c-section BM 
 

10 6 
15,35,36,37,39

,40 
27 septic 26w5d 940 

amp, gent, 
vancomycin 

vaginal BM, F 
 

26 1 22 22 septic 24w4d 660 
amp, gent, 
cefotaxime,
vancomycin 

c-section BM 
4 

27 2 22,31 29 septic 24w5d 650 amp, gent c-section BM 4 

29 2 20,26 26 septic 26w1d 980 
cefotaxime,
vancomycin 

c-section BM 
 

31 5 10,34,35,38,45 34 septic 27w 710 amp, gent c-section BM, F 
 

32 4 32,32,53,75 32 septic 27w5d 

   

BM, F 
 

37 3 8,17,18 13 septic 24w1d 680 
amp, gent, 
cefazolin,ox
acillin 

vaginal BM 
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Figure S1.1 Bacterial composition of each set of twins. 
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Figure S1.2 Average variation among infants of each metabolite grouped by category. Each 

dot represents a single metabolite. Coefficient of variation for each metabolite calculated as 

the standard deviation divided by the mean intensity of that metabolite in all samples from 

all infants. 
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Table S1.1 PERMANOVA for clinical factors explaining the differences in fecal a) bacterial 

composition and b) metabolome. Bolded factors are statistically significant. PERMANOVA 

for health outcome testes for differences among control, NEC, and late-onset sepsis. 

PERMANOVA for health and individual only includes infants with three or more 

longitudinal samples. 

a) 
 Df Variance explained 

(R2) 
P-value 

Health 2 0.079 0.64 
Individual 9 0.48 < 0.001 

Delivery mode 1 0.12 0.046 
Breastmilk/Formula 1 0.07 0.076 

Antibiotics 1 0.039 0.29 
Date in NICU 6 0.25 .335 

 
b) 

 Df Variance explained 
(R2) 

P-value 

Health 2 0.15 0.095 
Individual 9 0.48 < 0.001 

Delivery mode 1 0.03 0.55 
Breastmilk/Formula 1 0.13 0.005 

Antibiotics 1 0.045 0.181 
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Table S1.2 All identified metabolites measured by GC-MS and their assigned categories. 

Metabolite Category 

2-ketoisocaproic acid amino acid 
metabolism 

2-picolinic acid amino acid 
metabolism 

3,4-dihydroxyphenylacetic acid amino acid 
metabolism 

3-phenyllactic acid amino acid 
metabolism 

4-aminobutyric acid amino acid 
metabolism 

4-hydroxybenzoate amino acid 
metabolism 

4-hydroxyphenylacetic acid amino acid 
metabolism 

5-aminovaleric acid amino acid 
metabolism 

alanine amino acid 
metabolism 

alanine-alanine amino acid 
metabolism 

asparagine amino acid 
metabolism 

aspartic acid amino acid 
metabolism 

beta-alanine amino acid 
metabolism 

cysteine amino acid 
metabolism 

cystine amino acid 
metabolism 

glutamine amino acid 
metabolism 

glutaric acid amino acid 
metabolism 

glycine amino acid 
metabolism 

histidine amino acid 
metabolism 

homocystine amino acid 
metabolism 

homoserine amino acid 
metabolism 

indole-3-lactate amino acid 
metabolism 

isoleucine amino acid 
metabolism 

leucine amino acid 
metabolism 

lysine amino acid 
metabolism 

methionine amino acid 
metabolism 

methionine sulfoxide amino acid 
metabolism 

N-acetylaspartic acid amino acid 
metabolism 

n-acetylglutamate amino acid 
metabolism 

N-acetylornithine amino acid 
metabolism 

N-acetylputrescine amino acid 
metabolism 

N-methylalanine amino acid 
metabolism 

O-acetylserine amino acid 
metabolism 

ornithine amino acid 
metabolism 

phenol amino acid 
metabolism 

phenylacetic acid amino acid 
metabolism 

phenylalanine amino acid 
metabolism 

phenylethylamine amino acid 
metabolism 

pipecolinic acid amino acid 
metabolism 

proline amino acid 
metabolism 

putrescine amino acid 
metabolism 

pyrrole-2-carboxylic acid amino acid 
metabolism 

serine amino acid 
metabolism 

shikimic acid amino acid 
metabolism 

threonine amino acid 
metabolism 

trans-4-hydroxyproline amino acid 
metabolism 

tryptophan amino acid 
metabolism 

tyramine amino acid 
metabolism 

tyrosine amino acid 
metabolism 

urea amino acid 
metabolism 

urocanic acid amino acid 
metabolism 

valine amino acid 
metabolism 

N-acetyl-D-galactosamine amino sugar 

n-acetyl-d-hexosamine amino sugar 

chenodeoxycholic acid bile acid 

cholic acid bile acid 

taurine bile acid 

aconitic acid central metabolism 

alpha-ketoglutarate central metabolism 

citramalic acid central metabolism 

citric acid central metabolism 

dihydroxyacetone central metabolism 

fumaric acid central metabolism 

glucose-6-phosphate central metabolism 

glyceric acid central metabolism 

isocitric acid central metabolism 
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malic acid central metabolism 

oxalic acid central metabolism 

pyrophosphate central metabolism 

pyruvic acid central metabolism 

succinic acid central metabolism 

sulfuric acid central metabolism 

2-hydroxybutanoic acid fatty acid 

arachidic acid fatty acid 

arachidonic acid fatty acid 

behenic acid fatty acid 

capric acid fatty acid 

cerotinic aci fatty acid 

elaidic acid fatty acid 

heptadecanoic acid fatty acid 

isoheptadecanoic acid NIST fatty acid 

lauric acid fatty acid 

lignoceric acid fatty acid 

linoleic acid fatty acid 

myristic acid fatty acid 

nonadecanoic acid fatty acid 

oleic acid fatty acid 

palmitic acid fatty acid 

pentadecanoic acid fatty acid 

stearic acid fatty acid 

butane-2,3-diol NIST fermentation product 

lactic acid fermentation product 

1-monoheptadecanoyl glyceride 
NIST 

lipid metabolism 

1-monoolein lipid metabolism 

1-monopalmitin lipid metabolism 

1-monostearin lipid metabolism 

2-monoolein lipid metabolism 

2-monopalmitin lipid metabolism 

dodecanol lipid metabolism 

ethanolamine lipid metabolism 

glycerol-alpha-phosphate lipid metabolism 

monomyristin lipid metabolism 

phosphoethanolamine lipid metabolism 

phytol lipid metabolism 

propane-1,3-diol NIST lipid metabolism 

3-aminoisobutyric acid nucleotide 
metabolism 

3-hydroxypropionic acid nucleotide 
metabolism 

5,6-dihydrouracil  nucleotide 
metabolism 

7-methylguanine NIST nucleotide 
metabolism 

adenine nucleotide 
metabolism 

adenosine nucleotide 
metabolism 

adenosine-5-monophosphate nucleotide 
metabolism 

cytosin nucleotide 
metabolism 

guanosine nucleotide 
metabolism 

inosine nucleotide 
metabolism 

orotic acid nucleotide 
metabolism 

pseudo uridine nucleotide 
metabolism 

ribose nucleotide 
metabolism 

thymidine nucleotide 
metabolism 

thymine nucleotide 
metabolism 

uracil nucleotide 
metabolism 

uric acid nucleotide 
metabolism 

uridine nucleotide 
metabolism 

xanthine nucleotide 
metabolism 

xanthosine nucleotide 
metabolism 

2,3-dihydroxybutanoic acid NIST organic acid 

2-deoxytetronic acid organic acid 

2-deoxytetronic acid NIST organic acid 

2-hydroxyglutaric acid organic acid 

2-hydroxyhexanoic acid organic acid 

2-hydroxyvaleric acid organic acid 

3-hydroxy-3-methylglutaric acid organic acid 

3-hydroxybutyric acid organic acid 

adipic acid organic acid 

azelaic acid organic acid 

benzoic acid organic acid 

digalacturonic acid organic acid 

erythronic acid lactone organic acid 

glycolic acid organic acid 

hexaric acid organic acid 

maleic acid organic acid 

syringic acid organic acid 

tartaric acid organic acid 

cholesterol sterol 

dihydrocholesterol sterol 
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squalene sterol 

stigmasterol sterol 

beta-gentiobiose sugar 

cellobiose sugar 

fructose sugar 

glucose sugar 

glycerol-3-galactoside sugar 

levoglucosan sugar 

lyxose sugar 

maltose sugar 

maltotriose sugar 

mannose sugar 

N-acetyl-D-mannosamine sugar 

raffinose sugar 

tagatose sugar 

trehalose sugar 

xylose sugar 

xylulose NIST sugar 

galacturonic acid sugar acid 

gluconic acid sugar acid 

gluconic acid lactone sugar acid 

lactobionic acid sugar acid 

ribonic acid sugar acid 

saccharic acid sugar acid 

threonic acid sugar acid 

UDP-glucuronic acid sugar acid 

xylonic acid sugar acid 

erythritol sugar alcohol 

erythrose sugar alcohol 

fucose sugar alcohol 

galactinol sugar alcohol 

hexitol sugar alcohol 

isothreitol sugar alcohol 

lactitol sugar alcohol 

lyxitol sugar alcohol 

mannitol sugar alcohol 

palatinitol sugar alcohol 

xylitol sugar alcohol 

4-pyridoxic acid vitamin metabolism 

delta-tocopherol NIST vitamin metabolism 

hexuronic acid1 vitamin metabolism 

nicotinamide vitamin metabolism 

nicotinic acid vitamin metabolism 

tocopherol alpha- vitamin metabolism 

tocopherol beta NIST vitamin metabolism 

tocopherol gamma- vitamin metabolism 

1,2-anhydro-myo-inositol NIST xother 

2-deoxypentitol NIST xother 

2-hydroxypyrazinyl-2-propenoic 
acid ethyl ester NIST 

xother 

4-hydroxymandelic acid xother 

5-hydroxymethyl-2-furoic acid 
NIST 

xother 

6-hydroxynicotinic acid xother 

acetophenone NIST xother 

allantoic acid xother 

alloxanoic acid NIST xother 

aminomalonate xother 

beta-mannosylglycerate xother 

butyrolactam NIST xother 

caffeine xother 

conduritol-beta-epoxide xother 

creatinine xother 

docosahexaenoic acid xother 

epsilon-caprolactam xother 

hexadecylglycerol NIST xother 

hydroxycarbamate NIST xother 

hydroxylamine xother 

indole-3-acetate xother 

inositol-4-monophosphate xother 

isohexonic acid xother 

isothreonic acid xother 

maleimide xother 

malonic acid xother 

methyl O-D-galactopyranoside xother 

methyltetrahydrophenanthrenone
1 NIST 

xother 

parabanic acid NIST xother 

sebacic acid, di(2-octyl) ester 
NIST 

xother 

tyrosol xother 

xylonolactone NIST xother 

zymosterol xother 
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CHAPTER 2 

Making it last: Storage time and temperature have differential impacts on metabolite 

profiles of airway samples from cystic fibrosis patients 

Co-authors: Lisa Carmody, Tara Gallagher, John LiPuma, and Katrine Whiteson 

ABSTRACT 

Metabolites of human or microbial origin have the potential to be important biomarkers of 

disease state in cystic fibrosis (CF). Clinical sample collection and storage conditions may 

impact metabolite abundances with clinical relevance. We measured the change in 

metabolite composition based on untargeted gas chromatography mass spectrometry (GC-

MS) when CF sputum samples were stored at either 4°C, -20°C, or -80°C with one or two 

freeze-thaw cycles. Daily time points were taken for one week and then weekly for 4 weeks 

(4°C) and 8 weeks (-20°C). The metabolites in samples stored at -20°C maintained similar 

abundances compared to -80°C over the course of eight weeks (average change in Bray-

Curtis distance: 0.06±0.04) and were also stable after one or two freeze-thaw cycles. 

However, metabolite profiles of samples stored at 4°C shifted after one day and continued 

to change over the course of four weeks (average change in Bray-Curtis distance: 

0.31±0.12). Several amino acids and other metabolite abundances increased with time 

when stored at 4°C, but remained constant at -20°C. Storage temperature was a significant 

factor driving the metabolite composition (PERMANOVA R2 = 0.32 to 0.49, p= <0.001). CF 

sputum samples stored at -20°C at the time of sampling maintain a relatively stable 

untargeted GC-MS profile. Samples should be frozen on the day of collection, as more than 

one day at 4°C impacts the global composition of the metabolites in the sample.  
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IMPORTANCE Metabolomics has great potential for uncovering biomarkers of disease 

state in CF and many other contexts. However, sample storage timing and temperature may 

alter the abundance of clinically relevant metabolites. In order to assess whether existing 

samples are stable and to direct future study design, we conducted untargeted GC-MS 

metabolomics on CF sputum samples after one or two freeze-thaws and storage at 4°C and 

-20°C for four to eight weeks. Overall, storage at -20°C and freeze-thaw cycles had little 

impact on metabolite profiles; however, storage at 4°C shifted metabolite abundances 

significantly. GC-MS profiling will aid in our understanding of the CF lung, but care should 

be taken in studies using sputum samples to ensure samples are properly stored. 

INTRODUCTION 

The staggering metabolic complexity of any human biologic specimen results from 

both human and microbial metabolism, and could provide clinically relevant biomarkers of 

disease. Recent studies based on chromatography and mass spectroscopy estimate that 

tens or hundreds of thousands of distinct metabolites are in human biologic specimens, and 

that a third to half of them are produced or altered by microbes (Dorrestein, Mazmanian, 

and Knight 2014; Wikoff et al. 2009). In this study, we assessed the impact of storage 

temperature and time on metabolite composition in sputum samples collected from people 

with cystic fibrosis (CF). CF is a genetic disease caused by a mutation in a cellular ion 

transporter that results in increased susceptibility of the respiratory tract to bacterial 

infection (P M Quinton 1983; Paul M Quinton 2008; Stoltz, Meyerholz, and Welsh 2015). 

The lives of persons with CF are punctuated by periods of worsened respiratory symptoms 

referred to as pulmonary exacerbations.  Although the etiology of these events remains 

unclear, changes in the structure and/or activity of airway microbial communities is 
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believed to play a role (Carmody et al. 2015; Jiangchao Zhao et al. 2012; Laguna et al. 2015; 

Lynch and Bruce 2013; D. J. Smith et al. 2014; Stressmann et al. 2011; Twomey et al. 2013). 

Decades of study of the microbiology of CF airway infection have relied on recovery of 

select bacterial species in culture of respiratory specimens. More recently, next-generation 

DNA sequencing and metabolomic analyses have contributed to a broader appreciation of 

the complexity and dynamics of the microbial ecology of CF airways (Price et al. 2013; 

Carmody et al. 2015; Jiangchao Zhao et al. 2012). Culture independent approaches have 

potential to identify changes in microbial community structure and activity associated with 

pulmonary exacerbations, thereby offering insight to novel approaches to prevent or better 

treat these episodes (Robroeks et al. 2010; Bos, Sterk, and Schultz 2013; Bos et al. 2014, 

2016). 

The utility of metabolomics in advancing our understanding of CF exacerbations 

depends, however, on an appreciation of how variables in sample handling may impact 

measures of global metabolic profile and/or assessment of specific metabolites of interest. 

Respiratory samples, including expectorated sputum and bronchoalveolar lavage (BAL) 

fluid, are most often obtained from patients in clinical settings where immediate freezing 

and storage is not practical.  Samples may be held at 4°C or -20˚C for variable periods of 

time before being stored at -80˚C. Samples may also undergo repeated cycles of freezing 

and thawing prior to analysis.  While studies have addressed the impact of storage 

temperature on metabolomic analysis of clinical samples such as plasma and urine (Krug et 

al. 2012; Rist et al. 2013; Pinto et al. 2014), comparable studies assessing sputum are 

lacking.  We previously examined the impact of storage conditions on CF sputum 

metabolomic profiles based on liquid chromatography mass spectrometry (LC-MS) and 
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found that profiles were stable in samples stored for at least four weeks at  -20˚C 

(Jiangchao Zhao et al. 2015). While LC-MS can be used to study low-molecular weight 

compounds, it cannot ionize nonpolar compounds and is not practical for analysis of 

volatile compounds, which are better analyzed using gas chromatography mass 

spectrometry (GC-MS). With respect to CF, recent breath sampling has shown that levels of 

the volatile 2,3-butanedione, a pH-neutral bacterial fermentation product, were elevated in 

the breath of CF patients compared to healthy individuals.  Another molecule from the 

same metabolic pathway, 2,3-butanediol, was associated with increased virulence of the CF 

opportunistic pathogen Pseudomonas aeruginosa in both culture based and murine 

infection models (Venkataraman et al. 2011, 2014; Whiteson et al. 2014). These studies 

highlight the potential of metabolomic analysis in investigating the microbiology of airway 

infection in CF. A critical element in such studies, however, is a more complete 

understanding of the impact of sample storage on measures of metabolites detected by GC-

MS. In the study reported here, we assessed the stability of a wide range of volatile 

metabolites in sputum samples stored at 4˚C and -20˚C for variable periods of time with 

one or two freeze-thaw cycles. 

RESULTS 

Bacterial community profiles 

 Bacterial 16S rRNA gene sequencing revealed similar profiles for two sputum 

samples collected from two CF patients during the course of routine medical care (Figure 

2.1). Prevotella and Pseudomonas dominate in both samples; the distribution of microbes in 

these samples is typical of an adult CF airway community. 

Effect of storage at 4°C or -20°C 
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Our goal was to determine the impact of storage time and temperature on GC-MS 

metabolite profiles, as depicted in the flowchart in Figure 2.2. Two sputum samples were 

split into 76 aliquots and stored at 4°C or -20°C, with 2 additional aliquots stored 

immediately at -80°C; daily time points were taken for a week and weekly time points for 4 

weeks (4°C) and 8 weeks (-20°C) (Figure 2.2). GC-MS was performed on each sample and 

the resulting metabolomic profiles were visualized by principal coordinate analysis (PCoA) 

(Figure 2.3). A total of 239 metabolites were detected, of which 104 metabolites were 

identifiable. A subset of molecules are represented in a heat map depicting the fold change 

difference in metabolite intensities at each storage temperature over time (Figure S2.1, 

Figure S2.2). For both patients, the samples stored at -20°C clustered together with their 

respective time 0 samples that were stored immediately at -80°C, while samples stored at 

4°C drifted in the ordination space over time. Storage temperature at 4°C versus -20°C was 

found to significantly affect the overall metabolite profile (PERMANOVA r2= 0.49 (sample 

1); r2= 0.32 (sample 2), p < 0.001) (Supplemental Table 1). Storage at 4˚C resulted in larger 

changes in metabolite abundances over time (Figure S2.3). A major contributor to the 

changing metabolite profile at 4°C was the increasing total ion count between days 1 and 

28, which remained stable at -20°C (Figure S2.4). The Bray Curtis distance of each 

metabolomic profile from the time 0 profile was calculated for samples stored at 4°C or  -

20°C (Figure 2.4). After one day, the metabolomic profiles for samples stored at 4°C were 

observed to be more distant than samples stored at 20°C, and the average distance from 

time 0 increased each week for samples stored at 4°C. The average distance of the 

metabolomic profiles of the samples stored at -20°C from the time 0 profile remained 

steady over the course of 8 weeks (average change in Bray-Curtis distance: 0.06±0.04), 
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indicating that the overall metabolite profile did not change when stored at -20°C. In 

contrast, metabolite profiles of samples stored at 4°C continued to change over the course 

of four weeks (average change in Bray-Curtis distance: 0.31±0.12). 

Metabolites distinguishing patient samples 

The samples collected from each patient clustered separately along the primary 

PCoA axis (Figure 2.3), indicating that the two patients’ sputa have unique metabolomics 

profiles. The metabolites that differed the most between the samples from patient 1 and 

patient 2 as determined by supervised Random Forest analysis and ranked by mean 

decrease in predictive accuracy were putrescine, xylitol, glycerol, 5-aminovaleric acid, and 

uric acid (Figure 2.5A).  

Metabolites that change with storage temperature and time 

The metabolite profiles of sputum samples from both patients stored at 4°C for 

varying lengths of time separate along the secondary PCoA axis, indicating common 

changes in overall metabolomic profile with storage at this temperature (Figure 2.3). A 

supervised Random Forest analysis was used to determine which metabolites were 

responsible for the differences between samples stored at 4°C and -20°C. The top variables 

of importance (VIPs) separating samples collected at different temperatures (Figure 2.5B). 

Many of the metabolites that are most different at each storage temperature are amino 

acids (Figure 2.5B, 2.5C). The intensities of the VIP metabolites at each time point as 

shown in Figure 2.5C and indicate that the amino acids are increasing in abundance with 

time at 4°C while staying more constant at -20°C.  

Clear trends showing either an increase or decrease over time at either 4°C or -20°C 

were not observed for several metabolites that have been determined to be clinically 
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relevant to CF in other studies, including lactic acid, putrescine, and 5-aminovaleric acid 

(Figure 2.6).  

Impact of freeze-thaw on metabolomics profiles 

At each time point, samples were assessed after thawing once, and again after a 

second freeze-thaw. The differences in overall metabolite profiles of samples thawed once 

or twice were not statistically significant (PERMANOVA r2 = 0.005, p = 0.72, see 

Supplemental Table 1). 

Metabolite intensity and the coefficient of variance 

The coefficient of variation (COV: standard deviation / mean) for each metabolite 

stored at either temperature was assessed (Figure 2.7). The metabolites in aliquots stored 

at -20°C had lower COVs compared to those at 4°C as demonstrated by the distribution of 

points in the violin plot in Figure 2.7, where the aliquots stored at -20°C largely fall under 

0.3 while the COVs for the aliquots stored at 4°C are more widely distributed. The 

distribution of COVs for each metabolite during storage at -20°C remain about the same 

regardless of whether the samples at -20°C were stored for 28 or 56 days, or whether they 

were thawed once or twice (data not shown).  

DISCUSSION 

Metabolite profiling complements other culture-independent approaches such as 

bacterial 16S rRNA gene amplicon sequencing in characterizing bacterial communities in 

biologic specimens.  This could aid in identifying biomarkers of disease progression that 

are believed to be associated with changes in the activity of host microbial communities.  In 

CF, for example, production of fermentation products such as lactic acid have been found to 

be an indicator of pulmonary exacerbation that can be measured with GC-MS (Zang et al. 
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2017; Tate et al. 2002; Twomey et al. 2013). Sample storage conditions can have a 

significant impact on the abundances of metabolites in biologic samples, and studies 

assessing metabolite profiles need to account for these effects.  In previous work, we 

observed that CF sputum sample metabolite profiles determined by LC-MS were unstable 

after storage at 4°C (Carmody et al. 2015). 

In this study, we captured smaller, aqueous and more volatile metabolites in CF 

sputum with an acetonitrile:IPA:water extraction followed by untargeted GC-MS. 

Unfortunately, some microbial fermentation products of interest, such as 2,3-butanedione 

and 2,3-butanediol, are extremely volatile and were not consistently detectable with this 

approach. Profiles of two sputum samples stored at either 4°C or -20°C for varying lengths 

of time were assessed. We observed that storage at -20°C yielded stable metabolite profiles 

with similar variation in metabolite abundances as found between technical replicates. 

More specifically, the range of Bray-Curtis dissimilarity values among samples stored at -

80°C did not increase among samples stored at -20°C. In contrast, the Bray-Curtis distances 

of samples stored at 4°C increased significantly with storage time.  Of note, however, some 

metabolites appeared to remain stable during storage at 4°C, including some with potential 

as biomarkers of CF clinical disease state, such as lactic acid.  

Inter-individual variation is often the most significant factor driving differences in 

microbial or metabolite composition between biological specimens, although the relative 

contributions of human and microbial metabolism to metabolite profiles are often difficult 

to distinguish. In this study, the metabolite profiles of samples from each of two individuals 

were consistently distinct, with the unique features of each resulting in clear demarcation 

by PCoA.  Sample storage temperature also had a significant impact on metabolite profiles 
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that were also apparent by PCoA. The impact of sample storage time and temperature were 

apparent in analysis of total metabolite intensity versus time (Figure S2.1); the total 

abundance of the metabolites being measured increased at 4°C, but not at -20°C. Overall, 

these results suggest either active microbial metabolism or metabolite degradation in cells 

at 4°C, leading to increases in the intensity of compounds detectable by GC including amino 

acids and other cellular debris.  

It is also possible that changes in bacterial community structure under different storage 

conditions account for differences in metabolite abundances.  Previous work has shown, 

however, that differences in community structure between sputum sample aliquots stored 

at room temperature and aliquots stored at other temperatures were less than differences 

observed between intra- and inter-sample controls (J Zhao et al. 2011).  In samples with 

communities not yet dominated by Pseudomonas aeruginosa a reduction in diversity after 

storage at room temperature was observed (J Zhao et al. 2011).   

 We note that although this study involved GC-MS analysis of nearly 200 samples, it 

was limited to two ‘parent’ sputum samples from which dozens of aliquots were obtained, 

variably stored and analyzed.  While we have no reason to believe that these samples were 

atypical in any regard, previous work has shown that persons with CF harbor distinct 

microbial communities, at least during the early and intermediary stages of lung disease 

(Carmody et al. 2015; Jiangchao Zhao et al. 2012). An analysis of metabolite stability 

(during various storage conditions) in sputum samples from a greater number of 

individuals will be required to better demonstrate the generalizability of our findings.       

  In summary, storage of CF sputum samples at 4°C leads to changes in metabolite 

profiles within a day, with greater variation in metabolite abundances and an increase in 
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the abundance of many of the metabolites, including several amino acids detected by 

untargeted GC-MS profiling. Nevertheless, several metabolites of clinical interest remain 

stable, including lactic acid, putrescine and 5-aminovaleric acid. Our results suggest that CF 

sputum samples stored at -20°C retain stable GC-MS profiles for as long as two months. 

Freezing and thawing samples once or twice does not have a significant effect on 

metabolite intensities.  These findings need to be considered in designing studies to assess 

the metabolome of microbial communities in CF airways and other environments.   

MATERIALS AND METHODS 

Sputum collection, storage and sequencing 

CF sputum samples were collected spontaneously from two patients during the 

course of routine medical care. Sample collection was approved by the University of 

Michigan Institutional Review Board. Samples were kept on ice for up to 30 min prior to 

processing. An equal volume of cold sterile water was added to each sample before 

mechanical homogenization with a sterile tissue homogenizer (Omni International) on ice 

for 10 seconds.  Each sample was divided into 100μL aliquots and duplicate or 

quadruplicate aliquots were stored at different temperatures for various lengths of time 

before being stored at -80°C (Figure 2). At each time point, two aliquots stored at -20°C 

were thawed on ice for 30 min before being stored at -80°C. 

The bacterial communities in each of the two sputum samples (stored continuously 

at  

-80°C) were characterized as described previously (Carmody et al. 2015). In brief, the V4 

region of the 16S rRNA gene was amplified, sequenced, and analyzed with mothur. 

Metabolite extraction and metabolomics profiling 
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A total of 156 sputum samples were shipped frozen on dry ice to the West Coast 

Metabolomics Center at UC Davis for untargeted GC-TOF profiling. Metabolites were 

extracted from 20 microliters of sputum with 1mL of 3:3:2 acetonitrile:isopropyl 

alcohol:water before derivatization and analysis by GC-MS using Fiehnlab Standard 

operating procedures (Cajka and Fiehn 2016; Kind et al. 2009). Metabolites were identified 

by comparison to the binbase database. Metabolite intensities were normalized to the total 

intensity of identified metabolites for each sample. Intensities were reported for 239 

metabolites, of which 104 could be identified. 

Statistical analysis 

Principal coordinate analysis (PCoA) based on Bray-Curtis (BC) distances was used 

to visualize differences in the metabolite profiles between samples and processing 

conditions. All analyses were done with R (3.2.5). PCoA was performed using the ape 

library. BC distance was calculated using the vegdist function in vegan library. 

PERMANOVA was performed using the Adonis test in the vegan package in R (Oksanen et 

al. 2015). Random Forest analysis was carried out with the randomForest package in R 

with default parameters (ntree = 500) (Liaw and Wiener 2002). Plots were made using the 

ggplot2 and ggpubr libraries. 
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FIGURES AND TABLES 

 

 

Figure 2.1. 16S rRNA gene sequence profiles of bacterial communities for each of the 

sputum samples that were aliquoted for the storage study.  The V4 region of the 16S rRNA 

gene was amplified, sequenced, and analyzed with mothur as described previously 

(Jiangchao Zhao et al. 2015). Relative abundances of the five most abundant taxa in each 

sputum sample are shown. 

  



53 

 

 

Figure 2.2. Flow chart and study design schematic. Sputum samples from two patients 

were homogenized, aliquoted, and stored at either -20°C or 4°C. Duplicates of stored 

samples were taken daily for a week, and weekly samples were taken for 4 weeks at 4°C 

and 8 weeks at -20°C. At each time point, an additional replicate was subjected to either 

one or two freeze thaw cycles.  The aliquots were all analyzed with untargeted Gas 

Chromatography – Mass Spectroscopy (GC-MS). 
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Figure 2.3. Principal coordinates analysis (PCoA) of Bray-Curtis distances calculated from 

the metabolite abundances in each sample. The percent variance explained by each axis is 

shown in parenthesis in the axis label.  Aliquots of the sample from Patient 1 are shown in 

circles while those from the sample from Patient 2 are depicted by triangles. The gold 

standard -80°C sample are represented by solid black circles, while -20°C samples are grey 

and 4°C samples are open circles. The size of the symbol reflects storage time with later 

times represented as smaller symbols. 
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Figure 2.4. Effect of storage at -20°C versus 4°C.  Bray-Curtis distances between samples at 

each storage temperature and the corresponding patient samples stored immediately at -

80°C are shown. All replicates from both samples are shown, including those subjected to 

one or two freeze thaw cycles. 
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Figure 2.5. The variables of importance from a supervised Random Forest analysis to 

determine which metabolites best distinguish (A) patient 1 and patient 2 samples and (B) 

storage at -20°C vs 4°C. All time points were included and intensities were log transformed. 

(C) Intensities over time of five metabolites that distinguish storage temperature shown. 
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Figure 2.6. Intensities of several metabolites of potential clinical significance after storage 

at 4°C or -20°C for patients 1 and 2, including (A) lactic acid, (B) 5-aminovaleric acid, and 

(C) the polyamine putrescine. 
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Figure 2.7. Violin plot of the coefficients of variation (COV: standard deviation / mean) of 

each metabolite when stored at 4°C or -20°C. The COV was calculated over time for each 

metabolite in each patient sample.  
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Table S2.1. PERMANOVA of Bray-Curtis distances between samples for each patient based 

on (A) storage temperature and (B) one versus two freeze-thaw cycles. 

(A) 
Patient 1 Df Pseudo F R2 P-value 
Storage 

temperature 
1 72.3 0.49 < 0.001 

Residuals 74  0.51  
 

Patient 2 Df Pseudo F R2 P-value 
Storage 

temperature 
1 34.8 0.32 < 0.001 

Residuals 74  0.68  
 
(B) 

 Df Pseudo F R2 P-value 
Storage 

temperature 
1 0.37 0.005 0.72 

Residuals 70  0.995  
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Figure S2.1. Heat map of a subset of metabolites detected by GC-MS after storage at 4 °C. 

Color scale represents the log base 2 of fold change in metabolite intensity at 4˚C compared 

to reference -80˚C.  
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Figure S2.2. Heat map of a subset of metabolites detected by GC-MS after storage at -20 °C. 

Color scale represents the log base 2 of fold change in metabolite intensity at -20˚C 

compared to reference -80˚C. 
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Figure S2.3. Average percent change of each of the 239 detected metabolites over time at 4 

°C and -20 °C. Each point is the average percent change in both patient samples of a single 

metabolite. 
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Figure S2.4.   Total metabolite ion count (mTIC) of each sample over time colored by 

storage temperature. 
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CHAPTER 3 

Predictable molecular adaptation of coevolving Enterococcus faecium and lytic phage 

EfV12-phi1 

Co-authors: Andrew Oliver, Tara Gallagher, Claudia Weihe, Whitney England, Jennifer 

Martiny, and Katrine Whiteson 

ABSTRACT 
 Bacteriophages are highly abundant in human microbiota where they coevolve with 

resident bacteria.  Phage predation can drive the evolution of bacterial resistance, which 

can then drive reciprocal evolution in the phage to overcome that resistance. Such 

coevolutionary dynamics have not been extensively studied in human gut bacteria, and are 

of particular interest for both understanding and eventually manipulating the human gut 

microbiome. We performed experimental evolution of an Enterococcus faecium isolate from 

healthy human stool in the absence and presence of a single infecting Myoviridae 

bacteriophage, EfV12-phi1. Four replicates of E. faecium and phage were grown with twice 

daily serial transfers for eight days. Genome sequencing revealed that E. faecium evolved 

resistance to phage through mutations in the yqwD2 gene involved in exopolysaccharide 

biogenesis and export, and the rpoC gene which encodes the RNA polymerase β’ subunit. In 

response to bacterial resistance, phage EfV12-phi1 evolved varying numbers of 1.8 kb 

tandem duplications within a putative tail fiber gene. Host range assays indicated that 

coevolution of this phage-host pair resulted in arms race dynamics in which bacterial 

resistance and phage infectivity increased over time. Tracking mutations from population 

sequencing of experimental coevolution can quickly illuminate phage entry points along 
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with resistance strategies in both phage and host – critical information for using phage to 

manipulate microbial communities. 

INTRODUCTION 

 Bacteriophages (phages) drive microbial diversity and function at both broad 

(Bouvier and Giorgio 2007) and fine scales (Mcshan et al. 2016) through their influences on 

bacterial community composition (Stern et al. 2012), and bacterial pathogenesis (Davis et 

al. 2000). Phages are estimated to be present at 109 virions per gram in the gut (Kim et al. 

2011) and are therefore likely to have major influences on beneficial and pathogenic gut 

bacteria. Phages that lyse their host (lytic phages) or alter host virulence gene expression 

(some temperate phages) present a potentially rich pool of new therapies against antibiotic 

resistant pathogens (A. Wright et al. 2009; Oechslin et al. 2016). Recently, the clinical 

application of phages against highly antibiotic resistant bacteria (Chan et al. 2016; Schooley 

et al. 2017; Viertel, Ritter, and Horz 2014) has highlighted the need for well-controlled 

experiments that investigate the molecular interactions between phage and bacteria. 

Before phage-based therapies can be developed, we must have a solid understanding of 

how a targeted bacterial pathogen may evolve resistance to a treatment phage, and how 

the treatment phage responds to host resistance.  

 Reciprocal evolution of bacteria and phage, or coevolution (Thompson 1999), has 

been well-studied (Britt Koskella and Brockhurst 2014; Scanlan 2017; Martiny et al. 2014) 

in two model systems: Pseudomonas fluorescens and Escherichia coli (Britt Koskella and 

Brockhurst 2014; Bohannan and Lenski 2000; Hall et al. 2011). Although we can learn 

broad principles from these model systems, their study cannot replace experiments with 

more clinically relevant organisms to understand human associated phage-bacterial 
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interactions.  We aimed to investigate coevolution in Enterococcus faecium, a common, but 

low-abundance member of the human gut microbiome that is also an important 

opportunistic pathogen. The World Health Organization classifies vancomycin-resistant E. 

faecium as a Priority 2 level pathogen in need of new antibiotic therapies (Lawe-Davies and 

Bennett 2017). Common enterococci infections include endocarditis, blood/wound 

infections, and urinary tract infections (Koch et al. 2004). Enterococci can also become 

dominating members of the gut community following antibiotic perturbation (Hendrickx et 

al. 2015), leading to dysbiosis and increased likelihood of infection (Van Tyne and Gilmore 

2014). Developing a coevolution model using lytic phage and Enterococcus could therefore 

be a useful step towards addressing this global health threat. Coevolution experiments can 

quickly reveal candidates for the molecular basis of Enterococcus-phage interactions so 

that optimal cocktails of phages can be constructed. Indeed, cocktails of multiple phages 

with orthogonal infection mechanisms hold great promise as therapeutics (M. Yen, Cairns, 

and Camilli 2017a; Nale et al. 2018b).  

 The evolution of resistance to phage infection has been well documented and can 

happen through many routes. These include blocking phage adsorption through mutation, 

restriction-modification systems, CRISPR-Cas systems, and abortive infection (Dy et al. 

2014). In addition, new mechanisms of phage resistance are still being discovered (Doron 

et al. 2018), which highlights the potential for discovery in the interactions between 

bacteria and phages. Coevolution between Enterococcus and its phages remains poorly 

studied, but resistance to one Enterococcus phage has been shown to evolve through 

mutation of an integral membrane protein to prevent phage adsorption (Duerkop et al. 
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2016).  This remains one example, and Enterococcus may utilize an entirely different 

resistance mechanism during coevolution with a different phage.  

 We experimentally coevolved E. faecium with a lytic phage (EfV12-phi1) to 

characterize the genomic and phenotypic outcomes of their interaction. Phage EfV12-phi1 

was isolated from sewage and has been previously referred to as “1” or “Φ1” (Jarvis, 

Collins, and Ackermann 1993). It is a member of the Twort-like family of Myoviridae 

phages, a group of strictly lytic phages that infect Firmicutes and generally demonstrate a 

broad host range. Closely related Twort-like phages have been previously employed for 

phage therapy and have demonstrated lethality against a long list of clinically relevant 

bacterial strains, including vancomycin-resistant enterococci (VRE); Group B, C, E, G 

Streptococcus; Staphylococcus aureus, and others (Klumpp et al. 2010; Khalifa et al. 2015b, 

2018). The lysin of phage EfV12-phi1 has been previously shown to kill species of 

Enterococcus (including VRE), Streptococcus, and Staphylococcus (Yoong et al. 2004a).  

We conducted four coevolution experiments where phage EfV12-phi1 was grown 

with E. faecium with 1:10 serial transfers twice daily, so that a large fraction of the 

population is carried over. To differentiate between genomic changes associated with 

coevolution versus those that might be due to laboratory adaptation, we compared these 

experiments to parallel control experiments where E. faecium was grown alone or phage 

EfV12-phi1 was propagated on a naïve host. Based on phage-host experiments in model 

systems, we expected to see mutations arise in the phage tail fibers that allow phage to 

recognize and bind their hosts and in bacterial surface receptors where phage often enter 

their hosts (Silva, Storms, and Sauvageau 2016). 

RESULTS 
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E. faecium and phage EfV12-phi1 display arms-race coevolution dynamics 

We coevolved E. faecium with lytic phage EfV12-phi1 as four replicate microcosms, 

passaging 16 times in eight days (every 12 hours), allowing for approximately 53 

generations (Figure 3.1). Bacterial host control cultures were also set up in quadruplicate 

with identical conditions minus the phage. Quadruplicate phage controls were established 

by growing the phage on a naïve host, separating the phage from the host during each 

passage, and then adding the phage lysate to an independent aliquot of the naïve host 

control culture. Bacterial growth was monitored daily by optical density readings, which 

decrease when bacterial cells are lysed by phage. Phage infection initially reduced the 

density of all four bacterial cultures during the first day. This was followed by increased 

optical density after six to seven transfers (depending on the replicate), indicative of the 

evolution of resistance to phage (Figure 3.2A). In two replicate cultures, optical densities 

did not decline again after initial resistance arose, whereas in the other two replicate 

cultures, optical densities oscillated for the duration of the experiment.  

At the final timepoint, bacterial populations in three of four replicates remained at a 

high optical density, despite relatively high concentrations of phage DNA (an 

approximation of phage abundance; Figure 3.2B).   As expected, optical densities in the 

phage control cultures with naïve bacteria were consistently reduced upon infection by 

EfV12-phi1, and host control cultures (with no infecting phage) showed no reductions in 

optical density.  

Ancestral and coevolved bacterial isolates were challenged with infection by 

ancestral and coevolved phages and bacterial lysis was scored using a plate-based assay 

(see Methods). These experiments showed that coevolved bacterial isolates (from the final 
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coevolution timepoint) were resistant to ancestral phage isolates, and the coevolved phage 

isolates infected ancestral bacterial isolates (Figure 3.3). In most cases, coevolved phages 

infected coevolved bacteria, suggesting that at least one round of coevolution had occurred 

(E. faecium evolved resistance, EfV12-phi1 in turn evolved an expanded host range to 

overcome this resistance). These results are consistent with arms race coevolutionary 

dynamics in which bacterial resistance and phage infectivity increase over time.  

Resistance to phage evolves though exopolysaccharide and RNA polymerase mutations 

To identify the bacterial mutations that led to resistance, and the phage mutations 

that enable infection of the freshly evolved host, we sequenced the populations from 

replicate microcosms at five timepoints (1, 4, 8, 12, and 16 transfers) from the coevolution 

treatment, three phage control timepoints (1,4,16) and two host control timepoints (1,16). 

These population reads were mapped to the ancestral E. faecium genome that was 

sequenced by both Illumina NextSeq and Oxford Nanopore MinION, yielding a high-quality 

reference genome in three contigs and one plasmid contig. Mutation frequencies for the 

population were calculated based on the percentage of reads supporting the mutant base 

divided by the total coverage. Non-synonymous mutations were not observed in host 

control bacteria but were observed in seven genes in coevolving populations. Many of these 

genes encode hydrolases and transferases (Table 3.1). Two genes were mutated in all four 

replicates: putative tyrosine kinase yqwD2 and RNA polymerase B’ subunit rpoC.  

The putative tyrosine kinase, yqwD2, is involved in capsule exopolysaccharide 

production (Figure 3.4A). Replicates had different nonsynonymous mutations within this 

gene: three occurred on neighboring amino acid residues (P58H, P58L, G59V), while the 

fourth occurred twenty residues away (K89H) (Figure 3.4A). Mutations in the yqwD2 gene 
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were first detected at timepoint eight and became more frequent in the coevolving 

bacterial populations over time. The increasing frequencies of different mutations in the 

same gene suggest convergent evolution toward a single mechanism for resisting phage 

infection. 

The second bacterial gene observed to mutate when coevolving with phage EfV12-

phi1 was the rpoC gene encoding RNA polymerase β’ subunit (Figure 3.4B). A total of five 

different non-synonymous mutations were observed at high frequency in one or more 

replicates. The positions of mutations were mapped to the 3D structure of E. coli’s RpoC, 

showing that all five mutations are located near each other on the interior portion of the 

protein near the active site (Figure S3.1). 

Phage EfV12-phi1 combats resistance through tandem tail fiber duplications 

Mutations in the phage genome were also tracked over time as the phage coevolved 

with the host bacteria. Four phage genes mutated throughout the experiment. Three of 

these mutations also occurred in all replicates of the phage controls, indicating that they 

are likely to generally increase infectivity for this specific host and are not a response to the 

evolution of bacterial resistance. One of the phage-control mutations occurred in a putative 

structural capsid gene and resulted in a change from asparagine to lysine. In all replicates, 

this mutation started at a low frequency at transfer 4 (the first sequenced time point) and 

increased in frequency over time (Table 3.2). The other two genes encoded hypothetical 

proteins that were deleted from the genome between timepoints 8 and 12 (Table 3.2). 

These genes are located next to each other and are near the several terminally redundant 

repeats EfV12-phi1 uses to circularize its genome, suggesting a likely mechanism for 

excision of these genes.  
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The coevolution-specific phage mutation occurred in a gene encoding a putative tail 

fiber. Partial duplications of this gene occurred in all four coevolution replicates and never 

in the phage controls. Specifically, a 1.8 kb segment of a 6.6 kb putative tail fiber gene 

underwent in-frame tandem duplications (Figure 3.5). Over time, replicates acquired 

varying numbers of duplications 400 bp upstream of a predicted carbohydrate-binding 

domain. The duplication was initially observed as an increase in sequencing coverage 

present in all four populations beginning between transfers four and eight and persisting 

until the end of the experiment (Figure 3.5a,c). PCR was performed with primers were 

flanking the entire duplication so that the amplicon would increase in size if duplications 

occurred. For coevolved phage populations (Figure 3.5b) and isolates (data not shown), 

multiple amplicons of increasing size were observed that represent the size of the original 

tail fiber gene as well as larger tail fiber genes that contain duplications.  

MinION long-read sequencing was performed on a phage isolate from the final 

timepoint of population 4 to resolve the duplication. Of the 1,021 reads spanning the entire 

tail fiber gene, 134 reads had no duplication (the original tail fiber gene), 852 reads had 

one duplication (two tandem copies of the duplicated sequence), 32 reads had two 

duplications, two reads had three duplications, and one read had four duplications. Thirty-

four reads were found to consist of only tandem copies of the duplicated 1.8 kb sequence, 

ranging from 4 to 11 copies (7 kb to 20 kb in length). The mechanism by which these 

tandem duplications altered phage infectivity is currently not known; the duplication did 

not appear to be a diversity-generating mechanism, as only a single replicate acquired a 

SNP within the duplicated region (Table 2). The duplications were first detected at transfer 

eight, after a dramatic increase in bacterial abundance, which we attribute to the evolution 
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of resistance to phage infection. The timing and exclusive occurrence in the coevolution 

treatment suggests that these tail fiber duplications were a phage response to the bacterial 

evolution of resistance. 

DISCUSSION 

To our knowledge, this represents the first effort to characterize phage-bacteria 

coevolution in Enterococcus - a common commensal in the gut microbiome that is also an 

important opportunistic pathogen. Similar to other well characterized systems, the 

experiments revealed coevolutionary arms race dynamics between E. faecium and its phage 

involving mutations in phage tail fibers and bacterial surface structures. They further 

demonstrated parallel coevolution among replicates and therefore predictable molecular 

adaptation. In particular, we identified bacterial exopolysaccharide mutations suggestive of 

hindering phage adsorption and RNA polymerase β’ subunit mutations with the potential 

to disrupt the phage replication cycle. However, we also identified what appears to be an 

unknown phage escape strategy involving large tandem repeats in the tail fiber gene. While 

some of the basic dynamics and molecular mechanisms of coevolution appear to be similar 

across many phage-host pairs (Labrie, Samson, and Moineau 2010; Samson et al. 2013a), 

experimental coevolution in this understudied system allowed us to quickly identify unique 

adaptation strategies. 

Coevolving bacteria acquired mutations in the yqwD2 gene, and we hypothesize that 

these mutations are at least partially responsible for the resistance phenotype seen in E. 

faecium coevolving with phage EfV12-phi1. The yqwD2 gene is part of a capsule production 

operon that is well conserved among Firmicutes; it is known as Ywq in Bacillus subtilis, Cps 

in Streptococcus pneumoniae, and Eps in Streptococcus thermophilus (Stingele et al. 1996; 
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Bentley et al. 2006; K. L. Palmer et al. 2012). In Streptococcus thermophiles, the epsD gene 

(35% amino acid identity to E. faecium yqwD2) encodes a cytoplasmic tyrosine kinase that 

regulates the activity of EpsE, a phosphogalactosyltransferase. Disruption of either epsD or 

epsE abolished extracellular polysaccharide synthesis (Minic et al. 2007). Mutations in 

exopolysaccharide production genes have been shown to inhibit phage infection in 

Enterococcus faecalis (F. Teng et al. 2009), Lactococcus lactis(Forde and Fitzgerald 1999). 

Interestingly, two of these mutations occurred at residue 58 and one at residue 59 which 

are the beginning of a conserved nucleotide binding motif (GEGKS) (Stingele et al. 1996). A 

homologous protein structure within the conserved domain database (CDD) shows that 

this region of the protein is highly accessible. In line with protein models previously 

proposed (Stingele et al. 1996), perhaps these mutations interfere with the function of 

YqwD2, subsequently altering the structure, length, or quantity of exported 

exopolysaccharides (Morona, Van den Bosch, and Manning 1995; Bastin et al. 1993; Minic 

et al. 2007). While the phage receptor of phage EfV12-phi1 is unknown, distantly related 

phages Staphylococcus phage K and Bacillus phage SP01 bind to cell wall teichoic acids 

(Estrella et al. 2016; Yasbin, Maino, and Young 1976). Similarly, phage EfV12-phi1 may 

bind to certain motifs of exopolysaccharides, so that modification of exopolysaccharides 

hinders phage adsorption. Further, several bacterial mutations that were not conserved 

among all replicates encoded sugar metabolism and modification functions which could 

also alter the structure and modifications present on exopolysaccharides. Future genetic 

knockout experiments will be useful in determining the degree to which these mutations 

confer resistance.   
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Coevolving bacteria also acquired mutations in the rpoC gene, which encodes the 

RNA polymerase β’ subunit. Phage EfV12-phi1 does not encode its own RNA polymerase, so 

it needs to interact with the host RNA polymerase both to shut down transcription of host 

genes and to transcribe phage genes. Mutations in the RNA polymerase rpoC gene could be 

a mechanism to resist phage infection by disrupting RNA polymerase activity. Phages 

produce proteins to bind or modify host RNA polymerase subunits, including the β’ 

subunit, to shut down host transcription and increase affinity for phage DNA (Mailhammer 

et al. 1975; Nechaev and Severinov 2003; Hodgson, Shapiro, and Amemiya 1985; 

Hesselbach and Nakada 1977). The mutation of residues that are modified or bound by 

phage proteins during infection could be a mechanism by which E. faecium can resist 

infection by phage EfV12-phi1. Five of the six different rpoC mutations observed were 

unique to single replicates, but all are located near each other in the 3D structure of RpoC, 

which suggests they all provide resistance to phage EfV12-phi1 through a common 

mechanism. The mutations in RpoC are localized similarly as the mutations that arise with 

the genetic suppressors of a protein, DksA, that regulates Escherichia coli RpoC in response 

to nutrient availability (Rutherford et al. 2009). This suggests that the bacterial resistance 

arises through a general RpoC suppression mechanism that reduces phage success 

although it may not be driven by direct interaction with between phage proteins and RpoC. 

The only phage mutations unique to coevolution (and not present in the evolution of 

phage EfV12-phi1 to naive host) were tandem duplications within a putative tail fiber gene. 

Myoviruses have short and long tail fibers, the latter of which are responsible for scanning 

the host cell surface and identifying the receptor. This gene has been confirmed to be the 

long tail fiber in a closely related phage, phiEF24C (Uchiyama et al. 2011). A point mutation 
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in the homologous tail fiber of phiEF24C was seen to increase adsorption to several strains 

of E. faecalis. The duplication observed in this experiment occurs in a region of the gene 

that differs between EfV12-phi1 and phiEF24C. Protein homology analysis of the gene 

indicates a predicted carbohydrate-binding domain 100 nucleotides downstream from the 

duplicated region, but no conserved domains were predicted within the duplication itself. 

The duplicated region does not appear to generate sequence diversity which might allow 

recognition to different bacterial surface receptors, as has been observed in phage  

(Meyer et al. 2012). The timing of EfV12-phi1 tandem duplications suggests that they are a 

response to the evolution of bacterial resistance to phage infection. Overall, we speculate 

that phage may respond to bacterial capsule changes through modifications in the tail fiber.  

Although mutations in the tail fibers are common mechanisms by which phages adapt to 

modified bacterial receptors (Tétart et al. 1996; Scanlan et al. 2011), examples of 

duplications as large as the one seen in this study (1.8 kb per duplication) have not been 

seen before.  

Phage therapy has long been a proposed solution to the growing problem of 

antibiotic resistant bacteria, with recent successful cases of phage therapy in the US 

following a compassionate use exemption. However, phage therapy is limited by a lack of 

well characterized phages infecting human pathogens (Schooley et al. 2017; Zhvania et al. 

2017; Duplessis et al. 2017). Phage therapy utilizes phage cocktails, which include a mix of 

different phages with orthogonal targets to counter the evolution of bacterial resistance. 

Understanding the dynamics and outcomes of bacteria-phage interactions using 

experimental coevolution would facilitate phage cocktail design.  For example, EfV12-phi1 

has broad host-range and selects for E. faecium mutations related to exopolysaccharide 
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synthesis, suggesting that a cocktail including EfV12-phi1 would be most effective if the 

other cocktail phages targeted host structures other than exopolysaccharide.  

Phage EfV12-phi1 may have therapeutic potential, given that it is widespread and 

the host range was previously (Yoong et al. 2004a) found to include a wide range of 

pathogens. Predictability of phage-host interactions is desirable to ensure safety of phages 

and for phage cocktail design. In this phage-host pair, we observed consistent outcomes 

from all four replicates, despite the stochasticity of mutations that lead to those outcomes. 

Nine of the eleven observed bacterial mutations were not shared among all replicates, but 

the functions encoded by these genes shared similar features (hydrolases, transferases, 

sugar metabolism/modification). 

In these experiments, in just 8 days, we quickly identified phage and host genes that 

are under selection during coevolution. Experimental manipulation of phage-host 

interactions, and periodic tracking of their mutational trajectories, offers exceptional 

insight into the mutational arms race – beyond traditional sequencing and annotation 

efforts. While coevolution in artificial laboratory conditions may not be reflective of 

coevolution that happens in a natural environment, learning about the potential outcomes 

of coevolution provide useful information. As microbial culturing and enumeration 

becomes increasingly automated, a large number of phage-host interactions can be tested 

in order to thoroughly investigate the mechanism of phage-host co-evolution in a diversity 

of clinically relevant hosts. Such insights are critical to the eventual development of phage 

therapies for clinical use.  

MATERIALS AND METHODS 

Bacterial strains and phage  
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The bacteria used in this study was Enterococcus faecium, Strain TX1330, HM-204, 

was isolated from healthy human feces and obtained through BEI Resources, NIAID, NIH as 

part of the Human Microbiome Project. The phage used for this study was Enterococcus 

Phage EfV12-phi1, isolated on E. faecalis, from Canadian sewage in 1975 (HER number 339; 

d'Herelle collection, Laval University, Quebec, Canada). 

Coevolution of Enterococcus bacteria and phage 

A culture of E. faecium TX1330 growing exponentially (OD600 = 0.3) in brain heart 

infusion (BHI) broth was split into twelve replicates of 10 mL culture in 15 mL Falcon 

tubes. Four replicates were designated bacterial host control, four were phage control, and 

four were coevolution. Phage EfV12-phi1 was added to the coevolution and phage control 

cultures at an MOI of approximately 0.003. Cultures were incubated shaking with loose 

caps at 37°C. Every 12 hours for eight days, 1 mL of the replicate host control and 

coevolution tubes were inoculated into 9 mL of new BHI broth. For the phage control, 1 mL 

of phages was separated from bacteria by syringe filtration through a 0.2 um 

polyethersulfone filter (GE Healthcare Life Sciences) and mixed with 1 mL of the 

contemporary host control in 8 mL of new BHI broth. Phages were separated by 

centrifugation at 12,000g and filtering the supernatant using 0.2 um filter. Performing 1:10 

dilutions at each passage, we estimate 3.5 generations (doublings) are required to reach 

stationary phase again, resulting in approximately 56 generations total.  After each dilution, 

900 uL of 12-hour culture containing the population of bacteria and phages was added to 

600 uL of 50% glycerol and stored at -80°C. Transfer numbers 1,4,8,12, and 16 were 

chosen for sequencing. At each timepoint (after 12 hours of growth), the OD600 of each 

culture was measured. 
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Host range assay 

Host range of phage and bacterial isolates from E. faecium were determined with 

streak assays as described before (Harcombe and Bull 2005). Bacteria and phage were 

isolated from the first and last timepoints of the host control and coevolution replicate 

populations one and two. Bacteria were isolated by streak plating and picking single 

colonies. Phages were isolated by performing a double agar overlay with 100 ul of the raw 

population and then picking plaques (so that phages are growing on contemporary hosts 

from the same replicate population). Phages were amplified by performing plaque assays 

on ancestral hosts and harvested by soaking plates in 5 mL SM buffer followed by filtration 

of collected SM buffer through a 0.2 um syringe filter. 20 ul of each bacterial isolate and 20 

ul of each phage isolate was streaked perpendicularly across an agar plate. The intersection 

of the bacteria and phage was examined and scored for lysis. In total, three ancestral hosts 

and 12 coevolved hosts were crossed against six ancestral phages and 16 coevolved 

phages. 

DNA extraction, library preparation, and sequencing 

        DNA was extracted from the populations of bacteria and phages in the chosen 

timepoints with the Zymo Universal DNA extraction kit using the recommended protocol 

provided by the manufacturer. Sequencing libraries were prepared with Illumina’s Nextera 

kit using methods outlined in Baym et al. (Baym et al. 2015). The libraries were loaded onto 

an Illumina Next-Seq at 1.8 picomolar concentration using Illumina’s mid-output kit for 75 

bp paired end sequencing.  

A more complete bacterial reference genome was assembled using Oxford 

Nanopore’s 1D Genomic DNA Ligation kit (Goodwin, Wappel, and McCombie 2017).  Briefly, 
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DNA was repaired using the FFPE DNA repair kit (New England Biolabs) and cleaned up 

using AMPure XP beads (Beckman Coulter). The repaired DNA was dA-tailed using 

NEBNext Ultra End Repair (New England Biolabs) and sequence adapters were ligated 

using Blunt TA ligase master mix (New England Biolabs). The MinION sequencer was 

primed, per manufacturer’s instructions, and 700ng of DNA was loaded onto the sequencer. 

The run was allowed to generate data for 48 hours. Sequence data from the MinION and 

Illumina sequence data from timepoint one of the host control were used together to 

generate a host reference genome using the MIRA assembler (Chevreux, Wetter, and Suhai 

1999). 

Genome assembly and annotation 

        The reference genome for E. faecium TX1330 was assembled using reads from time 

point 1 of the host control. Reads were assembled using the PATRIC smart assembler 

(Wattam et al. 2017), which combines the two best assemblies from SPAdes (Bankevich et 

al. 2012), IDBA (Peng et al. 2010), and Velvet (Zerbino and Birney 2008) assemblers. The 

phage was assembled using SPAdes (Bankevich et al. 2012). The resulting contigs were 

annotated using PATRIC’s annotation pipeline, which uses RASTtk for gene calls (Wattam 

et al. 2017). The sequenced genome of E. faecium TX1330 can be found at GenBank: 

QYBD00000000.1, and the EfV12-phi1 genome can be found at GenBank: MH880817. 

Genomic mutation analysis 

Paired-end reads were run through Breseq (Deatherage and Barrick 2014) once 

using the ancestral phage EfV12-phi1 as the reference genome and once using the ancestral 

E. faecium TX1330 with default parameters. Briefly, Breseq uses Bowtie2 (Langmead and 

Salzberg 2012) to align reads to a reference genome and creates a SAM file which 
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SAMTOOLS converts to a pileup file. Custom R scripts were then used to parse through the 

resulting alignments and detect mutations at greater than 10% frequency. Mutations were 

labeled as synonymous or non-synonymous by Breseq, and all predicted non-synonymous 

mutations were manually investigated using Geneious (Biomatters v9.0).  All bacterial 

mutations were visualized using Geneious and phage mutations using Geneious and 

ggPlot2 in R. 

Tail fiber PCR 

 Phage populations from the final timepoint of all four replicates were grown by 

adding 10 ul of the frozen timepoint 16 cultures to 10 mL BHI and grown overnight shaking 

at 37 °C. Cultures were then spun down and the supernatant was syringe filtered through a 

0.2 um polyethersulfone filter. Phages were then concentrated down to 1 mL using Amicon 

100 kDa centrifugal filter units. DNA was extracted from concentrated phages using Zymo 

Universal DNA extraction kit. 

 Primers were designed outside the duplicated region of the tail fiber gene so that 

the amplicon would be longer if the region was duplicated. The primers used were F: 5’ 

TGTTGCACCAGAAAACGCAG 3’ and R: 5’ AGGTCTGTACGAGCCGTGTA 3’. PCR was run using 

Phusion polymerase with the following protocol: 98 °C: 30 seconds, (98 °C 10 seconds, 53 

°C 30 seconds, 72 °C 10 minutes) x 35, 72 °C 10 minutes. Amplicons were visualized on a 1 

% agarose gel using Invitrogen SYBR gel stain. 

Location of mutations in RNA polymerase B’ structure 

 The structure of the E. coli RNA polymerase B’ subunit was downloaded from 

Protein Data Bank (4JK1, DOI: 10.2210/pdb4JK1/pdb). The amino acid sequence of the E. 

faecium TX1330 RNA polymerase B’ subunit was aligned to the E. coli sequence to find the 
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corresponding locations. The structure and locations of mutations were visualized using 

PyMOL (Schrödinger, LLC 2015). 

MinION sequencing of tail fiber duplication 

 The Oxford Nanopore MinION sequencer was used to sequence a phage isolate that 

contained the tail fiber duplication. The phage was isolated by picking a plaque from 

timepoint 16 of replicate 4 (directly plating 100 ul of the population). The phage isolate 

was propagated on a contemporary (final timepoint) Enterococcus isolate from population 

4 to get enough phage DNA for sequencing. DNA was extracted using a Zymo Quick-DNA 

micro kit. DNA was prepared for MinION sequencing according to manufacturer's 

recommendations using the 1D Genomic DNA by ligation protocol as described above. A 

total of 199,734 reads were generated with a median sequence length of 3,057 bp. Bowtie2 

was used to extract the 57% of reads that aligned to the phage genome; the remaining 

reads aligning to the bacterial genome were discarded. The data was analyzed in Geneious 

to determine the number of duplications in the tail fiber gene. A total of 5,400 reads aligned 

to the tail fiber gene and were over 3 kb so could span the length of a single duplication (1.8 

kb). 
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All sequencing data has been deposited to the SRA at PRJNA490385 The genome for phage 

EfV12-phi1 can be found at GenBank: MH880817 and our assembly of Enterococcus 

faecium TX1330 can be found at Genbank assembly accession: GCA_003583905.1. 
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FIGURES AND TABLES 

 

Figure 3.1. Experimental design of the three branches of the study. In each branch, phage 

and bacteria or only bacteria were added to a microcosm and allowed to grow for 12 hours 

before being diluted 10-fold.  The phage control filtered out the bacteria during each 

dilution, preventing bacterial coevolution. Each branch was done in quadruplicate. 
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Figure 3.2.  Growth dynamics of experimental coevolution. A) Optical density of the 

bacteria for each branch of the experiment, measured at the end of 12 hours prior to 

diluting back 10-fold in fresh BHI media. All replicates of the host control and phage control 

are shown in the same color because there was little variation. B) Proportion of total 

sequenced reads mapping to phage EfV12-phi1 indicates the relative abundance of this 

phage at each timepoint. Reads that did not map to phage mapped to E. faecium. 
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Figure 3.3. Host range analysis of phage and bacterial isolates. Bacteria and phage isolated 

from the initial and final timepoints were tested for infectivity. Each box represents 

whether lysis occurred when a single phage isolate crossed with a single bacterial isolate. 
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Figure 3.4.  Frequency of common bacterial mutations over time. Population frequency of 

mutations in A) capsule biosynthesis tyrosine protein kinase yqwD2 and B) RNA 

polymerase B’ subunit gene rpoC.  All mutations present at a frequency of 10% in one 

timepoint in one replicate shown. 
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Figure 3.5. Phage EfV12-phi1 evolved tandem duplications in the tail fiber gene to increase 

its infectivity. A) Average coverage along the phage genome for the phage population of 

replicate 2 at the final timepoint. Duplication was first noticed by this spike in sequencing 

coverage. Reads were mapped to the original phage genome so the the duplication in the 

tail fiber appears as a spike in coverage. B) Duplications in the tail fiber visualized by PCR 

using primers that flank the tail fiber. Duplications resulted in a larger amplicon. Each 

replicate population at the final timepoint is shown as well as the ancestral phage. C) 

Presence of tail fiber duplications over time shown by the fold coverage increase in the 

duplicated region divided by the average coverage of the rest of the phage genome. D) 

Schematic of the phage tail fiber tandem duplication within the gene. Reads spanning the 

tail fiber gene containing up to three duplications (four total copies of duplicated sequence) 

were seen with MinION long read sequencing.  
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Table 3.1. All mutations present in E. faecium TX1330 at the final timepoint.  

All bacterial mutations are from timepoint 16 of coevolution replicates . No mutations were 

seen in the host controls. Locus tags for each gene can be found in Table S1. 

Replicate Gene / Predicted function Type AA 
change 

Frequency 
(%) 

1 RpoC nonsynonymous 
snp 

H419R 38.2 

1 RpoC nonsynonymous 
snp 

S926T 21.1 

1 RpoC nonsynonymous 
snp 

L800V 14.8 

1 Hypothetical protein in capsule 
synthesis locus 

nonsynonymous 
snp 

M29I 30 

1 yqwD2 nonsynonymous 
snp 

P58L 37.6 

1 yqwD2 nonsynonymous 
snp 

P58H 19.2 

2 Malonate decarboxylase beta subunit / 
Malonate decarboxylase gamma subunit 
CDS 

nonsynonymous 
snp 

G148V 45.5 

2 Predicted hydrolase of the HAD 
Superfamily CDS 

nonsense S191stop 33.3 

2 murA - UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

nonsynonymous 
snp 

G20C 40 

2 yqwD2 nonsynonymous 
snp 

P58H 100 

3 RpoC nonsynonymous 
snp 

H419R 79.2 

3 yqwD2 nonsynonymous 
snp 

K89N 72.2 

3 hydrolase, haloacid dehalogenase-like 
family CDS 

nonsense E68stop 50 

4 yqwD2 nonsynonymous 
snp 

P58H 92.5 
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Table 3.2. All mutations present in phage EfV12-phi1 at the final timepoint. 

All phage mutations are from timepoint 16 in the coevolution and phage control 

populations. Frequencies given as population frequency for snps and fold coverage 

increases/decreases in the population for duplications and deletions. Locus tags 

correspond to Genbank record MH880817. 

Replicate Condition 

Gene / 
Predicted 
function 

Locus tag 

Type AA change Frequency 

1 Coevolution 
Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 375x 
coverage 

1 Coevolution 
Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 545x 
coverage 

1 Coevolution Tail fiber 
EFV12PHI1_98 tandem 

duplication - 
+ 3x 

coverage 

1 Coevolution 
Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 99 % 

2 Coevolution 
Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 250x 
coverage 

2 Coevolution 
Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 58x 
coverage 

2 Coevolution Tail fiber 
EFV12PHI1_98 tandem 

duplication - 
+ 5x 

coverage 

2 Coevolution 
Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 99 % 

3 Coevolution 
Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 33x 
coverage 

3 Coevolution 
Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 30x 
coverage 

3 Coevolution Tail fiber 
EFV12PHI1_98 tandem 

duplication - 
+ 3x 

coverage 

3 Coevolution 
Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 77.5 % 

4 Coevolution 
Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 896x 
coverage 

4 Coevolution 
Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 896x 
coverage 

4 Coevolution Tail fiber 
EFV12PHI1_98 tandem 

duplication - 
+ 5x 

coverage 

4 Coevolution Tail fiber 
EFV12PHI1_98 non-

synonymous snp R1460H 23.9 % 

4 Coevolution 
Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 93.5 % 

1 
Phage 
control 

Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 81.3 % 

1 
Phage 
control 

Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 5x 
coverage 

1 
Phage 
control 

Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 5x 
coverage 
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2 
Phage 
control 

Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 90.3 % 

2 
Phage 
control 

Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 50x 
coverage 

2 
Phage 
control 

Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 48x 
coverage 

3 
Phage 
control 

Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 92.1 % 

3 
Phage 
control 

Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 14x 
coverage 

3 
Phage 
control 

Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 12x 
coverage 

4 
Phage 
control 

Capsid and 
Scaffold 

EFV12PHI1_97 non-
synonymous snp N306K 86.8 % 

4 
Phage 
control 

Hypothetical 
Protein 8 

EFV12PHI1_123 whole gene 
deletion - 

- 20x 
coverage 

4 
Phage 
control 

Hypothetical 
Protein 9 

EFV12PHI1_126 whole gene 
deletion - 

- 18x 
coverage 
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 Figure S3.1. Structural representation of RpoC with the positions of the mutations 

highlighted in red. Structure of E. coli RNA polymerase B’ shown with corresponding 

mutations in E. faecium TX1330 RNA polymerase B’ highlighted. 
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Table S3.1. Locus tags for genes mutating in Enterococcus faecium TX1330. 

Gene Locus tag 
GCA_000159675.1 

Locus tag 
GCA_003583905.1 

RpoC HMPREF0352_2730 D3Y30_03855 

Histidinol-phosphatase 
(EC 3.1.3.15) CDS 

HMPREF0352_0179 D3Y30_13030 

yqwD2 HMPREF0352_1902 D3Y30_11120 

Malonate decarboxylase 
beta subunit / Malonate 
decarboxylase gamma 
subunit CDS 

HMPREF0352_0928 D3Y30_01740 

Predicted hydrolase of 
the HAD Superfamily 
CDS 

HMPREF0352_0295 D3Y30_06415 

murA - UDP-N-
acetylglucosamine 1-
carboxyvinyltransferase 

HMPREF0352_0323 D3Y30_06555 

hydrolase, haloacid 
dehalogenase-like 
family CDS 

HMPREF0352_1574 D3Y30_13500 
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CHAPTER 4 

Broad host range Brockvirinae phages infect Enterococcus and drive evolution of 

exopolysaccharide synthesis genes. 

Co-authors: Clark Hendrickson, Cyril Samillano, and Katrine Whiteson 

ABSTRACT 

Phages infecting the diverse bacteria that colonize humans remain understudied but 

could be a valuable resource for treating antibiotic-resistant infections. Enterococcus is an 

opportunistic pathogen with rising rates of antibiotic resistance, but few phages infecting 

Enterococcus have been isolated and studied. Here, we characterize the Brockvirinae sub-

family (formerly Spounavirinae) of phages that infect Enterococcus and present eight new 

phages within the sub-family. Genomic characterization reveals Brockvirinae phages 

represent two genera with distinct host range patterns. In vitro experimental evolution 

shows that as Brockvirinae phages co-evolve with their hosts, they select for Enterococcus 

with mutations in exopolysaccharide synthesis genes. Further, by searching the SRA, we 

show that these phages found globally in human and animal microbiomes. Characterizing 

the host range and molecular evolution of phages could lead to more efficient strategies for 

using phages therapeutically against antibiotic resistant bacteria.  

INTRODUCTION 

Bacteriophages (phages) are ubiquitous in the environment and important 

members of microbial communities. In the years following their discovery in 1915, phages 

were exploited to treat bacterial infections, which is referred to as phage therapy. The 

discovery of penicillin led to the abandonment of phage therapy in most of the western 

world, however the epidemic of antibiotic resistant bacterial infections has caused 
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renewed interest in phage therapy. Phages are much more host-specific than antibiotics, 

therefore a diverse collection of phages is required. This is a major hurdle for phage 

therapy to overcome because there is a lack of well-characterized phages that infect human 

pathogens. 

 Enterococcus is a gram-positive bacterium that is commonly found in low 

abundance in the gut of humans and animals (François Lebreton et al. 2017). The species 

Enterococcus faecalis and Enterococcus faecium are the most common species associated 

with humans. Enterococcus is an opportunistic pathogen and that has emerged as a major 

health crisis. It is considered a high-priority pathogen by the WHO due to high rates of 

antibiotic resistance and adaptation to the hospital environment (Raven et al. 2016; Lawe-

Davies and Bennett 2017). The National Healthcare Safety Network reported that of 

hospital acquired Enterococcus infections, about 80% of E. faecium, and 8% of E. faecalis 

isolates demonstrated Vancomycin resistance. Phage therapy could offer an alternative 

approach to treating antibiotic resistant infections, and Enterococcus phages  have shown 

promise as therapeutics in vitro (Khalifa et al. 2015b, 2018). However, few phages infecting 

Enterococcus have been isolated and characterized.  

 The Enterococcus phage family Herelleviridae (formerly the sub-family 

Spounaviridae) are tailed-phages with Myoviridae morphology and double-stranded DNA 

genomes between 127-157 kb in length (Klumpp et al. 2010; Barylski et al. 2018). 

Herelleviridae phages exclusively infect hosts in the phylum Firmicutes. Enterococcus-

infecting phages within the Herelleviridae family are classified in the subfamily 

Brockvirinae and have been noted for their broad host ranges and potential as therapeutics 

(Khalifa et al. 2015a, 2016; Gelman et al. 2018). 
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 Here, we present the genomes of eight newly isolated Enterococcus phages in the 

Brockvirinae subfamily. These represent two genera with distinct host ranges for 

Enterococcus faecalis and faecium. Like other members of Brockvirinae, these phages have a 

broad host range within their host genus. Further, we show that in vitro growth with 

susceptible Enterococcus hosts results in predictable evolutionary outcomes, with the 

phages evolving capsid and tail fiber genes, and the Enterococcus hosts evolving 

exopolysaccharide synthesis genes. Understanding the evolutionary pressure these phages 

exert on exopolysaccharide synthesis genes could provide insight into combined therapies 

with antibiotics that also target the cell wall.  

RESULTS 

Genomics of new Enterococcus phages in the Brockvirinae sub-family  

 Eight novel Enterococcus phages in the Brockvirinae sub-family were isolated from 

sewage and their genomes sequenced (Figure 4.1). Average nucleotide identity (ANI) of 

core genes clearly divides the phages into two groups with ~95% ANI within each group 

and ~74 % ANI between the groups. Phages vB_OCPT_Car, vB_OCPT_Carl, and 

vB_OCPT_Bob fit into the Kochikohdavirus genus, and phages EfV12-phi1, vB_OCPT_Bop, 

vB_OCPT_Bill, vB_OCPT_Ben, vB_OCPT_Tex, and vB_OCPT_CCS1 fit into an Unassigned 

second genus, which we propose to call Wandervirus. Further, phages in the Wandervirus 

genus are split between two groups based on core genome nucleotide identity (97 % ANI 

within groups and ~94 % ANI between groups) and accessory genome content.  

Brockvirinae phage genomes encode around 210 ORFs that are divided into two 

opposite facing blocks. The first block of genes encode short hypothetical ORFs (average 

450 bp) of unknown function. These ORFs are often shared among phages within the phage 
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genus, and not shared between the two genera. The second block of ORFs is twice as long 

on average (900 bp) and encodes recognizable structural genes, lysins, and genes involved 

in genome replication. Most of these ORFs are conserved among all eleven Brockvirinae 

phages. Between these two gene blocks is a cluster of tRNA genes. Phages in the 

Kochikohdavirus genus carry 24 tRNAs on average while phages in the Wandervirus genus 

carry 7 tRNAs on average (Figure S4.1). 

Brockvirinae phages are found in phage cocktails 

To assess the environmental distribution of Brockvirinae phages, we queried a 

representative genome from both genera against 67,429 publicly available metagenomes in 

NCBI’s SRA (Table 4.1) (Levi et al. 2018). Metagenomes with positive hits were 

downloaded and aligned to representative Brockvirinae genomes to ensure most of the 

genome was covered. Brockvirinae phages were found to be globally distributed in fecal 

metagenomes. Sequences matching Brockvirinae genomes were found in eight SRA projects 

from the United States, Europe, the Middle East, and Asia. Matching sequences were also 

found in non-human fecal metagenomes from condors, pigs, and bats. Brockvirinae phages 

were also found to be highly abundant in two phage cocktails from the Eliava Institute 

designed to treat intestinal issues. The first phage cocktail is the Intestiphage cocktail, 

which contains an isogenic Brockvirinae phage in the Kochikohdavirus genus. The second 

phage cocktail is the PYO phage cocktail developed by the Eliava institute. 

Brockvirinae phages have broad host ranges 

 The host range for each of the nine novel Brockvirinae phages was tested against a 

collection of 36 E. faecalis strains and 29 E. faecium strains by drop assay. Brockvirinae 

phages demonstrated broad lytic activity within the two Enterococcus species (Figure 4.2). 
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No lysis was seen against any Streptococcus strains (data not shown). In general, 

Kochikohdaviruses infected E. faecalis strains but not E. faecium. Phages within Wandervirus 

A generally infected both E. faecium and E. faecalis strains, while phages belonging to 

Wandervirus B infected mostly E. faecium strains. These patterns indicate that genetic 

similarity among Brockvirinae phages is a good indicator of potential Enterococcus host 

species. Conversely, knowing the species of Enterococcus would provide insight into 

susceptibility to Brockvirinae phages. However, at the strain level, neither genetic similarity 

nor accessory genome content were predictive of susceptibility to Brockvirinae phages. 

Brockvirinae phages drive evolution of Enterococcus exopolysaccharide synthesis genes 

 To understand the evolutionary pressures exerted between Brockvirinae phages and 

their Enterococcus hosts, pairs of bacteria and phage were experimentally coevolved in 

vitro, followed by whole genome sequencing. Co-evolution was performed by growing 

bacteria and phage together in semi-continuous liquid culture for four weeks. Cultures 

were started at an initial MOI of 0.01 so that Enterococcus were not completely lysed 

immediately. Brockvirinae phages evolved mutations in the same three genes regardless of 

host strain (Table S4.4). These genes encoded a “tail fiber gene”, a “capsid and scaffold 

gene”, and one ORF of unknown function. The ORF of unknown function contains a 

predicted ATPase domain and is homologous to genes in a wide range of phages and 

bacteria. The consistent mutations in the tail fiber gene and capsid and scaffold gene 

indicate that mutations in structural genes are the primary route for adapting to hosts in 

these conditions. 

 Enterococcus strains grown with Brockvirinae phages consistently evolved 

mutations in genes involved in exopolysaccharide synthesis (Figure 4.3, Table S4.3). All 
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three E. faecalis strains acquired mutations in genes in the Epa exopolysaccharide synthesis 

locus. Of the approximately nineteen genes in the Epa locus, three genes consistently 

developed point mutations and nonsense mutations in E. faecalis B3286, E. faecalis TX2137, 

and E. faecalis Yi6. Host control cultures lacking phage never acquired mutations in these 

genes. In contrast to E. faecalis, when E. faecium TX1330 coevolved with Brockvirinae 

phages, the Yqw exopolysaccharide synthesis locus was consistently mutated. However, 

mutations in the Yqw locus mutations also occurred in the host control cultures. However, 

host control cultures of E. faecium also showed signs of prophage induction based on an 

increase in sequencing coverage of a predicted prophage, therefore it is unclear if 

mutations in the Yqw locus can be attributed to phage evolutionary pressure. Mutations in 

other genes were seen, but not with the same frequency or consistency as genes involved in 

exopolysaccharide synthesis (Table S4.3). Therefore, mutations in capsule synthesis genes 

are a consistent feature of Enterococcus coevolution with Brockvirinae phages. 

DISCUSSION 

 Here, we present a characterization of two genera of Brockvirinae phages infecting 

Enterococcus. These two genera display distinct infectivity patterns for E. faecium and E. 

faecalis. Brockvirinae phages were found to be globally distributed in fecal metagenomes of 

humans and several animals. Experimental coevolution of these phages with their host 

bacteria consistently results in bacterial mutations in exopolysaccharide synthesis loci and 

phage mutations in structural genes.  

 The Brockvirinae family contains phages that infect Firmicutes. While the genome 

nucleotide identity and amino acid identities are extremely low when comparing the 

Spounaviridae genera, they share a common morphology and genome organization 
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(Barylski et al. 2018; Hejnowicz et al. 2012). Phages are often thought to partake in 

rampant horizontal gene transfer resulting in a high level of genome mosaicism that clouds 

phylogenetic relationships. However, little evidence of mosaicism has been previously seen 

in Herelleviridae phages, and genome nucleotide identity tracks with host range down to 

the phage sub-genus level (Barylski et al. 2018; Bolduc et al. 2017). Similarly, we saw little 

evidence of mosaicism in Enterococcus-infecting Herelleviridae phages in either gene 

content or nucleotide identity.  

Herelleviridae phages have been previously observed to have broad host ranges 

within the genus they infect. Likewise, we saw Enterococcus-infecting Brockvirinae phages 

display broad host ranges for E. faecium and E. faecalis. The lysin from an Enterococcus-

infecting Brockvirinae phage, EfV12-phi1, has been shown to lyse different genera, 

including Staphylococcus and Streptococcus (Yoong et al. 2004a). However, no evidence 

exists that any Spounaviridae phages can infect genera other than their host. 

Herelleviridae phages were confidently found in twelve sequencing projects out of 

the thousands of human gut metagenomes from the SRA. Since Enterococcus is present in 

the gut of most people, this suggests that either Herelleviridae phages are uncommon 

members of the human gut, or they are usually at a low enough abundance that they would 

not be seen with a normal depth of shotgun sequencing. We are inclined to the second 

explanation given the high frequency which we have isolated Herelleviridae phages from 

sewage. Even one of the most abundant phages in the human microbiome, crAssphage 

infecting Bacteroides, is only found at 1% read abundance in human metagenomes, so a 

phage infecting a minority community member such as Enterococcus would be much less 

abundant. 
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 Structural gene mutations were a consistent feature seen in phage evolution. Two 

phages in the Wandervirus genus were seen to mutate the same genes when evolving with 

different E. faecium and E. faecalis hosts. These genes were primarily structural genes 

encoding the capsid and tail fibers and likely are involved in the initial binding of phage to 

the bacterial surface. A common way bacteria evolve resistance to phage infection is to 

prevent binding to the cell surface, and mutations in genes such as the tail fiber can 

overcome that resistance. Phage structural gene mutations are commonly seen to mutate 

when phages co-evolve in vitro with their host (Wandro et al. 2019; Uchiyama et al. 2011). 

Tail fiber genes mediate host binding mutations can change binding affinity to certain hosts 

(Wandro et al. 2019; Uchiyama et al. 2011; Perry et al. 2015). The binding target of 

Brockvirinae phages has not been characterized, but related Spounaviridae phages have 

been shown to bind teichoic acids in the cell wall (ref). 

 When under selective pressure from Brockvirinae phages, Enterococcus evolved 

mutations primarily in exopolysaccharide synthesis genes. These mutations suggest 

resistance is evolving by preventing phage recognition and initial binding. E. faecium and E. 

faecalis both contain the highly conserved Epa capsule synthesis locus, in which mutations 

were observed consistently for E. faecalis strains. Mutations in the Epa locus have been 

observed previously during coevolution with Brockvirinae phages and other phages 

impaired Enterococcus host colonization and increased antibiotic sensitivity (Chatterjee et 

al. 2019). There is also a second locus that differs between the two species: CPS in E. 

faecalis and Yqw in E. faecium. It is in this Yqw locus that mutations were observed in E. 

faecium TX1330. Various mutations in a single gene of this locus have been previously seen 

during coevolution in the same phage-host pair (Wandro et al. 2019). Since mutations in 
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Yqw locus genes also occurred during E. faecium TX1330 host control cultures lacking 

phage, we cannot attribute these mutations to phage evolutionary pressure. However, 

prophage induction was observed in all E. faecium TX1330 cultures. Together, this suggests 

that mutations in exopolysaccharide synthesis genes may be a consistent feature of 

Enterococcus evolution to phage in general. 

The broad host range of Brockvirinae phages and predictable outcomes of 

coevolution with their hosts make them ideal candidates for use in phage therapy to treat 

Enterococcus infections. Multiple commercial phage therapy cocktails already include 

Brockvirinae phages. Although Enterococcus are seen to evolve resistance to infection, 

including a diverse set of phages in a phage cocktail could lessen that effect (M. Yen, Cairns, 

and Camilli 2017b; Nale et al. 2018a). Further, there may be trade-offs so that mutating 

resistance to phage results in a less fit Enterococcus (Chatterjee et al. 2019). Phage therapy 

is a promising avenue of research for treating antibiotic resistant infections, but more work 

needs to be put into isolating and characterizing collections of phages that infect important 

pathogens. 

MATERIALS AND METHODS 

Bacteria and phage strains and growth conditions 

Enterococcus isolates were either ordered from BEI or obtained from UC San Diego 

clinical microbiology laboratory (Table S4.2). Enterococcus was grown statically at 37 °C in 

brain heart infusion (BHI) media in all experiments. Phage EfV12-phi1 was ordered from 

Felix d’Herelle Reference Center for Bacterial Viruses (HER# 339). All other phages were 

isolated from sewage (Table S4.1). 

Phage isolation propagation and storage 
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Phages were isolated from sewage using three rounds of plaque assays. Raw sewage 

influent was collected from wastewater treatment plants in Redwood Shores and 

Escondido, California. Sewage was stored at 4 °C and used for phage isolation for several 

months. Sewage was centrifuged for 10 minutes at 10,000 g to remove particulates and the 

supernatant was used in plaque assays with various strains of Enterococcus. 100 ul sewage 

supernatant was added to 100ul exponentially growing Enterococcus in BHI media and 

incubated at 37 °C for 15 minutes. 5 mL of warm BHI containing 0.3 % UltraPure Low 

Melting Point Agarose (ThermoFisher #16520050) was then added and the mixture 

poured on a BHI agar plate and incubated overnight at 37 °C. The next day, plates were 

examined for plaques and any plaques are picked with a pipette tip and suspended in 50 ul 

SM buffer. Picked plaques underwent two more rounds of plaque assays in the same 

manner to ensure purity of the phage isolate. Pure phages were propagated by performing 

plaque assay to create a plate displaying webbed lysis that was then flooded with 3 mL SM 

buffer and incubated for 1 hour. The SM buffer was then collected and centrifuged at 

10,000 g for 10 minutes. For long term storage, phages were stored at -80 °C with 25% 

glycerol. 

Genomic sequencing 

DNA was extracted from Enterococcus and phage using Quick-DNA Microprep Kit 

(Zymo #D3020). Before Enterococcus DNA extraction, lysozyme was added to lysis buffer at 

a concentration of 100ug/ml and incubated at 37 °C for 30 minutes. For DNA extraction 

from coevolution cultures containing both bacteria and phage, the extractions were 

performed without lysozyme. Libraries were prepared using a scaled down reactions with 

the Illumina Nextera enzyme (Baym et al. 2015). Paired-end sequencing with a 75 bp read 
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length was performed on the Illumina NextSeq using the Mid Output v2 reagents. 

Approximately 2.5 million reads were obtained for each sample. 

Genomic characterization 

Phage and Enterococcus genomes were assembled de novo using the SPAdes assembler 

(Bankevich et al. 2012). Core genomes were determined and aligned using Anvio (Eren et 

al. 2015). Genomes were manually examined using Geneious. 

SRA search 

All metagenomes in the SRA were searched for Brockvirinae Enterococcus phages 

using the Searching SRA tool using the core genome as the query sequence (Levi et al. 

2018). Briefly, the Searching SRA tool searches for the query sequence in all 111,156 

metagenomes currently on the SRA by subsampling 100,000 sequences from each 

metagenome. From the metagenome hit list, we selected only metagenomes where the 

average read length matching our query was over 50 bp. 

Host range assay 

Phage host ranges were tested using a spot assay. 5 mL of warm BHI containing 0.3 

% UltraPure Low Melting Point Agarose (ThermoFisher #16520050) was added to 100 ul 

of exponentially growing Enterococcus and poured on a BHI agar plate. After allowing the 

agarose to solidify for approximately 30 minutes, 5 ul droplets of each concentrated phage 

was spotted on top of the agarose. As a negative control, SM buffer was spotted in the same 

fashion. Spots were allowed to dry for 30 minutes and then the plates were incubated 

overnight at 37 °C. The next day, each spot was checked for clearing. 

Coevolution of Enterococcus and phage 
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Pairs of Enterococcus strains and phage isolates were co-evolved in liquid media for 

28 days with once daily dilution. To start the culture, phage was added to exponentially 

growing Enterococcus at an MOI of approximately 0.01 in 200 ul BHI liquid media in a 96-

well plate. Plate was grown statically for 24 hours at 37 °C, then 10 ul of each well was 

diluted into 190 ul fresh BHI media in a new 96-well plate. This process was repeated for 

28 days. At the end of the experiment, 150 ul of the final cultures were pipetted into a new 

96-well plate and 150 ul of 50 % glycerol was added and the plate was stored at -80 °C 

prior to DNA extraction. 
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FIGURES AND TABLES 

 

Figure 4.1. Genomics of Enterococcus Brockvirinae phages. A) Known Brockvirinae  

Enterococcus phages are divided into two clades. B) Core genome average nucleotide 

identity of all Brockvirinae phages. C) Overall genome homology of Brockvirinae phages. D) 

Genome of phage EfV12-phi1 showing some genes in Brockvirinae phages are conserved at 

the genus level and some are present in both genera. 
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Figure 4.2. Host range of Brockvirinae Enterococcus phages. Host range was determined by 

drop assay and visually scored. Partial clearings were counted as lysis. 
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Figure 4.3. E. faecalis strains evolve mutations in Epa locus genes to resist phage. The 

genes comprising the Epa locus of E. faecalis is shown. Black, green, and red ticks represent 

the locations of non-synonymous mutations observed in E. faecalis B3286, TX2137, and Yi6 

respectively as they coevolve with Brockvirinae phages. Detailed information about these 

mutations can be found in Table S4.3. 
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Table 4.1. Brockvirinae Enterococcus phages from the Sequence Read Archive. 

SRA Title Location Sample 
type 

SRP077952 The INTESTI bacteriophage cocktail genome sequencing and assembly Georgia 

PRJEB23244 PYO phage cocktail Georgia Phage 
cocktail 

ERP017091 The gut microbiome in Crohn's disease and modulation by exclusive 
enteral nutrition 

Guangdong, 
China 

human fecal 

ERP006678 Gut and Oral Microbiome Dysbiosis in Rheumatoid Arthritis Beijing China human fecal 

SRP071229 Gymnogyps californianus microbiome raw sequence reads Los Alamos 
National 
Laboratory 

California 
condor fecal 

ERP006046 Virus_Discovery_for_Vietnam_Initiative_on_Zoonotic_Infections__VIZIONS_ Vietnam viral 
metagenome 

ERP001956 Diagnostic Metagenomics: A Culture-Independent Approach to the 
Investigation of Bacterial Infections 

Germany human fecal 

SRP051511 New York City MTA subway samples Metagenome New York City subway 
samples 

ERP012929 Towards personalized nutrition by prediction of glycemic responses Israel human fecal 

SRP040146 Clostridium difficile FMT Broad 
institute, 
Massachusetts 

human fecal 

SRP115494 Longitudinal Multi'omics of the Human Microbiome in Inflammatory 
Bowel Disease 

 SRP099123 Metagenomic analysis of gut microbiota in sows and piglets Freie 
University of 
Berlin 

Pig fecal 

 

  



109 

 

 

Figure S4.1. tRNAs in phage genomes. 
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Table S4.1. Brockvirinae phage information. 

Phage genus isolation source Genbank 

vB_OCPT_Bob Kochikohdavirus Escondido sewage 

 
vB_OCPT_Car Kochikohdavirus Escondido sewage 

 
vB_OCPT_Carl Kochikohdavirus Escondido sewage 

 
EfV12-phi1 Wandervirus A Canadian sewage MH880817.1 

vB_OCPT_Ben Wandervirus A Escondido sewage 

 
vB_OCPT_Bop Wandervirus A Escondido sewage 

 
vB_OCPT_Bill Wandervirus A Escondido sewage 

 
vB_OCPT_CCS1 Wandervirus B Escondido sewage 

 
vB_OCPT_Tex Wandervirus B Escondido sewage 
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Table S4.2. Enterococcus strain information. 

Species Strain Genbank Source 

Enterococcus faecalis B3319 GCA_000396325.1 HMP 

Enterococcus faecalis B3196 GCA_000396345.1 HMP 

Enterococcus faecalis B3286 GCA_000396365.1 HMP 

Enterococcus faecalis B3336 GCA_000396385.1 HMP 

Enterococcus faecalis B4008 GCA_000396405.1 HMP 

Enterococcus faecalis CH19 GCA_000394255.1 HMP 

Enterococcus faecalis HH22 GCA_000394775.1 HMP 

Enterococcus faecalis MMH594 GCA_000394795.1 HMP 

Enterococcus faecalis Ned10 GCA_000394875.1 HMP 

Enterococcus faecalis R712 GCA_000163815.1 HMP 

Enterococcus faecalis S613 GCA_000163795.1 HMP 

Enterococcus faecalis SF105 GCA_000394895.1 HMP 

Enterococcus faecalis SF24397 GCA_000394075.1 HMP 

Enterococcus faecalis SF24413 GCA_000394095.1 HMP 

Enterococcus faecalis SF28073 GCA_000394195.1 HMP 

Enterococcus faecalis Tusod ef11 GCA_000175015.1 HMP 

Enterococcus faecalis TX1322 GCA_000159275.1 HMP 

Enterococcus faecalis TX2137 GCA_000147595.1 HMP 

Enterococcus faecalis V587 GCA_000394175.1 HMP 

Enterococcus faecalis YI6-1 GCA_000395095.1 HMP 

Enterococcus faecalis DP1   David Pride hospital isolate 

Enterococcus faecalis DP2   David Pride hospital isolate 

Enterococcus faecalis DP12   David Pride hospital isolate 

Enterococcus faecalis DP14   David Pride hospital isolate 

Enterococcus faecalis DP15   David Pride hospital isolate 

Enterococcus faecalis DP16   David Pride hospital isolate 

Enterococcus faecalis ERV103 GCA_000294005.2 HMP 

Enterococcus faecalis DP3   David Pride hospital isolate 

Enterococcus faecalis DP4   David Pride hospital isolate 

Enterococcus faecalis DP5   David Pride hospital isolate 

Enterococcus faecalis DP6   David Pride hospital isolate 

Enterococcus faecalis DP7   David Pride hospital isolate 

Enterococcus faecalis DP8   David Pride hospital isolate 

Enterococcus faecalis DP9   David Pride hospital isolate 

Enterococcus faecalis DP10   David Pride hospital isolate 

Enterococcus faecalis DP11   David Pride hospital isolate 

Enterococcus faecium E0120 GCA_000321485.1 HMP 

Enterococcus faecium E0164 GCA_000321505.1 HMP 
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Enterococcus faecium E0269 GCA_000321525.1 HMP 

Enterococcus faecium ERV102 GCA_000295355.2 HMP 

Enterococcus faecium ERV99 GCA_000295175.2 HMP 

Enterococcus faecium HF50104 GCA_000396685.1 HMP 

Enterococcus faecium HF50105 GCA_000396705.1 HMP 

Enterococcus faecium HF50106 GCA_000396725.1 HMP 

Enterococcus faecium patient 1-1 GCA_000394755.1 HMP 

Enterococcus faecium patient 2-1 GCA_000394655.1 HMP 

Enterococcus faecium patient 3-1   HMP 

Enterococcus faecium TX0133a04 GCA_000147235.1 HMP 

Enterococcus faecium TX1330 GCA_003583905.1 HMP 

Enterococcus faecium UAA714 GCA_000395445.1 HMP 

Enterococcus faecium 503 GCA_000295055.2 HMP 

Enterococcus faecium 513 GCA_000295575.2 HMP 

Enterococcus faecium E0045 GCA_000321465.1 HMP 

Enterococcus faecium E1071 GCA_000172655.1 HMP 

Enterococcus faecium E1039 GCA_000174935.1 HMP 

Enterococcus faecium UAA945 GCA_000396845.1 HMP 

Enterococcus faecium U0317 GCA_000172915.1 HMP 

Enterococcus faecium E417 GCA_000295415.2 HMP 

Enterococcus faecium DP13   David Pride hospital isolate 

Enterococcus faecium DP17   David Pride hospital isolate 

Enterococcus faecium DP18   David Pride hospital isolate 

Enterococcus faecium DP19   David Pride hospital isolate 

Enterococcus faecium E1162 GCA_000172675.1 HMP 

Enterococcus faecium ERV165 GCA_000295235.2 HMP 

Enterococcus faecium E980 GCA_0001726151 HMP 

Enterococcus avium DP0   David Pride hospital isolate 
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Table S4.3. Enterococcus mutations. List of all mutations that occurred in Enterococcus 

genomes during coevolution with phage for 28 days. 

Species Strain Coevolving 
Phage 

Rep Freq. Locus Gene name Type 

E. faecalis B3286 vB_OCPT_Bop 1 1.00 Epa NAD-dependent epimerase/dehydratase SNP 

E. faecalis B3286 vB_OCPT_Bop 1 1.00 Epa glucose-1-phosphate thymidylyltransferase SNP 

E. faecalis B3286 vB_OCPT_Bop 2 1.00 
 

endonuclease III SNP 

E. faecalis B3286 vB_OCPT_Bop 2 1.00 Epa NAD-dependent epimerase/dehydratase SNP 

E. faecalis B3286 EfV12-phi1 1 1.00 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis B3286 EfV12-phi1 1 0.61 Epa NAD-dependent epimerase/dehydratase SNP 

E. faecalis B3286 EfV12-phi1 1 1.00 
 

ATP-dependent Clp protease ATP-binding 
subunit ClpE 

SNP 

E. faecium TX1330 vB_OCPT_Ben 1 1.00 
 

DNA gyrase subunit A (EC 5.99.1.3) SNP 

E. faecium TX1330 vB_OCPT_Ben 2 1.00 
 

DNA-directed RNA polymerase beta' 
subunit (EC 2.7.7.6) 

SNP 

E. faecium TX1330 vB_OCPT_Ben 2 0.94 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 vB_OCPT_Ben 3 0.50 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 vB_OCPT_Ben 3 1.00 
 

DNA-directed RNA polymerase beta subunit 
(EC 2.7.7.6) 

SNP 

E. faecium TX1330 vB_OCPT_Bill 1 1.00 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 vB_OCPT_Bill 2 0.22 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 vB_OCPT_Bob 1 0.26 Yqw Tyrosine-protein kinase transmembrane 
modulator EpsC 

SNP 

E. faecium TX1330 vB_OCPT_Bob 1 0.15 
 

Phosphate regulon sensor protein PhoR 
(SphS) (EC 2.7.13.3) 

SNP 

E. faecium TX1330 vB_OCPT_Bob 2 0.22 
 

Phosphate regulon sensor protein PhoR 
(SphS) (EC 2.7.13.3) 

SNP 

E. faecium TX1330 vB_OCPT_Bob 3 0.11 
 

Pyruvate dehydrogenase E1 component 
alpha subunit (EC 1.2.4.1) 

SNP 

E. faecium TX1330 vB_OCPT_Bob 3 1.00 
 

Two-component transcriptional response 
regulator, LuxR family 

SNP 

E. faecium TX1330 vB_OCPT_Bop 1 1.00 
 

UDP-N-acetylglucosamine 4,6-dehydratase 
(EC 4.2.1.135) 

SNP 

E. faecium TX1330 vB_OCPT_Bop 1 1.00 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 vB_OCPT_Bop 2 1.00 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 vB_OCPT_Bop 2 0.30 
 

Neopullulanase (EC 3.2.1.135) SNP 

E. faecium TX1330 vB_OCPT_Bop 2 0.29 
 

hypothetical protein SNP 

E. faecium TX1330 vB_OCPT_Car 1 0.41 
 

Phosphate regulon sensor protein PhoR 
(SphS) (EC 2.7.13.3) 

SNP 

E. faecium TX1330 vB_OCPT_Car 1 0.26 
 

Bacterial ribosome SSU maturation protein 
RimP 

SNP 

E. faecium TX1330 vB_OCPT_Carl 2 1.00 Yqw Tyrosine-protein kinase transmembrane 
modulator EpsC 

SNP 

E. faecium TX1330 vB_OCPT_Carl 2 0.26 
 

Xanthine/uracil/thiamine/ascorbate 
permease family protein 

SNP 

E. faecium TX1330 vB_OCPT_Carl 2 0.21 
 

Oxidoreductase, short-chain 
dehydrogenase/reductase family 

SNP 

E. faecium TX1330 vB_OCPT_Carl 2 0.20 
 

Excinuclease ABC subunit A paralog of 
unknown function 

SNP 

E. faecium TX1330 vB_OCPT_Carl 3 0.34 Yqw Tyrosine-protein kinase transmembrane 
modulator EpsC 

SNP 

E. faecium TX1330 No phage 1 1.00 Yqw Tyrosine-protein kinase transmembrane 
modulator EpsC 

SNP 

E. faecium TX1330 No phage 1 0.27 
 

Transcriptional regulator, repressor of the 
glutamine synthetase, MerR family 

SNP 

E. faecium TX1330 No phage 1 0.26 
 

Two-component sensor kinase SA14-24 SNP 
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E. faecium TX1330 No phage 1 0.24 
 

Cyclic-di-AMP phosphodiesterase GdpP SNP 

E. faecium TX1330 No phage 1 0.24 
 

Ribonuclease PH (EC 2.7.7.56) SNP 

E. faecium TX1330 No phage 1 0.23 
 

Two-component system YycFG regulatory 
protein YycH 

SNP 

E. faecium TX1330 No phage 2 1.00 Yqw Tyrosine-protein kinase transmembrane 
modulator EpsC 

SNP 

E. faecium TX1330 No phage 2 0.23 
 

Teichoic acid glycosylation protein SNP 

E. faecium TX1330 No phage 3 0.70 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 No phage 3 0.30 Yqw Tyrosine-protein kinase EpsD (EC 2.7.10.2) SNP 

E. faecium TX1330 No phage 4 0.24 
 

ABC transporter, permease protein YckA 
(cluster 3, basic aa/glutamine/opines) 

SNP 

E. faecium TX1330 V12 1 1.00 Yqw Tyrosine-protein kinase transmembrane 
modulator EpsC 

SNP 

E. faecalis TX2137 Bop 1 0.63 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 1 0.31 
 

UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

SNP 

E. faecalis TX2137 Bop 1 0.12 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 2 1.00 
 

phosphocarrier protein HPr SNP 

E. faecalis TX2137 Bop 2 1.00 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 3 0.90 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis TX2137 Bop 3 0.89 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis TX2137 Bop 4 0.25 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis TX2137 Bop 4 0.25 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis TX2137 Bop 4 0.20 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 5 0.17 
 

UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

SNP 

E. faecalis TX2137 Bop 6 0.25 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 6 0.25 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 6 0.17 Epa NAD dependent epimerase/dehydratase 
family protein 

DEL 

E. faecalis TX2137 Bop 7 0.82 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 7 0.17 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 8 1.00 Epa NAD dependent epimerase/dehydratase 
family protein 

SNP 

E. faecalis TX2137 Bop 8 0.59 
 

UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

SNP 

E. faecalis TX2137 V12 1 0.71 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis TX2137 V12 1 0.71 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis TX2137 V12 2 0.69 
 

DNA ligase (NAD+) SNP 

E. faecalis TX2137 V12 2 0.55 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

DEL 

E. faecalis TX2137 V12 2 0.31 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis Yi6 Bop 1 1.00 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SUB 

E. faecalis Yi6 Bop 1 1.00 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis Yi6 Bop 1 1.00 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 

E. faecalis Yi6 Bop 1 0.19 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

SNP 
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E. faecalis Yi6 Bop 2 1.00 
 

UTP-glucose-1-phosphate 
uridylyltransferase 

DEL 

E. faecalis Yi6 Bop 2 1.00 
 

UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 1 

SNP 

E. faecalis Yi6 Bop 3 1.00 
 

isoleucyl-tRNA synthetase DEL 

E. faecalis Yi6 Bop 3 0.87 Epa exopolysaccharide biosynthesis polyprenyl 
glycosylphosphotransferase 

DEL 

E. faecalis Yi6 V12 1 0.53 
 

30S ribosomal protein S7 SNP 

E. faecalis Yi6 V12 2 0.50 
 

DNA-directed RNA polymerase subunit 
alpha 

SNP 
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Table S4.4. Phage mutations. List of all mutations that occurred in phage genomes during 

coevolution with Enterococcus for 28 days. 

Phage Rep Host species Host 
strain 

Freq Type Gene 

EfV12-phi1 1 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

EfV12-phi1 1 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

EfV12-phi1 1 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

EfV12-phi1 1 E. faecalis B3286 0.90 SNP Phage recombination related exonuclease (EC 3.1.11.-) 

EfV12-phi1 1 E. faecalis B3286 1.00 DEL Phage protein 

EfV12-phi1 1 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

EfV12-phi1 1 E. faecalis B3286 0.65 SNP Phage protein 

EfV12-phi1 1 E. faecalis B3286 0.91 SNP Protein RtcB 

EfV12-phi1 1 E. faecalis B3286 0.40 SNP Phage protein 

EfV12-phi1 1 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

EfV12-phi1 1 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

EfV12-phi1 2 E. faecalis B3286 0.44 SNP hypothetical protein 

EfV12-phi1 2 E. faecalis B3286 0.84 SNP Phage capsid and scaffold 

EfV12-phi1 2 E. faecalis B3286 0.51 SNP Phage protein 

EfV12-phi1 2 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

EfV12-phi1 2 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 3 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 3 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 3 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 3 E. faecalis B3286 0.22 SNP Protein RtcB 

vB_OCPT_Bop 3 E. faecalis B3286 1.00 SNP Phage protein 

vB_OCPT_Bop 3 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 4 E. faecalis B3286 0.46 SNP Phage protein 

vB_OCPT_Bop 4 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 4 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 4 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 4 E. faecalis B3286 0.24 SNP Phage protein 

vB_OCPT_Bop 4 E. faecalis B3286 0.53 SNP Phage protein 

vB_OCPT_Bop 4 E. faecalis B3286 1.00 SNP hypothetical protein 

vB_OCPT_Bop 4 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 5 E. faecalis B3286 1.00 SNP Phage protein 

vB_OCPT_Bop 5 E. faecalis B3286 0.80 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis B3286 0.81 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis B3286 0.80 SNP Serine/threonine protein phosphatase (EC 3.1.3.16) 

vB_OCPT_Bop 5 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 
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vB_OCPT_Bop 6 E. faecalis B3286 0.19 SNP hypothetical protein 

vB_OCPT_Bop 6 E. faecalis B3286 0.11 SNP hypothetical protein 

vB_OCPT_Bop 6 E. faecalis B3286 1.00 SNP Phage protein 

vB_OCPT_Bop 6 E. faecalis B3286 0.18 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 6 E. faecalis B3286 0.56 SNP Phage capsid and scaffold 

vB_OCPT_Bop 6 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 6 E. faecalis B3286 0.23 SNP Nicotinamide-nucleotide adenylyltransferase, NadR 
family (EC 2.7.7.1) / Ribosylnicotinamide kinase (EC 
2.7.1.22) 

vB_OCPT_Bop 6 E. faecalis B3286 0.13 SNP Phage protein 

vB_OCPT_Bop 6 E. faecalis B3286 0.21 SNP DNA helicase, phage-associated 

vB_OCPT_Bop 6 E. faecalis B3286 0.19 SNP Nicotinamide-nucleotide adenylyltransferase, NadR 
family (EC 2.7.7.1) / Ribosylnicotinamide kinase (EC 
2.7.1.22) 

vB_OCPT_Bop 6 E. faecalis B3286 0.15 SNP Phage major tail sheath 

vB_OCPT_Bop 6 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 6 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 6 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 6 E. faecalis B3286 0.25 SNP Deoxyadenosine kinase (EC 2.7.1.76) / Deoxyguanosine 
kinase (EC 2.7.1.113) 

vB_OCPT_Bop 7 E. faecalis B3286 1.00 SNP Phage protein 

vB_OCPT_Bop 8 E. faecalis B3286 0.22 SNP Phage baseplate 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 INS Phage protein 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 SNP Phage protein 

vB_OCPT_Bop 8 E. faecalis B3286 0.25 SNP hypothetical protein 

vB_OCPT_Bop 8 E. faecalis B3286 0.22 SNP Phage protein 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 SNP Phage protein 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 SNP Phage protein 

vB_OCPT_Bop 8 E. faecalis B3286 0.18 SNP hypothetical protein 

vB_OCPT_Bop 8 E. faecalis B3286 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 8 E. faecalis B3286 0.22 SNP NrdR-regulated deoxyribonucleotide transporter, PnuC-
like 

vB_OCPT_Bop 8 E. faecalis B3286 0.24 SNP Phage protein 

EfV12-phi1 1 E. faecalis TX2137 0.38 SNP Phage capsid and scaffold 

EfV12-phi1 1 E. faecalis TX2137 0.40 SNP Phage capsid and scaffold 

EfV12-phi1 1 E. faecalis TX2137 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

EfV12-phi1 2 E. faecalis TX2137 0.58 SNP hypothetical protein 

EfV12-phi1 2 E. faecalis TX2137 0.92 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

EfV12-phi1 3 E. faecalis TX2137 0.80 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 4 E. faecalis TX2137 0.17 SNP Phage protein 

vB_OCPT_Bop 4 E. faecalis TX2137 0.39 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 
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vB_OCPT_Bop 4 E. faecalis TX2137 0.91 SNP Phage capsid and scaffold 

vB_OCPT_Bop 4 E. faecalis TX2137 0.17 SNP hypothetical protein 

vB_OCPT_Bop 4 E. faecalis TX2137 0.84 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 5 E. faecalis TX2137 0.17 SNP hypothetical protein 

vB_OCPT_Bop 6 E. faecalis TX2137 0.38 SNP Ribonucleotide reductase of class III (anaerobic), 
activating protein (EC 1.97.1.4) 

vB_OCPT_Bop 6 E. faecalis TX2137 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 6 E. faecalis TX2137 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 6 E. faecalis TX2137 0.40 SNP Phage protein 

vB_OCPT_Bop 7 E. faecalis TX2137 0.95 SNP Phage capsid and scaffold 

vB_OCPT_Bop 7 E. faecalis TX2137 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 8 E. faecalis TX2137 0.98 SNP Phage capsid and scaffold 

vB_OCPT_Bop 8 E. faecalis TX2137 0.99 SNP Phage protein 

vB_OCPT_Bop 8 E. faecalis TX2137 0.36 SNP Phage protein 

vB_OCPT_Bop 8 E. faecalis TX2137 0.11 SNP Thioredoxin, phage-associated 

vB_OCPT_Bop 8 E. faecalis TX2137 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 9 E. faecalis TX2137 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 9 E. faecalis TX2137 0.57 SNP Phage protein 

vB_OCPT_Bop 9 E. faecalis TX2137 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 10 E. faecalis TX2137 0.66 SNP Phage capsid and scaffold 

vB_OCPT_Bop 10 E. faecalis TX2137 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 10 E. faecalis TX2137 0.97 SNP Phage capsid and scaffold 

vB_OCPT_Bop 11 E. faecalis TX2137 0.84 SNP Phage capsid and scaffold 

vB_OCPT_Bop 11 E. faecalis TX2137 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 11 E. faecalis TX2137 0.18 SNP Phage capsid and scaffold 

vB_OCPT_Bop 12 E. faecalis TX2137 0.21 SNP DNA primase (EC 2.7.7.-) / DNA helicase (EC 3.6.1.-), 
phage-associated 

vB_OCPT_Bop 12 E. faecalis TX2137 0.97 SNP Phage capsid and scaffold 

vB_OCPT_Bop 12 E. faecalis TX2137 0.16 SNP Phage protein 

vB_OCPT_Bop 12 E. faecalis TX2137 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 12 E. faecalis TX2137 0.11 SNP Phage protein 

vB_OCPT_Bop 13 E. faecalis TX2137 0.25 SNP Phage protein 

vB_OCPT_Bop 13 E. faecalis TX2137 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 13 E. faecalis TX2137 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 13 E. faecalis TX2137 0.38 SNP Phage protein 

vB_OCPT_Bop 1 E. faecalis Yi6 0.54 SNP Phage protein 

vB_OCPT_Bop 1 E. faecalis Yi6 0.38 SNP Phage protein 

vB_OCPT_Bop 1 E. faecalis Yi6 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 2 E. faecalis Yi6 0.98 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 2 E. faecalis Yi6 1.00 SNP Phage protein 

vB_OCPT_Bop 2 E. faecalis Yi6 0.96 SNP Phage protein 

vB_OCPT_Bop 2 E. faecalis Yi6 1.00 SNP Phage protein 
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vB_OCPT_Bop 2 E. faecalis Yi6 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 2 E. faecalis Yi6 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 3 E. faecalis Yi6 0.96 SNP Phage capsid and scaffold 

vB_OCPT_Bop 3 E. faecalis Yi6 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 3 E. faecalis Yi6 1.00 SNP Phage protein 

vB_OCPT_Bop 3 E. faecalis Yi6 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 4 E. faecalis Yi6 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 4 E. faecalis Yi6 0.95 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 4 E. faecalis Yi6 0.12 SNP Phage protein 

vB_OCPT_Bop 4 E. faecalis Yi6 0.40 SNP Phage protein 

vB_OCPT_Bop 4 E. faecalis Yi6 0.79 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 4 E. faecalis Yi6 0.99 SNP Phage protein 

vB_OCPT_Bop 4 E. faecalis Yi6 1.00 SNP Phage protein 

vB_OCPT_Bop 5 E. faecalis Yi6 0.64 SNP Phage protein 

vB_OCPT_Bop 5 E. faecalis Yi6 0.32 SNP Phage protein 

vB_OCPT_Bop 5 E. faecalis Yi6 0.13 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis Yi6 0.16 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis Yi6 0.49 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis Yi6 0.76 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis Yi6 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 5 E. faecalis Yi6 0.82 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis Yi6 0.24 SNP Phage capsid and scaffold 

vB_OCPT_Bop 5 E. faecalis Yi6 0.10 SNP hypothetical protein 

vB_OCPT_Bop 6 E. faecalis Yi6 0.82 SNP Phage protein 

vB_OCPT_Bop 6 E. faecalis Yi6 0.13 SNP Phage protein 

vB_OCPT_Bop 6 E. faecalis Yi6 1.00 SNP Phage capsid and scaffold 

vB_OCPT_Bop 6 E. faecalis Yi6 1.00 SNP Phage protein 

vB_OCPT_Bop 6 E. faecalis Yi6 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 7 E. faecalis Yi6 0.99 SNP Phage protein 

vB_OCPT_Bop 7 E. faecalis Yi6 0.98 SNP Phage capsid and scaffold 

vB_OCPT_Bop 7 E. faecalis Yi6 1.00 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 7 E. faecalis Yi6 0.20 SNP Phage protein 

vB_OCPT_Bop 7 E. faecalis Yi6 0.91 SNP Glycerophosphoryl diester phosphodiesterase (EC 
3.1.4.46), phage variant 

vB_OCPT_Bop 8 E. faecalis Yi6 1.00 SNP Phage capsid and scaffold 
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CHAPTER 5 

Phage cocktails can prevent the evolution of phage-resistant Enterococcus 

Co-authors: Clark Hendrickson, Cyril Samillano, and Katrine Whiteson 

ABSTRACT 

 Antibiotic resistant Enterococcus infections are a major health crisis that requires 

the development of alternative therapies. Phage therapy could be an alternative to 

antibiotics and has shown promise in in vitro and in early trials. Phage therapy is often 

deployed as a cocktail of phages, but there is little understanding about how to combine 

phages in effective ways. Here we utilize a collection of 15 Enterococcus phages to test 

design principles of phage cocktails and determine the phenotypic effects of evolving 

resistance. We show that cocktails of two or three unrelated phages often, but not always, 

prevented the growth of phage-resistant mutants. Cocktails of related phages were 

generally not effective at preventing the growth of phage-resistant Enterococcus. Many of 

the mutations that provide Enterococcus resistance to phage infection involved 

exopolysaccharide synthesis genes for all types of phages tested. Further, we show that 

evolving resistance to phage infection can alter Enterococcus susceptibility to vancomycin. 

This work will help to inform phage cocktail design for future phage therapy applications. 

INTRODUCTION 

 Antibiotic resistant bacterial infections have emerged as a major health crisis. 

Overuse of antibiotics has led to rising rates of antibiotic resistance, therefore steps must 

be taken to find alternative therapies. The ESKAPE pathogens are a list of six high-priority 

antibiotic resistant bacteria, and among them is Enterococcus, a gram-positive bacterium 

responsible for many hospital-acquired infections (Pendleton, Gorman, and Gilmore 2013). 
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Rates of vancomycin resistant Enterococcus (VRE) infections have been rising; one in three 

hospital acquired Enterococcus infections is vancomycin resistant (Agudelo Higuita and 

Huycke 2014b). Bacteriophage (phage) therapy is an alternative treatment to antibiotics 

that has shown promise in vitro and in animal models for treating Enterococcus (Yoong et 

al. 2004b; Chatterjee et al. 2019; Khalifa et al. 2015a). However, phage therapy is rarely 

used and only as a last resort because basic research into the safety, mechanisms, and best 

practices is lacking. 

 Although phages are posited as a solution for antibiotic resistance, bacteria can also 

evolve resistance to phage infection. Bacteria exist in a constant evolutionary battle with 

phage, and thus have evolved many systems to resist phage infection, including preventing 

phage binding, restriction modification systems, CRISPR-Cas9, an abortive infection (Dy et 

al. 2014). Given strong selective pressure from a single phage, bacteria often quickly evolve 

resistance to phage in laboratory settings (Chao, Levin, and Stewart 1977). Phage evolve to 

combat and circumvent these resistance mechanisms, which might provide phage therapy 

two advantages over antibiotics (Samson et al. 2013b). One, during phage therapy, if 

bacteria evolve resistance, phage can also evolve to overcome that resistance. However, it 

remains unclear whether there is time or opportunity to evolve during phage therapy in 

humans. Two, this evolutionary battle is ongoing in nature, so isolating phages from the 

environment should provide an endless reservoir of phages with mutations that allow 

them to circumvent resistance mechanisms. But this endless diversity also creates the 

challenge of understanding which phages and which genotypes will be most effective for 

phage therapy.  
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Additionally, the phenotypic effects of evolving resistance to phages is poorly 

understood. For one, evolving resistance to a single phage could result in cross-resistance 

to other phages (R. C. T. Wright et al. 2018). The networks of hosts that a phage will infect 

have been seen to be nested and structured around host receptor, but patterns of cross 

resistance have not been well characterized (Flores et al. 2011b; Lennon et al. 2007). 

Another effect that phage-resistance might have is altering susceptibility to antibiotics 

(Chan et al. 2016). Vancomycin resistant Enterococcus that evolved resistance to phage was 

seen to have greatly increased susceptibility to vancomycin, in addition to mouse gut 

colonization defects (Chatterjee et al. 2019). Increasing antibiotic susceptibility would be 

an ideal outcome of evolving resistance to phage, but more work needs to be done to 

determine how often these fitness tradeoffs occur. 

Phage therapy is often administered as a cocktail of phages. This is done because 

phages often have narrow host ranges, so multiple phages are used to ensure all of the 

target bacteria will be killed (Flores et al. 2011b). Theoretically, using a cocktail of phages 

could also decrease the chance that a phage-resistant mutant can arise, since multiple 

mechanisms of resistance would need to evolve simultaneously. Similarly, combinations of 

antibiotics are used to treat tuberculosis infections, and combinations of antivirals are used 

to treat HIV (Günthard et al. 2016; Tornheim and Dooley 2019). However, the efficacy of 

phage cocktails has not been thoroughly explored, and instead it is taken for granted that a 

cocktail of phages will be more effective than a single phage. Thus, there are no design 

principles for crafting effective phage cocktails. Logic might suggest that a diverse 

collection of phages should be used to kill a broader range of hosts and to prevent 



123 

 

resistance arising to all phages by a common mechanism. However, this logic still needs to 

be tested in a wide range of systems. 

Phage therapy has not been used to treat Enterococcus infections of humans 

specifically, but it has shown promise in in vitro and in vivo mouse experiments (Khalifa et 

al. 2015a, 2016; Chatterjee et al. 2019). Additionally, Enterococcus phages have been shown 

to be effective at disrupting Enterococcus in biofilms, which are generally much harder to 

treat than planktonic cells because antibiotics have trouble penetrating biofilms (Khalifa et 

al. 2015a). Enterococcus phages have also been used to treat humans. Two phage cocktails 

sold by the Eliava Institute of Bacteriophage, Microbiology, and Virology in Georgia were 

shown to contain abundant Enterococcus phages (Villarroel et al. 2017). Enterococcus 

phages have been evaluated in cocktails previously, and were shown to be more effective 

than single phages at preventing the growth of resistant Enterococcus mutants (Khalifa et 

al. 2018). While encouraging, this is only one example of cocktail design and does not offer 

any insight into cocktail design principles.  

 We utilized our collection of fourteen Enterococcus phages to test the efficacy of 

different combinations of phages at bacterial killing and preventing the growth of phage-

resistant mutants. In doing so, we isolated and sequenced phage-resistant Enterococcus 

mutants that grew in the presence of single phages and phage cocktails. To determine the 

extent of cross resistance that occurs when evolving resistance to Enterococcus phages, 

phage-resistant Enterococcus mutants had their susceptibility to all other phages 

measured. Finally, we measured the vancomycin susceptibility of phage-resistant mutants 

to see if evolving resistance to phage affected antibiotic susceptibility. Overall these 

experiments will inform future Enterococcus phage cocktail design. 
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RESULTS 

Phage cocktails prevent arising of resistant mutants 

 The strain Enterococcus faecalis Yi-6 was chosen for phage cocktail because it was 

susceptible to all 15 phages in our collection. When E. faecium Yi6 was infected with a 

single phage at a high MOI (Table S5.1) in liquid media, phage-resistant bacteria usually 

grew back within 72 hours. (Figure 5.1). Related Siphoviridae phages vB_OCPT_SDS1 and 

vB_OCPT_SDS2 were the most effective single phages for preventing the growth of phage-

resistant mutants. When E. faecium Yi6 was infected with combinations of two phages, 

some combinations consistently prevented the growth of phage-resistant mutants, while 

other combinations consistently failed to do so. In particular, combinations of phages 

involving the Brockvirinae phage vB_OCPT_Ben along with a Siphoviridae or a Podoviridae 

phage always prevented the growth of a resistant mutant. All combinations that prevented 

the growth of phage-resistant mutants were unrelated phages, however not all 

combinations of unrelated phages were successful. Combinations of genetically related 

phages always allowed the growth of phage-resistant mutants. Combinations of three 

phages were able to prevent the growth of phage-resistant mutants in 4/5 combinations 

that included at least two unrelated phages. However, adding a third phage did not improve 

on combinations that failed as two phages. All successful three-phage combinations 

contained two phages that worked together as two-phage cocktails. 

Enterococcus resist diverse phages by exopolysaccharide mutations 

 Phage resistant E. faecalis Yi6 and E. faecalis DP11 mutants were generated against a 

diverse collection of phages. Mutations in the Epa exopolysaccharide synthesis loci were 

the most common mutations observed (5/6 phage resistant mutants) (Table 5.1). Most of 
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these phage-resistant mutants had a single point mutation or nonsense mutation in a single 

gene in the Epa locus and did not contain any other mutations. Phage-resistant mutants 

were isolated by the ability to grow in the presence of an infecting phage, but in some 

cases, incomplete resistance was observed. In these cases, mutations provided enough 

resistance for Enterococcus to be isolated in our assay, but the infecting phage still shows 

signs of lysis upon a subsequent drop assay.  

After generating Enterococcus mutants that were resistant to a single phage, these 

mutants were tested for susceptibility against other phages to test for cross resistance 

(Figure 5.2). Overall, phage-resistant Enterococcus mutants generated against a single 

phage often were cross-resistant to several other phages. On average, Enterococcus 

mutants that evolved resistance to a single phage were susceptible to 60 % fewer phages 

than the wild type strain. Cross resistance was observed against closely related phages and 

for unrelated phages. For example, when E. faecalis DP11 evolved resistance to a 

Siphoviridae phage, vB_OCPT_SDS1, it was also resistant to seven out of eight Herelleviridae 

phages that were able to infect the wild type.  

Resistance to phage can modulate antibiotic susceptibility 

 We tested to see if Enterococcus phage-resistant mutants have altered susceptibility 

to vancomycin. E. faecalis strains DP11 and Yi6 were initially susceptible to vancomycin 

while E. faecalis V587 was vancomycin resistant. Phage-resistant Enterococcus mutants 

often had similar levels of susceptibility, but in a few cases, resistance was seen to increase 

or decrease (Figure 5.3). One of the E. faecalis V587 phage resistant mutants was more 

susceptible than the wild type to vancomycin at 100 ug/ml. The phage-resistant mutants 

generated from the vancomycin sensitive strains, E. faecalis Yi6 and DP11 either had no 
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change in vancomycin sensitivity or were more resistant. Many phage-resistant 

Enterococcus mutants did not grow up to the same OD600 as the wild type, indicating that 

these mutants have general growth defects. 

DISCUSSION 

 Phage cocktails have been shown to be effective at killing bacteria and preventing 

the growth of resistant mutants, but little focus has been placed on the design principles for 

effective cocktails. Here, we show that phage cocktail design is an important consideration 

because some combinations of phages consistently prevent the growth of phage-resistant 

mutants while others do not.  

While using phage cocktails is a standard practice in phage therapy, there is no 

standard for how many phages should be used. The pyophage (PYO) cocktail from the 

Georgian Eliava Institute of Bacteriophage has been shown to contain approximately thirty 

different phages, however these cocktails are designed to target multiple different bacterial 

hosts (Villarroel et al. 2017). Recent uses of phage therapy designed to target a single 

bacteria generally include between one and six phages(A. Wright et al. 2009; Schooley et al. 

2017; Duplessis et al. 2017). Often there is no reasoning behind the number of phages 

chosen to administer during phage therapy. Here, we show that combinations of two 

phages are enough to prevent the growth of phage-resistant mutants. Using more than two 

diverse phages in a cocktail would increase the chances of choosing two phages that 

displayed synergy in preventing the growth of phage-resistant mutants. 

Several approaches exist for optimizing phage cocktail design. Experimental 

evolution of a phage can result in mutant phages with expanded host ranges, which can be 

utilized in phage cocktails (D. Kelly et al. 2011; Burrowes et al. 2019). Another approach is 
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to use phage-resistant hosts to isolate new phages with complementary host ranges (Gu et 

al. 2012). Synthetic approaches can also be effective, such as using site-directed mutants to 

discover phages that bind to different sites which could complement each other in a phage 

cocktail (Filippov et al. 2011). Our experiments relied on the diversity of our phage 

collection to create cocktails, but many bacterial hosts lack large catalogs of characterized 

phages. Evolutionary or synthetic approaches would be useful for expanding phage 

catalogs for specific hosts. 

Host range is an important consideration for choosing phages to use in a phage 

cocktail. Broad host ranges phages can infect multiple genera, while a narrow host range 

phage is seemingly specific to a single strain (Flores et al. 2011a). The full scope of host 

range is difficult to determine due to limitations in the number of bacterial strains that 

need to be isolated. Phage infection networks have been seen to be highly nested and 

structured around the host receptor they utilize (Flores et al. 2011b; R. C. T. Wright et al. 

2018). However, previous work in Synechococcus showed no correlation between cross-

resistance patterns and genetic similarity between phages (Stoddard, Martiny, and Marston 

2007). Since the receptors of the phages used in this study are largely unknown, one 

explanation for the high degree of cross-resistance is that they utilize a common receptor. 

Evidence exists that the Brockvirinae phages utilized in this study bind to cell wall 

exopolysaccharides (Chatterjee et al. 2019; Wandro et al. 2019). If phage infection for 

multiple types of Enterococcus phages is mediated by binding to exopolysaccharides, then 

broad patterns of cross-resistance, such as we observed, might be expected to occur. 

Phages that display synergy with antibiotics would be ideal for phage therapy. 

Synergy can occur if the evolution of resistance to phage comes at the cost of increased 
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susceptibility to antibiotics, or vice versa. The most famous example of this is a 

Pseudomonas aeruginosa phage that that binds to an antibiotic efflux pump, resulting in a 

fitness trade off where bacteria can evolve resistance to phage by losing the antibiotic 

efflux pump (Chan et al. 2016). Enterococcus have previously been seen to evolve 

resistance to phage infection through mutations in the Epa locus, which has been seen to 

increase susceptibility to vancomycin in previously vancomycin resistant strains 

(Chatterjee et al. 2019; Wandro et al. 2019; Singh, Lewis, and Murray 2009; Ho et al. 2018). 

The mechanism by which this fitness trade-off occurs is not clear; vancomycin targets 

peptidoglycan and the Epa locus regulates exopolysaccharide synthesis, so both 

interactions occur at the cell wall (Thurlow, Thomas, and Hancock 2009; Hancock and 

Gilmore 2002; Fang Teng et al. 2009). In this study, evolution of phage resistance in 

Enterococcus was seen to have minimal effects on vancomycin sensitivity, even though 

many of the mutations also occurred in the Epa locus. The mechanism by which Epa 

mutations provide resistance to phage infection is unclear, and different mutations may 

have differential effects on antibiotic susceptibility. In addition, the genetic background of 

the Enterococcus strain likely affects the phenotypic outcomes of the evolution of phage 

resistance.  In some cases, evolving resistance to phage infection may alter antibiotic 

susceptibility and other colonization phenotypes. Synergistic outcomes of phage-host co-

evolution that result in better treatment options are far from guaranteed, but the enormous 

numbers of understudied phage-host interactions leave room the discovery of phages that 

co-evolve with their pathogenic bacterial hosts in ways that make infection treatment more 

tractable. 
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MATERIALS AND METHODS 

Mutant Generation in Liquid Cultures 

 Enterococcus colonies were grown overnight with 1xBHI broth in a shaker at 37 °C. 

The next day, all cultures were diluted to .05 OD600 in fresh BHI, where 190 microliters of 

Enterococcus and 10 microliters of a highly concentrated individual bacteriophage stock 

were added into each well. 96-well plates filled with bacteria-bacteriophage pairs were 

then incubated at 37C inside a spectrophotometer, where their OD600 was taken every 10 

minutes for 24-48 hours. During the 1-2-day incubation, any Enterococcus sp. culture 

which was initially annihilated to the background optical density of only the media and 

well by themselves, but subsequently saw a detectable rebound of growth, were streaked 

onto 1.5% Agar plates infused with BHI. Colonies which grew upon these streak plates 

were considered bacteriophage resistant mutants of the bacteriophage they were 

inoculated with and were used in subsequent mutant assays. 

Mutant Generation on Agar Plates 

Enterococcus colonies were grown overnight with 1xBHI broth in a shaker at 37 °C. 

The next day, all cultures were diluted to .05 OD600, in 2.5mL of .35% Low Melting-Point 

Agarose infused with BHI and inoculated with 10 microliters of phage stock. The ~2.5mL’s 

of Enterococcus-bacteriophage mixture was then poured on top of a 1.5% Agarose plate 

infused with BHI and allowed to solidify. After 24-48 hours, visible Enterococcus colonies 

displaying bacteriophage resistance by growing on top of the agar were picked and re-

streaked for subsequent mutant assays. 

Bacteriophage Host Infectivity Range 
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The susceptibility of wild-type and mutant Enterococcus isolates were tested using a 

spot assay on agar plates. Colonies picked from streak plates were cultured overnight with 

BHI broth in a shaker at 37C. The next day, Enterococcus cultures were diluted to .05 

OD600 in ~2.5mL of .35% Low Melting-Point Agarose infused with BHI and poured onto a 

1.5% Agar plate infused with BHI. After waiting ~30 minutes for .35% Low Melting-Point 

Agarose infused with BHI to solidify, each of our 15 Enterococcus phages were added in 6 

microliter spots on top of the solidified .35% Low Melting-Point Agarose, and plates were 

incubated at 37C. The negative control received 6 microliters of SM buffer which the 

phages are stored in. After 24 hour of incubation plates were examined and plaque-like 

clearings which appeared at the site of 6 microliter phage droplet inoculation were 

recorded. 

Sequencing mutants 

 DNA was extracted from Enterococcus mutants using the Quick-DNA Microprep Kit 

(Zymo #D3020). Before Enterococcus DNA extraction, lysozyme was added to lysis buffer 

at a concentration of 100ug/ml and incubated at 37 °C for 30 minutes. Libraries were 

prepared using a scaled-down protocol with the Illumina Nextera enzyme (Baym et al., 

2015). 75 bp short read length paired-end sequencing was performed on the Illumina 

NextSeq using the Mid Output v2 reagents. Approximately 1 million reads were obtained 

per sample, giving about 10-fold coverage across the Enterococcus genome.  

Vancomycin Susceptibility 

 To determine whether becoming a bacteriophage resistant mutant affected 

Vancomycin susceptibility or resistance, we cultured wild-type and mutant Enterococcus 

across a spectrum of relevant vancomycin concentrations. Wild-type and Mutant 
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Enterococcus colonies were grown overnight with BHI broth in a shaker at 37 °C. The next 

day, all cultures were diluted to .05 OD600 in fresh BHI. In a 96 well plate, 190 microliters 

of Enterococcus and 10 microliters of Vancomycin in a gradient from .2 to 200 

micrograms/mL was added in triplicate to wells and incubated in a spectrophotometer at 

37 °C for 10 hours. 

Phage cocktails 

 Cocktails consisting of one, two, and three combinations were tested against E. 

faecalis Yi6. A single colony was grown overnight with BHI broth in a shaker at 37 °C. The 

next day, bacterial cultures were diluted to .05 OD600 in fresh BHI, where 190 microliters 

of Enterococcus and 10 microliters of phage were combined in a single well inside a 96 well 

plate. Phages were always added at the highest concentration available (Table S5.1). For 

two-phage cocktails, 5 microliters of two unique phage stocks were added. To conduct 

three-phage cocktails, 3.33 microliters of 3 unique phage stocks were added. Plates were 

incubated for 72 hours at 37 °C inside of a spectrophotometer. At 48 hours an additional 

100 microliters of fresh BHI media was added to each well to avoid desiccation. 
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FIGURES AND TABLES 

 

Figure 5.1. Phage cocktails prevent growth of resistant mutants. E. faecalis Yi6 growth in 

liquid culture with one, two, or three phages after 70 hours. Growth at 70 hours indicates a 

resistant mutant was able to evolve and grow.  
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Figure 5.2. Cross-resistance patterns. Phage susceptibility of Enterococcus that evolved 

resistance to a single phage was tested against the collection of Enterococcus phages by 

drop assay.  
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Figure 5.3. Vancomycin susceptibility of Enterococcus mutants. Phage-resistant mutants 

generated for A) vancomycin resistant strain E. faecalis V587 B) E. faecalis Yi6 and C) E. 

faecalis DP11. 
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Table 5.1. Phage information 

Name Family Genus Genome size 

vB_OCPT_Bob Brockvirinae Kochiodavirus 150k 

vB_OCPT_Car Brockvirinae Kochiodavirus 150k 

vB_OCPT_Carl Brockvirinae Kochiodavirus 150k 

EfV12-phi1 Brockvirinae Wandervirus 150k 

vB_OCPT_Ben Brockvirinae Wandervirus 150k 

vB_OCPT_Bop Brockvirinae Wandervirus 150k 

vB_OCPT_Bill Brockvirinae Wandervirus 150k 

vB_OCPT_CCS1 Brockvirinae Wandervirus 150k 

vB_OCPT_Tex Brockvirinae Wandervirus 150k 

vB_OCPT_SDS1 Siphoviridae vB_EfaS_IME198 57k 

vB_OCPT_SDS2 Siphoviridae vB_EfaS_IME198 57k 

vB_OCPT_CCS2 Siphoviridae vB_EfaS_IME198 57k 

vB_OCPT_CCS3 Siphoviridae vB_EfaS_IME198 57k 

vB_OCPT_Toy Siphoviridae vB_EfaS_IME198 57k 

vB_OCPT_CCS4 Siphoviridae vB_EfaS_AL3 40k 

vB_OCPT_Ump Podoviridae vB_EfaP_IME199 18k 
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Table 5.2. Mutations in Enterococcus providing phage resistance. Genes that are part of the 

Epa exopolysaccharide synthesis locus are denoted with (Epa). 

Host Mutant Phage Mutated gene(s) Mutation 

E. faecalis DP11  Mutant 1 vB_OCPT_Ump (Epa) WgbU UDP-N-acetylglucosamine 4-epimerase G11V 
(60%) 

E. faecalis DP11  Mutant 2 vB_OCPT_Ump (Epa) WecA E249* 

E. faecalis DP11  Mutant 3 vB_OCPT_SDS1 (Epa) WgbU UDP-N-acetylglucosamine 4-epimerase G279E 

E. faecalis DP11  Mutant 4 vB_OCPT_SDS2 (Epa) TagF gene. glycerol 
glycerophosphotransferase 

A113E 

E. faecalis Yi6 Mutant 1 vB_OCPT_CCS3 (Epa) exopolysaccharide biosynthesis; aspartate 
aminotransferase 

W7* ; 
P365S 

E. faecalis Yi6 Mutant 2 VB_OCPT_CCS2 cell division ABC transporter permease FtsX  P118A 
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Table S5.1. Phage titers. All phages tittered on E. faecalis Yi6. 

Phage Titer 
(PFU/ml) 

vB_OCPT_Ben 4x10^10 
vB_OCPT_Carl 4x10^8 
vB_OCPT_Bill 2x10^8 
vB_OCPT_SDS1 1.8x10^10 
vB_OCPT_SDS2 2x10^8 
vB_OCPT_CCS2 3x10^9 
vB_OCPT_Ump 7.7x10^8 
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SUMMARY AND FUTURE DIRECTIONS 

Phages have the potential to revolutionize the way we interact with microbial 

communities. In the years since this thesis work began, rapid progress has been made 

toward our understanding of the human microbiome and the phages within it. This is due 

in part to improvements both in sequencing technologies and bioinformatics methods 

(Levy and Myers 2016; Kono and Arakawa 2019; Roumpeka et al. 2017). Increasingly, 

metagenomics is being used to characterize microbial communities, which has allowed the 

study of non-bacterial members of the microbiome. However, many questions about 

phages in the microbiome remain unanswered: How do phages influence the composition 

of bacteria in the microbiome? Can phages be used to intentionally alter the composition of 

the microbiome? What are the best practices for using phages as therapeutics? If we can 

answer these questions, we will have a much more complete understanding of the human 

microbiome and also have powerful tools for manipulating it. This dissertation begins to 

answer these questions by focusing on human-associated Enterococcus and how it interacts 

with its phages. 

Studying the development of the microbiome early in life proved to be a valuable 

model for antibiotic-driven Enterococcal blooms. The microbiome of preterm infants was 

shown to be highly personalized, yet each were dominated by fast-growing, facultative 

anaerobes due to antibiotic exposure (Wandro, Osborne, et al. 2017). Since the source of 

Enterococcus infections often can be traced to strains colonizing the gut, it is important to 

know when and how these overgrowths occur (Ubeda et al. 2010b). Infants have a distinct 

microbiome from adults that is less robust to antibiotic perturbation (Sharon et al. 2013; 

Gibson et al. 2016). Since antibiotics are often a necessity in infants, future work will need 
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to focus on ways to mitigate the negative effects of antibiotics on the infant microbiome. Of 

particular concern is the permanent loss of beneficial bacterial strains, such as 

Bifidobacteria infantis (Karav et al. 2016; Dethlefsen and Relman 2011b). However, there is 

evidence that supplementation of specific B. infantis strains can be effective (Frese et al. 

2017). Supplementation with beneficial strains, especially after antibiotic usage, could 

prevent the overgrowth of opportunistic pathogens such as Enterococcus. 

The use of metabolomics to study the microbiome has continued to unveil new 

insights into the interactions between humans and microbes. In this dissertation, 

untargeted metabolomics showed close associations with the overall composition of 

bacteria in the microbiome, but no universal biomarkers of disease or dysbiosis were 

observed. The microbiome and metabolome are both highly personalized, thus finding 

shared signals across patients in a noisy background such as fecal samples remains 

difficult. Another challenge for untargeted metabolomics is the lack of annotations for most 

metabolites (Viant et al. 2017). Progress is ongoing toward improving metabolite 

annotations and networking related compounds (Wang et al. 2016). Future work will 

hopefully move towards standardizing the use of metabolomics in microbiome studies, so 

that signals can be compared among datasets. 

Understanding how bacteria and phage co-evolve is an important consideration for 

phage therapy applications. When bacteria evolve resistance to phage, there can be fitness 

trade-offs that decrease bacterial virulence (Chan et al. 2016; Chatterjee et al. 2019). 

However, this outcome has only been observed in a few cases and is likely to be specific to 

a minority of phage-bacteria interactions. Further, environmental conditions have shown 

to alter the evolutionary strategies of bacterial resistance to phage (Alseth et al. 2019). 
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Experimental co-evolution as used in this dissertation can be a powerful tool for 

characterizing bacteriophage interactions and for finding phages that produce these 

desirable outcomes for phage therapy. However, these experiments are not feasible on the 

timescale of clinical applications, so learning to predict the outcomes of co-evolution 

between bacteria and phages would greatly improve the potential of phages as 

therapeutics. Future work characterizing coevolution between bacteria and phage in 

diverse systems and diverse environments will be required before we are able to predict 

the outcomes. 

Phage therapy has made great strides in in recent years (Kortright et al. 2019b). 

Programs such as the Science Education Alliance Phage Hunters Advancing Genomics and 

Evolutionary Science (SEA-PHAGES) have expanded phage banks with large-scale isolation 

and characterization of new phages – some of them have already been engineered and 

implemented in treatments as cocktails (Hanauer et al. 2017; Dedrick et al. 2019). Phage 

therapy is beginning to be applied clinically in select compassionate-use-exemption cases 

in the United States and Western Europe (Kortright et al. 2019a). Several studies have laid 

the groundwork for using Enterococcus phages therapeutically (Khalifa et al. 2016, 2015a, 

2018; Chatterjee et al. 2019). We improve on this groundwork by characterizing multiple 

new Enterococcus phages, showing how they co-evolve with their hosts, and demonstrating 

how they should be combined in phage cocktails. While we utilized a large collection of 

Enterococcus relative to most studies, we have likely not even scratched the surface of  

Enterococcus phage diversity that exists in nature. Future work will be required to isolate 

and characterize new Enterococcus phages, to see if the trends we observe are 
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generalizable beyond our collection of phages. Phage therapy is still in early stages but 

could eventually be part of the solution to the problem of antibiotic resistance. 
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