
UC Davis
UC Davis Previously Published Works

Title
Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome

Permalink
https://escholarship.org/uc/item/3dk660x7

Journal
PLOS ONE, 11(9)

ISSN
1932-6203

Authors
Parker, Glendon J
Leppert, Tami
Anex, Deon S
et al.

Publication Date
2016

DOI
10.1371/journal.pone.0160653
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dk660x7
https://escholarship.org/uc/item/3dk660x7#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE
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Abstract
Human identification from biological material is largely dependent on the ability to character-

ize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment,

sometimes below the level at which it can be amplified by PCR. Protein however is chemi-

cally more robust than DNA and can persist for longer periods. Protein also contains genetic

variation in the form of single amino acid polymorphisms. These can be used to infer the sta-

tus of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we

used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66

European-American subjects. A total of 596 single nucleotide polymorphism alleles were

correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using

Sanger sequencing. Estimates of the probability of resulting individual non-synonymous

single nucleotide polymorphism allelic profiles in the European population, using the prod-

uct rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synony-

mous single nucleotide polymorphism profiles from European–American subjects were

considerably less frequent in the African population (maximum likelihood ratio = 11,000).

The converse was true for hair shafts collected from an additional 10 subjects with African

ancestry, where some profiles were more frequent in the African population. Genetically

variant peptides were also identified in hair shaft datasets from six archaeological skeletal

remains (up to 260 years old). This study demonstrates that quantifiable measures of iden-

tity discrimination and biogeographic background can be obtained from detecting geneti-

cally variant peptides in hair shaft protein, including hair from bioarchaeological contexts.
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Introduction
The forensic science and bioarchaeological communities depend on methods, particularly
DNA typing, that identify individuals in ways that are scientific and statistically valid[1]. This
study provides the scientific basis and seeks to establish the utility of using protein typing as an
additional genetic forensic tool. DNA typing has the ability to statistically place individuals at
specific locations, to associate them with physical evidence, and to determine biometric and
biogeographic genetic information[2–5]. In a bioarchaeological context, ancient DNA allows
calculation of biodistance when compared to other samples and existing biogeographic popula-
tions[6, 7]. DNA methods depend on the presence of DNA template of sufficient quantity and
quality to amplify via PCR and produce genotype information for short-tandem repeat loci
(STR), single nucleotide polymorphisms (SNPs), or mitochondrial DNA haplotypes[2, 7]. A
major limitation of these techniques however, is the susceptibility of DNA to biological, envi-
ronmental, and chemical processes that reduce template length and modify base structure[8].
These processes result in a loss of template DNA in samples, sometimes beyond the capacity of
PCR and sequencing strategies to compensate[9]. In the event that DNA typing yields a partial
or null result, few quantifiable genetic alternatives are available to the investigator[1]. Develop-
ment of identifying technologies, beyond those that depend solely on DNA typing, is a funda-
mental need for the forensic and bioarchaeology communities[1, 10].

Protein is chemically more stable, abundant, and environmentally persistent than DNA[11–
15]. The condition of protein in bioarchaeological samples is commonly used as an indicator of
biomolecular integrity. For example, protein yield and carbon-to-nitrogen atomic ratio are
considered a necessary, but not sufficient, indicator of the presence of residual endogenous
DNA template[11]. Hair keratin, bone collagen, and tooth collagen are now routinely used for
14C dating and in stable light-isotope analysis for palaeodietary and related information[16–
19]. Significantly, protein contains genetic variation in the form of single amino acid polymor-
phisms (SAPs) that result from non-synonymous single nucleotide polymorphisms (nsSNPs)
[20]. Based on exome analysis, there are over 35,000 nsSNPs with genotype frequencies greater
than 0.8% in the European–American (EA) population (Exome Sequencing Project (ESP), evs.
gs.washington.edu/EVS/; S1 Fig)[21]. Genetically variant peptides (GVPs) containing SAPs
can be identified using mass spectrometry-based shotgun proteomics[20, 22]. Identification of
these peptides allows imputation of nsSNP alleles in an individual genome regardless of the
presence of DNA template in the sample.

The status of separate imputed nsSNP alleles can be aggregated to provide a profile of
genetic variation for a particular individual. The probability of a particular profile occurring in
a population can then be estimated by applying the product rule[2, 23]. Overall probabilities
vary as a function of genetic background, for reasons including selection, founder effects,
genetic drift, and admixture[21, 24, 25]. Therefore, as with STR allele profiles and mtDNA hap-
lotypes, imputed nsSNP alleles can potentially be used to obtain both individualizing and bio-
geographic information[26–28].

To test the feasibility of protein-based measures of human identification, we focused on the
human hair shaft proteome. Hair is often a forensically relevant component of crime scenes
and archaeological sites, where it persists under a wide range of environmental conditions[18,
29–31]. The hair shaft is composed primarily of coiled-coil proteins with a high degree of inter-
molecular disulphide and isopeptide covalent bonds that account for both the physical flexibil-
ity and robustness of the structure [32, 33]. Despite the physical properties of hair, it is a poor
source of nuclear DNA template due to keratinocyte apoptosis during hair shaft biogenesis,
subsequent weathering in life, and biological and environmental processes post-mortem[34,
35]. Regardless of the status of residual nuclear or mitochondrial DNA, hair retains a high
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protein content and more than 300 proteins have been detected in the hair proteome [36, 37].
This protein population provides a sufficiently broad representation of the genome to test the
validity of using proteome-based nsSNP imputation to develop forensically and bioarchaeolo-
gically useful measures of identity and biogeographic origin.

Materials and Methods

Tissue Procurement
Cranial hair shafts and buffy coat DNA were collected from a cohort of 60 self-identifying
unrelated European–Americans (EA1, Sorenson Forensics LLC, Salt Lake City). Genomic
DNA from each subject was screened using the Investigative LEAD™ Ancestry DNA Test (Sor-
enson Forensics LLC, Salt Lake City, UT) and genotype data was generated for 190 SNPs that
are ‘Ancestry Informative Markers’, which span all 22 autosomal chromosomes[38]. Nine indi-
viduals had measurable non-European admixture and were excluded from the analysis (S1
Table). An additional collection was conducted using cranial hair shaft and nuclear DNA from
another cohort of self-identified unrelated European–Americans (EA2, n = 15). All material
was collected using protocols, informed consents, and questionnaires that were approved by
the Institutional Review Boards at Utah Valley University (IRB #00642) and Lawrence Liver-
more National Laboratory (IRB#11–007). Hair shaft material was also collected from a cohort
of five African-American and five Kenyan subjects[39]. Cranial hair shafts were additionally
collected from six individuals from two separate archaeological assemblages excavated in Lon-
don and Kent: three individuals (S1–S3), dating from circa 1750–1850, and three individuals
(S4–S6) from a cemetery in active use 1821–1853.

Proteomic Data Acquisition and Identification of Single Amino Acid
Polymorphism-containing Peptides
Hair from subjects was processed physically and biochemically and data was acquired as
described (S1 Methods). Briefly, hair was ground or milled; treated in a solution of urea, DTT,
and detergent; alkylated; and then proteolyzed with trypsin. Resulting peptide mixtures were
analyzed using tandem liquid chromatography mass spectrometry. The resulting proteomic
datasets were converted to the Mascot generic format and analyzed using three different
approaches: Mascot (software version 2.2.03, Matrix Science, Inc., Boston, MA), X!Tandem,
using the GPMmanager software (www.thegpm.org, release SLEDGEHAMMER (2013.09.01)),
or X!Tandem using the Petunia Graphic User Interface (TANDEM CYCLONE TPP, down-
load = 2011.12.01.1 –LabKey, Insilicos, ISB). A custom protein reference database was used (S1
Methods; https://zenodo.org/record/58223; DOI: 10.5281/zenodo.58223) to ensure the identifi-
cation of genetically variant peptides by both Mascot and the Petunia GUI peptide spectra
matching algorithms[20]. Resulting peptide lists were screened for the presence of genetically
variant peptides and identifications were collated for each subject. Imputations made through
the use of GPMmanager or the use of the customized reference database, in either X!Tandem
or MASCOT, were compared for redundancy (S2 Table). The mass spectrometry proteomics
data that has been submitted to the Global Proteome Machine (www.thegpm.org, S1 Methods)
can be publically accessed (S1 File)[40].

Validation of Identified Genetically Variant Peptides
Identified candidate genetically variant peptides were filtered to reduce false positive assign-
ment using the following criteria for exclusion: low quality expectation scores (X!Tandem,
log(e)< –2; Mascot, expectation score>0.05), if the corresponding nsSNPs were distributed at
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less than 0.8% in the sample population (minor allelic frequency< 0.4%), the presence of mas-
ses in a MS/MS fragmentation spectrum from a GVP consistent with the alternative allele, the
incorporation of biological post-translational modifications in the assigned sequence (such as
phosphorylation), and high variance between theoretical and observed primary masses (> 0.2
Da). Amino acid polymorphisms assigned due to likely chemical modification or conversion
were also excluded from the analysis (www.unimod.org)[41–43]. Rejected single amino acid
polymorphisms include methionine to phenylalanine, asparagine to aspartate, glutamine to
glutamate and cysteine to serine[41, 43, 44]. Peptides that were potentially derived from para-
logous sequences, or that were potentially expressed in more than one gene product, were
removed from the analysis (S2 File). Imputed nsSNP loci were directly validated by Sanger
sequencing of the subjects’ nuclear DNA (S1 Methods).

Statistical Treatment of Individual Imputed nsSNP Profiles
An estimation of the probability of a given imputed nsSNP allele profile being detected in a
sample population was calculated using a frequentist estimation of allele frequency, or fre-
quency of an allele combination, within the reading frame of a gene (Pr(imputed nsSNP allele
gene combination|population)), and a Bayesian application of the product-rule[2, 23]. The
occurrence of alleles, or allele combinations, was counted in European (n = 379) and African
(n = 246) sample populations (S3–S8 Tables, www.1000genomes.org; Phase 1)[45]. The 1000
Genome Project sample populations were selected as sample populations because the African
population did not have European admixture. The final probability of an individual SNP, or
SNP combination, occurring within a gene reading frame, was estimated as (x + ½)/(n + 1),
where x is the number of individuals with a given SNP, or combination of SNPs, in a sample
population of size n[46]. The above expression represents the Bayesian posterior mean of a
binomial probability using the Jeffreys Beta (½, ½) prior, which has the advantage of giving a
non-zero estimate of the population probability even for x = 0[46, 47]. Full independence
between genes was assumed. The effect of observed allele variation on the overall profile proba-
bility was estimated by parametric bootstrap resampling from a binomial (n, (x + ½)/(n + 1))
distribution for each gene, multiplying the resulting probability estimates across genes, and
taking the 5th and 95th percentiles of the resampling distribution (90% CI)[47]. A comparison
of the imputed nsSNP profile probability in the sample European and African population was
calculated as a likelihood (L) ratio (L = Pr(profile|EUR population)/Pr(profile|AFR popula-
tion))[23].

Results

Genetically Variant Peptides Can Be Used to Impute nsSNP Alleles
Cranial hair shafts and corresponding buffy coat DNA were obtained from two cohorts of
European–American subjects (EA1, n = 51; EA2, n = 15). Peptides were generated from hair
shaft material by milling, denaturation, reduction, alkylation, and trypsinization. Proteomic
datasets were obtained using liquid chromatography tandem mass spectrometry (LC-MS/MS).
Proteomic analysis of the European American cohorts EA1 and EA2 identified, respectively,
182 and 401 proteins that were found in datasets from 15% or more of the individuals in each
cohort (S3 and S4 Files). The most abundant proteins identified in each individual proteome
were keratins and keratin-associated proteins, but proteomes also consistently included under
characterized proteins such as calmodulin-like protein 3, protein S100A3, V-set and immuno-
globulin domain-containing protein 8, and selenium-binding protein 1[36, 37]. Consistent
with the biogenesis of hair shaft, other protein classes were also detected, although at lower lev-
els[35]. Included were housekeeping proteins, metabolic enzymes, and proteins associated with
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cellular structures such as the nucleus, mitochondrion, plasma membrane, and lysosome [36,
37]. Across all samples, the total number of peptides detected ranged from 376 to 18,563 (�x � s
= 3,270 ± 2,591, median = 2,281) and yields of unique peptide spectral matches ranged from
156 to 2,011 (�x � s = 708 ± 355, median = 615).

Publicly available peptide spectral matching software was employed to make sequence data-
base-based peptide identifications (X!Tandem and GPMmanager, S1 Methods). A custom ref-
erence protein database was developed for use with X!Tandem that contained all single amino
acid polymorphisms (SAP) with a greater than 0.4% allelic frequency in either European–
American or African-American sample populations (evs.gs.washington.edu/EVS). In the case
of GPMmanager an open-source database (www.thegpm.org) was used[48]. Genetically vari-
ant peptides (n = 89) containing SAPs from 53 SNP loci in 33 genes (S9 Table) were identified
in each individual proteomic dataset and collated for each individual (S5–S7 Files).

Direct validation of SAP-containing, genetically variant peptide (GVP) was then conducted
through Sanger sequencing of 32 loci in 22 genes of the subjects’DNA (S2 and S10 Tables).
The genotype at each non-synonymous SNP locus for each individual was collated and com-
pared to the imputed alleles based on identification of GVPs in proteomic datasets. A total of
608 imputed genotype determinations were made (Fig 1A, S2 Fig, S2 and S10 Tables) of which
596 were true positives (TP) that were confirmed with DNA sequencing (blue squares) and 12
were false positives (FP, red squares)[49]. Alleles that were not represented by GVPs in the
proteomic datasets (FN, false negatives) were indicated with light grey squares. The false dis-
covery rate (FP/(FP+TP) was 1.98% and the overall positive predictive value (PPV, TP/(TP
+FP)) was 98.3%. The sensitivity of each genetically variant peptide, defined as the portion of
correct imputations made out of all possible imputations (TP/(TP+FN)) and was calculated,
along with positive predictive value (PPV), for each individual GVP (Fig 1B, S11 Table)
[49]. Only 5 peptides had positive predictive values that were not 100%, whereas sensitivity
(TP/(TP+FN)) ranged widely.

Estimation of Individual Imputed nsSNP Profile Probabilities
The aggregate of identified SAP-containing genetically variant peptides represents a consider-
able degree of genetic variation. If the imputed individual nsSNP profiles are present at a
sufficiently low proportion in the population, they can be useful to forensic investigators or
archaeologists. To estimate the probability of individual nsSNP profiles in the population, a
modification of the product rule was used. The observed number of SAP alleles, or combina-
tion of alleles, within an open reading frame of a gene, was counted in a sample population to
estimate the probability of each allele occurring in that population. The product of all detected
alleles, or allele combinations, was used to estimate the probability that the overall imputed
nsSNP profile occurred in the sample populations (Fig 2A). When estimated using a sample
European population, the resulting overall profile probabilities ranged from 9.98 x 10−1 to 7.21
x 10−5 (�x � s = 1.65 x 10−1 ± 2.20 x 10−1, median = 7.26 x 10−2) (Fig 2B). To model stochastic
sampling effects, confidence intervals (90%) for the imputed nsSNP profile probabilities were
estimated by parametric bootstrap resampling[47]. Imputed nsSNP profile probabilities
improved exponentially as a function of proteomic dataset quality (r = 0.6811, n = 51,
p< 0.001; S3 Fig).

Estimation of Individual Imputed nsSNP Profile Probabilities in Other
Populations
The allelic probabilities of many SNPs show considerable variation among populations[50–54].
When the probability of the overall imputed nsSNP profile was estimated using frequencies of
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nsSNP alleles in the sample population of African individuals, the profile probabilities decreased
to a range of 8.56 x 10−1 to 1.90 x 10−9 (�x � s = 5.03 x 10−2 ± 1.41 x 10−1, median = 3.37 x 10−3).
This indicated that the observed profile probabilities in the sample African population were lower
compared to those in the sample European population (Fig 2C). This is consistent with the bio-
geographic origin of the subjects. When datasets from African-American and Kenyan individuals
were also analyzed, and estimates of imputed nsSNP profile probabilities obtained for both popu-
lations, different probability patterns emerged. Contrary to imputed nsSNP profiles from Euro-
pean–American donors, the profile probabilities of some African American and Kenyan
individuals were less frequent in the European relative to the African population (Fig 2C). Both
populations contained individuals that distributed in the probability space close to the line of
equal likelihood. When quotients of the values for each individual were calculated, likelihood
ratios were obtained for the European relative to African populations (L = Pr(profile|EUR popu-
lation)/Pr(profile|AFR population)). European-American hair shaft protein samples produced

Fig 1. Direct validation of imputed non-synonymous SNP alleles. A) Genetically variant peptides (GVPs) that contained single amino-acid
polymorphisms (SAPs) were identified in both European-American cohorts (EA1 and EA2) and collated for each subject. Imputed nsSNP
alleles (Gene Name = GN, SNP accession number = rs#, allele nucleotide = nuc) were directly compared to the genotype resulting from direct
Sanger sequencing (S1 Methods). Correctly imputed nsSNP alleles (TP, true positives) are indicated by a blue square. Imputed alleles that
were incorrectly predicted (FP, false positive) are indicated by red squares. Alleles that were identified using Sanger sequencing, but did not
contain a resulting GVP in the matching proteomic dataset (FN, false negative) are indicated by light green squares. Alleles absent in both
subjects DNA and in resulting proteomic datasets (TN, true negatives) are indicated by white squares[49]. Failed Sanger sequencing
determination of nsSNP allelic status is indicated by grey.B) The effectiveness of each SAP-containing peptide to impute nsSNP alleles was
also quantified. The sensitivity of each genetically variant peptide, measured as the proportion of nsSNP-alleles that are correctly detected and
imputed (TP/(TP+FN)), was calculated as a percentage (log10(%). The positive predictive value (PPV) of genetically variant peptide-based
SNP imputations was calculated as the percentage of correct validated SNP imputations of all imputations (TP/(TP + FP); log10(%))[49]. C)

doi:10.1371/journal.pone.0160653.g001
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likelihood ratios that ranged from 6.50 x 10−1 to 5.85 x 103 (�x � s = 2.82 ± 9.72 x 102, median =
1.50 x 101, Fig 2D). Likelihood ratios derived from African-American and Kenyan samples ran-
ged from 1.07 x 101 to 1.15 x 10−3 and 1.21 x 101 to 9.9 x 10−3 respectively (Fig 2D). This observa-
tion indicates that imputed nsSNP allele profiles derived from hair shaft proteins have the
potential to provide quantifiable statistical information about the relative biogeographic ancestral
background of individuals.

Fig 2. Imputed nsSNP profile probabilities in European and African populations. A) The probability of an overall individual nsSNP profile in the
population (Pr(profile|population)) was estimated by determining the probability of detected nsSNP alleles, or allele combination, in each gene (Pr
(nsSNP gene profile|population)), and then using the product rule to multiply these probabilities together (Pr(overall profile|population)). B) The
probability of overall imputed nsSNP profiles occurring in the European population (Pr(profile|EUR population)) was calculated using imputed nsSNP
alleles from individuals in the two European-American cohorts (EA1 and EA2) and the product rule. Values are presented as a logarithm (log10(Pr
(profile|EUR population))). Confidence intervals (90% CI) are estimated using parametric bootstrapping. C) The overall imputed nsSNP profile
probability in the African population was also calculated (Pr(profile|AFR population)) and plotted versus the probability of the profile occurring in the
European population (Pr(profile|EUR population)). Confidence intervals (90%CI) were estimated using parametric bootstrapping. In addition to
European–American subjects (red), imputed nsSNP profile probabilities were also estimated from proteomic datasets derived from an African-
American (green) and Kenyan (blue) cohort. The line of equal profile probability in the European and African population is indicated (dotted line). D)
The likelihood of hair samples coming from a European relative to African genetic background was calculated as the ratio of overall imputed nsSNP
profile probabilities in the European and African populations (EUR/AFR = Pr(profile|EUR population)/Pr(profile|AFR population)); European-American
subjects (red), African-American subjects (green), and Kenyan subjects (blue) are indicated.

doi:10.1371/journal.pone.0160653.g002
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Comparison of Profile Probabilities from Imputed nsSNPs and
Mitochondrial DNA Haplotypes
While DNA is degraded as a function of biological processes, mitochondrial DNA has a higher
template number than nuclear DNA and is more likely to survive apoptotic and subsequent
environmental processes[35]. The current best practice to gain forensically informative genetic
information from hair shafts is to obtain the mitochondrial DNA haplotype and determine the
probability of occurrence in reference sample populations[55]. Cranial hair shafts and buffy
coat DNA were collected from a cohort of European-American subjects (EA2) and mitochon-
drial haplotypes obtained by sequencing the D-loop of mitochondrial DNA. The probability
that each mitochondrial sub-clade haplotype would be observed in a database of a Utah sample
population (n = 9,372) was estimated and ranged from a value of 2.13 x 10−1 to 1.60 x 10-3

(�x � s = 5.59 x 10−2 ± 8.21 x 10−2, median = 1.66 x 10−2) (Fig 3, S12 Table). The probability of
individual imputed nsSNP profiles ranged from 2.80 x 10−1 to 7.21 x 10−5 (�x � s = 5.63 x 10−2

± 8.10 x 10-2, median = 2.22 x 10−2) in the same cohort (Fig 2B). In most subjects (9 out of 15),
profiles of genetically variant peptides were more discriminatory than mitochondrial
haplotypes.

Changes in the Proteomic Profile as a Function of Taphonomic
Processes
Six archaeological hair samples were collected from the area of London and Kent: three indi-
viduals (S1-S3), dating from circa 1750–1850, and three individuals (S4-S6) from a cemetery in
active use from 1821 to 1853. The samples were ground, reduced and alkylated, and treated
with trypsin in the presence of Protease-Max (Promega) or deoxycholate (S1 Methods). Digests
from 1 mg of sample were analyzed by LCMS/MS on a high-resolution qToF, and the resulting
data processed using X!Tandem and an open-source database (www.thegpm.org). Absolute
protein levels in the hair shaft proteome, determined by the frequency by which expected pep-
tides appeared in a dataset, were collated and values summed for each individual in one of the
European-American (EA2, n = 15) and archaeological cohorts (n = 6) (www.thegpm.org)[56].
Proteins that were found in proteomic datasets from 15% or more of individuals in the cohort
were arranged in a neighbor-joining tree based on sequence homology (y-axis), and their abun-
dance indicated through conditional formatting with yellow color (Fig 4A). There was a signifi-
cant reduction in hair proteome complexity in the archaeological samples. The reduction in
complexity of the proteome in these samples results in greater proportional representation of
remaining proteins, mainly trichocyte keratins (Types I and II), and cysteine-rich keratin-asso-
ciated proteins. Non-structural proteins were apparently degraded or removed through envi-
ronmental processes (Fig 4B)[15]. This is consistent with the observation that microfibrillar
structures, and particularly the sulfur-rich inter-microfibrillar matrix, persist longer in the
environment relative to other internal anatomical components of the hair shaft[57].

Detection of Genetically Variant Peptides in Archaeological Hair
Samples
Peptides containing SAPs were identified in each dataset and collated for each individual
archaeological sample, and the profile of nsSNP alleles was imputed (Fig 5A). The probability of
each imputed nsSNP profile was estimated. The values ranged from 6.69 x 10−1 to 6.76 x 10−3

(�x � s = 1.76 x 10−1 ± 2.49 x 10−1, median = 7.85 x 10−2) (Fig 5B). When the same calculations
were conducted using occurrence of nsSNPs in the African population, profile probabilities
were relatively less, ranging from 5.91 x 10−1 to 4.90 x 10−5 (�x � s = 1.06 x 10−1 ± 2.38 x 10−1,
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median = 1.19 x 10−2) (Fig 5B). The likelihood ratio of nsSNP profile probabilities from the
European and African population ranged from 1.13 x 100 to 1.38 x 102 (�x � s = 4.22 x 101 ±
5.78 x 101, median = 1.10 x 101) (Fig 5C). The positive likelihood values indicate that the
imputed nsSNP profiles are more common in the European population, which was consistent
with the archaeological location of the hair samples.

Discussion
Genetically variant peptides that contain single amino acid polymorphisms (SAP) detected in
hair shaft proteomic datasets were used to impute the status of SNP alleles in subject genomes.
An estimate of the proportion of the European population containing the overall imputed non-
synonymous SNP (nsSNP) profile was then calculated using the product rule. Based on differ-
ences in imputed nsSNP allelic frequencies in different genetic backgrounds, likelihood mea-
surements were calculated for European relative to African genetic backgrounds, with distinct
patterns emerging as a function of genetic background. The resulting nsSNP allele profile prob-
abilities were of the same order of discrimination as mtDNA haplotypes. When the approach

Fig 3. Comparison of probability estimates based on imputed nsSNPs andmitochondrial DNA haplotype. The mitochondrial DNA
haplotype and subgroup from one of the European-American cohorts (EA2, n = 15) were classified, compared to a database of subjects
from an American sample population (Utah, n = 9,372), and the logarithm of haplotype probability was calculated (log10(Pr(mtDNA
haplotype|Utah population)), black bars). Genetically variant peptides containing single amino acid polymorphisms were identified in the
hair shaft proteomic datasets of the same subjects, an overall profile of imputed nsSNP loci determined, and logarithm of the probability of
each profile occurring in the European population was calculated as described in the Materials and Methods section (log10(Pr(imputed
nsSNP profile|EUR population)), red bars). Confidence intervals (90% CI) were estimated using parametric bootstrapping. Each measure
is represented using the same axis (log10(Pr(profile|population))).

doi:10.1371/journal.pone.0160653.g003
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Fig 4. Hair shaft proteomic profile in modern and archaeological samples. A) Absolute protein abundance from all
datasets corresponding to a cohort of European-American subjects (EA2, subjects 1 to 19) and archaeological subjects
(S1 to S6) was measured (www.thegpm.org) and collated. Proteins that appeared in proteomic datasets of 15% or more
of the subjects (n = 401) were aligned as a paralogous neighbor-joining tree in order to cluster detected proteins with
higher levels of homology (www.uniprot.org.). The neighbor-joining tree based on protein paralogy is aligned on the
vertical and subjects on the horizontal. Protein abundance is indicated by conditional formatting (maximum value = yellow,
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was extended to bioarchaeological hair samples, these individual measures of discrimination
and likelihood of biogeographic background, were also obtained.

There is a long history of using hair shafts for anthropologic and forensic analyses[58].
Recently hair shafts collected from an extinct Paleo-Eskimo (~4,000 yr BP) and an Australian
Aboriginal (~100 yr BP) were used to obtain complete mitochondrial and nuclear genomes[59,
60]. These are exceptional cases using gram quantities of hair; most hair shafts are a poor
source of nuclear DNA, and obtaining full STR-profiles is problematic and not routinely rec-
ommended by the Scientific Working Group on Materials Analysis (SWGMAT)[34, 35, 61–
64]. Current best practice includes sequencing of hair shaft mitochondrial DNA to identify
haplotype and sub-clade. This method provides identification and biogeographic information
(Fig 3), but is less discriminating than STR-typing, requires careful handling and sequencing,
and is susceptible to environmental factors[55, 65, 66]. Other hair shaft-based forensic meth-
ods can be problematic. Microscopic hair comparison, while heavily used historically, does not
have the potential for rigorous statistical and scientific analysis[1, 29, 62, 67, 68]. Previous
attempts to use abundance patterns of solubilized hair proteins in two-dimensional electropho-
resis protein gels were insensitive, irreproducible, and proved susceptible to environmental fac-
tors[69–71]. However, the relative abundance patterns of expressed proteins in proteomic
datasets have been used to develop measures of biodistance in mouse lines and human genetic
groups[39, 72].

The ability of a single amino acid polymorphism (SAP) to impute the status of a non-synon-
ymous single nucleotide polymorphism (nsSNP) assumes that only one SNP accounts for the
change in protein primary structure and vise versa. Clearly there is degeneracy in the genetic
code and more than one nucleotide change can account for a given amino acid. However, the
GVPs analyzed in this study originate from one position on the genome and genetic databases
allow for accurate estimation of the distribution of a particular SNP in a sample population.
The SNPs analyzed in this study are common (MAF> 0.8%) and, with some exceptions,
widely distributed across all current human populations[24, 73, 74]. The originating random
nucleotide mutations analyzed in this study occurred in an ancestor to all extant human popu-
lations, possibly even pre-dating the emergence of anatomically modern traits[24, 75]. While
theoretically another novel mutation may account for an identical single amino acid polymor-
phism, the probability of this event would be highly rare and unlikely. Of the SNPs character-
ized in this study there is no evidence of a tri-allelic SNP where two alleles account for a single
amino acid polymorphism. Because the imputation is based on the observation of GVPs, the
genotype, instead of the allelic, frequency is the appropriate basis of estimating probability. The
probabilities of both corresponding GVPs, major and minor allele, will always have a sum that
is greater than one (S9 Table). Other mechanisms also have the potential to prevent imputation
of SNP alleles based on detection of GVPs. Chemical or biological modification of a peptide
may potentially result in mass shifts at specific amino acids that may correspond to the mass
shift of a genetically caused single amino acid polymorphism. This contingency is dealt with by
focusing on genetically variant peptides that result from common nsSNPs, which are more
likely, eliminating amino acid polymorphisms that have the same mass shift as commonly
occurring peptide modifications, and excluding fragmentation mass spectra that show signa-
tures of chemical modification or fall below quality thresholds.

minimal value = black).B) The function of individual proteins was obtained (www.uniprot.org) and collated for both
modern (EA2, 1 to 19) and archaeological (S1 to S6) hair shaft samples (categories = structural, metabolism, protein and
RNA regulation, membrane proteins, and miscellaneous). The relative abundance of the different protein classes is
indicated by area. The size of each circle is proportional to the relative abundance of total detected peptides in each
sample class.

doi:10.1371/journal.pone.0160653.g004
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Fig 5. Imputed nsSNP loci in archaeological hair shaft proteomes. A) Hair was obtained from six
individuals from two separate post-medieval archaeological assemblages excavated in London and Kent (S1
to S6) and proteomic datasets obtained (S1 Methods). Peptides containing single amino acid polymorphisms
(Gene Name; GN) were identified, collated, and nsSNP loci and alleles imputed (dbSNP identifier and
nucleotide = rs# and nuc) in Subjects S1 to S6. The proportion of each allele in the European (EUR) and
African (AFR) population is included.B) The overall imputed nsSNP profile probability (Pr(profile|population))
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Identification of peptides in a tandem LC-MS/MS dataset depends on peptide spectral
matching software that statistically compares peptide collision-induced dissociation (CID)
fragmentation spectra with masses derived from a theoretical tryptic peptide amino acid
sequence in a protein reference database[76–78]. Standard databases, such as the RefSeq or
UniProt protein database, consist solely of reference protein sequences resulting in the absence
of non-reference variant alleles in the resulting assigned peptide lists. Databases therefore need
to be customized to contain all possible SAPs. Large comprehensive databases, however, are
highly inefficient and result in loss of sensitivity[76, 78, 79]. The approach used in this study
balanced these factors and generated a customized database containing an additional sequence
of each reference protein but with the inclusion of all SAPs with an allelic frequency of greater
than 0.5% in either the European or African populations in a single protein sequence[76, 78,
79]. The removal of rare (MAF< 0.5%) nsSNPs from the analysis decreased the likelihood of
false positive assignment, in which a mass shift at a point on a peptide may be falsely attributed
to a relatively unlikely genetic, as opposed to chemical or biological, mechanism. Further
refinements to the reference protein databases, generation of spectral databases from synthetic
peptides, and search strategies incorporating de novo protein sequencing and redundant search
engines will all result in greater sensitivity, predictability, and efficiency of genetically variant
peptide identification[80–83].

The ability of detected SAP-containing peptides to accurately impute the status of corre-
sponding nsSNP alleles was tested through direct Sanger sequencing of each subject’s DNA.
Almost all peptides had positive predictive values of 100%, indicating that GVPs can accurately
impute the associated SNP allele in a subjects’ genome. Naturally for GVPs with a high geno-
type frequency, or high prevalence, a high predictive value is less informative[49, 84]. Some
apparent SAP-containing peptides, however, were false-positive assignments that fell into two
categories: those with no or few correct assignments (KRT85_D189N, KRT32_R369Q), and
those that were highly sensitive and specific but with an occasional false-positive assignment
(KRT31_A82V, KRT32_T395M). The former category was not used for probability estimation.
The latter category requires a complete replication of the analysis and comparison with data
obtained from synthetic peptides. The sensitivity of SAP-containing peptides to detect the sta-
tus of an nsSNP allele ranged broadly. Sensitivity values (TP/(TP+FN)) will increase as sample
processing and data acquisition protocols improve, with better instrumentation, and refine-
ments in bioinformatics processing[49]. Reduction of sample size to a single hair is a necessary,
and we believe achievable, requirement for forensic casework analysis and physical anthropol-
ogy fieldwork samples.

To estimate the probability that an overall individual nsSNP profile is present in a given pop-
ulation, two steps were taken (Fig 2A). Firstly, the probability of detected nsSNP alleles, or com-
bination of nsSNP alleles, in each gene (Pr(nsSNP gene combination|population)) was estimated
by directly counting the occurrence of each gene profile in the sample population and dividing
by the sample size, a statistically frequentist approach that makes no assumptions about depen-
dencies within the gene boundary (www.ensembl.org)[23]. This was refined using a Bayesian
posterior mean of a binomial probability using the Jeffreys Beta (½, ½) prior, which has the
advantage of giving a non-zero estimate of the population probability even when the nsSNP
allele is not present in the sample reference population[46, 47]. Secondly, the probabilities of

in the European (EUR, black bars) and African (AFR, grey bars) population was calculated as the product of
imputed nsSNP, or combination of nsSNP, probabilities for each gene.C) Likelihood measurements of
European compared to African genetic origin were calculated as a quotient of overall imputed nsSNP profile
frequencies (Pr(profile|EUR population))/(Pr(profile|AFR population)).

doi:10.1371/journal.pone.0160653.g005
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imputed nsSNP alleles in each gene were then multiplied together to provide an estimate of the
overall imputed nsSNP profile in the population (Pr(profile|population)). The Bayesian use of
the product rule in this context assumes independence between the genotype status of nsSNP
allele, or allele combinations, in one gene and those in other genes. The trichocyte keratin genes
reside in two clusters on chromosomes 17 (Type I keratins) and 12 (Type II keratins) that are
roughly 140 kb and 300 kb long respectively[85–87]. Some of these genes therefore are within
the typical linkage disequilibrium range of 60 kb[88]. A formal study of linkage dependencies
therefore needs to be conducted. One solution would be to extend the boundaries of linkage dis-
equilibrium to incorporate the whole gene cluster and account for evolutionarily conserved
haplotypes.

Each estimate of nsSNP allele probability, and consequently imputed nsSNP-profile proba-
bility, exists within a confidence interval surrounding the sample value. To approximate the
effect of a binomial distribution of allelic occurrence in the sample population on the overall
imputed nsSNP-profile probability, a parametric bootstrapping approach was used, to provide
a confidence interval surrounding the calculated profile probability[23, 46, 47, 89–91]. Applica-
tion of the these calculations to proteomic data obtained from a forensic context requires an
understanding of underlying population genetics[50]. For the purposes of developing match
probabilities, ideally nsSNPs would be selected that are uniformly distributed across all popula-
tions. However selection is necessarily restricted to SNPs represented in proteomic datasets.
The most conservative approach therefore would be to use the highest, least discriminating,
probability derived from candidate genetic groups.

The individual power of discrimination obtained by this method currently is roughly equiv-
alent to that obtained using mtDNA haplotype analysis, the current best practice for obtaining
genetic information from hair shafts (Fig 3, S12 Table). Ideally incorporation of both measures
into a single measure of discrimination, or for that matter incorporation with partial STR-pro-
file probabilities, would maximize the probative value of hair shafts. Both imputed nsSNP
profile probabilities and mtDNA haplotype probability have non-uniform biogeographic dis-
tributions, so some statistical dependence is likely[92]. Elucidation of dependence patterns is
necessary to integrate the results of both methods, which may be become possible with the
advent of larger cohorts of high quality genomic datasets. Integration of imputed nsSNP
profile probabilities with partial STR-based DNA typing profiles would be easier since both are
autosomal.

The utility of the method on compromised samples was demonstrated on archaeological
hair samples that were up to 250 years old. Approximately 1 mg of sample was used to obtain
the datasets used in that analysis (S1 Methods). Environmental chemistries and taphonomic
processes reduced the complexity of the proteome derived from the sample, and consequently
reduced the scope of proteins available for imputed nsSNP loci analysis. This effect was allevi-
ated by increased protein coverage of remaining keratins, and analyses were still able to provide
usable estimates of probability and allow comparison of profile probabilities in other biogeo-
graphic populations.

This study explores the theoretical and practical basis for using identification of SAP-con-
taining peptides in proteomic datasets to impute nsSNP alleles in an individual’s genome. The
resulting profile of imputed nsSNP alleles allows an estimation of the probability that a given
profile exists in the population and allows likelihood measures of biogeographic background
[93]. Additional steps need to be taken for the method to be applied in a forensic, as well as
bioarchaeological, context[94]. Sensitivity needs to increase to the point where sufficiently dis-
criminating information can be obtained from a single hair, or fraction of a single hair, to jus-
tify consumption of valuable or legally relevant samples. Statistical treatments of the nsSNP
loci used in the study need formal independent validation. With the exception of DNA analysis
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no forensic method has been rigorously shown to have the capacity to consistently, and with a
high degree of certainty, demonstrate a connection between evidence and a specific individual
or source[1]. The use of SAP-containing peptides to impute the allelic status of non-synony-
mous SNPs provides the potential for a complementary and, if necessary, alternative method
for use in forensic and bioarchaeological practice.

Supporting Information
S1 Fig. Observation density of missense SNPs in exomes of European-American and Afri-
can-American individuals.Missense SNP variants (nsSNP) were identified and counted in the
NHLBI Exome Sequencing Project (ESP) database (Exome Variant Server, NHLBI GO Exome
Sequencing Project, evs.gs.washington.edu/EVS/) [accessed August 1, 2013]. The Exome Vari-
ant Server contained 748,407 nsSNPs in the European–American (red) and/or African-Ameri-
can population (green). Counts of minor alleles (nsSNP #) at, or above, indicated frequencies
(Minor Allele Frequency (%)) are plotted.
(TIFF)

S2 Fig. Validation of imputed non-synonymous SNP profiles. Genetically variant peptides
(GVPs) that contained single amino-acid polymorphisms (SAPs) were identified in both Euro-
pean-American cohorts (EA1 and EA2) and directly evaluated for the ability to impute non-
synonymous SNP loci in corresponding subjects’ DNA (Gene Name = GN, SNP accession
number = rs#). Imputed nsSNP alleles (allele nucleotide = nuc) were directly compared to the
genotype resulting from direct Sanger sequencing (S1 Methods). Correctly imputed nsSNP
alleles (TP, true positives) are indicated by a colored square containing the respective nucleo-
tide. Genetically variant peptides identified using X!Tandem and a customized database are
indicated by yellow. Peptides identified using the GPMmanager are indicated by blue, with
redundant identifications indicated by green. False-positive identification (FP) is indicated by
red squares. Alleles that were identified using Sanger sequencing, but did not contain a result-
ing GVP in the matching proteomic dataset (FN, false negative) are indicated by pink. Alleles
absent in both subjects DNA and in resulting proteomic datasets (TN, true negatives) are indi-
cated by white squares[49]. Failed Sanger sequencing determination of nsSNP allelic status is
indicated by grey. Genetically variant peptides that could not be localized to a single genomic
locus, could not be used for imputation and are not shown. Genetically variant peptides are
sorted based on increasing proportion of the minor allele in the European Population (1000
Genome Project, phase 1).
(TIFF)

S3 Fig. Imputed nsSNP profile probability as a function of proteomic dataset quality. The
power of discrimination, or proportion of overall imputed nsSNP profiles in the European
population (Pr(imputed nsSNP profile|EUR population)), was calculated for each European-
American subject (EA1, S1 Methods), and plotted against the corresponding number of unique
peptides identified in the proteomic dataset (red circles). Confidence intervals (90%) were cal-
culated using parametric bootstrapping (S1 Methods). To guide the eye, a line indicating expo-
nential regression is also plotted (y = 1.73e−0.005x, r = 0.6811, P< 0.0001).
(TIFF)

S1 File. Publically accessible proteomic datasets of hair shaft trypsin digests.Mass spec-
trometry datafiles in either MzML or Mascot Generic Format (mgf) were submitted to the
Global Proteome Machine (www.thegpm.org) for peptide spectra matching using the X!Tan-
dem algorithm (X! Tandem Piledriver (2015.04.01.1)). Default search parameters were
used including use of the GRCh38 (ENSEMBL) male reference protein database, complete
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carbamidomethylation of cysteine (C+57), and potential modification of asparigine (N) and
glutamine (Q) residues by deamidation (N+1, Q+1) and methionine (M+16) by oxidation.
Non-default parameters that were used include the use of the point mutation (sAPS) function
and inactivation of the anonymous function. Processed data files in XML format are anony-
mously accessible using the Global Proteome Machine accession numbers (GPM#) provided.
(PDF)

S2 File. Analysis of nsSNP loci for uniqueness and paralogy. Peptides that occur in more
than one gene product cannot be used for imputation. Every peptide therefore was analyzed by
submission to the PROWL website for protein information (http://prowl.rockefeller.edu/
prowl/proteininfo.html) and searched against the IPI human database. Only peptides with a
match to a single gene product, or no matches, were accepted as unique. Additional scrutiny,
specifically the elimination of the possibility of false polymorphism due to paralogy, was con-
ducted by submitting each sequence to a tblastn search (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
and analyzing the resulting sequence alignments. In the event that a tblastn search did not
conclusively eliminate the possibility of false paralogy (as is the case with rs114488848,
rs140635030, rs139895699) then each wild type peptide sequence was submitted to the
PROWL database, number of gene products containing the sequence identified and the pres-
ence, or absence, of each polymorphism examined using the ESP exomic database (http://evs.
gs.washington.edu/EVS/). In each case where we could not conclusively eliminate false poly-
morphism, there was only one gene product containing the polymorphism. However, at this
stage we cannot formally exclude the possibility that some polymorphisms may also exist in
pseudogenes.
(PDF)

S3 File. Hair proteome.Datasets from a subset of European–American Subjects (EA1, L1.001
to L1.060) were processed for absolute abundance values using the X!Tandem algorithm
(www.thegpm.org) and sorted according to the absolute abundance values in the proteome.
Overall abundance values were generated by the following formula: abundance values were
averaged and multiplied by the quotient of number of datasets with the detected gene product
by the total number of datasets (abundance; n = 54). Each gene product (Ensembl Accession)
and proportion of individuals with the detected gene product (count) are described. Primary
protein accession numbers (primary acc#), and the mnemonic identifier of a UniProtKB entry
was entered (UNIPROT#), along with protein name (protein name) and gene name (GN).
Duplicate entries were pooled. Gene products that were detected in less than 7 individuals were
not analyzed.
(PDF)

S4 File. Hair proteome in modern and archaeological European subjects.Using a popula-
tion European–American subjects (EA2, n = 15) and the archaeological samples (n = 6) abso-
lute abundance measurements were obtained using the X!Tandem algorithm (www.thegpm.
org) and sorted according to the overall abundance values in the proteome. Overall abundance
values were generated by the following formula: abundance values were averaged and multi-
plied by the quotient of number of datasets with the detected gene product by the total number
of datasets examined (n = 21) and averaged across all datasets obtained for each individual.
The number of subjects where each gene product was observed was determined (observations).
Corresponding Primary Protein Accession numbers (Accession #), gene names (GN), Uniprot
identifier (UniProt ID) and Ensembl Accession numbers (Ensembl Accession #; www.ensembl.
org) are included. The function of each gene product, as recorded in the UniProt database
(www.UniProt.org) was also determined and included (fn: s = structural, m = metabolism,
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mt = mitochondrial, pr = protein regulation and turnover, pm = plasma membrane, mb =
membrane associated protein, ml = melanosome associated protein, l = lysome associated pro-
tein, u = unknown and miscellaneous, ex = extracellular protein, n = nuclear protein.) Dupli-
cate entries were pooled.
(PDF)

S5 File. Imputation of nsSNPs alleles in individual European American (EA1) datasets.
Datasets resulting from application of tryptic digests were analyzed using both the Trans Prote-
omic Pipeline and GPMmanager, as outlined in the Supplemental Methods (S1 Methods).
Proteomic datasets from a cohort of European–Americans (EA1, n = 51), were analyzed and
peptides that contained characterized single amino acid polymorphisms were identified, col-
lated, and summed for each individual. Peptide sequences are included with amino acid poly-
morphisms indicated in lower case (pept). Single nucleotide polymorphisms that account for
the change in amino acid structure are represented in the table by gene name (GN), and
dbSNP identifier and allele (rs#_nuc). Multiple alleles occurring within the gene boundary,
either through heterozygosity or multiple SNPs are also indicated. The number of observations
of alleles, or combination of alleles within a gene boundary, are recoded for both the
European (EUR; n = 379) and African (AFR; n = 246) populations (1000 Genomes Project;
1000genomes.org). If a SAP-containing peptide was identified in any of the proteomic datasets
associated with an individual, this was indicated by a "1" in the matrix. False positives, identi-
fied by genotyping have been removed. A maximum of 1 observation of allele, or combination
of alleles, occurs per gene.
(PDF)

S6 File. Imputation of nsSNPs alleles in individual European American (EA2) datasets.
Datasets resulting from application of tryptic digests were analyzed using both the Trans Prote-
omic Pipeline and GPMmanager, as outlined in the Supplemental Methods (S1 Methods). A
cohort of European–Americans (EA2, n = 15) were analyzed and peptides that contained char-
acterized single amino acid polymorphisms were identified, collated, and summed for each
individual. Peptide sequences are included with amino acid polymorphisms indicated in
lower case (pept). Single nucleotide polymorphisms that account for the change in amino acid
structure are represented in the table by gene name (GN), and dbSNP identifier and allele
(rs#_nuc). Multiple alleles occurring within the gene boundary, either through heterozygosity
or multiple SNPs are also indicated. The number of observations of alleles, or combination of
alleles within a gene boundary, are recoded for both the European (EUR; n = 379) and African
(AFR; n = 246) populations (1000 Genomes Project; 1000genomes.org). If a SAP-containing
peptide was identified in any of the proteomic datasets associated with an individual, this was
indicated by a "1" in the matrix. False positives, identified by genotyping have been removed. A
maximum of 1 observation of allele, or combination of alleles, occurs per gene.
(PDF)

S7 File. Imputation of nsSNPs alleles in individual African and African-American datasets.
Datasets resulting from application of tryptic digests were analyzed using both the Trans Prote-
omic Pipeline and GPMmanager, as outlined in the Supplemental Methods (S1 Methods). A
cohort of 5 African-American subjects, and 5 Kenyan subjects (S5)[39], were analyzed and
peptides that contained characterized single amino acid polymorphisms were identified, col-
lated, and summed for each individual. Peptide sequences are included with amino acid poly-
morphisms indicated in lower case (pept). Single nucleotide polymorphisms that account
for the change in amino acid structure are represented in the table by gene name (GN), and
dbSNP identifier and allele (rs#_nuc). Multiple alleles occurring within the gene boundary,
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either through heterozygosity or multiple SNPs are also indicated. The number of observations
of alleles, or combination of alleles within a gene boundary, are recoded for both the
European (EUR; n = 379) and African (AFR; n = 246) populations (1000 Genomes Project;
1000genomes.org). If a SAP-containing peptide was identified in any of the proteomic datasets
associated with an individual, this was indicated by a "1" in the matrix. False positives, identi-
fied by genotyping have been removed. A maximum of 1 observation of allele, or combination
of alleles, occurs per gene.
(PDF)

S1 Methods. Detailed outlines of the physical and chemical treatment of hair shafts are
described to allow correspondence of experimental treatments with resulting proteomic
datasets. Detailed protocols for data acquisition on a Thermo Hybrid FT/LTQ, a Bruker maXis
Impact qToF, and Agilent 1290/Agilent 6530 Accurate-Mass Q-ToF are outlined. A descrip-
tion of the discovery process of genetically variant peptides is included, particularly the crea-
tion and characterization of a custom reference protein variant database (RefSeq_Protein_
Variant_Database.txt; https://zenodo.org/record/58223; DOI: 10.5281/zenodo.58223).
(DOCX)

S1 Table. Admixture estimation from cohort of 60 self-identified European-Americans.
Before hair samples in the European–American Cohort (EA1) were processed, DNA from each
subject was evaluated for biogeographic background using the Investigative LEAD™Ancestry
DNA Test (Sorenson Forensics LLC, Salt Lake City, UT) that genotypes data for 190 SNPs that
are ‘Ancestry InformativeMarkers’[38]. All subjects self-identified as European (EUR); however,
some individuals were determined to have an admixture of other ancestral backgrounds; and were
excluded from further treatment and analysis (subjects 00642–10, 11, 18, 22, 24, 25, 27, 34, and
43). Percent ancestry contributions (%) and standard deviations (SD) are listed for each subject.
(TIFF)

S2 Table. Flanking primers for imputed nsSNP loci verification. PCR primers were
designed, to flank the variant, using the Primer 3 program (Whitehead Institute for Biomedical
Research). PCR reactions were carried out using the AccuPrime™ Taq DNA Polymerase System
(Invitrogen™) following the manufacturer’s specifications. PCR product was then treated with
ExoSAP-IT1 (Affymetrix) and subjected to Sanger Dideoxy Sequence analysis on an Applied
Biosystems 3730xl 96-capillary DNA Analyzer by the DNA Sequencing Core Facility, Univer-
sity of Utah Health Science Cores.
(TIFF)

S3 Table. Proportion of GSDMA nsSNP loci combinations in European and African popu-
lations. Individual genotypes for nsSNP loci (rs3894194, rs56030650) from the 1000 Genome
Project (www.1000genomes.org, phase 1) were collated and genotype frequency (gf) of each
combination calculated for both the European (EUR, n = 379) and African (AFR, n = 246) pop-
ulations. Corresponding single amino acid polymorphisms are indicated in red.
(PDF)

S4 Table. Proportion of KRT32 nsSNP loci combinations in European and African popula-
tions. Individual genotypes for nsSNP loci combinations (rs2071561, rs2071563, rs72830046)
from the 1000 Genome Project (www.1000genomes.org) were collated (sum) and the genotype
frequency of each combination (gf) calculated for the European (EUR) and African (AFR) pop-
ulations. Peptides that do not have a single point of origin in the genome (eg. ADLEAQVESLK)
are indicated by italics. Corresponding single amino acid polymorphisms are indicated in red.
(TIFF)
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S5 Table. Proportion of KRT35 nsSNP loci combinations in European and African popula-
tions. Individual genotypes for nsSNP loci (rs12451652, rs2071601, and rs743686) from the
1000 Genome Project (www.1000genomes.org) were collated (sum) and the genotype fre-
quency (gf) of each combination was calculated for both the European (EUR) and African
(AFR) populations. Corresponding single amino acid polymorphisms are indicated in red.
(TIFF)

S6 Table. Proportion of KRT40 nsSNP loci combinations in European and African popula-
tions. Individual genotypes for nsSNP loci (rs2010027, rs150812789) from the 1000 Genome
Project (www.1000genomes.org) were collated (sum) and the genotype frequency (gf) of each
combination calculated for both the European (EUR) and African (AFR) population. Corre-
sponding single amino acid polymorphisms are indicated. If two peptides are used to infer the
presence of a SNP allele then both sequences are included in red.
(TIFF)

S7 Table. Proportion of KRT81 nsSNP loci combinations in European and African popula-
tions. Individual genotypes for nsSNP loci (rs6580873, rs2071588, and rs79897879) from the
1000 Genome Project (www.1000genomes.org) were collated (sum) and the genotype fre-
quency (gf) of each combination calculated for both the European (EUR) and African (AFR)
population. Peptides that do not have a single point of origin in the genome are indicated by
italics. Corresponding single amino acid polymorphisms are indicated in red.
(TIFF)

S8 Table. Proportion of LRRC15 nsSNP loci combinations in European and African popu-
lations. Individual genotypes for nsSNP loci (rs13070515, and rs13060627) from the 1000
Genome Project (www.1000genomes.org) were collated (sum) and the genotype frequency (gf)
of each combination calculated for both the European (EUR) and African (AFR) populations.
Corresponding single amino acid polymorphisms are indicated in red.
(TIFF)

S9 Table. Peptides containing single amino acid polymorphisms (SAPs) identified in the
hair proteome. Peptides bearing single amino acid polymorphisms (SAPs) in the hair prote-
ome are listed in order of Gene Name. The genotype count of each underlying SNP allele in the
European (EUR) and African (AFR) population is indicated (1000 Genome Project, phase 1).
The SAP is indicated in the peptide sequence in red, with the non-reference allele indicated in
lower case (peptide sequence). Minor alleles appear above major alleles. Peptide sequences that
were not unique, and could be attributed to more than one position on the genome, were not
included. The corresponding non-synonymous SNP locus accession number (rs#) and imputed
nsSNP allele nucleotide (nuc) are indicated.
(TIFF)

S10 Table. Direct genotyping of subjects using Sanger sequencing. Validation of predicted
DNA polymorphisms was executed using PCR primers designed to flank the variant (S2 Table,
Primer 3 program, Whitehead Institute for Biomedical Research).
(TIFF)

S11 Table. Sensitivity and positive predictive value measurements of genetically variant
peptides. Peptides identified in subject datasets that contained single amino-acid polymor-
phisms (SAPs) (Gene Name = GN, SNP locus = rs#) were directly evaluated for the ability to
impute nsSNP loci in corresponding subjects’DNA using Sanger sequencing (Fig 1, S2 Fig, S4
Fig, and S5 Fig). The amino-acid sequence of the SAP-containing peptide is shown (peptide),
with the SAP indicated in red and non-reference allele indicated as lower case. Corresponding
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nucleotide alleles (nuc) are listed in red with the minor allele appearing above the major allele.
Genetically variant peptides are listed in order of increasing genotype frequency (gf) of the
minor allele. SAP-containing peptides that occur in more than one gene product, and therefore
are not unique, were excluded from the analysis. The percent sensitivity, measured as the pro-
portion of nsSNP-loci that are correctly detected and imputed (true positive/(true positive
+ false negative)) is listed along with individual counts in parentheses. The ability of each
genetically variant peptide to accurately impute the corresponding SNP allele, or positive pre-
dictive value (PPV; true positive/(true positive + false positive)), is calculated as a percentage.
Individual counts are also shown in parentheses[49]. SAP-containing peptides are sorted based
on increasing proportion of the minor allele in the European Population (1000 Genome Proj-
ect, phase 1).
(TIFF)

S12 Table. Mitochondrial haplotype analysis of subset of European-American cohort.
Mitochondrial DNA in buffy coat DNA was isolated from a subset of European-American
subjects (EA2) and HV1 and HV2 regions sequenced (S1 Methods). Mitochondrial DNA hap-
lotypes and subclades were classified and percentage and population proportion determined
relative to the Utah Population Database (Pr(mtDNA haplotype|Utah population)). Calcula-
tion of imputed nsSNP profile probabilities (Pr(imputed nsSNP-profile|EUR population))
were calculated relative to the European population as described in the Supplemental Methods
(S1 Methods). The effect of binomial distribution on posterior allelic probabilities was deter-
mined and upper and lower limits (90% confidence interval) determined using parametric
bootstrapping. Full Hardy-Weinberg equilibrium between gene boundaries, and full linkage-
disequilibrium within them, were assumed. When independence between mitochondrial
DNA haplotype and the imputed nsSNP allele profiles was assumed, the combined probability
was calculated as the product of the two values.
(PDF)
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